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Abstract
One-Shot Interactions with Intelligent Assistants in Unfamiliar Smart Spaces
by
Meghan Clark
Doctor of Philosophy in Computer Science
University of California, Berkeley
Associate Professor Prabal Dutta, Chair

Professor Mark W. Newman, Co-chair

Smart space technologies have entered the mainstream home market. Most users currently
interact with smart homes that they (or an acquaintance) have set up and know well. However,
as these technologies spread to commercial or public environments, users will need to frequently
interact with unfamiliar smart spaces. In such settings, users will be unaware of the available
capabilities and the system maintainer will not be present to help. Users will need to quickly
and independently 1) discover what is and is not possible, and 2) make use of available
functionality. However, current smart spaces use a “proper device name” paradigm that
requires users to know which individual devices are smart and what their proper names are
in order to interact with the space. This approach makes it nearly impossible for users to
operate unfamiliar smart spaces, especially when using natural language intelligent assistants.
Widespread adoption of smart space systems, and all the benefits they may confer, will not
be possible until this discoverability issue is solved.

In this work, we characterize the problems associated with the proper device name paradigm
and evaluate potential solutions. First, we look at the limiting effect that device-centrism
has on a user’s conception of system capabilities, and find that framing interactions around
intelligent assistants can mediate these negative effects. Then, we examine how the use
of proper names to refer to system resources poses particular challenges in smart spaces.
To address these issues while preserving an assistant framing, we borrow patterns from
human-to-human messaging and apply them to human-to-assistant communication. Our
method of using contextual photo messages enhanced by two technologies — augmented reality
and autocomplete — allows users to determine available functionality and achieve their goals in
one attempt with a smart space they have never seen before, something no existing interface
supports. The ability to easily operate unfamiliar smart spaces improves the usability of
existing systems and removes a significant obstacle to the vision of ubiquitous computing.



This having learned, thou hast attained the sum
Of wisdom; hope no higher, though all the stars
Thou knewest by name, and all the ethereal powers,
All secrets of the deep, all Nature’s works,
Or works of God in Heaven, air, earth, or sea,
And all the riches of this world enjoyedst,
And all the rule, one empire; only add
Deeds to thy knowledge answerable; add faith,
Add virtue, patience, temperance; add love,
By name to come called charity, the soul
Of all the rest: then wilt thou not be loth
To leave this Paradise, but shalt possess
A Paradise within thee, happier far.

— Milton, Paradise Lost
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In Scenario 3, the goal state is not possible to achieve because the device is not
connected. We find that all users struggle to determine when a device is not
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ARticulate interface. ARticulate is a smartphone app for communicating with
smart space assistants inspired by the Snapchat messaging application, with key
modifications to support smart home discovery. Off-screen markers that slide
around the edge of the screen indicate the presence of nearby smart devices (a).
Glowing animated orbs with labels indicate the location and proper names of on-
screen smart devices (b). Users can take a picture and caption it with a message for
the assistant. Autocomplete suggestions (c) aid in caption composition, providing
insight into what the agent understands and what capabilities the device has.
Suggestions are included for all on-screen devices. A chat history window (d)
allows users to see a record of what captions were sent and the assistant’s responses,
and also provides users with a way to type directly to the assistant without the
necessity of photos. . . . . . . ..
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Autocomplete suggestions for multiple devices. ARticulate users can view (a) and
photograph (b) multiple smart devices at once. In this example there are three
devices: Mood Lamp, Light A, and Multipurpose Sensor. The autocomplete design
has several features to help structure the large number of resulting suggestions
(c). Suggestions are categorized into “capabilities” like power and color. When
multiple devices are in a photo, the autocomplete suggestions are interleaved by
capability. Each capability section hides excess suggestions with a “Show more
options” drop-down. This was especially critical for the color suggestions, as
Alexa understands over 145 different color names — too many to casually scroll
over. An illustration of the variety of color suggestions that are revealed after
tapping “Show more options” is shown in (d). These design choices are intended
to help users quickly understand the range of what the available devices can do
with minimal scrolling and reading. . . . . . . . ... ... 0L
ARticulate scanning process. To prepare for the study, the on-site facilitator used
the smartphone to make a new 3D scan of the room (a), which involved moving
slowly around the room while the vision system detected planes (b). The facilitator

manually placed device markers by tapping the phone screen over a detected plane.

After selecting the appropriate label (c), the marker was then placed on the
plane (d). This vision-based and heavily manual approach to localizing devices
was burdensome for the facilitator and performed poorly under changing lighting
conditions, but we expect these challenges to be greatly reduced by upcoming
technology improvements. . . . . . . . . . ... ... o
ARticulate testbed. To evaluate ARticulate during the COVID-19 pandemic,
we created a testbed kit that we could send to each participant’s home. Each
participant lived with a study team member who could set up the testbed and
facilitate the in-person needs of the study, such as running the video call and
using a laser pointer during task instructions to indicate relevant devices to the
participant without using language. The smart home testbed itself consisted of
six devices, each of which corresponded to a different task that tested some aspect
of the research question. The “smart” appliances connected wirelessly to the
commercial SmartThings platform [150] through a hub. Each participant used
two different interfaces to communicate with the assistant at different phases of
the study: a voice interface via the Amazon Echo Dot [151], and the ARticulate
messaging app preloaded on a smartphone. The cloud servers powering these
interfaces interpreted the participant’s utterances and actuated or queried the
smart devices through the SmartThings APL. . . . . .. ... ... ... ....
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6.5

6.6
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7.1

User study protocol. Participants were assigned one of two possible session
types, Voice Start or Messaging Start. The session type determined whether
the user started the interactive tasks using voice or ARticulate. “Voice Start”
participants experienced all three interaction phases starting with a voice phase.
The “Messaging Start” treatment skips the first voice phase entirely to show that
performance during the messaging phase is not due to learning effects. In both the
first voice phase and the messaging phase, the tasks are the same (Tasks 1-4), and
are followed by a three-minute self-directed discovery period. However, note that
the final voice phase contains an extra task (Task 5: New Task) that is not posed
anywhere else. The final voice phase also ends with users recalling what they have
learned about the devices in the room, rather than discovery. All sessions begin
with a pre-interview about user experiences with prior technologies, and end with
an System Usability Scale (SUS) questionnaire and debriefing interview. )
Participant demographics and background. The columns show participant demo-
graphics as well as whether the participant has used various technologies. The
“Assistants (Voice)” column includes both smartphone and smart speaker use, so it
is a superset of the “Smart Speaker Use” column. “Observer” is used to indicate
when someone does not use a technology themselves, but frequently observes
another use it, such as a roommate, partner, or close friend. Strikingly, though
speaking out loud to assistants was very common, no one remembered typing
messages to an assistant, though both of the main smartphone assistants (Google
Assistant and Siri) support it. Also, while all of the participants frequently visited
or lived in a home with smart space technologies, almost no participants had been
in an unfamiliar smart space set up by someone else that they needed to figure
out how touse. . . . . . . . L
Number of interactions per task for each participant. An interaction is a message
or utterance directed to Alexa. . . . . . . . ... ..

High-resolution ultra-wideband (UWB) localization systems. The four pictures
on the left show the Decawave MDEK1001 anchor-and-tag system and gateway
that provides 10 Hz location updates for mobile devices that move quickly or
frequently, such as mobile phones. Modern smartphones have UWB radios built
in. On the right is a Slocalization tag, an ultra-low energy UWB tag that does
not require batteries. . . . . .. ... Lo
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7.2

7.3

The present and future of intelligent agents in smart spaces. In the current model,
a human user maintains a mental model of the world. To achieve their desired
goal state in the world, they initiate an interaction with the agent, which exists
merely as a pass-through for translating the human’s interaction into a command
that affects the world. The human observes the new state of the world and repeats
until the goal state is reached. However, if we consider the agent as also having a
mental model of the world and a similar level of agency and initiative, we are put
into the paradigm on the right. In this paradigm there are many kinds of possible
interactions between agent and human. Many of these workflows are critical for
agents to learn new phrases, new functionality, and user preferences. . . . . . . .
Pixie augmented reality interface supporting discovery and invocation of smart
space functionality. The left image illustrates the exposed functionality of two
smart devices: a smart switch that can be turned on and off, and a smart light that
also has dimming and color changing ability. The pixies have their eyes closed so
that residents do not feel socially uncomfortable. The right image shows the pixies
opening their eyes and engaging with the user as the user approaches and they
come into “focus.” Functionality is invoked by pinching or pinch-and-dragging the
pixies, who giggle like it tickles. Pixies are anthropomorphized, like current smart
space assistants, but are language-free, making them more widely accessible to
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Overview of questionnaires. We administered questionnaires with two scenarios
on Mechanical Turk, each of which had two possible treatments, which resulted in
four unique prompts describing smart home conceptual models. The unmediated
scenario asked what applications end users wanted in their hypothetical smart
home, while the assistant-mediated scenario asked end users to tell a hypothetical
smart home Al what they wanted it to do. For each scenario, the smart home’s

capabilities were described either by a list of devices or by a list of data streams.

Participants were only presented with one of the four conceptual models.

Example responses for each interaction framing. This table shows several responses
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Chapter 1

Introduction

Smart spaces are indoor spaces that contain smart devices—appliances and sensors that are
connected, usually through networking technologies, to a computing fabric that renders them
interactive. The idea of independently animated rooms or buildings has captured the public
imagination for nearly a century, recurring frequently in movies, TV shows, books, and more.
Smart spaces have frequently been used to probe our collective anxieties, but also excitement,
about the current technological revolution, and especially its effects on domestic labor [1-3].

Early depictions of smart spaces, such as the smart home in the 1922 film “The Electric
House” [4], emphasize automation through electromechanical means, and reflect contemporary
hopes and fears about replacing human domestic workers with unthinking machinery as
homes became electrified [1]. By World War II, middle-class Americans were no longer able
to regularly hire servants, and housewives became the primary source of domestic labor [1,
5]. Consequently, the idea of a smart home became closely intertwined with the role of
housewives. In 1967, Ruth Sutherland, the wife of the first smart home inventor, said, “At
first, I thought it might really replace me! From the cartoons and jokes we see and hear
about computers, isn’t this the general impression that most homemakers at present would
have if they suddenly found out they had a computer in their home?” [6].

In the 1980s, personal computers entered homes just as housewives were leaving them. In
1977, for the first time more than half of US women with children entered the labor force,
a percentage that continued rising throughout the 1980s and 1990s until its peak at 74%
in 2000 [1, 7]. Perhaps because of this, many depictions of smart homes during this time
personify the home as a female caregiver, with a name and a voice, who is often explicitly
cast in the role of a mother or housewife [3]. These “intelligent assistants” are able to observe
what is going on in the space, and able to effect changes within it autonomously, usually with
the goal of anticipating or fulfilling occupant desires.

In addition to exploring upheavals in domestic relations, smart homes have also been used
as a lens on other social anxieties, helping us imagine a better future through technology [2].
They have been variously associated with energy efficiency in an age of climate change [8-11],
protection against intruders [10-12], liberation from domestic chores [11], support while
working [13], independence and safety for the growing population that is aging-in-place [10,
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13-15], and companionship in the face of increasingly isolated living [16].

Innovators motivated by these compelling visions have at last taken smart homes from
futuristic dreams to present reality. Technology has reached a point of maturity where many
futuristic smart space features are within reach for a typical US consumer. Sensors and
actuators have emerged on the mass market, providing the peripherals by which a DIY
smart home can sense and act. These devices include motion, temperature, humidity, and
light sensors, cameras, light bulbs, sprinkler systems, switches, thermostats, and speakers.
Each manufacturer includes a smart phone app for manual remote control and sometimes
automation of these devices [17]. A number of third-party platforms have also emerged
that allow users to automate and connect compatible devices from different vendors [18].
Additionally, in recent years, commercial-grade intelligent assistants with the ability to
integrate with these smart home devices have become resoundingly popular, with 46% of the
US population reporting using assistants in 2017 [19]. While users primarily interact with
intelligent assistants through smartphones [19], these assistants are also embodied in “smart
speakers” and often act as points of voice control for a smart home [20], with over 80 million
smart speakers sold thus far [21]. This brings us closer to the vision of the smart space as
intelligent companion and helper who can frictionlessly understand and support our goals.

To-date, these smart space systems have mostly been retrofitted into homes by technology
enthusiasts. A number of studies have found that smart homes are often maintained by a
primary technical user, or “pilot user,” but must also be used by “passenger users” such as
roommates, spouses, or guests [22-27]. Though these passenger users are often not involved
in the installation and configuration of the smart space system, they must nevertheless figure
out what the system can do and how they can make the system do it. Currently, passenger
users primarily discover available smart home functionality by relying on the pilot user to
tell or show them [22].

However, as smart space technologies become more widely adopted outside the home,
there will be an increasing number of passenger users in contexts where the system maintainer
is largely inaccessible, such as commercial or public buildings. The current reliance on out-of-
band social communication for discovering what devices are available and how to interact
with them will become a significant obstacle to usability of smart spaces. In a space like a
smart office or smart conference room, the building manager, facilities staff, or contractor who
installed the system is unlikely to be present to inform the large number of passenger users
how to use the system. These problems have already begun to emerge in residential situations
where the smart home maintainer is not frequently present, such as the AirBnB home rental
business (see Figure 1.1). Further, if the capabilities of the smart space change dynamically
as mobile smart devices become increasingly common, not even the system maintainer may
know what functionality is available at any given moment. Helping users quickly discover
and invoke functionality in these unfamiliar smart spaces is critical if we wish to enable the
widespread adoption of smart spaces, where every user is likely to be a passenger user at
some point.

Supporting rapid capability discovery and invocation for users in unfamiliar smart spaces is
a challenge due to the way we currently design smart space systems. Smart space systems are
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Like 1/3rd of my Airbnb's binder are
instructions on how the Echo works and
what specific words control which specific
lights and exhortations to please not use the
actual, physical light switches.

Figure 1.1: Ad-hoc discovery method for residential guests. The host must provide guests
with the lexicon of proper device names. The host must also specify what the interface does
not control (the TV), presumably because it is difficult to determine absence of support
from failed interactions alone. Note that if users are unable to figure out the interface, they
will manually turn off the devices, interrupting any automation routines. Reproduced with
permission.

commonly presented as a collection of devices with proper names, and to invoke functionality,
users must know the proper name of the relevant device—an approach we call the proper
device name paradigm. However, there is little support for helping users discover the proper
names of the space and the devices to which they correspond. Smartphone apps display
identical-looking device icons labeled with proper names that may be hard to match to their
real-world identities without using trial-and-error. Voice interfaces acutely lack discovery
aids, providing few clues as to what the intelligent assistant understands [28]. The proper
device name paradigm requires users to know in advance which devices are smart and what
their proper names are in order to successfully interact with the smart space.

We show that while this approach may work for the users who set up the system and
named the devices themselves, it does not scale to commercial buildings, hotels, offices, and
public spaces where occupants cannot easily ask the system maintainer. We show that these
leaky abstractions from the system-level conceptualization negatively impact widespread
adoption by making user discovery fundamentally hard.

To characterize the problems caused by the proper device name paradigm, we run two
separate studies. In the first study, we explore how device-centrism limits the what users
expect a system can do, and show that an intelligent assistant approach is beneficial for smart
homes in the long term. In the second study, we show how proper names are fundamentally
not guessable and ambiguous in the smart space domain, further highlighting the need for
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explicit discovery mechanisms.

While these two challenges are significant, the most popular smart space platforms are
likely going to continue being built around the “proper device name” paradigm for the
foreseeable future. Thus, we need a solution for passenger users to independently and quickly
discover 1) what smart devices are available in a space and 2) what their names are. An
interface that supports this form of discovery will not only help the user accomplish their
immediate tasks, but may also help users learn information that can potentially transfer to
other interfaces, unlocking their use.

Our goal is for users to walk into an unfamiliar smart space and accomplish a smart space
task in a single attempt, or, if the task is not possible, not attempt to do it at all. We refer to
this as a one-shot interaction. (This is not to be confused with the terms “one-shot learning”
or “zero-shot learning” used in machine learning, which refer to entirely unrelated concepts.)
Ultimately, we achieve our goal of supporting one-shot interactions with intelligent assistants
in unfamiliar smart spaces, paving the way for truly ubiquitous computing.

1.1 The Emergence of Smart Spaces

Just as smart homes have been present in popular media for nearly a century, people have
been trying to bring smart homes into reality since at least the 1960s. In 1966, a Westinghouse
engineer named Jim Sutherland built a fully functioning smart home from spare computer
parts that he called the ECHO IV, short for the Electronic Computing Home Operator [6].
The ECHO IV was the first system to prototype many of the functions we associate with smart
homes today. The main controller was accessed through a nearby programming terminal,
but there were also user-friendly interfaces distributed throughout the house, including a
remote terminal in the kitchen, another control interface, and a controllable clock. While the
administrative console needed to be programmed using an octal keypad, the other terminals
allowed Sutherland’s wife and children to interact with the home using a typewriter to support
English and decimal numbers, allowing them to do tasks such as household budgeting, recipes
and food inventory tracking, word processing, and interactive trivia games. Even as early as
the 1960s, it was clear that passenger users wanted to interact with the home differently, and
thus required a different kind of interface, than the system maintainer.

The first mass-marketed smart home was the Honeywell Kitchen Computer, advertised
in 1969. The desk-sized kitchen computer was pitched as a way to help homemakers track
recipes and pantry inventory [29, 30]. However, while the over $10,000 price tag included a
one-week programming course for the primary user (who was assumed to be a housewife),
the Honeywell Kitchen Computer was a wildly unusable device. The user had to translate
ingredients into 16-bit codes, and then input those codes into the computer, which had no
way of displaying information back to the user except for a series of LEDs, which would flash
in particular patterns that the user had to interpret. Though it was advertised by Nieman
Marcus, the Honeywell Kitchen Computer was not a commercial success [29].
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From the 1960s through the 2000s, smart homes remained boutique systems accessible
mainly to the wealthy, such as Bill Gates’s residence as he described it in “The Road
Ahead” [31]. However, this period also saw a blossoming of smart home research. At Xerox
Parc, Mark Weiser’s “The Computer for the 21st Century” launched the entire subfield of
ubiquitous computing [32, 33]. The vision of small computing devices seamlessly integrated
into the environment was a natural fit for smart homes, and several institutions built model
smart homes for conducting research, including the Neural Network House at University of
Colorado, Boulder [34], the Aware Home [35] and Gator Tech Smart House [36] at Georgia
Tech, the Intelligent Room and House_n at MIT [37, 38|, and the iRoom smart workspace at
Stanford [39]. Researchers outlined the major research challenges [40-42], and a number of
interfaces were developed, including Tangible Bits [43], the context-aware magnetic poetry
(CAMP) interface [44], the interactive Context-aware Application Prototyper (iCAP) [45],
and the Jigsaw editor [46, 47]. To support flexible smart space applications, middleware such
as Speakeasy enabled interoperability between disparate devices [48].

While this proved to be a rich era for smart space research, the results did not directly
translate into real-wold adoption. Even by 2010, the costs were too high for too few features,
and too much technical expertise was required for most home occupants [9]. However, a
confluence of forces has at last brought physical computation to the mass market.

1.1.1 The Internet of Things enters the home market

Recent years have seen a proliferation of low-power embedded sensors and actuators with
networking capabilities, individually called “smart devices” and collectively dubbed “The
Internet of Things” (IoT) [49-52]. The emergence of IoT technology was enabled by advances
in a number of different fields. Transistor density increased while requiring less power, making
it easier to perform useful computation on small, battery-powered devices [53, 54]. Battery
technology itself improved, allowing smaller devices to operate for longer [55]. Cheap and
low-power radios and networking protocols, such as Bluetooth Low Energy (BLE), Zigbee,
and Thread, allowed a multiplicity of IoT devices to communicate with nearby gateways, while
high-performance wireless home networks acted as backhauls [17, 51, 52]. Cloud technology
enabled the formation of IoT businesses that could build value by aggregating data [51].
The ubiquity of the smartphone meant that most adults carried a network-connected user
interface with them wherever they went, even in the home [17, 56].

While [oT technologies have been deployed in many sectors, including manufacturing, lo-
gistics, agriculture, and personal health, a significant domain for IoT devices is in smart spaces,
where connected sensors and actuators primarily interact with home or office inhabitants.

In smart homes, as in the other domains, these IoT systems generally follow a “device-
gateway-cloud” architecture, in which edge devices communicate using a low-power wireless
protocol with a gateway, which then forwards any messages back and forth between the
device and the cloud [17]. However, unlike the other IoT domains, non-technical users need
to frequently interact with the system. This has led to a proliferation of user interfaces.
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1.1.2 An ecosystem of smart space interfaces

The current landscape of interfaces has been influenced by two main factors: recent technology
advances and the fractured device market.

The widespread adoption of smartphones and tablets beginning in the mid-2000s resulted
in a glut of smartphone apps for the remote control of smart devices. Phone-based interaction
methods have many advantages since they are a device that people already carry around
with them, with a built-in display screen, touch input, and networking that is all handled by
the phone already. This makes it easy for developers to make and for people to use smart
device apps. It solves many of the problems of remote controls, in that the manufacturer
only needs to write software rather than having to deliver a whole device, and the user does
not need to go hunting for the remote since they will likely be carrying it around anyway.

The downside of having a separate smartphone app for each brand of device is the explosion
of apps on the user’s phone [17]. While setting up the system, the pilot user may be willing to
install a number of different phone apps and remember which smart home device is controlled
by which app, but such a burden becomes excessive for secondary and incidental users, such
as spouses, roommates, and house guests. Consequently, third-party platforms emerged to
unify devices from different brands into one universal interface, providing the convenience of
a single rendezvous point in exchange for foregoing some brand-specific functionality. While
some of these universal interfaces are yet another smart phone app, some are voice interfaces.

Natural language processing (NLP) also experienced a large leap forward in recent years
driven by improvements in cloud computing and machine learning techniques [57]. Enabled
by increasingly ubiquitous and high-bandwidth connectivity, speech interfaces on mobile
devices began to send speech recordings to compute clusters in the cloud, which thanks to
advances in hardware and software could run powerful new algorithms and respond with
results in reasonable time [57, 58]. In 2017, Vaswani et al. introduced transformers, a highly
connected neural architecture that uses attention to overcome the challenge of dependencies in
sequences [59]. Combining transformers with a process for pre-training a large language model
and then fine tuning it for specific applications led to Google’s development of BERT [60],
a very large pre-trained transformer model that advanced the state of the art in natural
language processing. BERT was released as open source and needs little additional fine-
tuning to achieve high performance on new applications, so it quickly became adopted
by a many companies [57]. Modern systems have thus seen rapid improvements in voice
recognition, natural language understanding of speakers’ intents, and naturalistic speech
synthesis. Subsequent large pre-trained models built on a transformer architecture, including
GPT-3, promise more improvements ahead [61].

In smart spaces, these developments have resulted in the successful commercialization of
intelligent assistants embodied by “smart speakers,” microphone-and-speaker devices that
allow occupants to talk to an intelligent assistant who can control smart home devices on
the user’s behalf. In 2020, nearly one-third of internet users had a smart speaker [21]. Of
the estimated 83.1 million smart speakers worldwide, 69.7% allow users to converse with
Amazon’s Alexa, 31.7% embody Google Assistant, and less than 10% support Apple’s Siri [21].
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These different smart space interfaces have different strengths and weaknesses depending
on the context. Device manufacturers’ phone apps may support finer-grained controls,
universal third-party apps may provide the best automation, and voice interfaces provide
quick, hands-free operation. These interfaces act together as an ecosystem, allowing users
with command over them to switch between different interfaces at various times depending
on which is the most convenient in the current context and for their current goals.

1.2 Discoverability Challenges for Smart Spaces

Don Norman, author of the seminal work “The Design of Everyday Things,” describes the
discoverability of a system in terms of how well it supports users “figur[ing] out what actions
are possible and where and how to perform them” [62]. When considering the usability of a
system for new users, discoverability is often a key quality, since it is critical for supporting
users who are just getting started with the system.

Discoverability starts before the user even sees the interface, with what we call the
“interaction framing,” or the conceptual model that the designer tries to convey to the user to
help scaffold their understanding and expectations of the system. The interaction framing
primes the user’s mental model, shaping what they think the primary entities, states, and
actions are. This can influence what interactions the user thinks is possible and what they
will try to do with the system.

When using a smart space system, we observe that users must perform three kinds of
discovery to determine what actions are possible and how to invoke them. We name these
three semantic discovery, lexical discovery, and grounding discovery.

Semantic discovery involves learning what capabilities are (and are not) available, which
is to say determining which devices in a room are (and are not) interactive and what states
they can be in. For example, can the system control a particular light, and if so, can it change
the light’s colors?

Lexical discovery means discovering the vocabulary or keywords of the system that are
required to invoke the functionality, particularly the proper names of the devices (“Left Reading
Light,” “Door”). Voice interface users may additionally need to discover special keywords
referring to actions (“turn,” “unlock”), attributes (“power,” “brightness,” “temperature”), or
values (“on,” “bright,” “68 degrees Fahrenheit”).

Grounding discovery means matching proper names to devices. Beyond just learning which
devices are interactive and the set of available device names, users must know additionally
which names correspond to which devices.

1.2.1 How do passive users currently perform discovery?

Multiple studies of smart home users have reported that users can be roughly categorized
into tech-savvy users who install and maintain the system (“pilot users”), and secondary or
incidental users (“passenger users”). Passenger users can be roommates, spouses, parents,
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children, or guests [22-27]. Since pilot users usually set up and administer the system, they
are intimately familiar with the system’s capabilities and configuration by the time the system
comes online. Passenger users, on the other hand, must discover the available capabilities
and how to invoke them with little prior knowledge.

One survey of 178 smart home users found that passenger users primarily learn what
they can do and how to do it by observing a pilot user’s usage, or by explicitly asking a
pilot user [22]. Additionally, passenger users tend to be uninterested in investing effort to
learn the overall capabilities of the system, merely the feature they wish to use. However,
this indicates trouble for the further adoption of smart spaces. As smart spaces spread into
commercial and public environments, the pilot user may not be available to play this crucial
discovery role when a passenger user enters an unfamiliar smart space (see Figure 1.1).

1.2.2 The rising importance of unfamiliar smart spaces

While residential occupants can fall back on social mechanisms to overcome discovery chal-
lenges, in commercial and public buildings, the lack of discoverability is a more significant
obstacle. The informal social workarounds developed by users in residential settings do not
work in commercial buildings where the smart device installation will likely be done by the
building manager or a contractor. The vast majority of occupants in commercial buildings
will not be familiar with what devices have been installed, what they have been named, or how
users can interact with them. Additionally, many commercial buildings have a substantial
number of visitors who will need to be able to discover how to control relevant devices (e.g.,
lights, projectors, and blinds) as quickly as possible.

As smart buildings continue to advance and mobile platforms like wearables and cars
become integrated into the infrastructure, available system capabilities may change so often
that even system maintainers may not know what specific services are available at any
particular time. Successful interfaces will need mechanisms to dynamically reflect available
capabilities in real time.

For smart spaces to grow in adoption, scale into commercial and public spaces, and support
dynamically changing capabilities, smart space interfaces will need to be geared towards
supporting the needs of users who wish to use the capabilities of unfamiliar smart spaces.

1.2.3 Problems with the proper device name paradigm

Independent user discovery is currently a challenge in smart spaces because the vast majority
of smart space interfaces follow what we call the proper device name paradigm. These systems
require that users learn and remember the proper names of devices in advance in order to
invoke their functionality.

Smartphones apps exhibit this paradigm by representing real-world devices with icons
that are identical within their device category (e.g., the same light bulb icon for various smart
lights, the same switch icon for different brands of switches), differentiated only by their
proper name. A passenger user scrolling through such a list, without prior knowledge from
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the pilot user that set up the system, may need to use trial-and-error to determine which
name belongs to the device they wish to operate. Voice interfaces result in an even more
dire situation, as users may not even get the list of names or hints as to the device type.
Passenger users must learn the proper name through some other method, and then recall
from memory the proper name of the device they want to invoke.

While passenger users currently learn proper names by asking or observing the system
maintainer, no interfaces exist that help users discover the information for themselves when
the system maintainer is unavailable. In this work, we characterize how difficult it is for users
to perform independent discovery in unfamiliar smart spaces built around a proper device
name paradigm, and explore new interfaces to improve smart space discoverability.

1.3 Thesis Statement

In a future where smart spaces are ubiquitous in residential, commercial, and public buildings,
users will need to frequently interact with unfamiliar smart spaces. To have successful
interactions in an unfamiliar smart space, users must solve several discovery problems:

e What capabilities the space has (semantic discovery)
e What names the system understands (lexical discovery)

e Which names refer to what capabilities (grounding discovery)

Thesis: Framing a smart space as an intelligent assistant rather than as a collection of
connected devices better conveys a sense of interoperability and automation to users. We
can support these three kinds of discovery in unfamiliar smart spaces while preserving an
assistant-oriented interaction framing by borrowing the metaphor of text messaging with
autocomplete, and the metaphor of photo messages enhanced by augmented reality, to quickly
and accurately allow users to determine the (un)available functionality and invoke it with a
single interaction.

1.4 Contributions of This Dissertation

In this dissertation we explore how users discover what is available for them to do in a smart
space, and how they can do it, particularly within the currently dominant proper device
name paradigm. We characterize the fundamental challenges facing user discovery in smart
spaces that follow this device-oriented and name-oriented paradigm, including the way that
device-centrism limits expectations of interoperability, and the inherently poor guessability
of device names. To address these challenges, we design intelligent assistant interfaces that
help users in unfamiliar smart spaces discover the assistant’s linguistic capabilities and the
smart space’s functional capabilities simultaneously. While we ultimately achieve our goal of
supporting one-shot interactions with intelligent assistants in unfamiliar smart spaces, we
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also discuss alternative multi-modal approaches to smart space interfaces that would avoid
these challenges altogether and support more natural interactions.

Chapter 2 introduces the literature on discovery, which comes out of psychology. We
then review the role of discovery within a human-computer interaction context. We outline
various discovery issues that arise in the context of smart homes, voice interfaces, and their
intersection. These challenges allow us to formulate a set of requirements for supporting
discovery in smart spaces. We discuss how autocomplete and augmented reality can be used
as mechanisms to achieve these goals.

In Chapter 3 and Chapter 4, we characterize two key problems with the proper device name
paradigm. Chapter 3 focuses on the device-centric aspect of the paradigm. While there are
many ways of presenting a smart home to users, it is not well understood how these different
representations impact what end users think a smart space can do, and therefore which
representation is the best for supporting discovery. To compare different representations,
we formalize them as “interaction framings” that can be used to represent a smart home’s
capabilities. These interaction framings involve representing smart home capabilities as either
a collection of devices or as a collection of datastreams, and then either not personifying the
system at all, or presenting an intelligent assistant as a mediating layer on top of those device
or data capabilities. We present a hypothetical smart home described using these different
interaction framings to over 1,500 participants in an online survey, and ask participants
what applications they want in the smart home. We use multiple approaches to analyze the
responses, and find that presenting a smart home as a collection of smart devices — a very
common interaction framing in modern smart homes — results in limited expectations about
automation capabilities. However, layering an intelligent assistant over top of the devices
as a mediating layer can help mitigate those effects. These results suggest that focusing
on intelligent assistants is the best way to help users perceive the potential value of smart
spaces. Consequently, the solutions we explore in the second half of the dissertation focus on
interfaces with an intelligent assistant framing. This work was originally published in 2017 in
the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(IMWUT) [63].

Chapter 4 delves into the discovery issues caused by the proper name aspect of the proper
device name paradigm. Though proper names have often been used to refer to objects in
computing systems, we show that they are particularly problematic in the smart space domain.
We run a guessability study that illustrates that guessing the proper names of devices is
fundamentally hard. Even if devices are assigned the best possible (most easily guessable)
names, the odds of a user guessing right in one attempt are still low. More uniquely, the sets
of most-guessed names for devices can overlap, so even if given the list of names of available
smart devices, users will not be able to match a name to its device in one attempt. These
results mean we cannot just name devices better—we must design discovery aids.

Chapter 5 and Chapter 6 build up to a solution for supporting discovery in unfamiliar
smart spaces that follow a proper device name paradigm. Chapter 5 introduces the “Smart
Room Chat Room,” where users send text-based chat messages to the intelligent assistant
instead of speaking out loud. Using text, a visual medium, allows us to use autocomplete as a
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discovery mechanism to help users learn what a room can and cannot do. We outline different
design dimensions for autocomplete that could potentially affect discovery, and we compare
the effects of several designs. We find that while autocomplete helps people accomplish their
goals and brings intelligent assistants up to the same baseline as a smartphone app, there
is still room for improvement. We find that even with autocomplete, users have to make
trial-and-error attempts to match the names to the devices, and they also cannot determine
when a device is not smart. The results of this project and the prior guessability study
together indicate that simply providing users with a list of the available names is not sufficient,
as the names need to additionally be grounded to the actual devices they refer to.

Chapter 6 introduces ARticulate, an interface inspired by ephemeral photo messaging
apps that emphasize the user’s immediate context. With ARticulate, we finally achieve the
goal of one-shot interactions with intelligent assistants in unfamiliar smart spaces. ARticulate
works by using augmented reality to show users which devices in the room are smart and
what their names are, and to scope autocomplete suggestions while composing messages to
the intelligent assistant. In a sense, ARticulate captures the user’s gaze while they explore a
new space and communicate with the assistant. In addition to achieving one-shot interactions
with ARticulate, we also show that ARticulate users are able to successfully use voice-only
interfaces afterwards, making it an enabler of the broader interface ecosystem. This ability
to teach users transferable knowledge can support users in using other interfaces that lack
discovery mechanisms. This work is currently undergoing a cycle of major revisions at
IMWUT.

While ARticulate supports discovery under the proper device name paradigm, it also paves
the way for interfaces that combine physical context, gesture, and language together—where
no single modality contains all of the information, but together the system can disambiguate
the user’s intent. In Chapter 7, we explore a future where more interfaces incorporate
physical context into dereferencing entities in language, and potentially do not even rely
on proper names of entities at all. This dissertation concludes that while we should focus
on intelligent assistants as smart space interfaces over the long term, language alone is
insufficient for successful one-shot interactions in unfamiliar spaces—we should therefore
embrace multi-modal smart space interactions as the default paradigm.
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Chapter 2

Background and Related Work

The work in this dissertation is informed by prior work on discovery, mental models, proper
names in computing systems, and smart space interfaces. In this chapter, we review the
literature and synthesize the concepts into a set of requirements for addressing discoverability
in smart spaces. At the end, we identify discovery mechanisms from other domains that could
potentially be used in smart spaces to satisfy these requirements.

2.1 What Is Discovery?

Psychologists have described discovery as a critical process in human learning. In the 1961
essay “The Act of Discovery,” Bruner describes the discovery process in detail, contextualized
by his research on childhood development and education [64]. He states that “discovery
[...] is in its essence a matter of rearranging or transforming evidence in such a way that
one is enabled to go beyond the evidence so reassembled to additional new insights.” In his
definition, discovery is not merely the random act of stumbling over new facts in the world,
but about strategies for search, informed by hypotheses based on the information already
known, that direct the learner to the areas of exploration most likely to be fruitful.

In Bruner’s view, a critical component of successful discovery is the ability to organize,
summarize, and connect information so that the learner can persist in their learning task
much longer, rather than being quickly overwhelmed by a barrage of disconnected facts. The
ability to synthesize information is also crucial to forming long-term strategies and hypotheses
that quickly narrow the search space.

However, a key prerequisite for discovery is suspecting that there is something to discover
in the first place: “For the person to search out and find regularities and relationships in
[their] environment, [they] must be armed with an expectancy that there will be something
to find and, once aroused by expectancy, [they] must devise ways of searching and finding.”
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2.1.1 Discovery in human-computer interaction

In the context of user interfaces, as outlined by Don Norman, discovery is about the user
finding out what actions there are to take and how to take them, while discoverability
describes how well interfaces support such user discovery [62].

Discovery interfaces should be interactive, helping the user while they achieve a goal,
rather than requiring users to first go through a separate learning phase. In the 1987 paper
“Paradox of the Active User,” the authors note that empirical studies have shown that many
people dislike reading manuals or tutorials without being allowed to act, and will commonly
avoid reading altogether whenever possible [65]. Driven by a compulsion for throughput,
users, they found, would often rather “jump in” and learn by doing. Paradoxically, the drive
to get things done is so strong that such users will preferentially do tasks rather than spend
time learning about the system, even if that means potentially doing the tasks less efficiently.
Similarly, in trying to teach users how to use voice commands to operate a mobile phone
GUI, Corbett and Weber found that a separate tutorial was less effective than providing
contextual cues to help users learn “as they go” [66]. This echoes the findings made by Koshy
et al., who state that since passenger users are not interested in taking active steps to learn
about the smart space, designers should use a “just-in-time” approach to help users discover
available actions relevant to their current context [22]. Interfaces should therefore incorporate
the discovery process directly into use of the system, rather than treating it separately.

Another concept in human-computer interaction that emerged from the psychology litera-
ture on discovery is “sensemaking.” Inspired by Bruner and Piaget, Brenda Dervin’s work
in communications and library sciences in the 1980s introduced sensemaking as a process
by which people close information gaps [67]. Sensemaking was brought into the field of
human-computer interaction in the 1990s, when researchers at PARC used the term to
describe an iterative process whereby a user fits new data into a mental representation, while
also changing the representation itself to make better sense of the data or to solve problems
more efficiently, resulting in a closely coupled learning loop [68].

Indeed, before the user begins the discovery process, how do they even conceptualize the
search space? To begin formulating hypotheses and making sense of experiment outcomes,
the user must have some underlying “mental model” of the system.

2.2 How End-user Mental Models Affect Discovery

In “The Design of Everyday Things,” Norman defines mental models as conceptual models
that users draw from to explain and predict the way that devices will behave in different
scenarios [62]. People can use multiple models, and even potentially conflicting models, to
explain various aspects of a system. These mental models are influenced not just by exposure
to the system itself, but also previous interactions with analogous systems, marketing material,
discussions with others, and so on.

Different presentations of the same system might result in different mental models that
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differ in terms of which objects are the primary conceptual entities. These differences can
persist and affect how users update their understanding of the system even after many
interactions. In one study comparing instructions for a laser system, users given one set of
instructions thought of the system in terms of switches, and users given a different set of
instructions thought of it in terms of components [69]. The two groups’ problem-solving
strategies centered around either switches or components, even after repeated use.

In psychology, this effect is called priming. Priming happens when exposure to an initial
stimulus affects the way that a person processes a subsequent stimulus. Some psychologists
have used this priming effect to influence the mental models that individuals generate when
making decisions about risky processes, from indoor radon to the occupational use of hazardous
chemicals [70-72].

One mechanism by which priming could affect mental models is presented by the yoked
state space hypothesis [73]. In the yoked state space hypothesis, mental models consist of
three parts: 1) the objects in the system, how they interrelate, and what operations can be
done on them, 2) the goal space in terms of the user’s goals, and 3) a semantic mapping
between the goal space and the object space. By changing which objects are the main entities,
priming changes the object space and semantic mapping of the mental model, and therefore
how users may conduct discovery through that yoked state space to learn how to achieve
their goals via manipulations of the system.

The implication of this is that through priming, system designers can influence (either
intentionally or accidentally) users’ mental models of smart home processes, and thus the
discovery process. The ways that different system presentations prime users and affect
discovery should therefore be understood and harnessed.

2.2.1 Smart home mental model studies inadvertently prime
users with a device-centric interaction framing

Though prior work has examined mental models specifically for smart home users, it has
often overlooked the effects of priming, instead treating users’” mental models as fixed entities
that must be discovered for the purposes of designing intuitive interfaces. However, it is likely
that these studies inadvertently primed their subjects to think a particular way about the
system.

A number of HCI studies have tried to understand the mental models of smart home
users, particularly to support end-user programming in the home. For example, Dey et al.
performed a study on mental models so that the authors could build a programming tool to
support the way users thought about context-aware applications [74]. However, the study
presented end users with a scenario that used a distinctly device-oriented framing to describe
the system. The prompt described a generic smart home as a house with “sensors” that
could sense the environment and user activities and “execute services on behalf of users.”
The responses contained an unexpectedly high number of references to objects, surprising
the authors—but these results become much less surprising when seen through the lens of
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priming. Additionally, the study found that some users perceived the home as a tool while
others viewed it as an assistant. This hinted at the possibility that the interpretation of
the phrase “execute services on behalf of users” could potentially result in different mental
models, but a followup study to explore the effects of different prompts was not performed.

Similarly, another study examined whether trigger-action programming “captures smart
home behaviors that users actually desire” [75]. The study presented 318 Mechanical Turk
workers with a hypothetical scenario where they had “a home with devices that are Internet-
connected and can therefore be given instructions on how to behave,” suggesting a strongly
device-oriented abstraction of the system, and asked participants for five things they would
want their home to do. Results showed that the majority of responses were programs that could
be expressed with trigger-action, and most of the remaining responses were remote control
interactions. However, the study also found that priming respondents with trigger-action
examples had a significant impact on the proportion of trigger-action responses they got back,
hinting that priming can have a major effect on the way people think about interacting with
systems. While the study explored the effect of priming on the way users express programs,
it did not reflect upon how the presentation of the smart home in the initial prompt might
similarly affect the kinds of operations that users might attempt in the first place. One
notable observation is that the responses did not feature any queries. In this work, we find
that a lack of queries is characteristic of responses to device-based interaction framings, but
queries appear in force when using a data-based framing of the same system. This casts
doubt on the assumption that a single-framing study could capture the entirety of behaviors
that users desire in a smart home.

To some degree it could be said that the previous studies got out the mental models
that they put in. However, the CAMP magnetic poetry paper took a different approach [44].
Like earlier work, the CAMP study assumed that users held “natural conceptualizations
of ubicomp technologies,” but differed in that the researchers were explicitly aware of the
potential to bias users’ mental models with the study scenario. To avoid priming users,
the study provided comics with pictures and dialog and asked users to describe what they
thought was happening in scenes where the parents were “programming” or interacting with
the system. The comics were still somewhat biasing because they showed devices and they
showed the parents at the computer while programming. However, more concerning is the
fundamental assumption that biasing should be reduced as much as possible. The real system
will be priming, and the system will need to support users’ primed mental models. We
therefore need to understand how different systems prime users.

2.2.2 A comparative approach to smart space mental models

Instead of trying to avoid priming in mental model studies, it is critical to determine the effects
of different kinds of priming so that in designing the system we can select the representations
that will prime in ways that we can predict and support. However, so far there has been a
dearth of comparative studies that embrace priming as part of the design process.
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In Chapter 3, we formalize a notion of “interaction framings” for smart homes. This
allows us to compare different ways of representing a smart home’s capabilities to users.
We categorize our framings along two independent axes: 1) capabilities, where the system’s
functionality is presented as either devices or datastreams, and 2) personification, where
the system is either mediated by an intelligent assistant or unmediated. We compare four
interaction framings that represent the extremes of each of these choices. In our comparative
study, we find assistants promising for the long-term future of IoT. This grounds and
contextualises our approach in future chapters for improving smart space dicoverability.

2.3 Proper Names in Computing Systems

Smart homes are far from the first computing system built around proper names. Command
lines, databases, and file systems all use names to specify actions or entities.

Computing systems that rely on proper names to reference data objects have long struggled
with discoverability. In the 1980s, Furnas studied what he called the vocabulary problem in
computing systems, and found that across many domains, the guessability of even the best
proper name was very low [76]. He also identified what he called “the precision problem,’
wherein a the same proper name could plausibly refer to multiple data objects. The more
guessable the name, the more generic it is and the more objects it could potentially refer to;
the more specific the name, the less guessable it is during discovery.

Y

2.3.1 Past solutions for proper name discoverability

Different computing systems have developed different solutions to the vocabulary problem,
but most involve some kind of visual aid or pointing-based selection.

Autocomplete, which provides real-time visual feedback to users as they type, is one such
solution. Autocomplete has been used to help users discover available proper names of tables,
fields, and operations in databases [77], and proper names of actions and objects in command
lines [78, 79]. These days, popular operating systems such as Windows and MacOS provide a
search bar augmented with autocomplete suggestions for finding files by name. We discuss
autocomplete further in Section 2.6.2.

Upon the introduction of graphical user interfaces, the notion of a cursor allowed users to
select an object by pointing to it, rather than having to specify a proper name. These days
users can launch applications by clicking icons rather than typing names on the command line,
and they can find and select files by clicking through directory hierarchies in a file explorer.
These objects are usually also labeled with their proper names, but users only need to recognize
the name of a desired object, rather than recall it. This approach of physically interacting
with iconic representations of digital objects is called “direct manipulation” [80-82].

Voice interfaces have been combined with cursors to overcome the need for proper names.
MIT researchers allowed users to point to a large projector screen to place a cursor while
using voice commands to operate the visuals on the screen. The presence of the cursor on the



CHAPTER 2. BACKGROUND AND RELATED WORK 17

screen allowed users to use pronouns in their commands rather than having to specify proper
names [83]. The cursor concept has been explored in ubiquitous computing environments,
with projects such as WorldCursor and WorldGaze [84, 85]. Our use of augmented reality
to display smart devices to users and encourage users to point their phone at smart devices
they want to interact with follows in this tradition of gesture-based selection of interactive
digital objects.

2.4 Smart Space Discoverability

While there has been a lot of work on designing usable smart home interfaces in situations
where users are familiar with the underlying capabilities, less work has been done to study
the scenario where people walk into an unfamiliar smart space and must discover what
capabilities are available and how to use them.

In “Designing for Serendipity,” Newman et al. identify discovery as a major problem for
recombinant computing [86]. Recombinant computing is a vision of ubiquitous computation
where end users opportunistically discover nearby services and connect them to perform
tasks. Fundamental to the recombinant computing paradigm is the assumption that available
devices and services are likely to change, and they may be used for multiple different purposes.
Consequently, the authors highlight the need to provide users with information about what
is currently available and what it can do. Their recombinant computing system, SpeakFEasy,
exposes human-readable information about what devices and services are available, their
capabilities, and information about their relationships to the environment, such as location.
This information is presented in a browser using drop-down menus that can be organized
along several attributes, such as device type, location, or owner. Hints about how these
components can be combined to perform tasks is provided in the form of templates. In
Chapter 6, our autocomplete mechanism similarly organizes capabilities in a dropdown menu
style, grouped into categories intended to aid users in quickly forming an overall picture of
what is available.

In the paper “Let There be Light,” Brumitt and Cadiz compare potential smart space
interface modalities to determine which would be best for intelligent home environments [87].
They look at five different interfaces for controlling lights: a text-centric touchscreen interface
that lists the names of lights grouped by location and provides sliders for dimming; a graphical
touchscreen interface that shows an unlabeled tappable icon for each light placed on a floorplan
of the room; a voice-only interface; a voice interface with location awareness; and a voice
interface with location and gesture awareness. To free the voice interfaces from technological
constraints, they were implemented using a Wizard of Oz method where a hidden researcher
interpreted the user’s utterances and performed the desired actions.

The researchers were interested in seeing how people would try to interact with the system
upon first entering the room. Participants were assigned a task to set up the room for a
friend’s surprise party and told only that the environment is intelligent. Given this open-ended
prompt, only one of their 18 users initially tried to use speech, while the others walked around
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to find a device that seemed like it could control the room. After this first task, participants
were asked to do the same task with each interface. At the end, participants were asked to
do the task one last time using whichever interface they preferred. Afterwards, participants
were asked to rate the interfaces on how much they liked it and the perceived ease of use.

The interface that closest resembles today’s ubiquitous device-oriented smart phone apps,
the touchscreen interface that displayed light names and sliders, was rated the least-liked
and least easy to use. As the researchers observed, “one major issue with any such display is
creating consistent, clear labels to describe individual lights.”

The voice interface was rated the most-liked, the easiest to use, and was by far the most
popular choice for the final task. However, the researchers caution that “people liked speech
because it worked nearly perfectly, and it worked nearly perfectly because we had a ‘wizard’
(another researcher) controlling the lights to make sure that they responded as perfectly as
possible to user requests.”

The authors predict that the voice interface would be difficult to implement in practice
due to the widely variable language that users used to refer to devices. Users commonly
used indirect references (“turn on the light over there in the corner” or “turn on this light”),
references relative to another object (“turn on the light above the couch”), or relative direction
with an implied frame of reference (“turn on the left light”). This is a type of language use is
called deixis, where the contextual information for resolving the entity reference exists outside
of the text of the utterance itself. Over 57% of the speech commands that participants used
involved some kind of deictic phrase to refer to the lights. A voice system that only has
access to the text of the user’s speech would struggle to select the correct light.

The researchers reject the proper device name paradigm as a good solution to this problem.
They point out that labeling all the lights with proper names would “[require| a person to
learn a naming scheme for all the lights in the house, and visitors will be faced with the
problem of trying to guess the labels selected by the owner.”

Instead, they propose a multi-modal method to resolve the deictic object references — in
91% of the tasks, the participants looked at the device they were referring to. This means
that gaze direction can be used to resolve most ambiguous device references, without the
users having to know any proper device names. In Chapter 6 we incorporate this into our
augmented reality approach, which can be seen as a way of capturing user gaze.

Unfortunately, modern smart homes have coalesced around the proper device name
approach, likely due to the ease of implementation. The “Let There Be Light” study did not
evaluate how the usability of voice interfaces would be impacted if the system only understood
proper names, like current systems. In Chapter 4 we characterize how fundamentally difficult
it is to guess proper names in smart spaces—a major usability obstacle in an unfamiliar
environment.
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2.5 Discoverability Requirements for One-Shot
Interactions in Unfamiliar Smart Spaces

Or goal is for users to walk into an unfamiliar smart space and accomplish a smart space task
in a single attempt, or, if the task is not possible, not attempt to do it at all—what we call
a “one-shot interaction.” Additionally, while performing a specific task users should learn
broader information about the room that can help with other potential future tasks that may
be undertaken with alternative interfaces that lack discovery aids.

To have a successful one-shot interaction and learn about the overall smart space, users
must acquire certain pieces of information about the system. We categorize the information
users must learn into three types: semantic, lexical, and grounding information. Interfaces
that support discovery in smart spaces should present this information to the user as they
accomplish desired tasks, and the information should be transferable to other interfaces.

2.5.1 Semantic discovery

We use the term semantic discovery to refer to discovering the valid states of the system.
In smart spaces, users must be able to answer two questions. The first question is, “Is this
device interactive or not?” In most smart spaces, some devices may be smart and connected,
while others are regular appliances that cannot be controlled by smart space interfaces. Users
in an unfamiliar smart space need to be able to quickly form a mental map of which devices
are digitally connected and which are not. The second question is, “What are the states this
interactive device can be in?” For example, some smart light bulbs can only turn on or off,
some can change shades of white, while others can change colors and display animations. For
users to formulate goals, they must learn what is possible.

2.5.2 Lexical discovery

In smart spaces designed around a proper device name paradigm, figuring out how to put a
device into various desired states means needing to learn the proper names, especially of the
device, but also sometimes the state (e.g., “periwinkle blue” is the proper name of specific
color setting). We call the discovery of the system’s proper names lezical discovery.

2.5.3 Grounding discovery

Knowing the possible states of the devices and knowing the special keywords of the system
is not enough. The user also needs to know which names belong to which devices or states.
Is “Reading Lamp” the light on the right of the couch, or the left? What actual color does
“periwinkle blue” refer to? We refer to mapping names to their objects as grounding discovery.
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2.5.4 Just-in-time presentation

As we discussed in Section 2.1.1, discovery should happen while the user is using the interface
to do tasks, rather than in a separate learning-only context. There is an inherent tension
between discovery (exploration) and doing (exploitation). Nevertheless, we think we can
balance these two goals by designing an interface that helps users accomplish targeted tasks,
but in such a structured way that they end up learning about the overall space, almost
as a unintentional side-effect. The question is whether such designs can also be fast and
frictionless.

2.5.5 Transfer of knowledge to other interfaces

There is a diversity of smart home interfaces available to users, and different interfaces are
useful for different things at different times [87]. Users should have the option of being able to
use whichever interface most suits their needs in the moment. This means that any discovery
mechanism must also help users learn broadly, so that they can transfer the knowledge to
another interface that does not have autocomplete. After using the discovery-supporting
interface for a few tasks, they should have enough understanding of the space’s capabilities to
successfully perform new tasks with a different interface, even if it does not support discovery.
For example, if you use a discovery-oriented phone app once or twice, you should later be
able to think of a new task (knowing that the room supports it) and use a voice interface to
accomplish the task, despite the lack of discovery aid.

This is significant. We do not need to force smart space occupants to use a discovery-
oriented interface all the time, just during a discovery phase that then enables them to switch
to something else. Any interface we propose is not intended to be the categorically best smart
home interface, but rather an addition to an ecosystem that all works together to support the
user. A discovery-oriented interface would unlock the rest of that ecosystem by supporting
learning that transfers to the others.

2.6 Potential Discovery Mechanisms

The solutions we explore for one-shot interactions will be centered around interactions with
intelligent assistants, based on the results of our study in Chapter 3. To best support discovery,
we forego a voice approach to focus on a visual approach. This allows us to use discovery
mechanisms like autocomplete and augmented reality.

2.6.1 Why voice is insufficient

If we are targeting intelligent assistants, which people primarily communicate with using
voice input, why not have an entirely voice-based discovery solution?

Many have noted that discovery is a significant obstacle to voice interface usability [76, 88,
89]. Voice-only discovery solutions have focused on prompts that expand or condense options



CHAPTER 2. BACKGROUND AND RELATED WORK 21

and instructions at appropriate times [89-91]|. However, prompt-based approaches tend to
take worst-case time for initial interactions, imposing a potentially prohibitive overhead cost
to interacting with each new space. Speaking on the usability of speech interfaces [92], Fang
Chen observes:

“If the user is still discovering the functional capacities of the underlying software
then a verbal prompt sequence becomes very unsatisfactory. Such a presentation
technique leaves no room for review, comparison and thought. Exploration
becomes impractical. Thus the first human factors issue that needs to be addressed
is to devise an approach that allows dialog with users that has the structural
advantages of menu interaction and the directness of free form spoken natural
language.”

Consequently, past work has recommended mixed voice-visual interfaces due to the ability
to convey much more information through the high-bandwidth visual channel [28]. M-V UI
was one such mixed-modality system that combined voice with the direct manipulation of a
mobile interface [66]. To aid discovery, users primarily used the direct manipulation interface,
which showed users the equivalent language-based command for any task they performed. If
the user wished to learn more, M-VUI also exposed contextual help menus that showed users
all available options when requested. Though we also use a graphical interface to help users
learn linguistic information, we forgo a direct manipulation approach in favor of maintaining
the consistency of an intelligent assistant interaction framing.

There is an established visual way to communicate with intelligent assistants: messaging.
The three major intelligent assistants provide text interfaces in addition to voice. Having
users send messages to the assistant using a mobile device preserves the central interaction
framing, while allowing us to use visual discovery mechanisms to aid in message composition,
including autocomplete and augmented reality.

It must be acknowledged that messaging is not equivalent to voice. It lacks the advantage
of hands-free operation, albeit while gaining the advantage of quiet execution. However, our
goal is not to replace voice, but rather to complement it, and even enable its use. We envision
users using the messaging interface for performing smart space tasks with an intelligent
assistant in an unfamiliar space, which is a situation in which they could not successfully
use voice anyway. However, once they have learned about the space through initial use,
that knowledge should allow them to use voice or device-centric apps or whatever else they
prefer. In evaluating our solutions, we examine this transfer of knowledge, and find that our
messaging solution can enable successful use of a voice interface that was previously difficult,
if not impossible, to use.

2.6.2 Autocomplete for discovery

Autocomplete is a list of possible valid user input text that updates dynamically based on
what the user has typed, and which is visually co-located with the input widget. While
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autocomplete has become ubiquitous in modern life, there are few studies examining how
autocomplete design impacts users [93, 94].

In daily life, autocomplete is primarily used not to aid discovery, but rather to provide
predictions of what the user is already planning to type in order to reduce typing time and
effort. One of the earliest predictive autocomplete interfaces was the Reactive Keyboard,
developed in the 1980s to reduce the number of physical gestures needed from users with
mobility impairments [95, 96]. However, autocomplete became mainstream when Google
introduced it for Search in 2004 [94]. Google explicitly states, “we call these autocomplete
‘predictions’ rather than ‘suggestions,” and there’s a good reason for that. Autocomplete is
designed to help people complete a search they were intending to do, not to suggest new types
of searches to be performed” [97]. Similar approaches have been used to provide predictions
in many other domains, such as browser URLs, Unix commands, and email [78, 98].

However, the predictive approach only makes sense for applications where users already
know what they want to type and do not care about the rest of the dataset (sometimes called
“known-term” tasks [99]). In an unfamiliar smart space, we do not want to predict what the
user wants to say, as our assumption is that the user is not yet sure what they can say. To
help users interact with an unfamiliar smart space, our goal is to teach users about the overall
set of things they can say, so that they can learn what is and is not possible, and also recall
the capabilities and names later without the discovery interface in front of them.

Google Assistant [100], which powers Google Home [101], illustrates how prediction-
oriented autocomplete does not serve smart space discovery in practice. While users can
speak to Google Assistant through the phone or a smart speaker, users can also type Home
commands through the app, with the interface providing autocomplete suggestions. While this
seems similar to our proposal on its surface, the suggestions are drawn from population-wide
statistics and the user’s typing history, and suggest common words or phrases, rather than
helping the user discover commands for devices that are actually in the room. Additionally,
it exposes only the most likely words instead of providing insight into all the options so
that users can learn more broadly. These prediction-oriented features do not help new users
explore an unfamiliar smart space.

Though less common, autocomplete has also been used to support more exploratory
workflows, where the technique is sometimes called “autosuggest” [99]. Autosuggest features
help the user to discover similar or related queries.

One early example of autosuggest emerged in information retrieval, particularly in real-
time interactive query expansion (RTQE). Query expansion helps users refine keyword queries
to a document store in order to improve precision and recall of retrieved documents [102, 103].
In RTQE, suggested keywords are shown alongside the user’s query as the user types [99].

Autocomplete has also been used to help users explore database schemas [77]. Real-
time feedback while constructing database queries help users discover the structure of the
underlying database (the schema) at the same time as providing suggestions for the specific
query itself. This is very similar to the smart space discovery task, though in our case, users
are constructing natural language sentences rather than structured queries.

Code autocompletion in integrated development environments (IDEs) also shares simi-
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larities with the smart space domain. In both cases, the set of autocomplete possibilities at
any moment is relatively small and constrained by the syntax and types of the associated
text. Autocomplete suggestions for variable names are specific to the unique variable names
available in the project, rather than chosen from population-level statistics. Suggestions for
the methods available to an object are usually comprehensive and alphabetically ordered,
allowing developers to scroll through the complete list to discover APT functionality [104].
While code autocompletion is among the most commonly invoked IDE features [105], how
well it helps developers discover and retain API knowledge has not been evaluated.

A major limiting factor of these prior uses of autosuggest for smart space discovery is
that these autocomplete interfaces assume that the user will always have access to them, so
the suggestions are often still geared towards supporting the user’s specific goal, rather than
preparing the user to accomplish unrelated tasks in the future without the autocomplete
interface. The novelty of our autocomplete approach lies in designing autocomplete suggestions
to provide as comprehensive a picture of the space as quickly as possible to allow the user
to switch to other smart space interfaces, such as voice, that may be more contextually
convenient (e.g. fast, hands-free) but which may not have discovery mechanisms. In our
studies, we ask users to accomplish specific smart space tasks using various autocomplete
designs, and then test the users afterwards to see what information they can recall, including
other information about the room that they did not use directly in their task.

2.6.3 Augmented reality for discovery

Augmented reality, first proposed by Ivan Sutherland in 1968, is a way of visually embedding
virtual objects in the physical world [106], including informative readouts about physical
objects [107-110]. Augmented reality has been used for many applications, such as mili-
tary, advertisement, industrial assembly, maintenance and inspections, 3D design, gaming,
medicine,sports, education, office collaboration, and emergency response [111-114]. Thanks
to improvements in mobile technology, particularly in computer vision, augmented reality has
recently become widely supported by major smartphone platforms [113, 115]. This makes
augmented reality a promising avenue as a mechanism for discovering capabilities available
in a smart space and what their names are.

2.7 Camera-based smart space interactions

To incorporate both autocomplete and augmented reality into an intelligent assistant inter-
action, we use a messaging metaphor that draws on users’ prior experiences with existing
messaging workflows. We model our solution, ARticulate, on ephemeral photo messaging
apps, in which communication between users centers around photographs of the immediate
physical context [116-119]. Within this kind of photo-oriented messaging workflow, we can
use augmented reality to provide visual feedback in the live camera view that indicates to
users whether a device is smart, and if so, what its name is. Autocomplete is employed to
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reveal the functional capabilities of each device while the user composes the photo caption.
The final message can be sent to the intelligent assistant. The combination of augmented
reality and autocomplete provide an interactive means for users to learn semantic, lexical, and
grounding information that can potentially transfer to other “proper device name” interfaces,
thus satisfying all of our requirements for smart space discovery.

One smart space interface that also uses photo-taking as a way of getting a handle on
smart devices is Snap-to-it [120]. Snap-to-it is an intuitive way of accessing a user interface
for a smart device by snapping a picture of it. The system uses computer vision to identify
which of the known smart devices is in the photograph, and then provides the user with an
interface for that device. While the core interaction is appealing, the design of Snap-to-it
does not support discovery in an unfamiliar smart space at all. Users have to know (or at
least suspect) that a device is interactive in order to take a picture of it, but the system does
not provide any hints. To aid discovery during the study, the researchers posted fliers stating
that there was a smart device in the area. Snap-to-it also does not teach users information,
such as proper names, that would enable the use of other interfaces. Finally, Snap-to-it lacks
an intelligent assistant interaction framing. Our approach addresses all of these shortcomings,
helping users autonomously discover and use capabilities in an unfamiliar smart space.

WorldGaze, which is contemporaneous with our work, introduced a method for using a
smart phone to determine what a user is looking at while speaking with a voice assistant [85].
WorldGaze determines the orientation of the user’s head from the front-facing camera and
projects a vector into the rear camera’s view. When using WorldGaze to interact with smart
devices, the user holds up the smartphone, which shows the rear camera’s view with the gaze
direction indicated by a red line projecting into the world. Smart devices in the camera view
are labeled using augmented reality. While holding up the phone and pointing their head at
the target device, users speak aloud to an assistant. The gaze information allows users to use
pronouns or omit names entirely while issuing voice commands.

While WorldGaze seems to address the same problem as ARticulate, there are a number
of differences. Most significantly, WorldGaze does not expose the functionality of the devices,
such as whether the lights support dimming or different colors, and what phrases the assistant
is guaranteed to understand. ARticulate does this using autocomplete. As currently imple-
mented, WorldGaze also cannot support combining gaze with text, because the user cannot
type while pointing the phone and looking. ARticulate does this by allowing users to quickly
snap a photo and then lower their arms to type. As we show later, text has advantages over
voice in certain contexts. Finally, WorldGaze does not prioritize teaching knowledge that will
transfer to other interfaces. The augmented reality annotations did not provide the proper
names of the devices, but rather the general class of device, such as “light” or “speaker.” In
a future where every smart space interface supports name-free interaction this may suffice,
but while we live in a world where some interfaces are built around proper device names,
there is an advantage to teaching users the proper names. In addition to supporting seamless
interactions with the assistant, our solution helps users learn an overall mental map of the
device capabilities and device names in the room, which can potentially transfer to other
interfaces.
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2.8 Summary

Discovery is the process by which people structure and acquire information in order to learn
something new. In human-computer interaction, user discovery involves formulating mental
models of a system to represent information about how it functions, and within that model,
discovering what actions are available and how to invoke them.

Modern smart spaces can be represented using a number of different conceptual models,
so in the next chapter we explore the effects of these different interaction framings on mental
model formation and end up taking an intelligent assistant approach in our discovery solutions.

In modern smart spaces designed around a proper device name paradigm, discovering what
actions are available and how to invoke them means learning which devices are smart and
what their proper names are. To help users discover that information while communicating
with an intelligent assistant, we will use messaging as the medium instead of voice, which
will allow us to use visual feedback such as autocomplete and augmented reality as discovery
mechanisms.

Our ultimate goal is a smart space interface that allows people to interactively discover
the overall capabilities of an unfamiliar smart space while also accomplishing specific tasks in
that space. Since smart spaces are multi-modal with many interfaces that each have different
advantages, the solution must also strengthen the ecosystem. Use of the interface should
reveal information that enables the later use of other interfaces that may not have their own
discovery mechanisms. By providing information about the overall capabilities of the space,
the proper names of the devices, and which names correspond to which device, we expect
that users will not only be able to perform one-shot interactions in unfamiliar smart spaces,
but also use other interfaces successfully afterwards.
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Chapter 3

How Device-Centrism Limits User
Expectations of Smart Space
Capabilities

Content in this chapter originally appeared as Clark, et al. “Devices and data and agents, oh
my: How smart home abstractions prime end-user mental models.” IMWUT (2017).

While smart space architecture may take many forms, every potential solution must abstract
the system to provide interfaces for end-user interaction. The interaction framings we use to
present the system collectively reflect some conceptual model or metaphor for how the user is
expected to interact with the smart space. For example, a smart home app that abstracts a
smart lighting system by providing virtualized interactive representations of the individual
bulbs in the app conveys a device-oriented model of interactions with the system, whereas
an app that exposes the lighting system’s state as a datastream that emits and receives
messages provides a data-oriented model. These interaction framings can be explicitly chosen
by designers to guide the users in interacting with and understanding the system, or they
can reflect implicit assumptions on the part of the designers about how the system works.

There are many different smart home interaction framings for smart space system designers
to choose, but little work has been done on understanding the impact of different system
interaction framings on end users’ mental models and expectations of these systems. Previous
attempts to better support end-user interactions have attempted to “get at” end users’ mental
models for smart homes as though these models are an independently existing property of
users, without considering the effects of priming.

To develop interfaces that support end users, instead we need an intentional and conscious
comparison between several different system representations. To that end we propose a
framework that would allow comparisons between different conceptual models, which breaks
conceptual models down into several independent dimensions whose possible values we call
interaction framings. This framework allows us to make comparisons between conceptual
models and understand how the different ways we can present the same underlying system
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will affect users’ expectations and behavior.

In fact, there is evidence to suggest that the interaction framings that we are using are
preventing consumers from thinking of valuable integrated applications that utilize the full
range of a smart spaces’s capabilities. According to Affinova’s 2014 consumer report on IoT
adoption, users think the current smart devices on the market are “gimmicky” [121]. While
some devices may be gimmicky single-purpose products, many others can be integrated into
applications by various emerging platforms. It is possible that due to the way these systems
are presented, users do not even think certain useful applications are possible or within the
scope of the system.

Additionally, the interaction framings we use can create a gap between expectations and
reality that prevent adoption. An understanding of what expectations different interaction
framings encourage can allow us to manipulate and shrink this gap, both on the user side
and on the system side.

In this chapter we make several contributions. First, we demonstrate that the interaction
framings chosen to represent a smart home system have significant priming effects on end
users. We created a set of questionnaires depicting the same hypothetical smart home in
four different ways and deployed the questionnaires via Mechanical Turk. Each worker
was presented with only one of the four descriptions, and then was asked to describe the
applications they wanted. We collected responses from over 1,500 participants. Though
mental models cannot be directly observed, they can be thought to emit signals via various
user behaviors. To gain insight into the mental models at play, we analyzed the following
signals: 1) the qualitative differences in responses, 2) the characteristic words for each set
of responses as determined by x? feature selection, and 3) the differences in the operation
profile of the responses, which we define as the distribution of tasks that a group of users
performs on the hypothetical system — for example, the relative proportion of immediate
actions, questions, conditional actions, and notifications. We find that users’ mental models
and the resulting operations that they attempt are heavily affected by the interaction framings
used to present the system. This finding highlights how critical it is to consciously choose
interaction framings, both during system design and when creating scenarios to study users’
mental models for a particular domain.

Second, we describe what the specific priming effects (and therefore design trade-offs) are
for some common interaction framings. We examine the effects of two different dimensions for
interaction framings: How the system’s capabilities are represented (“devices” vs. “data”), and
whether or not the system is personified (“assistant-mediated” vs. “unmediated”). Combining
these two framing dimensions results in four distinct conceptual models: Unmediated Devices,
Unmediated Data, Assistant-mediated Devices, and Assistant-mediated Data.

While these four archetypal interaction framings are far from the only possible system
interfaces, and in practice are not mutually exclusive, they are a good starting point for
understanding the effects of commonly-used interaction framings on end-user thinking. Un-
derstanding the different workloads and expectations engendered by common interaction
framings for smart spaces will help system designers better understand the trade-offs involved
when choosing the interaction framings for their system.
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Finally, we also released our complete dataset and code to the community for additional
analyses, with IRB approval. An archival link is provided in Appendix A.

As far as we know, this is the first substantial public corpus of end-user descriptions of
desirable Io'T applications, as well as natural language commands and queries directed to smart
home assistants. Researchers can use the data to improve the relationship between the smart
spaces and their users, for example by building better natural language interfaces, creating
desirable applications, and gaining additional insights into end-user needs and concerns in
the smart home domain.

3.1 A Framework for Mental Models and User
Interactions

In this section we review the relationship between conceptual models, mental models, and
user operations. By understanding how these elements interact with each other, we can lay
the foundations for a methodological approach that will allow us to compare the impact of
conceptual models on end users’ expectations and behavior.

As described by Norman, designers have some implicit or explicit notion for how users
should think about system, particularly with regards to what the different parts are and how
they work together. This notion is called the conceptual model, or sometimes the interaction
metaphor. The designer conveys the conceptual model to the end user through the system
image. The system image is everything about the system that is visible to the user, which
consists of two main parts: 1) the concrete products and interfaces created by the designer,
which collectively convey the designer’s conceptual model or interaction metaphor, and 2)
external factors that the designer does not control. The first part includes artifacts like the
physical system interface and documentation, and the second part includes the user’s prior
experiences, news reports, anecdotes from friends, and so on.

As users perceive the system image, they generate a mental model for how their interactions
affect the system and how the system affects them. Prior work has decribed mental models
as a “yoked state space” where users form a mapping between a device (or system) state
space to a goal state space [122]. The conceptual model, as a manifestated by the system
image, is therefore critical in influencing what states the user perceives the system to have
and what goals the user thinks the system can satisfy.

While a user’s mental model cannot be directly perceived, the types of operations that
the user assumes are available and would like to employ can give us some insights into their
mental model. In the yoked state space theory, users perform operations on a device in order
to navigate the device state space to reach states that, according to their model, map to
desired goal states [122]. This means that by observing the kinds of operations users expect
to be able to perform, we can get a sense for how they are internally modeling the system
states and what goals they perceive the system as being able to satisfy.

Understanding what kinds of operations users will assume are available when provided with
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a particular conceptual model would help system designers minimize the “gulf of execution”
that separates user goals from the actions they need to take to make the system satisfy those
goals. By knowing what operations users will expect to able able to do, system designers
can design their system to support those operations as first-order primitives. In the opposite
direction, designers can also discover which conceptual models will align user expectations
and operations with what the system best supports.

Given the relationship between conceptual models, mental models, and operations, it
should be possible to present different conceptual models to users and observe how the
types of operations they perform change due to the different mental models they generate
from the system image. However, how can we control for those aforementioned external
influences that are also a part of the system image, like prior experiences? In this paper we
overcome that challenge by looking at population-level distributions of operation types. When
comparing what populations as a whole attempt to do in response to a given conceptual
model, the individual variations in external influences essentially come out in the wash. A
population-level analysis is also useful because smart home system designers often design a
single system that will be used by a large number of people, in which case it can be beneficial
for designers to know in advance what the system’s overall workload will look if it is presented
in a certain way.

3.1.1 Interaction framings framework for conceptual models

To understand the trade-offs between different conceptual models, we need to articulate a set
of dimensions that we can use to describe and compare them. We propose breaking conceptual
models down into several independent dimensions that each have a set of possible values
called interaction framings. Under this approach, conceptual models can be constructed or
described by selecting an framing along each dimension. While many such dimensions may
exist, in this paper we focus on two: capabilities and personification.

Capabilities. Conceptual models can use many different interaction framings to represent
a smart home’s capabilities. A common approach is to represent capabilities in terms of
the available devices, but it is also possible to describe available functionality using other
fundamental conceptual entities, such as actions, data streams, facts, or events. In this work,
we compare two interaction framings for capabilities, which we call “devices” and “data.”

Because smart space systems are frequently conceptualized as interconnected devices
or physical artifacts at the architectural level, it is common for system designers and even
HCI researchers to assume that the higher layers presented to users will share a similar
device-oriented framing. In particular, there is a great deal of IoT literature that assumes
device-oriented interfaces will bubble up to users from the lower layers [123-126]. However,
there is no reason that the higher level of framing presented to users needs to resemble the
ways that system designers think about the system. In fact, in this work we show that
depending on the designer’s goals and intended audience, using a device-oriented framing
may not always be the most beneficial way to model and present the system.
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Personification. We also examine two interaction framings that can be used to represent
different degrees of system personification: “unmediated” and “assistant-mediated.” An
unmediated system is one with no personification layer, and an assistant-mediated system
is one with an intelligent assistant that acts as an intermediary between the user and the
rest of the system. Prior work has shown that users will interact with functionally-equivalent
systems differently depending on whether the system is personified as human-like assistant or
not. For example, while both Google Now and Siri are phone-based voice interfaces, research
has found that users treat Google Now like “voice-activated search,” whereas they treat Siri
like a social actor due to the latter’s presentation as a human-like assistant [127].

There are other dimensions that we do not examine in this work, but which would
nevertheless be useful in an interaction framing framework. For example, the dimension of
initiative is independent from personification. Systems can behave with initiative without
being personified as human-like. Prior work has compared the user experience of systems
with different degrees of initiative in a variety of domains [128-130]. While these systems act
with various levels of agency, they are not presented in an anthropomorphic fashion.

There is also the dimension of input modality, which can be visual, written language,
voice, gesture, tactile, and more. Some related works have compared the user appeal of
different modalities in the smart home domain, such as voice, voice and gesture, touch screen
GUIs, and touch screen text interfaces [87]. We do not explicitly compare the effects of these
different modalities on user thinking, though we do look at what modalities users assume
given interaction framings along other dimensions. We leave exploring the effects of additional
dimensions beyond the two we consider to future work.

While conceptual models are used implicitly thoughout smart home research, we are
the first to attempt to explicitly characterize and compare them systematically. Framing
dimensions such as the ones we propose here could form the basis of an evaluation framework
that allows designers to compare the impact of various conceptual models and make claims
about why one particular framing would be a better choice for an interface than another.

3.1.2 Classification of user operations

In order to determine how conceptual models affect the kinds of operations that users would
like to perform, we must next be able to classify user operations. We separate smart home
interactions broadly into immediate interactions, which complete their execution right away,
and conditional interactions, which may result in interactions at a later time.

Immediate interactions. Remote control commands like “turn on the lights” are one form
of immediate interaction. However, since there are other immediate requests for action that
may not fall under a remote control mindset, such as “wake up my children,” we use the
more general term immediate actions to refer to this subcategory of operations. In addition
to actuation there are also queries, an often-overlooked form of smart home interaction.
Immediate queries can take two forms: direct questions and indirect questions. Direct
questions are any query that would properly end with a question mark. Indirect questions
are requests for information that are formulated as a command, such as “tell me how much I
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weigh.” We make the distinction between the two forms to highlight that in our operation
taxonomy we consider indirect questions to be requests for information rather than actions.

Conditional interactions. Trigger-action statements, best exemplified by “when I come
home, turn on the lights,” are one type of ongoing interaction. However, since there can be
other ways to express conditions on actions besides event-based triggers (using words like
“until,” “unless,” “before,” and “while”), we use the more general umbrella term conditional
actions. Just as it is possible to have conditional actions, it is also possible to have conditional
queries, which we call notifications. The difference between notifications and indirect questions
can sometimes be subtle. A good rule of thumb is that indirect questions are usually requests
for facts, and notifications are usually requests to be informed of events. For example, “tell
me when my husband gets home” is most likely a notification, whereas “tell me when my
husband will get home” is an indirect question.

This is not meant to be a definitive operation taxonomy for the smart home. However, we
believe that including both actions and queries is an important step for developing a more
comprehensive way to understand mental models. By disinguishing between requests for
actuation and requests for information, we hope to be able to tell a more complex story than
an analysis of just actions or just queries would allow.

3.2 Evaluating the Effect of Interaction Framings on
Mental Models

In this work we look at interaction framings along two dimensions: whether or not the
system is personified by an assistant who acts as an intermediary (“unmediated” or “assistant-
mediated”), and whether capabilities are represented as available “devices” or as available
“data.” The possible combinations along these two dimensions result in four different conceptual
models: Unmediated Devices, Unmediated Data, Assistant-mediated Devices, and Assistant-
mediated Data.

To examine the impact that each of these four conceptual models has on users’” mental
models, we devised questionnaires describing a hypothetical smart home using each of the
conceptual models. We presented Mechanical Turk workers with one of the four questionnaire
prompts and asked them to write either about what applications they would want in their
smart home or what they would want their assistant to do. We then analyzed the entities
and operations present in the written responses.

Given only a few minutes with a questionnaire prompt, users cannot explore a conceptual
model to the same depth as they can given a more fully-realized system over a longer period
of time. Previous work has shown that there is a smart home app development lifecycle
that begins with brainstorming the application, as we ask users to do, but then also includes
stages where the user iteratively improves it as it runs in the house and bugs or unexpected
behaviors emerge [27]. Our questionnaires do not capture the debugging phase, which means
missing certain kinds of interactions like introspective queries (for example, the word “why”
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doesn’t appear once in the assistant responses, even though in practice users do want to know
“why” things happen). Additionally, our methodology cannot rule out the possibility that the
priming we see is a minor initial effect that can be overruled with training and experience
interacting with the system.

However, prior work has shown that initial mental models formed by users before they
even interact with a system can have an ongoing influence over how users update their
understanding of the system based on newly-acquired knowledge [69]. These persistent effects,
combined with the fact that even our brief descriptions resulted in observable differences,
indicates that presentation matters, even if more sustained engagement might shape the users’
mental models even further. Indeed, even if the initial impressions do not have a lasting
effect on user interactions once the user has become accustomed to the system, these primed
mental models still affect purchasing and adoption decisions. A user should be able to look
at the presentation of a system and envision valuable interactions before actually interacting
with the system.

3.2.1 Questionnaire design

We devised two scenarios to collect data about the way end users describe smart home appli-
cations. The unmediated scenario asked respondents to prepare to imagine [oT applications,
and then gave one of two treatments with equal likelihood: 1) a list of smart devices that
users had at their disposal in their smart home broken down by sensor, actuator, or online
service, or 2) a list of data streams that could reasonably be synthesized from the devices
listed in the other prompt, broken down by read-only data (sensor readings), read-write data
(actuator statuses), or online service data.

To create the two sets of capabilities, we first generated a list of common smart home
sensors, actuators, and online services, which became our list of devices. Then we generated
the list of data streams by converting each device from the first list. For example, while the
device list has “Controllable RGB Lights,” the data list has “Whether the lighting is on or
off,” “What color the lighting is,” and “How bright the lighting is.” The full list of devices
and data streams that we provided can be found in the online appendix.

In order to give respondents time to look over the list of capabilities, they were not allowed
to continue until a one-minute timer expired. On the next page they were asked to write for
five minutes in a text box about what kinds of applications they wanted in their smart home,
with the list of devices or data streams displayed above the text entry box for inspiration.
Afterwards, we asked the participants basic demographic questions and assessed their general
familiarity with IoT and technology.

The assistant-mediated scenario introduced an artificial intelligence assistant (an “Al”)
as the intelligence behind the smart home controls. In this scenario, respondents were first
asked to select a gender for their AI’s voice from a randomly ordered list of male, female, and
androgynous, then respondents were asked to name their AI. Our narrative highlighted that
the assistant was trustworthy and wanted to help the participant. We then gave respondents
one of two prompts with equal likelihood, just as in the unmediated scenario: 1) a list of
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Personification Capabilities Conceptual Model Responses
Unmediated Devices Unmediated Devices 313

Data Unmediated Data 302
Assistant-mediated Devices Assistant-mediated Devices 442
Data Assistant-mediated Data 478

Table 3.1: Overview of questionnaires. We administered questionnaires with two scenarios on
Mechanical Turk, each of which had two possible treatments, which resulted in four unique
prompts describing smart home conceptual models. The unmediated scenario asked what
applications end users wanted in their hypothetical smart home, while the assistant-mediated
scenario asked end users to tell a hypothetical smart home AI what they wanted it to do. For
each scenario, the smart home’s capabilities were described either by a list of devices or by a
list of data streams. Participants were only presented with one of the four conceptual models.

devices that the assistant had access to in their smart home broken down by sensor, actuator,
or online service, or 2) a list of data streams that could reasonably be synthesized from
the devices listed in the other prompt, broken down by read-only data (sensor readings),
read-write data (actuator statuses), or online service data. The respondents were given a
minute to look over the list. Afterwards, we told respondents that their AI wanted to help
them by automating their home on their behalf. We asked them to tell the Al what it should
do, and began the writing prompt with, “OK, <AI name>...” to encourage respondents to
communicate directly with the smart home AI. In the assistant-mediated scenario, we did
not enforce a time minimum on the response page, and we did not provide the device or data
list for reference, in order to discourage respondents from pasting parts of the list into the
textbox. As in the unmediated scenario, we finished with demographic data collection and
questions to assess technological familiarity:.

3.2.2 Subjects

We submitted these two questionnaires to Amazon Mechanical Turk [131]. Since we planned
to analyze the linguistic characteristics of the responses, we limited respondents to those
located in five countries with large populations of native English speakers (United States,
United Kingdom, Canada, Australia, and New Zealand) in order to increase the proportion
of native English speakers in the eligible respondent pool.

Subjects were recruited to participate in an academic study about either Internet of Things
applications or smart homes. The unmediated questionnaire was advertised with, “We are
conducting an academic survey about Internet of Things applications. We want to understand
how you think about and describe Internet of Things applications.” The assistant-mediated
questionnaire was advertised with, “We are conducting an academic survey about smart
homes. We need to understand the way that you would talk to a smart home artificial
intelligence.” Workers who completed the unmediated questionnaire were compensated $0.80,
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and those who completed the assistant-mediated questionnaire were compensated $0.40.
The difference was due to the difference in the enforced time limit (the assistant-mediated
questionnaire did not have a time minimum, so users spent less time on the task).

As shown in Table 3.1, we received 1,534 responses once we filtered out 53 bad actors
who pasted parts of the prompt, URLSs, or jibberish into the submission form. There could
potentially be overlap between the participants in the unmediated questionnaire and the
assistant-mediated questionnaire, but the two questionnaires were administered weeks apart
and most workers had very few prior HITs, so we do not expect many duplicate participants.

3.2.3 Mental models indicators

Mental models are difficult to observe directly, so we approach the analysis of the questionnaire
responses from multiple angles. We compare three different attributes of the prompts:
qualitative differences, characteristic words, and the operation profiles.

Qualitative differences. We read all 1,534 of the responses, which was necessary to remove
responses from obvious bad actors as described in Section 3.2.2. To guide our understanding
of the structure of the responses, we also performed the exercise of sketching out a natural
language grammar for a subset of the responses that included the top 100 most common
nouns and verbs. We share some representative responses for each prompt in Table 3.2 to
help the reader gain an intuition for the qualitative differences that underly the quantitative
results.

Characteristic words and phrases. We used a x? test to determine the keyness of each
word used in each of the four response sets. Words with higher keyness are more suggestive of
statistical differences between the response sets. This is a standard feature selection technique
used in natural language processing to discover which words are particularly distinctive in
a particular corpus compared to other corpora. For each word we calculated the rate of its
occurrence per 1,000 words in the responses to each of the four prompts. Applying a x? test
to these rates produced the keyness values, which are simply the x? statistic for each word.
We display the rates and keyness values for the top 25 most key nouns, verbs, and other
words in Figure 3.1.

Operation profiles. To paint a more rigorous picture of what users want to do in response
to each prompt, we developed a set of labels to categorize sentences based on the operations
defined in Section 3.1.2. These labels were “immediate action,” “conditional action,” “direct
question,” “indirect question,” and “notification.” After reading the responses to the unmedi-
ated prompts (see Table 3.2), we also added the labels “wants device,” “wants remote control,”
“wants automation,” and “wants to know.” We also included a “none of the above” option for
other kinds of sentences. Once we determined the set of labels that we were interested in, we
took the first sentence of each response (for a total of 1,534 sentences) and asked three trained
annotators to label the operations in each sentence, permuting the list of available labels that
we displayed with each sentence to prevent biasing. The resulting Cohen’s kappa statistics
between the pairs of annotators were 0.76, 0.76, and 0.78, indicating a good level of inter-rater
agreement. From the three sets of labels, we calculated the mean and standard deviation of
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the percentage of the responses to each prompt that contain a particular operation. Since
a sentence could have multiple independent phrases in it with different kinds of operations
(e.g., “Turn on the light and tell me my weight”), the percentages of responses that contain
particular operations are independent from each other and do not sum to one hundred. The
resulting operation profiles are shown in Figure 3.2. These profiles give us a sense for what
respondents to a particular prompt wanted to do in their hypothetical smart home.

3.3 Findings

Despite Mechanical Turk’s reputation for skewed demographics, we found that our respondents
were fairly representative of our ideal study population. Over 99% of respondents were from
the United States. Respondents were slightly more male, with 58% male and 41% female.
Most respondents were young but older respondents were still present, with 20% age 18-
24, 43% age 25-34, 20% age 35-44, 10% age 45-54, and 6% age 55+. The distribution of
educational attainment was skewed slightly higher than that of the US population [132].
Most respondents had earned at least a bachelors, with 34% having earned a high school
degree, 50% having earned a bachelors (compared to 32% in the 2015 U.S. census), 12%
having earned a masters, and 2% having earned a PhD (compared to 12% advanced degree
holders nationally). However, despite higher levels of education, most respondents were not
particularly knowledgeable about computer science. Only 9% of respondents categorized
their occupation as computer worker, and 76% of respondents reported their exposure to CS
concepts as either “low” or “none.” 66% had never heard of the Internet of Things before.

3.3.1 Priming produces distinct mental models

As illustrated in Table 3.2, the answers we received to the four different prompts exhibited
distinct qualitative differences, particularly between the unmediated and assistant-mediated
prompts. Responses to the unmediated prompt are expressed as hypothetical situations about
what the respondent would like in their home (“I would like” and “I would want” were the
most common 3-grams), whereas the responses to the assistant-based prompt are expressed
as executable directives (“turn on the” was the most common 3-gram for both the Device
and Data prompts). The Unmediated Devices responses emphasize the devices that the
respondent would like and why, whereas the Unmediated Data responses specify high-level
“apps” that the user would like. While both assistant-mediated prompts include immediate
actions like “turn on the lights” and conditional actions like “turn on the lights when I
get home,” the Assistant-mediated Data responses contain more questions and requests for
monitoring and notification.

These observations are also reflected in the striking differences between operation profiles
clearly visible in Figure 3.2. The Unmediated Devices responses are dominated by users
expressing desires for devices, whereas the Unmediated Data responses show more requests for
automation and information. The assistant-based prompts both have immediate actions and
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Unmediated Devices

Unmediated Data

Assistant-mediated Devices

Assistant-mediated Data

I would definitely want the
smart watch to control the
majority of the devices and
controls in the house. The
controllable lights would
be a nice feature to have.
I would definitely look for
the smart door lock and
smart thermostat. Those
are things that make life
easier for the convenience
factor. The smart car would
also be a good investment.
Not only is it easier to use,
it is energy efficient. Motion
sensors in each room would
save on electricity. [...]

First and foremost, I
would love to have a con-
trollable TV that is hooked
up to my video library.
This would be not only an
incredible time saver, but
also a space saver as well. A
temperature sensor on my
smart phone that is hooked
up to my thermostat would

also be beneficial, as a
traditional thermostat
only takes into account

the temperature near that
thermostat. Along with the
controllable TV, “smart”
speakers that are hooked
up to my music library
would be nice. In fact, an
app that turns my smart
phone into a universal
remote control might be my
favorite “Internet of Things”
application. It would offer
tremendous convenience, as
my smart phone is always
within arms-reach. |...]

I think it’d be cool to
be able to put a sensor at
the end of the driveway
so that when certain cars
drive up it will open up the
garage doors |...]

I would want interface be-
tween my security system,
smoke alarms, CO alarms,
and cell phone. I would also
want to be able to control
the climate control systems
(A/C and heat) from my
cell phone, and monitor the
temperature. It would also
be nice if T could see my
electricity usage in realtime,
and customizable alerts
sent to my phone would be
quite helpful.

I would like an app that
tracks my heart rate along
with the calories burned,
sleep cycles, activity,
whether I was calm or not.
[...] T would like to have one
where I can see my child
and watch the rooms where
my caregiver is. Knowing
where they are, or what
they did. T wouldn’t be
using this all the time as I
trust my caregiver, but at
times I would like to see
how much time is spent in
specific room, such as the
living room. Or to track
what TV apps (like Hulu or
Amazon prime) was run on
my TV and for how long.
Maybe what was watched
and the length of time. [...]

I would like the ability
to know how much water,
electricity, and gas I use,
with a running ticker of
how much it is costing me. I
would also like a breakdown
of which rooms/objects are
using the most. I would also
like to know what lights
are on, and if there is a
window open in a room
that is running heating or
air conditioning. [...]

Set the temperature to
70 degrees. Lock the door.
Close the blinds. Fetch and
read my email.

Please wake me up at
9:00 am with some pleasant
music. Please make coffee
at exactly 10:00am. Please
set the alarm before I leave
the house. Please water the
yard at noon for 20 minutes.
Please turn on the porch
light before 7pm.

Lower the lights, lock
the doors, begin to play
Madonna’s last two al-

bums on shuffle from every
speaker. Also synchronize
the house RGB lights, my
clothing lights and vibra-
tion patterns to the rhythm
and tone of the music.

Start my car and turn
on the heat and radio.
Open the garage. Lock the
house doors. Adjust the
temperature on the thermo-
stat. Check all appliances
and make sure they are off.
Close garage after I drive
away.

Please be sure the door
is locked and the temper-
ature is set at 75 degrees.
Next, be sure the volume
is set on #15 as I want to
listen to some music.

Turn on my air condi-
tioner 30 minutes before I
get home at 4:00 pm.

Turn TV on. Lock all
doors. Adjust temperature
to 70 degrees Celsius.

Please turn the red lights
on dimly in my bedroom
and start playing Marvin
Gaye music. Dim all the
other lights in the house.

I would like you to make
sure that when I leave the
house, all lights, AC, and
electronics are turned off
and the door is locked.
While I am gone, I would
like you to monitor the
house, and call my phone if
anything strange happens
(anyone enters the house,
any objects are moved,
etc.). In addition, I would
like to use your knowledge
of transportation to plan
when to leave the house to
catch the bus to work. You
can also alert me to any
poor weather conditions
before they arrive. Thanks!

Tell me my electricity
consumption and gas con-
sumption. How has my

sleep been lately? When do
I wake up? Am I exercising
enough?

Who is in the home
with me? Where is my car
and how fast is it going?
How is my heart rate?

I want you to turn on
the lights when I walk into
every room and play music
whenever I am in the mood
for it.

Turn on the dishwasher
when I get home from work
so I can serve dinner, and
make sure to alert me via
a text message a half hour
prior to my wife getting
home so I have time to put
the finishing touches on the
meal.

Table 3.2: Example responses for each interaction framing. This table shows several responses
for each framing, with individual responses separated by blank lines. These examples provide
an intuitive feel for how the responses differ between prompts.
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Figure 3.1: Characteristic nouns, verbs, and miscellaneous words for the different interaction
framings. This figure shows the top 25 nouns, verbs, and remaining words sorted by keyness as
determined by their x? statistic. Words with higher keyness are more suggestive of statistical
differences between the response sets. The rates show how often each word occurs per
1,000 words within each set of responses. Differences between prompts can be identified
when the rates vary within a column. Notable outcomes here are that the Unmediated
Devices responses are characterized by the words like “sensor[s]”, “device[s]”, “meter”, and
“things,” with an emphasis on “control” and “controllable,” through a “phone.” This suggests
users were focused mainly on remote control of devices through a phone. The Unmediated
Data responses, on the other hand, emphasize “apps” and “applications,” as well as “alerts”
and “know|ing],” though they also still score highly on “control” and words associated with
conditional actions and notifications like “if” and “when.” This supports the notion that this
conceptual model will encourage users to express various kinds of requests for information
and automation in addition to remote control commands. The two assistant-based conceptual
models showed mostly similar word rates, suggesting that placing an intermediary between
the system’s devices or data capabilities smoothes out some of the differences seen in the
two unmediated prompts. Both showed high rates for “please” and “turn.” However, for
the assistant-mediated data prompt, there was more of an emphasis on “tell” and less on
“control”, a mental shift reflected in other query-related words like “know,” “how,” “much”
and “what.”

conditional actions, but the Assistant-mediated Data prompt also shows a large proportion
of questions and notifications. Presenting the same smart home system in four different ways
resulted in four distinct operation profiles.
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Figure 3.2: Operation profiles found in the four sets of responses. These charts show the
proportion of different kinds of operations in the user responses to the questionnaires. We
took the first sentence of each response (for a total of 1,534 sentences) and asked three trained
annotators to label each sentence from a set of labels that we provided based on a qualitative
exploration of the dataset. They could provide multiple labels if there were multiple phrases,
so the percentages are independent and do not add up to 100. One notable observation is
that the operation profiles are all different, demonstrating that the interaction framings had
a priming effect on our users. When combined with qualitative analysis and the words and
phrases associated with each prompt, we can get a picture of the mental models behind each
of these distributions.

3.3.2 Unmediated Devices encourages the least automation

The Unmediated Devices framing is a popular one, used by the device-centric smartphone
apps that come with every smart device. However, this framing limits user expectations of
interoperability and automation. When presented with the Unmediated Devices framing,
users seem not to see “smart devices” as connected devices, instead tending to treat them as
isolated islands of functionality.

In response to a prompt that said, “[describe] different applications that you would want
in your smart home,” the majority of users expressed a desire to have a device. The operation
profile for responses to the Unmediated Devices prompt, as shown in Figure 3.2, is dominated
by “wants device,” with 53% of sentences expressing a desire for a particular device or devices.
The example responses provided in Table 3.2 give some intuition for how users conveyed this,
with sentences like, “I would definitely want the smart watch]...]” and “I would love to have
a controllable TV.” In Figure 3.1 you can see that particularly characteristic of responses to
this prompt are words like “sensor[s]”, “device[s]”, “meter”, and “things,” with an emphasis
on “control” and “controllable.”

The word “phone” is particularly associated with this conceptual model as well. The
overall picture that emerges is that users responded to the Unmediated Devices prompt by
expressing a desire to have controllable smart devices that the user can control manually,
primarily with their phone, with surprisingly few automatic applications running on the smart
home system.
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These results suggests that when presented with the Unmediated Devices framing, users
tend to think of the device itself and the application behavior as one and the same. The relative
lack of higher-level applications that run across multiple devices suggests that respondents
to this prompt did not tend to perceive a global computational scope or a sense of general
programmability in their smart home.

3.3.3 Unmediated Data encourages the most automation

Unmediated Data is not a very common interaction framing in smart spaces, best corresponding
to dataflow wiring interfaces for automation, such as Node-RED [133]. However, this interface
shows a lot of potential for encouraging automation and information acquisition, while still
supporting remote control interactions.

Users presented with the Unmediated Data framing showed a propensity for higher-level
automation applications compared to the Unmediated Devices framing. Figure 3.1 shows that
the words “app” and “application” were particularly associated with responses to this prompt.
The operations profile in Figure 3.2 shows that Unmediated Data respondents expressed more
desire for automation than the respondents of any other conceptual model (corresponding to
the “conditional action” label in the assistant-mediated prompts).

However, the majority of sentences were labeled as “wants to know.” Many of the
applications described in the Unmediated Data responses focus on monitoring and providing
alerts to the users. You can see this in Figure 3.1 where the words “alerts,” “know,” “see,”
and “track” were found to be strongly associated with this prompt. Also ranked highly were
measurable phenomena, like “water,” “electricity,” and “sleep”. Users also wanted to be able
to solicit information from the system on demand, as evidenced by the relative keyness of
“what,” “is,” “how,” and “much.” Another significant word was “if,” which is associated both
with trigger-action automation as well as with notifications and alerts.

We call this mental model watchdog to convey that users tended to think of the system as
a global observer whose primary job is to monitor and inform users, and whose global scope
gives it the ability to run integrated automation applications across the system.

3.3.4 Adding an assistant to devices increased automation

The operation profile of the responses to the Assistant-mediated Devices prompt shown
in Figure 3.2 reveals that most responses (57%) were “immediate actions” (e.g.“turn on
the lights”), corresponding to 23% of “wants remote control” in the Unmediated Devices
framing. However, more importantly, 24% responses contained conditional actions describing
automation, compared to just 15% of “wants automation” for Unmediated Devices. Adding
the assistant personification on top of the collection of smart devices therefore helped users
better imagine automation scenarios.

Users were polite, as “please” was the 20th most common word, and “I would like you”
and “would like you to” were the second and third most common 4-grams respectively. This
politeness suggests that the users perceived the system to have social agency.
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An interesting pattern that occurs not just here, but in both assistant-based prompts, is
providing a reason or goal after specifying actions to take. One example from the Assistant-
mediated Devices prompt is, “adjust the blinds every morning around 5, so that I wake up
easier when my alarm goes off.” Other reasons that users expressed to explain actions were
things like, “so I can save energy,” “so I can watch Netflix,” “so I can go to sleep,” and “so I
can let [someone| know [something].” Providing goals as a part of instructions suggests that
users potentially expect assistants to understand basic goals.

bREN1

3.3.5 Assistant-mediated Data elicits control and questions

Like the Assistant-mediated Devices prompt, the Assistant-mediated Data prompt produced
mental models that supported primarily immediate actions (46%) with some conditional
actions (17%), but the operation profile shows that unlike in the responses to any other
prompt, 39% of the operations were labeled as questions (both direct and indirect) or other
requests for information. While requests for information have seldom appeared in previous
research on smart home mental models, it is clear that this underrepresentation in the
literature is not out of a lack of user interest in queries as a form of interaction.

One interesting observation is that despite the strong presence of questions in the Assistant-
mediated Data response set, the word “why” does not appear a single time in any of the
Assistant-based responses (but does appear in responses to the Unmediated prompts). This
suggests that users do not think that assistants are capable of either introspection (“why did
you turn on that light?”) or explanation (“why is my energy bill so high?”). It is possible that
this is due to the limitations of our method of data collection, which did not involve repeated
interactions with the assistant. These questions might arise if users lived in a smart home
and interacted with an assistant over a long period of time. Nevertheless, it is interesting
that not a single respondent thought to ask an assistant “why.”

3.3.6 Priming strength differs by age and technical background

Prior work has shown that occupants interact differently with smart homes depending on their
technical expertise and age. Technical occupants often assume the role of programming and
maintaining the system, whereas non-technical occupants communicate their wants and issues
to the technical member for translation into programmatic instructions [24]. Ethnographies
have also shown that older occupants and younger occupants may have different needs and
expectations from smart home interfaces [134].

We analyzed demographic subpopulations to better understand differences in the way these
populations respond to conceptual models. We determined technical expertise by whether the
respondent self-reported their exposure to computer science concepts as None (“No exposure
to ideas of computer science” ), Low (“Some exposure to computer science concepts”), Medium
(“Undergraduate computer science student”), or High (“Computer science graduate student
or professional”). When determining age, we define older occupants as those whose age is 55
or older, and younger occupants as those who are 34 or younger. We used a x? test on the
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Figure 3.3: Comparison of operation profiles for older users vs. younger users.

observed frequency of operations in the populations’ responses to each prompt to determine
whether any of the operations significantly differed between the two populations we compared.

Figure 3.3 shows that older respondents respond more strongly to priming than younger
respondents, whereas younger respondents tend to adhere less to the primed model. Given
the Unmediated Devices conceptual model, older respondents were significantly more likely
to want a device (p = 0.025), and in the Unmediated Data responses, older respondents
were more likely to ask direct questions (p = 0.007). Conversely, when presented with
an Unmediated Data conceptual model younger respondents were more likely than older
respondents to want remote control capabilities (0.0003). Younger respondents were also
more likely to ask indirect questions in the Assistant-mediated Devices responses despite the
device framing (p = 0.014), and express immediate actions in the Assistant-mediated Data
responses despite the data framing (p = 0.026).

Figure 3.4 tells a somewhat similar story. While there are no significant differences
between respondents with high CS exposure and no CS exposure when presented with the
familiar Unmediated Devices conceptual model, the populations diverge when presented with
the remaining three less-familiar models. Given the Unmediated Data framing, those with
high CS exposure are more likely to recognize the ability to perform automation (p = 0.037),
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Figure 3.4: Comparison of operation profiles for users with high computer science exposure
vs. no computer science exposure.

whereas those with no CS exposure are much more likely to stick with expressing a general
desire to know things (p = 0.029). Presented with the Assistant-mediated Devices prompt,
respondents with high CS exposure were more likely to say indirect questions, whereas those
without the training would still say they wanted a device (p = 0.0463) or automation (p =
0.001). Finally, when presented with the Assistant-mediated Data framing, those with high
CS exposure were significantly more likely to request that the system perform immediate
actions (p = 0.0234). As with older vs. younger respondents, those with no CS exposure
tended to conform closely to the primed conceptual model, whereas those with high CS
exposure were able to invoke functionality that did not conform as closely to the model. The
similarity between these results is not due to correlation between younger age and more
computing expertise, as those who self-reported higher CS exposure tended to be older.

3.4 Implications for smart space system design

Our findings about the effect of priming on users’ mental models have significant implications
for mental model research and system design.
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3.4.1 Comparing interaction framings is critical

Researchers studying mental models for the purpose of building intuitive end-user interfaces
need to be aware of the priming effects of system interaction framings. Researchers must
assume that the interaction framings used in the study scenarios will prime users, and that
is a good thing because so will the interaction framings used to present the actual system.
Researcher will need to choose interaction framings consciously in a principled way, so that
the mental models and operation profiles resulting from different interaction framings can be
compared. Building up a corpus of conceptual models and their associated mental models and
operation profiles will be beneficial for system designers who want to know what interaction
framings they should select without having to spend too much money or time running their
own user studies.

System architects of smart spaces should also embrace priming as a part of their system
design space. The interaction framings used to represent the system will strongly influence
the kinds of interactions that users will task the system with. This means that higher-level
choices about the way the system is presented to users will have lower-level consequences
for the system requirements. System engineers will need to become aware of the coupling
between the broad space of interaction framings available to represent the system and the
operational implications of each option.

3.4.2 Consider how subpopulations may be primed differently

Designers will also need to keep their target audience in mind. The operation profile is
not just a function of the framing, but also the subpopulation interacting with the system.
Technically-inclined users may have a deeper understanding that allows them to discover
more functionality than the conceptual model conveys, whereas non-technical people will
be much more likely to only express those desires that can be clearly satisfied within the
confines of the presented model. Similarly, older occupants will also be greatly influenced
(and constrained) by the conceptual model.

3.4.3 Consider automation when choosing a framing

Currently, systems exist that do not support interoperability between devices very well, or
which feature single-purpose devices. For those systems, the Unmediated Devices framing
may be a sensible choice of framing, as manual one-on-one interactions with individual devices
are what the system can most easily support. However, the value of ubiquitous computing is
projected to come from the ability to run integrated applications on general-purpose physical
computing systems. In transitioning from a special-purpose to a general-purpose future, and
as the number of devices scales up, it will be important to keep in mind other interaction
framings that we could transition to away from Unmediated Devices that would encourage
users to think more broadly.
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Intelligent assistant interfaces are another popular smart space interface that we show
have advantages over Unmediated Devices in the long term, in that they help users imagine
more potential for automation. However, intelligent assistants may carry additional user
expectations that may be hard to satisfy in practice. Prior work has shown that to manage
user expectations of intelligent assistants, we need a way to convey to the user what the
assistant understands [135].

Since system designers may reasonably wish to avoid the implementation complexity that
comes with users’ expectations of assistants, it is significant that our findings showed that the
Unmediated Data framing also encouraged users to think of high-level automation applications,
presumably due to the global scope that “monitoring” data implies. Data-centric interaction
framings have been relatively unexplored in smart spaces, and represent a potentially fruitful
area of future work.

3.4.4 Incorporate artificial intelligence primitives

Finally, we found that end users will comfortably use primitives that have traditionally fallen
under the umbrella of Al rather than systems. Previous work has identified that in the
smart home domain users will employ “fuzzy triggers” which specify qualitative preferences
like “comfortable,” “normal,” and “sufficient” that must be learned by the system [75], but
we identify two new concepts in user applications that would require artificial intelligence
techniques to implement:

Prediction. Some commonly-occurring commands and questions in our dataset require
prediction to execute. Examples include actions relying on the condition “before,” such
as “have coffee ready before I wake up,” and questions starting with “when will,” such as
“when will my husband be home.” The basic nature of these primitives suggests that machine
learning for prediction tasks should be included in smart space systems at a fundamental
level.

Goals. Many responses to the assistant-based prompts describe a goal and provide example
actions in order to demonstrate to the assistant how to achieve the goal. If the system were
able to understand goals and planning, it would provide the assistant with a great deal of
flexibility in achieving the specified goals. In the example “adjust the blinds every morning
around 5, so that I wake up easier when my alarm goes off,” the system could detect that
the user would like help in waking up and potentially suggest (or attempt) supplemental
strategies, like turning on the lights to full brightness, or playing additional sounds. The
ability to comprehend even basic goals would give a smart space power to improvise and
make suggestions to aid its occupants. Systems that wish to support intuitive end-user
programming may therefore benefit from drawing on the extensive work done in artificial
intelligence on goal-based assistants, planning, and learning from demonstration.
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3.5 Summary

In this work we show that the interaction framings used to present a smart home system
to end users have a significant priming effect on users’ mental models and the kinds of
interactions that users expect to have with the home. We introduce a preliminary framework
that identifies several dimensions along which conceptual models can be described, and then
focus particularly on interaction framings situated along two of those dimensions: the system
capabilities (devices vs. data), and the system personification (unmediated vs. assistant-
mediated), the combination of which results in four archetypal interaction framings. We
then characterize the mental models that users form when presented with those interaction
framings. We use Amazon Mechanical Turk to collect over 1,500 responses to questionnaires
where we describe a single hypothetical smart home’s capabilities using one of the four
interaction framings. To gain insight into users’ mental models, we analyzed the qualitative
differences between the sets of responses, as well as differences in the types of tasks the users
ask the system to perform, and the words characteristic of each prompt according to statistical
tests. Based on our analysis of these three signals, we find that different interaction framings
strongly affect the mental models the users have of the system and the ways that they want
to interact. We also found that older users and users without computer science expertise tend
to respond more strongly to priming than younger users and users with computer science
expertise.

Our findings have major implications for both HCI researchers and system designers. HCI
researchers studying mental models will need to be aware that there is no unbiased way that
end users think about these systems and that priming should be embraced as an omnipresent
influence on mental models, requiring researchers who are trying to understand mental models
to do comparative evaluations of different system interaction framings. System designers
should consider the choice of framing to be part of their design space, since it will heavily
influence the kinds of operations that the system will need to support.

We also found that end users employ computational primitives that have traditionally fallen
under the umbrella of artificial intelligence, such as prediction and goal-oriented planning.
Consequently, HCI researchers, system designers, and Al researchers should take active
measures to bridge the institutional gaps between them and collaborate closely on future
platforms.

Finally, we found that the most popular framing used in smart space interfaces today, the
Unmediated Devices framing that corresponds to device-centric smart phone apps, produced
the most limited kinds of interactions, characterized by manual one-on-one interactions with
individual devices. High-level applications like automation and queries often do not even
occur to users presented with this framing, though they do occur when users are given different
interaction framings of the same system. This suggests that as smart space architecture
continues to evolve towards interoperable general-purpose physical computing systems, we
should move away from the Unmediated Devices framing if we want end users to think of
valuable, integrated applications that operate across a network of devices.

The limitations of the Unmediated Devices framing could be mitigated merely by adding
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an intelligent assistant mediation layer on top of the devices, which increased the amount of
automation possibilities that occurred to users. This corresponds to another popular interface
in modern smart homes, intelligent assistants, such as those operated through smart speakers.
Due to its advantages for mental models and current popularity in modern smart spaces, the
interface designs for discovery that we introduce in the latter half of this dissertation will
focus on an intelligent assistant framing.
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Chapter 4

How Reliance on Proper Names
Impairs Smart Space Discoverability

In the last chapter, we examined the device-centric aspect of the proper device name paradigm
and saw how it limits user expectations of system capabilities when not mediated by a
intelligent assistant. In this chapter, we are going to look at the proper name aspect of the
proper device name paradigm and characterize the degree to which proper device names are
not guessable, making it difficult to operate unfamiliar smart spaces without discovery aids.
As early as 1987, Furnas identified the “vocabulary problem” for language-based interfaces [76],
stating that even the best-possible canonical name for an information object will still be hard
to guess. Here, we examine the degree of that problem in the smart space domain.

4.1 Guessability Study

To measure how difficult it is to guess proper names for smart space devices, we want to
determine what people think the most guessable names are for devices in a smart conference
room and see whether there is consensus or disagreement on the names. Prior work has
devised methods for maximizing the guessability of names, calculating formal measures of
the guessability of a particular name, and calculating the agreement of a set of proposed
names [136]. We use the latter metric in our analysis of the collected set of proposed names.

4.2 Methodology

We ran a Mechanical Turk study to collect guessable names for devices in a hypothetical
smart conference room. We released two different tasks that differed in their visual prompt,
shown in Figure 4.1. The first prompt showed each worker a picture of the conference room
with all of the lights highlighted, and asked the worker to give a unique name to each light
(Figure 4.2). The second prompt showed the same image, but highlighted all of the non-light
devices. We split the devices across two prompts to reduce visual clutter.
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(a) Lghts | - A (b) Nondi ghts

Figure 4.1: Prompts indicating smart devices and device groups. The study was split into
two prompts, one for lights and one for non-light devices, to reduce visual clutter.

The building manager has named the devices in this smart conference room their most commonly guessed names. Guess the name of each circled device or group of
devices. All of the names are different from each other.

= Each name is different.
« Each name can include multiple words.
s Each name is relevant to the device and/or its physical context.

What do you think the most commonly guessed name
is for the device group indicated by the three orange
ovals?

5]

What do you think the most commonly guessed name
is for the device group indicated by the orecn oval?

What do you think the most commonly guessed name
is for the device indicated by the purple oval?

What do you think the most commonly guessed name
is for the device group indicated by the two
ovals?

What do you think the most commonly guessed name
is for the device indicated by the blue oval?

What do you think the most commonly guessed name
is for the device indicated by the red oval?

Figure 4.2: Mechanical Turk prompt for the guessability study. Workers were shown one of
the two pictures of the simulated conference room, with devices and device groups circled in
colored ovals, and asked to provide what they thought the most commonly guessed names
were. Each name had to be different than the other names.
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The smart conference room had six lights (or groups of lights): overhead fluorescent
lights, a set of front lights over the projector, a pair of accent spotlights (which included an
independently operable right light and left light), and a recessed ambient wall light. There
were four non-light devices or device groups: the blinds, which included an independently
operable left blind and right blind, and a projector.

In early pilots of this study where the instructions simply solicited candidate names,
respondents often provided highly unique and creative responses, so our final study prompt
emphasized that the devices had been assigned commonly guessed names and we asked
participants what they thought that commonly guessed name was. The results of early pilots
also led us to clarify that each name was different.

4.2.1 Data Analysis

In total, we collected 100 guessed names per device (or device group). We ran the names
through a spellchecker to avoid purely orthographic differences that are unlikely to be an
issue during smart space operation. To analyze the data, we generated histograms of the 100
names provided for each device name, as well as individual words in the names.

For each device we also calculated the agreement metric for the set of provided names,
as described in the paper “Maximizing the Guessability of Symbolic Input” [136]. Since we
calculated agreement for one device (what they call a “referent”) at a time, the formula we
used for each device is:

P, can be considered the set of all respondents, and P; the subset of all respondents who
gave the same name 7. In our problem formulation, |P,| is always 100, and |P;| is the number
of times that the name ¢ occurs in the set of 100 guesses. The possible values of agreement
range from 1% to 100%. This metric is meant to be higher when more people provide the
same name, reflecting the peaks of popularity, and meant to be lower if there are more unique
names, reflecting the length of the histogram tail.

4.3 Findings

Consistent with other domains studied in prior work, we found that proper names for the
smart conference room devices were largely not guessable. However, we also found that
the precision problem for the smart space domain is acute, meaning that the same popular
name could potentially apply to multiple devices. We also made a number of additional
observations about how respondents named devices that can provide insight into how people
conceptualize smart devices’ relationships to each other and to the environment.
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Spotlights Wall light Front lights Left light Fluorescent lights
75 unique names 65 unique names 64 unique names 72 unique names 33 unique names
2.54% agreement 4.04% agreement 2.88% agreement 2.02% agreement 10.26% agreement
11 spotlights 16 wall 8 spotlights 5 spotlight 21 lights
4 wall lights 5 recessed lighting 7 recessed lights 5 speaker 18 fluorescent lights
4 recessed lights 3 sky light 6 front lights 5 left light 9 overhead lights
3 overhead lights 3 recessed lights 5 recessed lighting 4 can light 7 flucrescent light
2 spotlight 3 ceiling 4 spotlight 3 light 7 ceiling lights
2 speakers 3 back light 3 presentation lights 3 left spotlight 6 fluorescent lighting
2 side lights 3 ambient lights 3 overhead lights 2 sprinkler 3 light
2 recessed lighting 3 ambient lighting 3 can lights 2 overhead light 3 ceiling light
2 lights 2 soffit 2 projector lights 2 lights 2 long lights
2 led light 2 lighting 2 lights 2 left recessed light
2 can lights 2 light 2 light 2 left accent light
2 accent lights 2 circle lights 2 front wall light
2 can light 2 front spotlight
2 front light
2 camera
Right light Blinds Left blind Projector Right blind

73 unigue names
1.96% agreement

36 unique names
8.54% agreement

31 unique names
11.06% agreement

14 unique names
58.06% agreement

39 unique names
6.20% agreement

5 right light

5 recessed light
4 light

3 spotlights

3 spotlight

3 speaker

3 right spotlight
3 can light

3 back light

20 blinds

12 windows

10 window blinds

7 window shades

7 window

7 shades

5 window coverings
2 window treatments
2 window covers

2 right recessed light 2 wall

2 right accent light
2 lights
2 back wall light

27 blinds

11 left blind

8 shade

8 blind

6 left blinds

5 left window shade
4 window blinds
4 shades

3 window shade
2 window blind
2 left shade

75 projector
13 overhead projector

13 blinds

12 right blind

10 shades

7 blind

6 window blind

6 right blinds

4 shade

4 right window shade
3 curtain

2 window shade

2 window blinds

2 right window blind
2 right shade

2 mini blind

50

Figure 4.3: Metrics and counts of names. For each device, we list the number of unique names
in the set of 100 names participants guessed, and the agreement metric for the set of names.
The agreement metric reflects both the popularity of the most popular names, as well as
the number of unique names (more unique names suggests less agreement). Underneath the
summary statistics, we list the names ordered by number of guesses, omitting any names that
were only guessed once—the vast majority of submissions. Though guesses were reasonable,
there was low agreement and high uniqueness, illustrating a fundamental guessability problem.
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Popularity of Most Guessable Name

Projector (“projector")

Left blind ("blinds")
Fluorescent lights ("lights")
Blinds ("blinds")

Wall light ("wall")

Right blind ("blinds")
Spotlights ("spotlights")
Front lights ("spotlights")
Left light ("spotlight")
Right light ("right light")

0 20 40 60 80 100
Percent of Names

Figure 4.4: This chart shows the popularity of the most guessable name for each device. On
the left, you can see the name we use to refer to the device, followed by the most popular
name for the device in quotes. The bar shows what percent of the 100 names were that name.
Except for the projector, all of the names are less than 30% of the submitted names (shown
by the dotted line). This means if these devices were named these best possible names, a
new user would still have between a 70-95% chance of being wrong on their first guess.

——-“
—3 = E B

Fluorescent lights Front lights Left light Right light
0.54 lights 0.37 spotlights 0.37 spotlights 0.28 spotlight 1.00 right light
1.00 fluorescent lights 0.38 recessed lights 1.00 wall lights 0.31 speaker 0.55 recessed light
0.44 overhead lights 1.00 front lights 0.38 recessed lights 1.00 left light 0.21 light
1.00 fluorescent light 0.29 recessed lighting 0.44 overhead lights 0.36 can light 0.37 spotlights
0.52 ceiling lights 0.28 spotlight 0.28 spotlight 0.21 light 0.28 spotlight

i = =
Wall light Projector Blinds Left blind Right blind
1.00 wall 1.00 projector 0.36 blinds 0.36 blinds 0.36 blinds
0.29 recessed lighting 1.00 overhead projector 1.00 windows 1.00 left blind 1.00 right blind
0.63 sky light 1.00 video projector 0.47 window blinds 0.48 shade 0.34 shades
0.38 recessed lights 0.31 speaker 0.78 window shades 0.50 blind 0.50 blind
1.00 ceiling 0.34 shades 0.78 window 1.00 left blinds 0.63 window blind

Figure 4.5: Top names and their precision. The underlined names in color are the names we
use to refer to the devices in this chapter. Below, you can see the top five names submitted
for each device and how precise they are, given by the odds that any two occurrences of
the name in the dataset refer to the same device. The bolded names appear in the top five
names of at least one other device. (We considered “wall” and “wall light,” and “ceiling” and
“ceiling light” to be the same, though when calculating precision they were treated as two
unique names.) Note that for “Spotlights,” any of its top five names could also refer to other
devices in the room. The average precision of these top five names is 0.58, suggesting that if
presented with one of these names, on average a user would have a 58% chance of matching
it to the right device.
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4.3.1 Device names were mostly not guessable

Only one device could be considered guessable—the projector. 75% of respondents guessed
the exact name “projector,” and a further 13% guessed “overhead projector.” A full 94% of
guesses contained the word “projector” somewhere in the name.

However, the most popular names for the remaining devices were only provided by 5-27%
of the participants. This means that even if the smart devices were named the best possible
names, there is a 73-95% chance of the first guess failing. This lack of guessability means that
we cannot just name devices better—we need a means of discovering proper device names.

4.3.2 Popular names could apply to multiple devices

Another potential discovery issue, highlighted in Figure 4.5, is that the most guessed names
for one device were often among the most guessed names for other devices. For example,
“recessed lighting” appeared as one the top names for four of the lights, making it a popular
but highly ambiguous name. This overlap between top names makes it difficult to support
the infinite aliasing or synonym-based solution to naming recommended by Furnas.

Furnas referred to this the “the precision problem,” but found that the degree of the
problem varied greatly between domains. We find it is a major concern in the smart space
domain, where there are similar types of entities with relatively few distinguishing features.
Merely providing users with a list of smart device names will not suffice to support one-shot
interactions, as users may not be sure which name refers to which device. Interfaces must
help users ground each name to its real-world device.

4.3.3 The order of naming in hierarchical device groups matters

The order in which users name entities affects what names they choose. We found that
participants tended to start with most general name first (e.g., “light” or “blinds”), then
became more specific if necessary for subsequent guesses. For example, if the left blind was
named before the group of all blinds, the left blind would likely be named “blinds” and the
group of all blinds would be named a synonym, such as “shades,” or with an additional
adjective, such as “window blinds.” In the final iteration of the guessability study we asked
people to name the most generic groups first.

4.3.4 Names do not always capture device relationships

Relatedly, we also found that people did not preserve hierarchical relationships or type
information in their naming schemes. If the group of two spot lights together was called
“spot lights,” the right spot light might be called “can light” and the left spot light might
be called “recessed light,” losing the type information, the group hierarchy information,
and the spatial relationship information. This may be because such relationships were not
noticed. The prevalence of this kind of naming scheme (or lack thereof) suggests that there is
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a potential mismatch between the flat device hierarchies that typical users perceive on their
first impression of a space and the tree-like type or group structures of the actual system.
An interesting open question is whether users would more quickly perceive type, group, or
spatial relationships if presented with a naming scheme that reflected them.

4.3.5 Frames of reference can differ

For device names that included location information, users used different physical frames of
reference or coordinate systems. While participants appeared to agree that the lights over the
projector were in “front,” and that the blinds were “left” and “right,” there was disagreement
over whether the spot lights in front of the green stripes were “left” and “right” (19% of names)
or “front” and “back” (12% of names). These differences depend on whether the participant
considered the origin to be the windows or the projector screen. This complements the results
of Brumitt and Cadiz [87], which found that the reference point for relative locations in a
smart home living room was always with respect to facing the television screen.

4.4 Summary

In this chapter we ran a guessability study to determine how fundamentally difficult it is
to guess the proper names of smart space devices. We found that for most devices, even
the most popular, best-possible names are not particularly guessable, resulting in a 70-95%
chance of the user guessing the name wrong in the first interaction. This highlights the need
for a lexical discovery method. We also found that even given a list of device names, it may
still be difficult for the user to guess the correct name in the first interaction, since the top
names could refer to multiple devices. This means we additionally need a grounding discovery
method that helps map names to devices.

These results highlight the unique discovery challenges facing smart spaces that are
designed around proper device names. In the next two chapters, we will explore interface
designs that can help users overcome these challenges to achieve one-shot interactions in
unfamiliar smart spaces.
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Chapter 5

Improving Smart Space
Discoverability with
Autocomplete-Enabled Assistants

In the last two chapters, we characterized several smart space discoverability issues caused
by the “proper device name” paradigm. We found that an intelligent assistant interaction
framing can help mitigate some of the limiting effects of device-centrism, and we also found
that proper device names are fundamentally not guessable. In other words, we cannot just
name devices with better names, we need a discovery aid, ideally framed as part of an
interaction with an intelligent assistant. These findings will help guide our solutions to help
users perform one-shot interactions in unfamiliar spaces.

Over the next two chapters, we center our discovery-oriented interface designs around a
messaging approach for smart space intelligent assistants. By messaging assistants, we are
able to use visual discovery mechanisms such as autocomplete to help users understand what
can be done in the room and how to invoke those actions using proper names.

An autocomplete mechanism for smart spaces must satisfy different objectives than it does
in more traditional autocomplete applications like search. Since smart spaces are multi-modal
with many different potential interfaces to the same system, the most effective discovery
mechanism would not only help the user perform tasks, but also help them gain knowledge
that can serve them later when performing tasks using other interfaces, such as graphical
remote control apps, voice interfaces, text interfaces with no autocomplete, and even physical
switches. In essence, the goal of autocomplete in an unfamiliar smart space is to make it a
familiar smart space, and enable the user to be able to stop using autocomplete as soon as
possible. The autocomplete interface should therefore aid the user in quickly and accurately
accomplishing their task, while also building up subconscious semantic and lexical knowledge
that can transfer to other modalities, where autocomplete or other discovery mechanisms
may be unavailable.

With these goals in mind, we propose three different design dimensions for autocomplete
where the best choice for the smart space domain may not be the same as the best choice
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for more common autocomplete domains like search. Within these three dimensions, we
evaluated eight different autocomplete designs, taking a large-scale methodological approach.
We developed an online, unsupervised evaluation platform and deployed it on Mechanical
Turk in order to collect performance metrics and gather a diverse array of feedback for
our nine interfaces. Mechanical Turk allowed us to quickly gather 246 responses. While
simulation-based studies may fail to capture important behaviors that only manifest in an
embodied context, we were able to collect performance, learning, effort, and satisfaction
metrics, as well as qualitative feedback, across a broad range of participants.

We find that all autocomplete users were better able to accomplish tasks and learn more
about the semantic and lexical capabilities of the system than users of the baseline interface
with no autocomplete. However, we found few differences between autocomplete designs.
This is likely due to the fact that all autocomplete users still had to make many trial-and-error
attempts to ground each proper name to its real-world device, thus learning comprehensively
about the overall room during their attempts. We conclude that while autocomplete takes
us a step closer to our goal, the grounding problem must still be solved to achieve one-shot
interactions in unfamiliar smart spaces.

5.1 Messaging Smart Space Assistants

While most users currently interact with smart space intelligent assistants using voice, Google
Assistant, Siri, and Alexa all support some degree of text-based interactions as well. By
messaging smart space intelligent assistants, we can take advantage of the visual medium
to use autocomplete suggestions as a mechanism to address lexical and semantic discovery,
while maintaining an intuitive intelligent assistant interaction framing. We envision that such
an interface would not supplant voice, but complement it. Users who wish to maintain the
intelligent assistant framing can use this messaging interface upon entering an unfamiliar
smart space when voice would be difficult to use successfully. After learning about the space’s
capabilities and what language the assistant understands, the user would be empowered to
switch to voice or another interface if so desired. We see messaging as an addition to the
ecosystem of interfaces that users can choose between when operating smart spaces, rather
than a replacement for any interface. At the end of our study, we ask users about when they
would prefer to use text over voice, as well as voice over text, to better understand the unique
advantages of each modality.

5.1.1 The Smart Room Chatroom

There are many possible dynamics for messaging an intelligent smart space assistant. A user
could message an intelligent assistant that is associated with them, like a personal assistant
who is always the same no matter what smart room the user is in. Alternatively, the intelligent
assistant could be tied to a smart room instead of to a user, and the assistant could appear
as a messaging contact when the user enters the room.
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A third potentially interesting option is that the intelligent assistant is tied to the room,
but messaging takes place in a group chat that is also tied to the room—a kind of “smart
room chatroom.” The communal nature of such a room-level chat log could lead in a number
of directions. The chat history could serve as an easy way for users to retrospect on how
their decisions affect others in the space, or attribute the current state of the room to the
previous decisions of particular people. Furthermore, having a publicly accessible chat log
would allow for institutional knowledge about a space to seamlessly and naturally spread in a
community, even between members who will never actively communicate with each other.
Also, these chat logs could be augmented with additional features, such as the ability to flag
issues, make requests, or summon a building manager to the chatroom, which could help
facilitate the kinds of human-human interactions that we already know occur during the
iterative process of automation rule development and smart space maintenance [24, 27]. A
smart room chatroom could also be a quick way to share links, files, and other information
with everyone located in the same physical space.

Since in this study we are focused on evaluating different autocomplete designs, our
interface is agnostic as to which of these approaches is taken. However, we feel a smart room
chatroom has the potential to support the interactions that occupants want to have within
and about smart spaces, providing a substantial value to users of these augmented buildings,
and is worth further exploration.

5.2 Designing Autocomplete for Discovery

The goals of an autocomplete design for supporting smart space discovery are different than
those for traditional autocomplete tasks like search. Autocomplete interfaces are usually
designed to help users search a very large, sometimes effectively infinite space of possible
results. They are also designed with the assumption that the autocomplete interface will
always be available whenever the user wishes to perform a task. Consequently, traditional
autocomplete prioritizes the speed and ease of performing search tasks while using the
interface, and does not attempt to help users build a complete mental map of the entire space
while performing the targeted tasks. The interface does not need to support independence
from autocomplete since the user will usually use the same interface to perform future tasks,
and in many cases the user cannot build a comprehensive mental map anyway, since the
search space is so large.

Smart spaces, however, have a relatively small, finite set of devices and capabilities.
Additionally, users can use a number of different interfaces depending on their preferences
for each task, including graphical apps, voice input, or text-based input, and even physical
buttons and switches. In smart spaces, therefore, autocomplete should be viewed as one
possible interface that not only supports performing targeted tasks in a new space, but also
bootstraps users’ ability to use the other interfaces as soon as possible.

Further, in smart spaces that consist of a mix of smart and dumb devices, it is just as
important to be able to quickly determine that you cannot control a particular device as
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it is to discover that you can. Therefore, in addition to accomplishing tasks and learning
about actions that are possible, a discovery mechanism must also help users realize when a
particular state is not achievable.

To accomplish these goals, autocomplete interfaces must balance performing a specific
task (exploitation) with learning about the overall space (exploration). This is a different set
of requirements than in traditional autocomplete domains like search, and necessitates the
exploration of new designs.

5.2.1 Proposed designs

We propose three dimensions of autocomplete design that we hypothesize will impact the
trade-off between accomplishing tasks and learning about the overall space. Each dimension
has two mutually exclusive design options. The choices for these three dimensions may
interact with each other producing emergent effects, so we evaluate all eight combinations of
choices, as well as a ninth baseline interface that has no autocomplete suggestions.

Typing order. In search applications, autocomplete provides suggestions when the user
types a whole natural language phrase in-order, but also when the user types keywords, which
may appear anywhere in the results [97]. In the smart space domain, should users be given
suggestions when they type keywords out-of-order? For example, should typing “projector”
allow a user to discover all of the utterances referencing the projector no matter the word’s
location in the sentence, such as “turn on the projector” and “is the projector on”? While
being able to search the set of valid sentences for a substring regardless of its location is
useful for rapid search tasks, it may not help users practice the sequential thought process
needed to generate utterances end-to-end, as is necessary for the voice modality. It may also
stymie learning about the other available capabilities in the space, prolonging dependence on
the autocomplete interface in future interactions.

The typing order design dimension describes whether the autocomplete engine will provide
suggestions for words typed out of order. For example, if out-of-order typing is allowed it
will show the result “turn on the projector” if the user types “projector.” If instead in-order
typing is enforced, then the user will need to type valid sentences from beginning to end to
see suggestions. That is, they must type “turn on” to get the result “turn on the projector.’
We hypothesize that forcing users to type in order, the way that they would say sentences
aloud, may help with retention and exposure to other capabilities. We designate interfaces
with these characteristics as either I (in-order) or O (out-of-order).

Manual selection of suggestions. Modern autocomplete designs almost always allow
users to manually select a suggestion using arrow keys, clicking, or tapping. However, what
if users could read but not select suggestions, and had to type them out? Selectability is
likely faster and easier, but is essentially a physical gesture. Requiring users to engage their
language generation faculties may better entrain users in syntactic patterns and encourage
incidental semantic and lexical discovery.

The manual selection design dimension determines whether a user can use up/down
arrows, clicks, or tabs to manually indicate an autocomplete suggestion, or whether they

)
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Selectable In-order Input Out-of-order Input
Interface X . ;
Suggestions Behavior Behavior
turn projector
O/F/S Yes [} Turn the lights on Is the projector off
DfFfNS No Turn the lights off Is the projector on?
Turn the projector on Turn the projector off
Turn the projector off Turn the projector on
turn projector
o/T/s Yes % Turn the lights.. Is the projector off
Turn the projector... Is the projector on?
O/T/NS No Turn the projector off
Turn the projector on
turn projector
I/T/S Yes [
Turn the lights...
If Tf NS No Turn the projector...
turn projector
If' Ff! S Yes % Turn the lights on
Turn the lights off
U F" NS No Turn the projector on
Turn the projector off
Owvs. | Fvs. T Svs. NS

Out-of-order (0] interfaces show
results for out-of-order input, while
in-order (l) interfaces show no
results—users must type in order.

Selectable (5) interfaces allow users
to select suggestions, while not
selectable (NS) interfaces force
users to type.

Full sentence (F) interfaces provide
complete suggestions, while next
token (T) interfaces only show the
next token for in-order input.

Figure 5.1: The eight autocomplete interfaces and three autocomplete design dimensions.
The interfaces are designated by three letters indicating their choices for the three design
dimensions. Out-of-order (O) vs. in-order (I) describes autocomplete behavior when users
provide out-of-order input (input that does not match the beginning of any suggestion, but
does match suggestions somewhere else). Full sentences (F) vs. next token (T) describes
autocomplete behavior when users provide in-order input (input that matches the beginning
of some suggestions). Finally, selectable (S) vs. not selectable (NS) describes whether or
not users can automatically populate the input field by selecting a suggestion via clicking,
tapping, or using arrow keys.
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must type the whole suggestion themselves. Similar as above, we posit that being able to
manually select options without typing will drastically reduce exposure to the rest of the
capabilities in the room and impact mental model construction. We suspect that those who
use a physical modality to provide input will have worse recall of names afterwards than
those who must employ language generation faculties. We designate interfaces with these
characteristics as either S (selectable) or NS (not selectable).

Extent of suggestions. Autocomplete interfaces in the wild will suggest complete
phrases, or just the next word, or both in different contexts [97]. Which is the best for the
smart space domain? Are full sentences overwhelming and visually complex? Does limiting
suggestions to just the next token lose the opportunity to quickly reveal all the options near
the end of the sentence? Does the tree-like search through the next-token expansions result
in structured learning?

The extent of suggestions design dimension reflects whether users are shown only the
set of next tokens or the set of full sentences. Next token suggestions will only include the
next possible words (e.g., if the user types “turn,” they will receive the suggestions “turn
on,” “turn off”). Full sentence suggestions will be complete commands or questions (e.g., if
the user types “turn,” they will receive the suggestions “turn on the lights,” “turn on the
projector,” “turn off the lights,” “turn off the projector,” etc.). We hypothesize that those
with full sentence suggestions will be more exposed to other capabilities in the room, as
they immediately see the devices at the end of the sentences. However, it is possible that
next token suggestions encourage users to practice producing input one token at a time and
structure the exploration process. We designate interfaces with these characteristics as either
T (next token) or F (full sentence).

5.3 Autocomplete Study Testbed

To determine how the various autocomplete designs affected the balance between accomplishing
tasks and learning about the rest of the space, we built a browser-based conference room
simulation and simulated mobile chat interface with a smart space assistant (shown in
Figure 5.2). This allowed us to run a large number of experiments online, which was
important since we had eight different autocomplete designs to evaluate and therefore needed
to collect a lot of data. We also had a ninth baseline interface which has no autocomplete
at all. In order to give the users of the no-autocomplete interface a good-faith chance at
guessing the right device names, we based the names of the devices off of the guessability
study results for the simulated conference room, balancing the popularity of each name with
its precision (in other words, its uniqueness to the device). This means that the baseline
results approximate a best-case scenario for those with no autocomplete.

During a session, the participant interacted with the intelligent assistant using one of
our nine interfaces. We recorded performance metrics while the user performed tasks, and
immediately afterwards we collected feedback and tested the completeness and correctness of
the mental model the user built while performing the tasks. The experimental apparatus itself
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Smart Room Chatroom

Problem? Email mclarkk@berkeley.edu with "User ID: user0" in subject line.

Scenario 1/3

Use the chat app to work with Scarlett, the friendly smart room Al, to put the conference room into the goal state. The goal state
may be impossible to reach. Once the room is in the goal state, or you have decided that it is impossible to reach the goal state,
press the "Done with Scenario 1" button. Spelling matters!

4/26/2021, 12:21:38 AM
Scarlett:

4/26/2021, 12:21:58 AM
User0: Turn off the front
lights

4/26/2021, 12:21:59 AM
Scarlett: okay

ikt : Turn on...
Press and hold to see the goal state | Done with Scenario 1 —

Figure 5.2: The autocomplete study interface.

consists of several interacting components: the simulated conference room, the intelligent
assistant, the autocomplete interface, and the logging instrumentation.

5.3.1 Conference room simulation

We created a simulated conference room by overlaying partially transparent frames depicting
different device states over a base image, and dynamically revealing or hiding images in
response to the user’s submissions. The devices and device groups in the simulated conference
room are the same as those marked in Figure 4.1 from the guessability study. However, in
this study, the recessed wall light was not controllable in order to serve as our unconnected
device that is not smart. Additionally, we removed individual control of the blinds, so that
they can only be controlled together. The proper names of the devices and device groups were
fluorescent lights, front lights, spot lights, right light, left light, projector, and blinds. The right
light and left light could be controlled individually (as right light or left light), or together (as
spot lights). The internal simulation state also included values like brightness, humidity, and
temperature in the room so that the assistant could answer questions about the environmental
conditions. We only ask participants to perform tasks involving the projector, front lights,
and the unconnected wall light, so we are interested in seeing what the participants can learn
about the rest of what the space can and cannot do.
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5.3.2 Intelligent assistant implementation and grammar

We designed an intelligent assistant chatbot called Scarlett, which served as a mediation
layer between human input and the smart space’s services and capabilities. Scarlett’s design
centers around a grammar that defines a core set of smart space functionality, with the
vision that the grammar could be modularly composed to reflect any set of available devices.
Critically, although the autocomplete suggestions shown were only for these grammar-derived
“canonical forms,” the assistant could understand arbitrary paraphrases of the suggestions. The
assistant’s flexible understanding was based off of keyword recognition that mapped the user’s
input onto one of these canonical forms and identified the relevant entities and attributes.
This approach was informed by the work “Building a Semantic Parser Overnight,” in which
a semantic parser is automatically generated for a new domain by crafting a domain-specific
grammar of executable canonical forms, then using crowdsourcing to create a dataset of
paraphrases for each canonical form, which is then used to train the parser to predict the likely
executable canonical form given a paraphrase [137]. While we did not use a training-based
parser, we took inspiration from the work for our general approach of using a spanning set
of canonical forms for the autocomplete suggestions and then building an assistant that
understands paraphrases of them. The grammar defines the following templates:

e What is the attribute?

Tell me the attribute

Tell me whether the entity/entities is/are state

Is/Are the entity/entities state?

Raise/Lower the entities

e Turn on/off the entity/entities

The possible values for attribute are brightness, humidity, and temperature, and the
possible values for entity/entities are the proper device names listed previously in Sec-
tion 5.3.1. The possible values for state depend on the type of device being referenced, and
are either on and off, or lowered and raised.

Any message that was not a valid command or query received a response of “I don’t
understand.” Valid commands from the user would receive either confirmation messages,
such as “okay,” or “already [on/off /lowered /raised|” if the device was already in the specified
state. The latter is particularly informative when users have incorrectly guessed which name
corresponds to which physical device. Scarlett was able to answer questions about the state
of the room. We also added the ability to handle some basic conversational interactions
unrelated to smart spaces, such as “hello,” “please,” and “thanks.” Typical for current smart
space assistants, the assistant did not take initiative, beyond posting a “Hello!” welcome
message to the chatroom for the user to see upon first opening the interface.
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5.3.3 Autocomplete implementation

The autocomplete suggestions were constructed by using ANTLR to generate a lexer and parser
from a context-free grammar specification for the language that the chatbot understands [138].
We used the parser code to construct the set of all valid sentences for our small grammar
offline and store them in a database. We used different search techniques to query this
database to get the set of autocomplete suggestions for each interface. While generating all
valid phrases in advance may not work for larger or infinitely recursive grammars, we did
it for our testbed to optimize the search speed so that users did not experience lag in the
display of suggestions. We manually created the autocomplete interface widget, including the
ability to select autocomplete suggestions with arrow keys or the mouse, which we enabled or
disabled depending on whether the interface was selectable (S) or non-selectable (NS).

5.3.4 Logging

We logged a number of different kinds of interactions between the user and the interface. We
logged all keystrokes (including separate statistics for just printable characters), all messages
that the user sent to the assistant and the resulting simulation states, and the final state
each time the user finished a scenario. We also collected a number of different timing metrics,
including overall time, the time spent on each scenario starting from the appearance of the
scenario instructions to the end of that scenario, and the time spent just using the interface
during each scenario.

5.4 Autocomplete Study Methodology

We posted our study on the effects of autocomplete designs on Amazon Mechanical Turk
(MTurk) with IRB approval. We restricted eligibility to the USA to target participants with
relevant language skills. Each MTurk task provided a link to our interface’s webpage. Upon
loading, the webpage received a unique ID from the server to associate with the recorded
data. Workers then participated in the experiment, which can be broken down into five
phases. Once the worker submitted proof of completion, we compensated them $2.50.

5.4.1 Onboarding Phase

Participants were first brought to an introduction screen which explained the study purpose
and what they would be required to do. In addition, users were told that their anonymized
data would be shared with other researchers and kept indefinitely, but that they could contact
us with their user ID if they wanted to have their data deleted or had any other questions.
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Smart Room Chatroom

Problem? Email mclarkk@berkeley.edu with "User ID: user0" in subject line.
Scenario 1/3

Use the chat app to work with Scarlett, the friendly smart r omAIl put the confer
roomlt the goal state. The goal state mayb impossible t i RO

decided that to hthg al state, press
the utton. Spellin gm
Below is the Scenario 1g | state (you will be able to u1 v as well).
Note: Can't see the ie" button below the picture e
horizontally (make nn )

Ok, Scarlett...
e

\ Tm ..
Tum on
Press and hold to see the goal state Done with Scenario 1 —

(a) Scenario Setup (b) Scenario Interface

Figure 5.3: Scenario workflow. In each scenario, the user is first presented with a setup screen
that shows a picture of the goal state for that scenario (Figure 5.3a). Afterwards, the user
interacts with Scarlett to put the conference room into the goal state (Figure 5.3b). There
are three scenarios in fixed order that build realistically on each other. The goal states for
the first two scenarios are each achievable with a single chat message, while the third scenario
is impossible.

5.4.2 Interaction Phase

In the interaction phase, the participant was shown a screen with a picture of a desired goal
state as well as instructions to place the room in the depicted state, as seen in Figure 5.3a. We
used a pictorial approach to avoid biasing participants with our language. The full instruction
text is as follows:

“Use the chat app to work with Scarlett, the friendly smart room Al to put the
conference room into the goal state. The goal state may be impossible to reach.
Once the room is in the goal state, or you have decided that it is impossible to
reach the goal state, press the “Done with Scenario 17 button. Spelling matters!
Below is the Scenario 1 goal state (you will be able to see it later as well).”

Upon clicking continue, the user was presented with the smart conference room simulation
and a messaging interface to talk with the smart room’s intelligent assistant, Scarlett (Fig-
ure 5.3b). The chat history already contained a ”Hello!” message from Scarlett. Throughout
the scenario, users could review the goal state at any time by pressing and holding a button
that changed the simulation to reveal the goal state. Upon releasing the button, the room
returned to it current state. Users were assigned to one of the nine autocomplete designs as
described in Section 5.2.1 and used the same design throughout the experiment. The user
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could use the chatroom to query and command the assistant, with the aid of the autocomplete.
When the user decided that they had reached the goal state or that it was not possible to
achieve, they clicked a button and a confirmation popup to continue.

The Three Scenarios

During the experiment, users were asked to complete three of these scenarios, each with a
unique goal state, with the last scenario being unachievable. The unachievable goal state
corresponds to situations where an occupant may want to set the room to a desired state but
the relevant device is not controllable or capable of reaching that state. Users should be able
to quickly determine the impossibility and move on.

The first scenario involves an easy-to-guess name (“projector”), so that all users, even
those assigned the baseline interface without any autocomplete, should be able to achieve the
goal. The goal state is for the projector to be on. The second scenario involves a hard-to-guess
name (“front lights”). The goal is to remove the glare on the projector screen, so the second
goal state shows the front lights above the screen turned off (and the projector still on). The
third scenario is to turn on the ambient wall light. However, the wall light is a “dumb” light
and is not actually controllable via the interface. At the end of each scenario, the state that
the user has placed the room in carries over to the next scenario. Theoretically, the first two
goal states should each be achievable with a single message. The ideal outcome for the final
scenario would be the users using autocomplete to determine that the light is not any of the
names listed, and moving on after making zero attempts.

Finishing the third scenario takes users to a final screen that contains a congratulatory
message and a link to a questionnaire that they must fill out to receive credit for completing
the task. The questionnaire covers the final three phases of the experiment.

5.4.3 Recall Phase

The first phase of the questionnaire is the recall phase. Questions in the recall phase targeted
three specific aspects of the users’ mental models: an understanding of what goal states
were and were not achievable using the intelligent assistant (semantic knowledge, shown in
Figure 5.4a), what commands could and could not be understood by the assistant (lexical
knowledge, shown in Figure 5.4b), and determining whether various physical devices in the
room could be controlled, and if so, what its name was (grounding semantic and lexical
knowledge to specific devices in the physical space, as shown in Figure 5.4c).

5.4.4 User Experience Phase

The user experience phase of the questionnaire asked users to share how they felt about the
interface. We asked users to report both their enjoyment and frustration with the experience
on a Leikert scale, and explain why they provided the ratings they did. We also asked users
to list two things that they liked about the smart room chatroom interface, list two things
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e

“Turn on the projector”

O Scarlett WOULD understand this message

O Scarlett WOULD NOT understand this message Please select the best answer
Is it possible to put the room in this . The device is controllable on its own and the
state by working with Scarlett? ~ device's name s
O 1t1s possible to put the room in this state.
~, The device is controllable on its own, but | don't
~ know the device's name.
O 1t IS NOT possible to put the room in this state.
D The device is not controllable on its own.
(a) Semantic (b) Lexical (c) Grounding

Figure 5.4: Recall questions. To evaluate the completeness and accuracy of participants’
mental models of the room after using the interface to complete three scenarios, we ask users
three types of recall questions in the questionnaire.

they disliked, and describe what features they would add or change and why. We finished the
section by asking users to describe at least two situations where they would prefer to use
the chatroom instead of voice commands to talk to Scarlett, and two situations where they
would prefer to use voice instead of the chatroom. We also administered the ten-question
System Usability Scale questionnaire [139].

5.4.5 Demographics Phase

The questionnaire ended with questions assessing participants’ level of prior exposure to
Internet of Things technologies and intelligent assistants, as well as collecting demographic
information such as age group, gender, education, profession, and technical background.

Upon submission the questionnaire displayed a completion code, which the participant
submitted on Mechanical Turk as their proof of completion. To prevent learning effects,
workers were only able to participate once using one of the interface variants, then they were
prohibited though the MTurk platform from accepting the task again.

5.5 Analysis

We ran our study on Mechanical Turk with 210 participants. The lowest number of users
for any particular interface was 22, and the highest was 25. Our analysis includes both
quantitative and qualitative data. The quantitative results are drawn from the user effort,
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accuracy, mental model, and satisfaction metrics. The qualitative results are drawn from
participants’ free-form feedback on what they liked and disliked, what they would change,
and their anticipated preferences for using voice or text chat interfaces.

We want to understand how the different autocomplete designs trade off between per-
formance on individual tasks, learning the overall set of system capabilities (which can be
recalled once the interface has been removed), and user satisfaction.

To analyze the interfaces’ performance on tasks, we look at user efficiency, including
the time it took users of each interface to accomplish their tasks, and how many keystrokes
and submissions it took them (Figure 5.5). We also look at user effectiveness, particularly
whether or not the goal state was achieved when the user finished the scenario (Figure 5.7).

To evaluate how many of the overall semantic capabilities and proper names of the system
the user learned and could recall afterwards, we analyze the results of the recall phase from
the questionnaire. We examine how often users of each interface correctly recognized whether
or not a particular state of the room would be achievable by working with the assistant,
whether the assistant would understand a particular message, and finally, whether a particular
device could be controlled, and if so, what its name is (Figure 5.6).

User satisfaction was gauged using a 5-point Likert scale (Figure 5.8) and SUS scores
(Figure 5.9), as well as by reviewing the qualitative feedback users provided.

For the quantitative data, typically an ANOVA test would be used to determine statistical
significance. However, our data set is non-parametric and unbalanced, which means we cannot
use ANOVA. Furthermore, since medians are a poor summary statistic for much of our data,
many non-parametric tests, such as a Kruskal-Wallis H test, are also not applicable. Due to
these limitations, instead of a statistical significance test we offer box-and-whisker plots of
our data set and invite readers to examine the distributions directly.

For readability, we chose not to display the handful of outliers on the plot for time, but
information about time outliers is still represented since the outliers were included when
calculating the statistics. A few time outliers were so extreme that they distorted the axes
to the point where differences that are significant to the application (on the order of tens
of minutes to perform smart space tasks) looked visually small. By not showing the time
outliers, we can more easily see the general differences between interfaces. The noisiness of
the time data is a product of our unsupervised online data collection methodology, as it was
possible for users to step away during the experiment to do something else. We reviewed
the transcripts and most of the worst time outliers (who had spent nearly an hour on the
scenario screens) had perfectly reasonable submissions, so despite their noisy time data we
left them in the dataset.

5.6 Findings

We found that while any autocomplete interface is better for accomplishing the task and
learning than having no autocomplete at all, within the autocomplete interfaces there were
few differences. We also found that users of all interfaces had a difficult time determining
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Figure 5.5: User efficiency metrics for each of the nine autocomplete designs. We approximated
user effort by looking at three metrics: (a) overall time in seconds spent on the three scenarios,
(b) overall number of keystrokes, and (c) overall number of chat messages submitted to the
intelligent assistant. The blue diamonds indicate the means. The time plot (a) does not
display outliers, but outliers are included in all mean calculations.

100 ° - 1001 100 o °

90 90
Q
N 3
80 * 80 *
70

60

*
S |

50 50 o o o

Lexical Accuracy (%)

o
40

Grounding Accuracy (%)
oy
(=3

Semantic Accuracy (%)
3 2 3
o
*
L ® 7

o o o - o 20

S & ©& & & & © » L S H & & O & ©» & K S © & & © S © » L
FEFEET TS FEEE & &S FEFEE TS

(a) Semantic (b) Lexical (c¢) Grounding

Figure 5.6: Mental model metrics for each autocomplete design. We evaluated the knowledge
users gained about the overall room and interface, not just the components that were involved
in the goal states. Each of the three metrics here correspond to the three types of questions
illustrated in Figure 5.4. The grounding accuracy numbers only reflect whether or not the
participant correctly guessed whether the device or group was controllable and does not
consider whether the name was correct.
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Figure 5.8: User satisfaction for each autocomplete design. After completing all three scenarios,
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when a particular device was not controllable, which meant they spend a lot of time and effort
making fruitless submissions in Scenario 3 instead of quickly moving on. The large number of
submissions made in Scenario 3 might explain why there were not many differences between
autocomplete interfaces with regards to helping users learn a mental model of the overall
space—all interface users presumably learned much of the semantic and lexical information
while exhausting the available options. Finally, we also found that users found the text
modality useful for more than just discovery, establishing it as a potentially useful smart
space interface in its own right, even after the initial discovery phase in an unfamiliar smart
space.

5.6.1 Any autocomplete is better than none

The users with no autocomplete, labeled “None” in the result figures, typed and submitted a
comparable amount to the autocomplete interfaces (Figure 5.5), but still could not put the
simulated room into the correct final state for the hard-to-guess scenario (Figure 5.7), did
not learn what the room could do (Figure 5.6), and did not enjoy the experience (Figure 5.8).
The interface with no autocomplete performed the worst out of all nine interfaces on the
three learning metrics, task completion, and SUS score. This suggests that when users are in
an unfamiliar smart space, any autocomplete interface is better than none.

5.6.2 Autocomplete designs showed few differences

The autocomplete designs showed few differences in terms of user efficiency, effectiveness,
mental model learning, and SUS score. However, we found a few minor trends.

Figure 5.5a shows that next-token (T) interfaces, which display just the small set of
possibilities for the next word as the user types, were always faster than their full-sentence (F)
counterparts that display the larger set of entire sentences. Despite the increased speed, the
next-token interfaces were not necessarily better-performing or liked more by users, further
highlighting the differences between using autocomplete for search tasks vs. smart space
discovery—speed is not users’ primary concern here. One possible explanation for why the
full-sentence interfaces might take longer is that they require more reading.

One surprising result is that the selectable interfaces (S), where users can select the
autocomplete suggestions to populate the input box instead of having to type the input
themselves, have fewer keystrokes, but did not accomplish the tasks in less time. It appears
that instead of using the saved keystrokes to accomplish the tasks faster, they tend to make
more submissions.

There was one notably well-performing autocomplete interface, O/F /S, which is the
interface that most resembles the autocomplete design commonly used for search. User input
can appear anywhere in the suggestions, the results are full sentences, and users can select
the suggestions to automatically populate the input field. O/F/S performed the best on the
three learning metrics and on effectiveness, and also showed high user satisfaction. However,
this may be because O/F /S users made the most submissions, most which were during the
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Figure 5.10: Submissions by interface for for each scenario. Scenario 1 requires users to turn
on the projector, a device with an easy-to-guess name, and indeed users move on after few
submissions. Scenario 2 requires users to turn on the front lights, which we know from the
guessability study is a hard-to-guess name, so we expect users without autocomplete to take
more submissions. However, it is also a high-precision name, meaning if two users use the
name, they are likely referring to the same device. Due to the high precision, we thought
that autocomplete users would be able to match “front lights” to the correct device, but
surprisingly autocomplete users also take a multiple submissions to find the correct name. In
Scenario 3, the goal state is not possible to achieve because the device is not connected. We
find that all users struggle to determine when a device is not connected, and tend to exhaust
the autocomplete options before correctly giving up.

impossible Scenario 3 (Figure 5.10). This means that even though O/F/S initially appears to
slightly outperform the other interfaces, that might just be a side effect of the fact that it
took O/F/S users many more submissions to determine that the wall light was not a smart
light, thus acquiring more experience with the room than other interfaces.

In fact, we suspect that many of these results, and particularly the lack of many significant
differences, could be largely due to how extensively all users interacted with the room during
their struggles with Scenario 3. We discuss this in the next section.

5.6.3 Grounding names to devices remains a bottleneck

Figure 5.10 is a key figure for understanding the results of this study. It shows how many
submissions each interface made for each of the three scenarios. In the first scenario, which
required users to guess an easy-to-guess name (“projector”), most users made few suggestions
before moving on, even those with no autocomplete, as expected.

In the second scenario, which required users to guess a hard-to-guess name (“front lights”),
we would expect users who lack autocomplete to make more submissions, and that is indeed
what we see. However, we also know from the guessability study that though it is hard to
guess, “front lights” is a high-precision name, meaning that if two people use the name “front
lights” to refer to a device, there is a very high chance they both mean the same device. We
would therefore expect that autocomplete users, who can essentially see the list of devices
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names, would be able to scan the list of names and determine that “front lights” must refer to
the lights over the projector screen. However, we see that many autocomplete users also make
more submissions, requiring multiple trial-and-error attempts before choosing the correct
name. This was confirmed by the feedback from users, who expressed that “it was tedious
to try and find which light was which,” and “it was annoying not knowing the label of each
device and needing to use trial and error.” Another user reported, “I got a little frustrated
trying to figure out what was called what, but I think once you figure out the names of each
item it would be much easier.”

In the third scenario, users were presented with a goal state that was not possible to
achieve using the smart space system, as the device depicted in the goal state was not a smart
device. This represents situations where users might have a goal in mind, but the system
cannot do it. Ideally, autocomplete users would scan the list of device names and realize that
none correspond to the target light. Instead, we see that users of the autocomplete interfaces
made many submissions. Examining the transcripts reveals that users tended to start with
likely guesses, and then after those failed, step systematically through the list of suggestions
for each device name. Users usually stopped after trying “Turn on [all] the lights” and seeing
that the target light stayed off. This scenario highlights the limitations of autocomplete’s
ability to quickly provided a mental model of which devices are—and are not—available to
operate in the smart space.

The results of the last two scenarios show that while autocomplete helped users learn the
list of device names, which physical devices were controllable, and what those devices could
do, users were not able to achieve the goal of one-shot actions in unfamiliar smart spaces,
as autocomplete was insufficient for helping users map the names to the devices without
trial-and-error. The grounding problem thus remains unsolved.

Users proposed various solutions to the grounding problem. Several users suggested that
we pick better names for our devices. However, we picked names based on the results of the
guessability study in Chapter 4, choosing names that were among the most guessable and
also the most unique to each device, making this a best-case scenario. From the results of
that study, we know that choosing better names is not a feasible solution.

Users also suggested “addfing] a menu [that] describes what each object in the room is
named so you can find each item. For example, a diagram with each light in the room and
what they are named would have been helpful.” Possible implementations of this approach
could be using an augmented reality interface to display device names next to the devices
they refer to, or displaying a digital blueprint of the room where devices are labeled either
manually or dynamically based on localization system readings (a kind of “Marauder’s Map’
for devices [140, 141]).

One user suggested that we should support “clicking on the image to show the commands
that control the thing being clicked on. This would save from typing and help with discovery.”
This could be implemented in multiple ways, either with a gesture-based or gaze-based
interface that allows users to point or look at each item and then receive options. An
augmented reality interface would also allow for interacting with devices to see commands.
We explore some of these directions in the next chapter.

Y
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5.6.4 When text is the preferred modality

Previous studies have touched on the advantages and disadvantages of voice as a modality,
especially as compared with graphical user interfaces or text. The hands-free aspect of speech
interfaces has been found to benefit users who are simultaneously performing manual tasks,
users who have difficulty reading or operating touchscreens, and users who frequently struggle
to locate a remote control device [87, 142]. In general, voice has also been shown to heighten
the perception of intelligent assistants as a social actor compared to text interfaces [143].
However, when users are sharing highly sensitive information with an assistant, text interfaces
are just as effective as voice interfaces at eliciting a perception of the assistant as human-
like [144].

In our study, we assume that both voice and text interfaces to an assistant would be
available to users, and therefore focus especially on understanding the contextual factors that
might impact when a user might prefer one over the other in any given moment. We asked
users to describe situations in which they would prefer to use a text-based interface over voice,
as well as situations in which they prefer voice over using text. While we believe that the
semantic and lexical knowledge gained through autocomplete can also benefit other interface
modalities like graphical remote control apps and physical switches, for these questions we
focused on the two main natural language modalities.

The single most important factor in a user’s preference for one modality over another
appeared to be the presence of other occupants and the established social norms for interacting
with them. The vast majority of users stated that they would prefer to use text when sharing
the space with others. Multi-occupant rooms experience periods “when the room is noisy or
when the room must stay quiet.” In a quiet multi-occupant room, or one in which attention is
being given to a speaker, users prefer to use text to avoid disruption. Some example situations
that respondents gave were when people are working, taking tests, giving presentations,
holding meetings, having phone calls, watching films, and trying to get infants to sleep.
In a loud multi-occupant room, users also prefer to use text because a voice interface will
struggle to hear them over the noise. Additionally, seven users expressed a preference for
text because they feel self-conscious either when speaking in front of others or when speaking
to an empty room. Further emphasizing the influence that other occupants have on users’
decisions, four respondents said that they would prefer to use voice when alone in a space,
and four more mentioned that they would use voice when they wanted “to show off to others.”
One respondent expressed that she would use voice over a text-based interface “when I'm
trying to set an example to my students and don’t want to look like I'm texting.”

Unsurprisingly, physical ability also played an important role in modality preference. Ten
users mentioned preferring text in contexts in which typing is more physically comfortable
than speech. These conditions were usually temporary, as in the case of sore throats or eating,
but one user did share that they had a chronically soft voice. For similar reasons, people
preferred to use voice over text when their hands were occupied or injured.

The relative cost in time and effort also played a factor. Users strongly preferred voice
in situations where they were busy or in a hurry and wanted something done quickly. Even
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when not in a hurry, there were contexts where users expected that it would be too much
effort to open a chat window, such as when their phone was far away, or when typing a
successful command would take more time than just saying it.

Five respondents expressed appreciation for the discovery aspect of autocomplete. Users
mentioned using text specifically when unfamiliar with a space: “I would [...] prefer to use a
smart chat room when I am using a room for the first time, so I could see the list of available
functions.” One user expressed a preference for text with autocomplete in all situations,
saying, “I'm not sure that I would prefer a voice interface at all. Maybe I would prefer it if
it gave me options for what to say, but I think the chat room was easy and straightforward
to use, especially because it listed options.” Another user reported that they would use text
for discovery, but switch to voice as soon as they had built a mental model: “If I am using
a room over and over again, and am familiar with the functions available, a voice interface
would be faster and easier to use.”

Unexpectedly, six people also mentioned that they would prefer to use text when controlling
a room remotely. Perhaps this is due to an assumption that remote control would take place
while users are out in public and they would like the privacy of text. However, another likely
explanation is that users strongly associate voice with embodied intelligence, based on past
experiences with the voice interfaces currently on the market and media portrayals of smart
spaces. Voice interfaces would therefore be considered natural to use when physically present
in the space, but text messaging would be more natural when away.

Taken holistically, these responses confirm that the text-based modality is a communication
medium in its own right. Factors besides aiding discovery may lead to users preferring text-
based interactions in certain contexts, particularly in multi-occupant spaces, which is worth
exploring further.

5.7 Summary

In this chapter, we proposed using autocomplete to support semantic and lexical discovery
for smart spaces. However, the unique characteristics of the smart space domain compared to
classical autocomplete domains like search necessitate the development of a new set of metrics
and revisiting the autocomplete design space. Not only must autocomplete designs for smart
spaces aid users in accomplishing targeted tasks, but they must also help users learn overall
information about the space that can help them transition to other interface modalities, such
as voice, graphical remote control apps, and even physical interfaces, as quickly as possible.

We proposed three autocomplete design axes that might affect the trade off between
task performance, learning, and user satisfaction. We evaluated eight different autocomplete
designs exploring the combinations of choices for each of these three design axes, as well as a
ninth baseline interface with no autocomplete. Users used these interfaces to manipulate a
simulated conference room using a “smart room chatroom” interface that allowed them to
message the room’s intelligent assistant.
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We found that all of the autocomplete designs outperformed the no-autocomplete baseline
on helping users accomplish the tasks and learn about the room, leading to greater user
satisfaction. When it comes to messaging intelligent assistants about unfamiliar smart spaces,
it seems any autocomplete is better than none. However, we did not find many differences
between the autocomplete designs. This is possibly due to the fact that all interfaces struggled
with the final scenario, where they must determine that a particular light is not controllable.
Instead of quickly moving on, users exhaustively tried all options, potentially wiping out
differences that might have emerged after the initial tasks. Were this issue resolved, it is
possible that differences might yet be found between autocomplete designs.

More generally, our questionnaire responses indicate that a text modality for smart space
interactions could serve an important role in office and home environments, regardless of how
well other modalities operate. In addition to the benefits of autocomplete, text is strongly
preferred in many multi-occupant situations to avoid disruptions, respect speakers, protect
privacy, and avoid self-consciousness, as well as when it is too noisy for voice. Additionally,
text is useful for controlling the space when illness affects the ability to speak loudly or
comfortably, and could allow for people with speech disabilities to participate in the smart
space. Text also appears to be the preferred modality for remote control of a space using an
intelligent assistant framing.

Overall, the main takeaway from this study is that while autocomplete helped users learn
semantic and lexical knowledge about the smart space in an intelligent assistant framing,
users still needed to use trial-and-error to match names to the correct devices, and users
struggled to determine when a capability was not supported, a critical task in spaces where
only some devices are controllable. In other words, the grounding problem remains to be
solved.
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Content in this chapter is in submission as Clark, et al. “ARticulate: One-Shot interactions
with intelligent assistants in unfamiliar smart spaces using augmented reality.” IMWUT.

In the last chapter we introduced the notion of borrowing a messaging metaphor for communi-
cating with agents, and used autocomplete to reveal what was available in the room. However,
we found that simply providing users with a list of names is not sufficient for achieving
one-shot interactions in unfamiliar spaces. Names on the list could apply to multiple devices
in the room—what Furnas referred to as “the precision problem.” This manifested as two
main issues: 1) Users took multiple attempts to guess the correct name for smart devices,
and 2) users struggled to tell when an appliance was not a smart device, instead trying and
eliminating all the available names before determining the device must not be connected.

To solve this remaining problem, we need to support grounding discovery—a way to help
users map the available devices’ names to the specific devices that they refer to. Additionally,
we want to do so within an interaction framing of communicating with an intelligent assistant.

In this chapter, we explore using augmented reality to label the devices with their names.
We maintain the intelligent assistant context by extending our previous messaging approach
from a text-only “chatroom” metaphor to a photo-and-text “Snapchat” metaphor [145].
Snapchat is a popular smartphone app for social messaging. The app opens into a live
camera view that allows users to snap a quick photo of their immediate surroundings, caption
it, and send it to a contact. Inspired by this workflow, we design a messaging app called
ARticulate, where the live camera view reveals smart devices and their names using augmented
reality. ARticulate users can take a picture of the devices, caption the image with the aid of
autocomplete suggestions that are tailored to the devices in the image, and then send the
captioned image to the smart space intelligent assistant.

In this chapter, we evaluate the ARticulate design by running user studies with nine
participants. We find that while users of the baseline voice interface struggle to operate an
unfamiliar smart space, ARticulate users are able to achieve the goal of one-shot interactions
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in unfamiliar smart spaces, as well as zero attempted interactions with unconnected devices.
Additionally, we find that the knowledge learned during use of this messaging interface is able
to translate to the voice interface afterwards, unlocking a previously inaccessible part of the
smart space ecosystem after only a few interactions. By successfully designing a smart space
interface that prioritizes the ability to easily operate unfamiliar smart spaces, we greatly
improve the usability of existing systems and remove a significant obstacle to widespread
adoption of smart space technologies.

6.1 Design Goals

The design goals for our system are similar to the design goals for the autocomplete interface,
though our methods for achieving these goals is different. An interface design that helps
users independently discover and use the capabilities of an unfamiliar smart space should
achieve the following four design goals:

Goal 1: One-shot interactions with connected appliances in unfamiliar smart spaces. Users
should be able to walk into an unfamiliar smart space, discover what functionality is available,
and invoke the desired functionality in the first attempt.

Goal 2: No attempted interactions with unconnected appliances. As a part of discovering
what functionality is available, users should also learn what functionality is not available.
Users should be able to determine when a device is not a smart device without making any
failed interaction attempts.

Goal 3: An assistant-oriented interaction framing. As with the autocomplete interface,
while we want to enable one-shot interactions in unfamiliar smart spaces, we want to do
it specifically while preserving an agent-oriented interaction metaphor. This is because we
found in Chapter 3 that assistant-mediated interaction framings help users imagine valuable
high-level applications of smart space technologies, and thus will be a key interface for the
long-term future of smart spaces. Intelligent assistants also currently provide fewer clues
about what devices are available and how to invoke them compared to smartphone apps that
display device icons, making assistants the smart space interface in greatest need of discovery
support. Centering the design on intelligent assistants means that the user should feel as
though they are interacting primarily with the assistant, not the devices.

Goal 4: Learning transferable information that enables the use of other smart space
interfaces. If the user could build a broad map of the overall capabilities of the space, beyond
those involved in their specific tasks, the knowledge would unlock the ability to use other
interfaces for future tasks, even if those interfaces lack discovery aids. Since most smart
space systems are designed around proper device names, this means helping users learn what
smart devices are available in the space and what their proper names are, even if they are
not relevant to the current task. This broad knowledge could help enable use of interfaces
such as voice that do not support discovery but have other contextual advantages (such as
being hands-free).
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If we are successful, we should see that users can use the app to do possible things in one
shot, and learn that impossible things cannot be done without having to suffer through failed
interactions. We should also see users clearly struggle with voice in the beginning without
the app, but that if they use the app it enables them to successfully use voice afterwards.
We should also see that users feel they are messaging the assistant rather than directly
manipulating devices. We evaluate our design on all of these goals.

6.2 Augmented Reality Messaging for Smart Space
Assistants

We designed an app called ARticulate, a messaging app for communicating with smart space
assistants that uses augmented reality and autocomplete mechanisms to support discovery.
In our vision, there is one assistant for a smart room, and while the user may be able to
communicate with that assistant through other means, such as a smart speaker, they also have
the choice to message that same assistant with the ARticulate app. The ARticulate app uses
augmented reality labels in a camera view to show users which devices in the environment
are smart and what their names are. The user is able to snap a picture of a device they want
to control and caption it with a command for the assistant, aided by autocomplete. That
photo message is then sent to the assistant for execution.

6.2.1 Ephemeral photo messaging for contextual communication

To draw on users’ prior experiences with messaging and ensure our app design had street-
tested usability, we wanted to model the communication workflow with the assistant on
technology that people already use to communicate with each other. We chose to model
ARticulate’s workflow after Snapchat, a popular messaging app with 293 million daily active
users worldwide [146]. In the United States, 65% of adults aged 18-29 use Snapchat [147].
Snapchat’s main usage centers around photo messages, which are pictures of the users’
immediate environment with an optional caption, sent to specific contacts. Snapchat users
are familiar with the incorporation of augmented reality into photo messages, as the app
provides “lenses” that transform the face, and “world lenses” that embed virtual objects in
the environment [148].

Snapchat opens directly onto a live camera view, encouraging users to snap a quick photo
of their immediate environment, caption it, and send it to one or more friends. The central
conceit of Snapchat is that by default the pictures disappear after viewing, which the designers
intended to encourage a culture of more frequent and informal photos compared to curated
permanent photo collections [149]. In practice, users do primarily use Snapchat for a style of
messaging where photos are valued for their situational relevance [116-119]. Out of all social
media, this characteristic makes Snapchat an archetype of photo-centric messaging that puts
a strong emphasis on the immediate physical context of the sender.
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Figure 6.1: ARticulate interface. ARticulate is a smartphone app for communicating with
smart space assistants inspired by the Snapchat messaging application, with key modifications
to support smart home discovery. Off-screen markers that slide around the edge of the screen
indicate the presence of nearby smart devices (a). Glowing animated orbs with labels indicate
the location and proper names of on-screen smart devices (b). Users can take a picture and
caption it with a message for the assistant. Autocomplete suggestions (c) aid in caption
composition, providing insight into what the agent understands and what capabilities the
device has. Suggestions are included for all on-screen devices. A chat history window (d)
allows users to see a record of what captions were sent and the assistant’s responses, and also
provides users with a way to type directly to the assistant without the necessity of photos.

6.2.2 The ARticulate user experience

While ARticulate models the overall messaging workflow on Snapchat, drawing upon its
well-tested interface design and its familiarity to many users to help users quickly concep-
tualize sending contextual messages to a smart space assistant, the augmented reality and
autocomplete feedback represent significant innovations that support smart space discovery.

As shown in Figure 6.1, ARticulate allows the user to use the live camera view to look
around the smart room and discover the location and names of smart devices (as well as which
devices are not smart by their lack of a label). Off-screen indicators point in the direction of
the various smart devices in the room, and when the device is in view of the camera, the
fact that it is a connected device is indicated by a glowing orb and its name placed on its
real-world location. The user can use the shutter button to take a picture at any time, and
then caption the picture with a message to send to the smart home assistant. Captioning is
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aided by autocomplete suggestions spanning the set of available actions that the assistant
understands about the devices in the photo. When the picture is sent, the user is taken to
the chat history window, which shows the sent messages as well as the assistant’s responses.

While technically the assistant does not need the photo itself to correctly perform the tasks
in our study, the interaction metaphor of “sending” the assistant a picture of the physical
context along with the message is useful for framing the communication about the user’s
immediate context. This lays the groundwork for future interactions where the user’s intent
is expressed in a combination of information in both the photo and the caption. For example,
while ARticulate’s autocomplete suggestions for captions are unambiguous standalone phrases
that will also work with smart speakers, our implementation also allows users to omit device
names from captions and rely solely on the photo context for scope. Concretely, users can
snap a photo, caption it with “red,” and any device in the photo that supports color settings
will be set to red. We did not evaluate this deictic interaction mode in our study and our
users did not discover it, but it illustrates the potential role of photos in communication.
Sending intelligent assistants photos with captions could potentially become a staple mode of
communicating with assistants about context-specific topics.

In ARticulate, the user is communicating only with the smart space assistant, rather
than fellow humans; the captions are aided by autocomplete suggestions that inform the user
what the assistant can understand; and there are augmented reality markers showing the
locations and names of the various smart devices in the room. The first change is based on
the interaction framing work in Chapter 3, the second change is from our explorations in
Chapter 5 on using autocomplete to teach users what language the assistant understands,
and the final change solves the precision problem and turns trial-and-error into one-shot
interactions. Together, these unique features enable a short yet informative smart space
discovery process, presented interactively as part of an interface for communicating with an
intelligent assistant.

6.3 Implementing the ARticulate Augmented Reality
Messaging App

To evaluate whether this design works for our stated goals, we built an Android app that
implements all the key features described above. The Android app also made some other
minor design choices that while not critical for success, may nevertheless affect overall usability
of apps of this nature, so we discuss them below. Additionally, some of the implementation
choices are important to discuss even though they are not fundamental to the system design
because they broke users’ expectations or otherwise affected user experience during the study.
We also built a smart home testbed for the ARticulate app to interact with, and a chatbot
for users to message. We discuss the details of our implementation in the next sections.
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6.3.1 “Alexa” chatbot

In designing ARticulate, we envisioned that there would be one smart space assistant for
the entire room, which the user could choose to either talk to through, for example, a smart
speaker, or message through an app like ARticulate that contains additional support for
discovery. In our implementation, we chose to use Alexa as the underlying smart space
assistant, as Alexa-enabled devices such as the Amazon Echo and Echo Dot are among
the most popular smart speakers at this time [21]. While Alexa itself could potentially be
improved for smart home tasks, helping users discover how to successfully interact with such
a popular interface as it is, especially given any challenging idiosyncrasies, would illustrate
the effectiveness of the ARticulate design for supporting discoverability. However, Alexa does
not provide an API that allows developers to send text-based utterances. This means that
we had to preserve the illusion that the assistant the user communicates with over chat is the
same Alexa as the Alexa that the user can speak to using the smart speaker.

We wrote a backend server that implemented a chatbot that closely imitated Alexa’s
responses and behavior. Manipulation of smart devices was done through cloud access
to the smart home platform. However, this chatbot was not a perfect clone. Alexa can
understand and respond to non-smart home interactions, such as answering questions by
looking up information online, which we did not attempt to duplicate. We also did not
duplicate functionality like setting timers, playing music, or responding to queries about
the weather. These choices were intentional as we were focused on use of the devices in our
smart home testbed. However, we made one key error in our duplication of smart device
functionality — our chatbot could not understand commands involving “all the lights.” This
was a problem in one instance, when Participant 4 noticed that the text-based “Alexa” in
the app could not understand the command “Turn all lights pink” and “Turn on all lights,”
while the voice-based Alexa could, and was quite upset about the inconsistency. We clarified
during the debriefing that this was an oversight and that in an ideal implementation of the
system it should be the same assistant whether messaging or speaking out loud.

6.3.2 Autocomplete

Because the app should be able to work in any smart space with its own assistant, the app did
not come with any suggestions pre-programmed. Instead, it received the set of autocomplete
suggestions from the backend chatbot server upon connecting. To make the suggestions
render faster, the server sent the entire set of possible suggestions up-front, and the app
filtered them locally depending on what the user photographed and typed.

Due to the computational overhead of providing autocomplete suggestions for every
possible paraphrase that the system understands, the autocomplete suggestions were only
provided for “canonical” phrasings like “Turn Mood Lamp on,” and “Turn Floor Lamp red,”
even though the chatbot also understood many paraphrases of each command.

As shown in Figure 6.1 and Figure 6.2, the autocomplete suggestions showed entire
suggestions as full sentences rather than just the set of next possible words. Suggestions
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Figure 6.2: Autocomplete suggestions for multiple devices. ARticulate users can view (a) and
photograph (b) multiple smart devices at once. In this example there are three devices: Mood
Lamp, Light A, and Multipurpose Sensor. The autocomplete design has several features to
help structure the large number of resulting suggestions (c). Suggestions are categorized into
“capabilities” like power and color. When multiple devices are in a photo, the autocomplete
suggestions are interleaved by capability. Each capability section hides excess suggestions
with a “Show more options” drop-down. This was especially critical for the color suggestions,
as Alexa understands over 145 different color names — too many to casually scroll over. An
illustration of the variety of color suggestions that are revealed after tapping “Show more
options” is shown in (d). These design choices are intended to help users quickly understand
the range of what the available devices can do with minimal scrolling and reading.

would be shown if the input the user typed (e.g. “blue”) appeared anywhere in the suggestion.
Users could tap on suggestions to place them into the user input box. This corresponds to
the out-of-order, full-sentence, selectable (O/F/S) design in Chapter 5.

To help users organize the large number of suggestions into broad categories of available
actions, suggestions were divided into sections based on “capability” like power, color, color
temperature, brightness, lock, and sensor. These capabilities were derived from the device
schemas provided by the SmartThings IoT platform API we used to control the devices,
and thus were programmatically generated. When multiple devices were in one photo, the
autocomplete suggestions for the different devices were interleaved by capability.

To allow users to quickly scroll over the available types of capabilities and build a broad
mental map of available actions, each capability section hid excess suggestions with a “Show
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Figure 6.3: ARticulate scanning process. To prepare for the study, the on-site facilitator
used the smartphone to make a new 3D scan of the room (a), which involved moving slowly
around the room while the vision system detected planes (b). The facilitator manually
placed device markers by tapping the phone screen over a detected plane. After selecting
the appropriate label (c), the marker was then placed on the plane (d). This vision-based
and heavily manual approach to localizing devices was burdensome for the facilitator and
performed poorly under changing lighting conditions, but we expect these challenges to be
greatly reduced by upcoming technology improvements.

more options” drop-down. This was especially critical for the color suggestions, for example,
as Alexa understands over 145 different color names (the vast majority of which are unique
device color settings) — too many to casually scroll over.

6.3.3 Augmented reality

To display the locations and names of smart devices, implementations of this design will need
to be able to access and display information about the locations of devices in the space. We
envision that in real-world settings, a scan with this information could potentially be made
once during the initial system setup as a part of configuring the device, and automatically
shared with users who later enter the space.

For ARticulate, we provided a scanning feature that allowed users to create a scan of
a smart space stored locally on the phone, illustrated in Figure 6.3. This feature was used
exclusively by the study team to configure the app for usability testing. We implemented
the augmented reality functionality in Unity using Google’s ARCore library. ARCore is an
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entirely vision-based method for augmented reality. To create a scan, the user must slowly
move the phone camera around the smart room, during which time the ARCore library
detects vertical and horizontal planes. The user can then tap the screen to place a device
marker. The library determines the placement by raycasting from the tap and finding the
point on the plane that intersects with the ray, which is where the device marker will be
anchored. After tapping to place a device marker, the app provides a list of possible device
names, which the user selects as appropriate to set the label.

This scan-and-place process can be tedious, so we implemented a number of additional
processes and app features to help with the scanning process. The vision-based process
that is used to detect planes and localize itself within the space is very sensitive to lighting
conditions. To deal with this, we used a flat folder with a visually distinct pattern to help aid
plane detection in places such as the top of lampshades, turned on all the lights in the room
that were not involved in the study to keep the light consistent throughout the session, and
closed blinds and window shades. In a couple instances, we waited until nightfall because we
found that scans made during dusk’s changing lighting conditions would stop working soon
after completion. We also scanned the room from as many angles as possible to ensure the
app would recognize the room regardless of where the user went. The app had the ability to
undo device placement an arbitrary number of times in reverse order, allowing the user to
redo placement, potentially for all the devices. We discuss the challenges involved in scanning
more in Chapter 7 when we discuss the future of these systems.

6.4 Evaluating ARticulate in Unfamiliar Spaces

To evaluate whether ARticulate achieves the four design goals we laid out in Section 6.1,
we would like to observe users performing tasks in an unfamiliar smart space with a mix
of connected and unconnected devices. As a baseline, we would like to see how hard it is
to accomplish the tasks using state-of-the-art voice assistant interfaces, as well as whether
the ARticulate design improves the ability of users to accomplish the tasks and reduces the
number of failed interaction attempts. We would also like to see whether use of ARticulate
enables successful use of the voice interface afterwards, including for tasks that the user has
not done before. To answer these questions, we devised an IRB-approved study protocol
where we sent a smart home testbed directly to users’” homes and asked them to perform
tasks using both voice and ARticulate.

6.4.1 COVID-19 pandemic challenges

Designing the protocol for evaluating ARticulate was unusually challenging due to the COVID-
19 global pandemic. During this time, most citizens in the study country (the United States)
were under some form of shelter-in-place order that prohibited them from leaving their homes
except for essential reasons, and research facilities and university campuses were closed. This
placed major constraints on the study protocol design.
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Since our research goal is to test how well our system supports user discovery in an
unfamiliar smart space, ideally we would bring users into an on-campus smart space that we
set up and that is unfamliar to them. However, this indoor gathering of strangers was not
permitted under the COVID-19 lockdown. Instead, we made a portable testbed and sent
the testbed to each participant. However, the participants needed an on-site facilitator who
could set up the testbed for them, so that they could approach the system with no knowledge.
To ensure that there was an on-site person already in the participant’s “germ bubble” who
could set up the system, we added our entire research group to the official IRB study team
and had every member undergo human subjects research training. The recruitment pool was
therefore limited to people who lived or were otherwise already within contagious contact of
our lab members. This is a form of snowball sampling, which is subject to biases that we will
discuss during the overview of our participants in Section 6.5. This approach also imposed
additional requirements onto the design of the testbed system to be easy to install, configure,
and operate remotely.

6.4.2 Recruitment

The principal audience for this test were people who might need to operate an unfamiliar
smart space. Examples include people likely to be guests in a smart home, inhabitants of a
smart home managed by someone else, lodgers in a smart hotel room, workers in a smart
office space, and visitors in a smart conference room. Since this potentially includes many
adults, we defined our recruiting criteria as people over 18, with a home internet connection
with WiFi, and fluency in the English language. As mentioned above, due to COVID-19
restrictions, recruitment used a form of snowball sampling that drew from residents and close
contacts of members of the study team.

6.4.3 Smart home testbed

To evaluate ARticulate’s performance in an unfamiliar smart space, we sent an entirely
self-contained set of testbed devices to participants’ homes, ensuring that while the space
itself was familiar to the users, the smart system setup was novel. This familiarity with the
normal room and novelty of the testbed devices does pose an issue for evaluating discovery,
however. It would be reasonable for users to assume that every new fixture or device added to
the room for the experiment has smart capabilities, while every appliance that was previously
present is not part of the smart room. If these assumptions were true, it would give them an
unrealistic advantage in evaluating whether or not a device is smart.

To counteract this, one of the fixtures we added is a lamp that is not connected to the
smart space at all. Also, one of the lights we included, Light A, was installed in an existing
fixture that is normally in the room and is normally not smart. In this way, we were able to
assure that whether or not a device is normally in the room provided no additional information
about whether or not it was smart.
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Figure 6.4: ARticulate testbed. To evaluate ARticulate during the COVID-19 pandemic, we
created a testbed kit that we could send to each participant’s home. Each participant lived
with a study team member who could set up the testbed and facilitate the in-person needs of
the study, such as running the video call and using a laser pointer during task instructions
to indicate relevant devices to the participant without using language. The smart home
testbed itself consisted of six devices, each of which corresponded to a different task that
tested some aspect of the research question. The “smart” appliances connected wirelessly
to the commercial SmartThings platform [150] through a hub. Each participant used two
different interfaces to communicate with the assistant at different phases of the study: a
voice interface via the Amazon Echo Dot [151], and the ARticulate messaging app preloaded
on a smartphone. The cloud servers powering these interfaces interpreted the participant’s
utterances and actuated or queried the smart devices through the SmartThings API.
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The complete configuration of the testbed is shown in Figure 6.4. Devices in our smart
space testbed consisted of three smart LED bulbs that all supported power, color, brightness,
and white temperature, one smart door lock that could be remotely locked and unlocked,
and an environmental sensor that measured temperature, motion, and light (though Alexa
only exposes temperature). We connected all of these devices to the internet through the
SmartThings hub [150]. The devices communicated with the SmartThings cloud platform,
which acted as a rendezvous point for any service that wanted to interact with the devices,
such as Alexa or ARticulate.

There were two main advantages to using SmartThings. The first is that the testbed could
be easily moved from location to location because the system setup just required connecting
the SmartThings hub into the WiFi router of the new site via Ethernet. This meant at each
new site, we could provide network connectivity to the entire system simply by plugging
one device into the router, with no onboarding process or passwords required. The second
advantage is that having a single platform allowed us to easily set the system to a known
state before the interactive user sessions by tapping a single button in the SmartThings phone
app to activate a custom saved scene.

We chose this set of smart devices to correspond with particular tasks, each of which
spoke to a particular research question.

e Floor Lamp. The floor lamp, fixture included, was a device we included for tutorial
purposes, since we did brief tutorials for both the voice interface and ARticulate.

e Door. The door lock was the device with the easiest-to-guess name. This was an
assumption based on the fact that there was only one lock, so we (correctly) expected
users to default to “unlock the door.” We installed the door lock on a free-standing
metal door reinforcement plate, which allowed us to hang the door on an existing
doorknob or place it on a surface, such as a floor or a table. This device provided a
baseline for comparison against hard-to-guess device names. We expected users to be
able to operate this device correctly using either voice or the messaging app.

e Mood Lamp. Mood Lamp, fixture included, was a device with a hard-to-guess name,
as most people might call it a desk lamp or small lamp or table lamp, though Mood
Lamp is nevertheless a reasonable name as well. We expected this device to be difficult
to figure out how to operate using the voice interface compared to using ARticulate.

e Unconnected light. This light did not have a name, since it was just a normal light
bulb. This represented situations where a user is in a smart space where only some
devices are smart. The user may want to perform a task that is in fact not possible
because the device they want to operate is not a smart device. During our study, users
are informed that some of the tasks we will ask them to do may be impossible, and they
must figure out whether that is the case. We expected this to be extremely difficult
to determine using the voice interface, because the voice interface has no way to help
users distinguish between cases where the device they want to control is not smart and
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cases where the user simply has not guessed the device’s name yet. We expect this task
to be easy with ARticulate, due to the absence of an AR marker indicating connected
capabilities.

e Multipurpose Sensor. This sensor measures temperature, motion, and light, though
Alexa only exposes temperature. We included the environmental sensor to explore
interactions with sensors through assistants, branching out from actuation. According
to the operation classifications we developed in Chapter 3, the lights and door will
elicit “immediate actions,” while the sensor will likely elicit different operation classes,
“direct questions” and “indirect questions.” Additionally, the sensor poses a new kind of
discovery challenge. Lights and door locks, smart or not, have an obvious presence that
makes the fact that there is some affordance or functionality highly visible, even if the
user is not quite sure how to use it. Small wireless sensors, however, are intentionally
unobtrusive, and their affordances are not visually obvious. Even determining that a
small white cube is a sensor at all is tricky. We expect that if not explicitly pointed out
to participants, participants using voice will not even be aware of a sensor in the room,
much less think to access the data it provides, whereas with ARticulate we expect users
to be able to discover and access the data.

e Light A. This final light bulb did not come with a fixture — instead, the on-site facilitator
was instructed to install it in a fixture in the room that is normally present. This was
to overcome the bias towards assuming that only the new fixtures were smart devices.
We did not ask users to perform any tasks with Light A using the ARticulate app. We
used Light A to evaluate whether after using ARticulate, a user could use voice to
interact with a device that they had not performed a task on before.

6.4.4 Test preparation

In advance of each user evaluation, we used a no-contact method to deliver to the participant’s
home the evaluation kit containing the smart home testbed, an Echo Dot with Alexa, a
smartphone with the ARticulate app, and various paperwork. This delivery was received by
the on-site study team member. Over a video call, we worked with the on-site facilitator to
set up the smart home system and perform the augmented reality scan of the room, including
device marker placement. We held an informed consent discussion of the study where we
reviewed the goals and overall structure of the session with the potential participant, and if
they chose to sign the consent form, we continued with the rest of the session.

6.4.5 Overview of session structure

The overall session took anywhere from an hour to two hours, depending on the session type
participants were assigned. Figure 6.5 illustrates the main components of the study protocol.
First, all sessions began with a short pre-interview where we asked the participants about
their prior experiences with related technologies that might inform how they approached the



CHAPTER 6. ONE-SHOT INTERACTIONS WITH AUGMENTED REALITY PHOTO
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Voice Start interview Tasks 1-4, Discovery Tasks 1-4, Discovery Tasks 1-5, Recall sus Interview
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Figure 6.5: User study protocol. Participants were assigned one of two possible session types,
Voice Start or Messaging Start. The session type determined whether the user started the
interactive tasks using voice or ARticulate. “Voice Start” participants experienced all three
interaction phases starting with a voice phase. The “Messaging Start” treatment skips the
first voice phase entirely to show that performance during the messaging phase is not due
to learning effects. In both the first voice phase and the messaging phase, the tasks are the
same (Tasks 1-4), and are followed by a three-minute self-directed discovery period. However,
note that the final voice phase contains an extra task (Task 5: New Task) that is not posed
anywhere else. The final voice phase also ends with users recalling what they have learned
about the devices in the room, rather than discovery. All sessions begin with a pre-interview
about user experiences with prior technologies, and end with an System Usability Scale (SUS)
questionnaire and debriefing interview.

systems in the study. Then we began the interactive tasks, which were broken up into two or
three phases depending on the type of session. After the interactions, the participant filled
out a System Usability Scale (SUS) questionnaire [139] about their experiences, which we
used to guide a final debriefing interview where we asked the participant detailed questions
about their experience and thoughts.

6.4.6 Pre-interview

All sessions began with a short interview about the user’s prior experience with related
technologies, to understand any biases that might influence users’ interactions. The main
topics covered were intelligent assistants (including smart speaker usage like Echo and Google
Home, but also usage outside of a smart home context, such as on mobile devices), smart
rooms (including those controlled by tablets or phone apps), and the Snapchat messaging
application. This interview usually took only a few minutes.

6.4.7 Interactive Phase Structure

There were two different session types that participants could be assigned that determined
what the interactive portion of the session looked like. The interactive portion was broken
up into two or three phrases depending on session type, with each phase specifying which



CHAPTER 6. ONE-SHOT INTERACTIONS WITH AUGMENTED REALITY PHOTO
MESSAGES 89

interface the participant used. Figure 6.5 outlines the general structure of the two different
session types. The two session types were as follows:

e Voice start. In this session type, the participant went through three phases, first a
voice-only phase where the participants were asked to perform several specific tasks and
to try to discover capabilities of the room using only a voice interface to Alexa. This
phase established a baseline of how difficult the tasks are to complete using state-of-
the-art voice interfaces to smart home assistants. In the second phase, the participants
were introduced to the ARticulate messaging app and performed the same directed
tasks and free-form discovery, but with ARticulate instead of voice. In the third phase,
the participants were returned to the voice interface to see if their ability to use the
voice interface to perform tasks had improved after using ARticulate. There was also
one participant assigned a Voice start, no sensor variation. This was the same as
the normal voice start, except that during the first voice phase the sensor task was
omitted. This was to see whether the participant would notice the sensor and attempt
to interact with it using voice during free-form discovery.

e Messaging start. In this session type, participants were introduced immediately to
the ARticulate messaging app. This was to rule out any learning effects from earlier
phases on the performance of the app. After this first phase, users completed the final
phase, where they interacted with the Alexa voice interface to see if they were able to
successfully use the voice interface more effectively than those who started with the
voice interface.

6.4.8 Interactive Tasks

In each phase, we asked users to perform the same four or five tasks using the interface for
that phase. In these tasks, the users were asked to interact with certain devices. However,
due to the linguistic nature of the tasks, we wanted to avoid priming users with any language
about the device itself. The on-site facilitator would state the task instructions, such as
“get Alexa to turn on this device for you. Please narrate your thoughts out loud as you do
so,” while using a laser pointer (included in the test kit) to indicate which device they were
referring to. The interactive tasks were as follows:

e Task 1: Easy-to-guess name. For this task, the instructions were to “get Alexa to
unlock this device for you.” This could be done with the command “unlock the door.’
Unlocking the door also required a numeric code, which we provided users with in
advance and do not count against interactions, since we are merely interested in whether
the user can guess the easy name. This task provided a baseline, as we expected users
to be able to operate this device correctly in one guess regardless of interface.

)

e Task 2: Hard-to-guess name. For this task, users needed to turn on the Mood Lamp.
Mood Lamp is a device with a hard-to-guess name, as most people might call this a
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desk lamp or small lamp or table lamp. We would expect this task to be difficult using
the voice interface compared to using ARticulate.

e Task 3: Not connected. In this task, the user was asked to turn on an unconnected lamp.
Since this light is just a normal light bulb, the task is not possible. This represents
situations where a user is in a smart space where only some devices are smart. The user
may want to perform a task that is in fact not possible because the device they want
to operate is not connected. Throughout our study, users were informed that some of
the tasks we will ask them to do may be impossible, and that they must figure out
whether that is the case. Before each phase we reminded users that they could either
complete the task or decide it was impossible and move on. We expected this to be
extremely difficult to determine using the voice interface, because there is no way for
users to distinguish between cases where the device is not connected and cases where
the user simply has not guessed the device name. We expected this task to be easy
with ARticulate, since the unconnected light lacked an AR marker indicating connected
capabilities.

e Task 4: Sensor. In this task, the facilitator instructed, “There is a device in this room
that measures something. Get Alexa to tell you what the current value is.” This could be
accomplished by asking Alexa “What is the temperature according to the Multipurpose
Sensor?” We expected this task to be quite difficult with voice, as small wireless sensors
are unobtrusive by design, and their affordances are not visually obvious, making the
need for discovery aids particularly acute.

e Task 5: New task. This final task was only performed in the final voice phase, where
participants had to use voice without any discovery aid except what they remembered
learning from ARticulate. In this task we asked them to turn on Light A, which is
a device that we had never previously asked the participant to interact with in other
tasks. We used this task to evaluate whether after using ARticulate, a user could use
voice to interact with a device that they had not interacted with before.

In addition to the tasks, at the end of the first voice phase and the messaging phase, users
were given three minutes for self-directed discovery where their goal was to learn as much as
possible about the room using the interface for that phase. Additionally, at the end of the
final voice phase, there was a recall section where we asked users to share as many device
names and capabilities that they remembered learning about the room.

6.4.9 SUS questionnaire and debriefing interview

The System Usability Scale (SUS) is a commonly used usability instrument that asks users
to answer 10 standard questions on the Likert scale related to usability issues. Questions
alternate between 5 and 1 being the most positive answer for the system to counteract any
impulse to fill in all ones or all fives. The total SUS score is out of 100. We instructed users
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Assistants Assistants Smart Speaker Smart Home Unfamiliar
Treatment Participant ID Gender Age (Voice) (Text) Use Use Smart Spaces Snapchat
1 F 41 Yes Mo Yes Yes Yes, hotels No
. 2 F 31 Infrequently Mo Infrequently Yes No Yes
Woice start
3 M 24 Yes Mo Yes Yes No Yes
4 F 26 Yes Mo Observer Observer No No
Voice start, no sensor ] M 21 Yes Mo Yes Yes No Yes
B F 24 Yes Mo Yes Yes No No
. 7 F 28 Yes Mo Yes Yes No Yes
Messaging start
] F 28 Yes Mo Observer Observer No Yes
g F 28 Infrequently Mo No Observer No Yes

Figure 6.6: Participant demographics and background. The columns show participant
demographics as well as whether the participant has used various technologies. The “Assistants
(Voice)” column includes both smartphone and smart speaker use, so it is a superset of the
“Smart Speaker Use” column. “Observer” is used to indicate when someone does not use a
technology themselves, but frequently observes another use it, such as a roommate, partner,
or close friend. Strikingly, though speaking out loud to assistants was very common, no one
remembered typing messages to an assistant, though both of the main smartphone assistants
(Google Assistant and Siri) support it. Also, while all of the participants frequently visited
or lived in a home with smart space technologies, almost no participants had been in an
unfamiliar smart space set up by someone else that they needed to figure out how to use.

that the SUS questions only applied to the ARticulate interface, not to the smart home itself.
We primarily used the SUS as a prompt to guide user thinking through the post-interaction
debriefing interview. In addition to going over the user’s SUS questionnaire answers and
discussing why they answered the way they did, we also asked users questions like “Under
what circumstances would you use this? Why?” and “If you had three wishes to make this
better for you, what would they be?” and “Which features of the app did you find the most
helpful while accomplishing the tasks?”

6.5 Participant overview

We recruited nine participants. Four participants went through all three phases (the “Voice
Start” treatment), one went through all three phases but was not given the sensor task in
the first voice phase (“Voice Start, No Sensor”), and four skipped the first voice phase and
started immediately with ARticulate (“Messaging Start”). The demographics and background
experience with related technologies of the participants are shown in Figure 6.6.

The majority of study participants were women. This is largely the result of our snowball
recruiting method that enrolled co-habitants, particularly partners, from our mostly male
lab. Past studies have shown that while most current smart home “maintainers” responsible
for installing, setting up, and debugging the system are men, many of the users of the
resulting smart home are women [22-27]|. These women must discover and use the available
functionality, sometimes while they are on their own in the house, even though they did
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not set up the system. This means at least in the short term, women would be the ones
most likely to use and benefit from a discovery-oriented interface like ARticulate, so our
participants resemble a likely user population. In the long term, however, an approach like
ARticulate should be useful to any user in any situation where they want to interact with an
assistant in an unfamiliar space, including office buildings and public spaces.

Though most participants were not technical, all participants lived in or had been in
smart homes before, and the majority had used Alexa or Google Home to operate a smart
home using voice, or closely observed others who did. This is likely a result of the snowball
recruitment method imposed by the COVID-19 restrictions and may not be reflective of
the general population. However, since we are interested in how our system would work in
a future where smart spaces are more ubiquitous, it was useful that our participants were
already familiar with the domain and did not need to learn about smart homes while also
trying to help us evaluate ARticulate.

Despite the fact that most participants had interacted with smart homes before, almost
no one had been in a situation where they needed to figure out how to operate an unfamiliar
smart room on their own. Consistent with prior work, most participants were in smart homes
set up by friends or family from whom they learned how to operate the system, either through
instruction or observation [22]. No one had been in a smart office, conference room, or public
space, much less one they had to operate primarily through an assistant.

6.6 Findings

We analyzed whether or not users were able to accomplish tasks and the number of interaction
attempts each user made for each task. The results are shown in Figure 6.7. The interaction
counts reveal that, as expected, users struggled operating the unfamiliar smart space using
voice. However, when using ARticulate, in the majority of cases users accomplished their
goals in a single interaction, and made zero attempts to interact with the unconnected device.
We also found that some of the knowledge learned through ARticulate was able to transfer
to voice, allowing users the option of using the hands-free modality after only a few tasks
with ARticulate.

6.6.1 Voice users require many attempts to accomplish goals in
an unfamiliar space

Users who began the session with the voice interface to Alexa found the tasks difficult.
Figure 6.7 shows that, as expected, participants were able to perform the easy-to-guess
Task 1 (Door) in one attempt, but for the remaining tasks they were not. For Task 2 with
the hard-to-guess device name (Mood Lamp), three of the five participants were able to
eventually determine that the device was Mood Lamp and achieve the goal. At first it may
seem surprising that they could guess the name. However, this is because Alexa helps the
users with prompts, such as “Did you mean Mood Lamp?” (the right answer) in response to
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Participant ID
Interface Task name Ideal 1 2 3 4 5 6 7 8 9
T1: Easy-to-guess name (Door) 1 1T 11 11
Voice T2: Hard-to-guess name (Mood Lamp) 1 1 4 4 61 3*
T3: Not connected 0 28 8 4 2 3
T4: Sensor (Multipurpose Sensor) 1 9* 11 4* 4%
T1: Easy-to-guess name (Door) 1 1T 11111111
. T2: Hard-to-guess name (Mood Lamp) 1 1T 11111121
Messaging App
T3: Not connected 0 0O 001 0O0T1TO0O
T4: Sensor (Multipurpose Sensor) 1 1T 11111211
T1: Easy-to-guess name (Door) 1 1T 11111111
T2: Hard-to-guess name (Mood Lamp) 1 1T 11111111
Voice (Post-App) T3: Not connected 0 1 00 0O0O0O 3 1
T5: New Task (Light A) 1 1 1111 1 1 1% 1*
T4: Sensor (Multipurpose Sensor) 1 2t 1t 3* 4* 3t 1* 3 1 2*

* Did not accomplish a task that was possible
T Accomplished task, but without using name
¥ Accomplished task, but with incorrect name

Figure 6.7: Number of interactions per task for each participant. An interaction is a message
or utterance directed to Alexa.

“Turn on the desk lamp” (a wrong guess). Participant 1 used this feature during Task 3 later,
explaining, “It’s not the reading lamp, but I'm going to try the reading lamp just in case
she gives me the name of this device.” However, sometimes Alexa would suggest the wrong
light. Remarkably, users would occasionally reject her correct suggestions if they did not
think it was the light they were trying to operate, trying to guess the name themselves. This
resulted in a wide variety of outcomes in the voice phase, usually with participants making a
number of attempts. Participant 4 was eventually able to technically achieve the Task 2 goal
of turning on Mood Lamp by asking Alexa to turn on all the lights.

For Task 3 (not connected), the lamp we asked participants to turn on was a normal
lightbulb not connected to the smart system. With the voice interface, there is no way for
participants to easily determine whether the task is impossible or whether they just have
not guessed the right name yet. Consequently, users made many attempts to turn on a light
that could not be turned on, with the highest count belonging to Participant 1, who made 28
attempts before giving up. Three out of the five participants gave up after asking Alexa to
“turn on all the lights” and discovering that the unconnected lamp did not turn on.

In real-world conditions, it is likely that users would give up and use another method
rather than make so many attempts. Participant 4 said, “I think in real life if I were in an
AirBnB, I would not have asked again,” and also noted, “I think what I would do if I needed
to turn on this lamp would be to turn it on myself.”
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In fact, we observed that several participants physically reached for the device for closer
inspection after several failed guesses. Four out of five participants touched or asked to touch
the physical fixture, either to look for clues or because they thought the device might be
broken. Participant 4 said, “The other thing that I'm thinking about is that maybe there are
physical signs that something is a smart thing. So I'm going to look at this floor lamp [the
tutorial device] now. [...] Can I take this lightbulb out?” During Task 2 with Mood Lamp,
Participant 5 toggled the power switch on the Mood Lamp to make sure it was properly
connected after failing to guess the name multiple times. Participant 5 was not the only user
who thought a device was broken. During Task 3 with the unconnected light, Participant 1
said: “So there’s something wrong with your lamp, you guys, it’s like broken or something,
or it has a very special name that’s not lamp, and it’s not light.”

The sensing task was even more difficult for voice than the actuation tasks. As Participant
1 summarized, “So, I would have to identify what this device is, then figure out it’s name, and
then use that name for the measurement reading.” Further into the task, Participant 4 said,
“I'm personally at a loss, because there are so many different ways to measure something, and
not knowing what she’s measuring makes it hard for me to ask, and she also can’t tell me
what she’s measuring.”

In real-world situations, users may not even realize there is a sensor to try to read.
Participant 2 said, “Until the app showed the glowing dot [in Phase 2], I had no idea that
[Multipurpose Sensor| was even there.” We omitted the sensor task entirely in Participant
5’s voice phase in order to see whether he would attempt to interact with it or ask Alexa
about sensors during self-directed discovery with the voice interface. He did not. During the
debriefing, he reported noticing the small white cube when he entered the room, but it did
not occur to him to try to interact.

Helping users discover the presence of sensors, which ARticulate was designed to do, may
not only help highlight available functionality, but also may help users with privacy concerns.
After hearing the sensor task instructions, Participant 4 shared, “My first thought is that
I'm freaked out, because I don’t like being measured.” The voice interface did not expose
the presence of the sensor. Having the ability to immediately locate and identify sensors in
a room using an app like ARticulate may help empower occupants by informing them of
potential privacy issues.

Though the sensor task was already inherently difficult for voice users due to the fact that
sensors are unobtrusive and users must guess what they measure, the task was further compli-
cated by limitations in Alexa’s natural language understanding for sensor interactions. The
phrases Alexa requires to get sensor readings were complex, and some variations would work,
while others would not. For example, “What is the temperature according to Multipurpose
Sensor?” works, but “Tell me the temperature according to Multipurpose Sensor” does not
work, much to the surprise and frustration of Participant 4, who thought she had remembered
it exactly during the final post-app voice phase. Alexa also understands some interactions
that omit the sensor name, but not others. “What is the temperature inside?” does work,
but “What is the temperature in the room?” does not, though multiple participants tried it.
Thus, even though it was possible to get the sensor reading without knowing the device’s
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name, users were still often unable to guess the correct phrases when using voice.

Alexa’s narrow and inconsistent understanding of sensor commands also caused problems
for our development process. While writing our chatbot clone, we tried to guess the phrases
Alexa understood to get the sensor readings, but only discovered “What is the temperature
according to Multipurpose Sensor?” As a result, that is the only autocomplete suggestion
ARticulate provides for the sensor. We did not know that there were any valid options at all
that omitted the sensor’s name until Participant 2 guessed “What is the temperature inside?”
during the first voice session. This issue with the complexity and specificity of the phrases,
on top of the unobtrusive and opaque nature of sensors, made the sensor task difficult overall.

A remarkably common strategy when users struggled throughout the first voice phase
was to ask Alexa for a list of connected devices. Four out of five participants requested a list
of devices, usually multiple times. Participant 4 was particularly distressed by the end of the
voice phase: “I wish I could somehow ask to understand what all the devices are that she
has because I think that would help me [...] I'm frustrated because I want this list!” During
self-directed discovery in the voice phase, Participant 3 made eight separate attempts to
ask Alexa for a list or count of the connected devices. Surprisingly, considering it is such
a common strategy for users, Alexa does not support providing a verbal list of connected
devices. Nevertheless, we know from the work in Chapter 4 and Chapter 5 that just providing
a list of connected device names without grounding them to their locations would not be a
sufficient solution — many proper names could plausibly refer to multiple different devices,
and more importantly, a list of smart device names does not help users quickly discover when
an appliance they want to control is not smart and connected. A list of device names would
therefore simply bound the number of trial-and-error attempts, rather than help users truly
achieve one-shot interactions.

6.6.2 ARticulate enables one-shot interactions and identifying
unconnected devices in unfamiliar spaces

With the ARticulate messaging app as an interface to Alexa, the tasks were easy. Almost
all participants accomplished the possible tasks in one attempt. The one notable exception
was Participant 8 in Task 2, who was not able to figure out how to turn on the Mood Lamp.
This is because she took a photo of Mood Lamp that also had Light A in the upper right
corner, but the label for Light A was washed out by light. Even though the photo said “Mood
Lamp” in big letters over the target device, and the suggestions interleaved “Mood Lamp”
and “Light A,” the Light A suggestion was the first one in the list so the user selected it.
When it did not work, she then tried typing the same Light A command directly into the
chat, which also did not work, so she decided to move on. She realized during self-directed
discovery at the end of the tasks that Light A was another light and that the original was
called Mood Lamp. However, she still thought that she had only received Light A suggestions
previously: “That’s interesting, when I tried to change Mood Lamp before, what was coming
up was Light A. [...] I feel like that wasn’t happening before, but maybe it was. I guess I had
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the wrong light, or you're tricking me.”

During the debriefing, after being shown how suggestions for multiple devices are inter-
leaved under the capabilities, Participant 8 expressed an expectation for devices as the main
subheadings, rather than capabilities: “Oh, I guess I didn’t see a different hierarchy for that.
So I guess for me that was a little confusing. [...] I would just assume a different heading
with a different spacing under it for like, Lamp A all the way to the left, and then power
slightly in, and then Floor Lamp...”

There are a number of changes that could be made to the design to prevent this kind
of misunderstanding, such as ensuring that labels cannot be washed out by light on the
camera, or changing the method for autocomplete into drill-downs, or allowing users to select
how suggestions are grouped. However, despite this singular exception, the overall approach
illustrated by ARticulate appears to have worked to support one-shot interactions.

Using ARticulate, participants also recognized right away that the unconnected device
was not connected, and largely did not attempt to interact with it at all. We can see that
the majority of users had zero interactions for Task 3 using the messaging app. The two
participants that made attempts on the unconnected device verbalized that they did not
think it was connected. Participant 4 said, “This is not a smart device. I can see now, using
my special smart device window that there’s nothing I can do to get her to turn that on for
me, so I'm not going to try. Well, I guess the other thing I could at least try, just in case,
is...now that I have her on text, I wanna see if I can get her to tell me what all the lamps are,
to just confirm.” She typed “List all lamps in room,” and received the standard “I'm sorry, I
don’t know that one” response, at which point she moved on.

Participant 7 similarly observed, “It doesn’t have a thingy for it [...] so I think it’s not set
up?” However, she took a picture just in case. Unfortunately, the default behavior when there
are no devices in the photo is to give suggestions for all devices that Alexa knows about. The
idea behind this was to give users access to suggestions if they were inconveniently located
for a photo. However, this design choice was confusing. Participant 7 typed the suggestion
“Turn Light A on” since she had not interacted with Light A yet. When a different light
turned on, she concluded “I kinda think this one is just not set up to work with this device.”
This misunderstanding could be avoided just by not showing suggestions by default when no
devices are in the photo.

The scores from the System Usability Scale questionnaire were good overall, with a mean
score of 83 and a median of 85. The worst-scoring question on average was Question 1, “I
think that I would like to use this system frequently.” It makes sense that most participants
did not think they would use ARticulate often, since as their backgrounds show, they have
not needed to operate unfamiliar smart spaces on their own. When asked when they would
use something like ARticulate, participants did identify situations when they were in an
unfamiliar smart space, they just did not expect that to be a frequent situation. At current
time, this is true, but at least partially this is due to a chicken and egg problem—smart
space technologies cannot become ubiquitous if they are not casually usable by strangers. As
Participant 4 said, “I feel like once I knew the name of everything I would probably prefer to
use voice personally, but [...] if I had this system, it would be the absolute first thing I did in
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any room that was a smart room. [...] every time I had a new room I would definitely use it.”

Participants expressed appreciation for both the augmented reality markers and the
autocomplete suggestions and found them useful for accomplishing the tasks. However,
several participants stated that they still wanted a list of names or at least a count of devices.
We observed many times during self-directed discovery that users would slowly pan around,
moving back and forth to count the teardrop markers and map them to devices. Participant
4 expressed, “Something [ want to do now is make sure I really have seen all of the devices in
the room. I wish there was a number or something that could tell me. So the best I can do is
look at these teardrops.” One useful feature might be to change the teardrop color when the
device has been shown near the center of the screen, as a way of marking “visited” devices
similarly to the way we mark visited hyperlinks.

6.6.3 Knowledge learned from ARticulate enables successful
voice interactions, though sensors remain a challenge

After using the ARticulate app, we asked participants to set the phone aside and perform
tasks using the voice interface to Alexa. After using the app and switching to voice, people
knew what smart (and not smart) actuators were in the room and what their names were,
including a light that they had never interacted with in previous tasks and only discovered
incidentally. We can see from the large number of ideal scores for the post-app voice phase in
Figure 6.7 that information was obtained for Tasks 1-3. We also asked users a new actuator
task, Task 5, where users had to figure out to turn on Light A, even though we had not asked
users to interact with Light A previously. We can see that though users guessed Lamp A
about half the time, in keeping with the Floor Lamp and Mood Lamp naming pattern, they
were almost all able to accomplish the new task using voice.

However, users still had difficulty with the sensor task. Even after successfully using
ARticulate to communicate with Alexa about the sensor, users struggled to remember how
to obtain the sensor reading in the final voice phase. They knew it was possible (“I know it’s
capable because I did it through the app”), and they knew it was a specific phrase (“There
was a very specific phrase that was used before”), but participants struggled to remember
the details.

Two participants remembered both temperature and Multipurpose Sensor and were able
to achieve the goal. Two other participants, Participant 6 and Participant 4, also remembered
both pieces of information, but were not able to achieve the goal. Participant 4 said “Tell
me the temperature according to Multipurpose Sensor” instead of “What is the temperature
according to Multipurpose Sensor,” and was frustrated when it did not work. Participant 6
said “What is the temperature...in Multipurpose Sensor?” but Alexa interrupted during the
pause and gave her the weather forecast. However, the participant thought Alexa had heard
the entire command, so she gave up and did not try again. Of the remaining participants,
three obtained the reading by saying something about the temperature “inside” while the
remaining two were not able to recall or guess a valid phrase.
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Participants appeared particularly resistant to the idea that they needed a proper name for
the sensor in order to get a temperature reading. The idea that only the attribute (temperature)
should be sufficient was so persistent that even when using ARticulate, Participant 7 manually
typed “what is the temperature” when the suggestion showed ”what is the temperature
according to Multipurpose Sensor.” Participant 1 did not think that even temperature should
have to be specified, since there was only the one sensor and the one attribute it measured:
“For the sensor, if it’s the only sensor that is available in the room, maybe just say ‘A[lexal,
give me a sensor reading’ versus give me a temperature sensor reading.” This assumption
that the name Multipurpose Sensor was so unimportant that it was not worth remembering
had one notable exception: Participant 8 said before her successful voice attempt, “I'm going
to ask her to tell me about the Multipurpose Sensor, because I'm not sure if I just say sensor
or temperature she’ll know what I’'m talking about.”

6.6.4 The autocomplete design clashed with the assistant
framing

Throughout the sessions, participants consistently anthropomorphized Alexa, and seemed
to believe that the devices were mediated through her. For example, instead of wondering
aloud “What is that device called?” Participant 2 said, “What is A[lexa] going to think that is
called?” This suggests that we successfully framed these smart space tasks as communication
tasks with an intelligent assistant, rather than as unmediated device tasks.

However, when it came to the ARticulate app specifically, a few participants suggested
that the interaction with Alexa felt like an unnecessary layer of indirection. Participant 4
put the reason into words:

“I didn’t know how to relate to Alexa as a human. [...] I tend to say please and
thank you to Siri because she seems like a person. This app was so not—because
I couldn’t hear her voice anymore—it was a little bit like, are you a robot, are
you a person? [...] If I'm supposed to take pictures of things, and it’ll give me a
list of commands—which was like the core of the app for me, not the texting so
much as the list of commands, because I didn’t have the list beforehand—having
the whole idea of there even being an Alexa seemed silly to me. If it’s just specific
commands, why can’t I just press a button?”

In other words, our autocomplete suggestions were being perceived more like a menu
than a true autocomplete to aid in a conversation with Alexa. You can see in Figure 6.1 and
Figure 6.2 that our autocomplete design covered the screen with rigidly repeated template
text, and also did not provide suggestions for any paraphrases of these “canonical” forms,
even though Alexa would understand them. Even just starting a phrase with “please” like
one might do conversationally would prevent suggestions from showing. In this way, the
suggestions behaved much more like a menu than an autocomplete widget helping a natural
conversation. Participants even tended to scroll and select, rather than type.
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However, we described to Participant 4 an alternative autocomplete design that waits
until you start typing, only shows next-word suggestions as you type rather than displaying
everything up front, and provides suggestions for all possible paraphrases. We asked whether
this more flexible, more conversational autocomplete would help, and she responded:

“No, I loved that there was a menu of everything. It was more that the menu
made me feel like, why is there this construct called Alexa? [...] T felt like T was
communing directly with the smart lamps and stuff. Then it felt weird to have
to text Alexa, because I was like, the lamp’s right here, Alexa’s over there...I'm
closer to the lamp than you are! So it felt weird to have to text her about it,
when the lamp’s right there. [...] It was hard to imagine, why am I asking Alexa
to do this, is she like, the lamp whisperer?”

We discuss possible directions for addressing this in Section 6.7.

6.7 Implications

Based on our findings, we now explore three design implications. The first is that we should
use discovery-centric designs like ARticulate to help users operate unfamiliar smart spaces.
The second is that we need to further explore the tensions between centering intelligent
assistants versus centering menus in our designs for discovery. The third is that intelligent
assistant designers should recognize that sensors and actuators represent two separate classes
of interaction, and natural language interactions with sensors should focus on the data, rather
than requiring a device name.

6.7.1 We should use AR and autocomplete-enabled assistant
messaging for discovery in unfamiliar smart spaces

Using ARticulate, for the first time users can have successful one-shot natural language
interactions with intelligent assistants in an unfamiliar smart spaces. This overcomes the
significant challenges posed by the proper device name paradigm, which we characterized in
Chapter 3 and Chapter 4. Additionally, users can successfully operate the room using voice
afterwards, even to use capabilities that they had not previously interacted with using the
messaging app. This means that not only does ARticulate help users accomplish their goals in
unfamiliar smart spaces, it also unlocks other “proper device name” interfaces and gives users
the option of selecting whichever interface best meets their needs for future tasks. So long
as smart space interactions continue to be designed around a proper device name paradigm,
the ecosystem of smart space interfaces will benefit from having a discovery-oriented design
like ARticulate. Now that users can quickly discover and interact with technologies in an
unfamiliar smart space, these technologies can scale and become truly ubiquitous. Further,
these physical context-aware messaging options should be integrated natively into the assistant
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apps on smartphones. The ability to photograph items annotated with augmented information
and chat with an assistant about them could be an interaction style with potential benefits
that extend far beyond smart spaces.

6.7.2 We should explore designs around assistants and menus

Given that systems are currently programmed around a device-oriented paradigm, but could
potentially benefit from a stronger assistant framing, it is hard to know whether we should
take the ARticulate design in the direction of a more realistic conversational autocomplete,
or in the direction of a better menu.

A more conversational autocomplete that helps make the language interactions feel more
natural would show fewer words at a time, and therefore we would need an alternative way to
provide users with an overview of the possible set of device capabilities (e.g., color, brightness,
etc.) One option might be that in addition to the device name, devices could display augmented
reality “capability icons” that indicate that they can do color and brightness and so on. Then
the user knows when they snap the picture not only that the device is smart, but broadly
what it is capable of, and can use the more minimal (but also more powerful) autocomplete
to simply get the proper names of states (like “lavender blush”) as they type.

An improved autocomplete design that leans more in the direction of a tappable menu
would follow the advice of several participants and start suggestions for a new photo with a
drill-down list of all the device names in the picture. Users would then select a device name
to reveal another drill-down list, this time of the device’s capabilities, that users would again
expand to show the individual canonical utterances. To help build language skills and make
assistant interactions feel more natural, upon selecting an utterance, the suggestions could
display a list of equivalent paraphrases that the assistant would also understand. While this
device-oriented menu direction would no doubt be effective in the short term, it would not
be future-proof if assistants trend more towards supporting device-agnostic high-level goals.
More work is needed to explore the trade-offs between these different directions.

6.7.3 We should revisit the natural language approach to sensors

The experiments with ARticulate revealed a potentially deeper issue with the underlying
natural language understanding system itself. It would appear from our results that sensors
require a different natural language approach than actuators. Hearkening back to the
interaction framing discussion in Chapter 3, sensor interactions may more intuitively follow a
data-oriented, rather than a device-oriented, conceptual model. Ideally, users would not need
to specify a specific device at all to receive useful information. While for large deployments
this may require sophisticated aggregation techniques or understanding of deployment context,
for simple deployments with only a single device that measures a particular attribute, it
should be trivial for Alexa to infer which device should be queried to answer the user—the
only one available.
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We also know from Chapter 3 that moving towards an assistant-mediated data approach
will also change the kinds of interactions that people will expect to have with the assistant.
Users will often not be interested directly in what the data from a particular device is, but
rather in higher-level concepts like “when someone enters the room,” or “when the room is
empty,” or “how much water have I used this month?” Such a system will be much more
valuable to users, but the assistant will need to be redesigned to be able to handle these kinds
of interactions.

While the above implications apply generally to all intelligent assistants that currently
anchor their smart space interactions around proper device names, we also identified an issue
perhaps more specific to Alexa. The specificity of the sensor commands that Alexa understands
broke the illusion of human-like communication with an intelligent assistant. After Participant
4 discovered that the phrase “Tell me the temperature according to Multipurpose Sensor”
does not work, even though “What is the temperature according to Multipurpose Sensor?”
does, she expressed: “I feel very frustrated, because when Alexa talks like a person, I feel like
I should have a wide net of possible things I can say about asking for the temperature, but
because what I have to say is so narrow, it makes me feel like I am becoming more robot-like
in order to talk to her, and I think that is not okay.” These issues with Alexa demonstrate
how natural language interfaces can be fragile in a way that negatively impacts the user
experience.

6.8 Summary

In this chapter we were able to finally achieve our goal of one-shot interactions in unfamiliar
smart spaces with an agent-mediated interaction framing. We took our previous approach of
using autocomplete-aided chat with an intelligent assistant, and added photo messaging, which
allowed us to display augmented reality labels for smart devices as a key discovery mechanism
to address the precision problem. To evaluate this design, we developed a smartphone app
called ARticulate and ran nine user evaluations in a smart home testbed. Presented with
an unfamiliar smart space, ARticulate users were able to discover available functionality,
including what was not available, and accomplish goals with a single interaction attempt.
The knowledge users gained from use of ARticulate also translated into the ability to use
the voice interface afterwards without a discovery aid. ARticulate is the first interface that
makes unfamiliar smart spaces usable by overcoming the challenges posed by the proper
device name paradigm. With interfaces like ARticulate, anyone who knows how to message
can walk into any smart space and start immediately using it with confidence.
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Chapter 7

Conclusion and Future Work

This dissertation has deeply examined the issue of discovery in unfamiliar smart spaces
designed around the proper device name paradigm and proposed a solution for supporting
successful one-shot interactions with intelligent assistants in such spaces. We found that we
could design tools that enabled one-shot interactions, enabling a much more usable future
world where assistants could be in any space and part of casual life. However, before this
future can be fully realized, there are infrastructure and deployment challenges that must be
addressed.

Further, past studies have shown that despite the prevalence of the proper device name
paradigm, proper names are not how occupants instinctively refer to smart objects when
talking to smart home assistants freed from technical constraints [87]. Over the long term, it
is worth exploring more intuitive ways of interacting with intelligent smart spaces that do not
require invoking device names and more closely resemble how humans would communicate
with each other.

Finally, there are natural extensions of our work in the direction of designing assistants
that support other key smart home tasks, such as creating automation rules and debugging,
and in enabling assistants to learn and grow their vocabulary through interactions with
occupants. We discuss these avenues for future research below.

7.1 Deployment Challenges for Ubiquitous Assistants

This dissertation focused on making smart space assistants usable in unfamiliar smart spaces.
But that mostly makes sense in a future where smart spaces and assistants are ubiquitous and
can be found in many of the places we go. To deploy these solutions at scale would require
infrastructure for sharing augmented reality scans and localization, as well as methods for
programmatically exposing what assistants understand for the purposes of autocomplete.
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Figure 7.1: High-resolution ultra-wideband (UWB) localization systems. The four pictures
on the left show the Decawave MDEK1001 anchor-and-tag system and gateway that provides
10 Hz location updates for mobile devices that move quickly or frequently, such as mobile
phones. Modern smartphones have UWB radios built in. On the right is a Slocalization tag,
an ultra-low energy UWB tag that does not require batteries.

7.1.1 Augmented reality scans and localization

We envision a future where during initial device setup, the system maintainer would somehow
add the device to a digital map of the room. This map would contain information about the
physical locations of all the smart devices. When new users entered the unfamiliar smart
space, they need only open the app, and the phone should both 1) receive the map information,
and 2) be able to localize itself in the room in order to appropriately align the virtual map
onto the physical devices—this is called “registration.” While sharing and receiving the map
information is solvable with well-designed software services, registration for augmented reality
is currently an open problem.

The ARticulate study experience revealed the limitations of using a vision-based method
for registration (see Figure 6.3). Scans could take anywhere from 15 minutes to hours
depending on the lighting conditions and the visual complexity of surfaces in the room, which
could cause the phone to lose track of its location in the environment. Twice, users had to wait
for us to redo the scan completely or deal with particularly fragile localization due to changing
light conditions. This was a problem when performing scans during sunset, where every
fifteen minutes the lighting conditions changed enough to completely prevent registration.
Turning lights on and off during the session also occasionally changed the lighting conditions
enough for the system to lose tracking. We ended up addressing these problems by running
systems during daylight hours or at night, and by doing scans in rooms with permanently
good lighting that would not be significantly affected by the testbed devices.

Despite the deployment difficulties that augmented reality posed during the study, we
still believe that this form of augmented reality feedback will be a feasible solution in the
near future. Flagship smartphone manufacturers like Apple and Samsung have released
smartphone models with ultra-wideband (UWB) radios that support high-resolution device
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localization and orientation, and lidar for creating depth scans of the environment. UWB
has been used for fast, high-resolution tracking of mobile devices, and low-power backscatter
UWRB tags can be used to provide localization for objects that move infrequently [152, 153].
This additional instrumentation has the potential to significantly increase the robustness of
location tracking and registration for mobile augmented reality going forward.

7.1.2 APIs for exposing assistant understanding

For an interface like ARticulate to work ubiquitously, it also need a method for receiving
autocomplete suggestions that reflect what the smart space assistant for that room understands.
Ideally, this would require participation from the major companies that develop intelligent
assistants. In the ARticulate study, we built an entire text-based clone of Alexa for smart
space interactions, since Alexa does not provide a means to submit text utterances and receive
text responses. However, the clone did not always reflect the voice-based Alexa’s behavior. It
would be better for the consistency of the user experience if the assistants that users message
were the same as the voice-based smart space assistants.

This places responsibility on intelligent assistant companies to be able to represent what
their assistant understands, which can be difficult given the popularity of black-box models
like neural networks. However, one example of an architecture that supports this can be found
in the paper “Building a Semantic Parser Overnight” [137]. The authors outline a design
methodology for quickly building semantic parsers for new domains. For each capability
in the domain, such as turning on a particular device, the developer uses templates to
construct a “canonical utterance” in natural language that corresponds to it. To then train
the system to understand paraphrases, the developer sends each of the canonical phrases out
to a crowdsourcing platform to get a large number of paraphrases for each canonical form.
Those paraphrases are then used to train a machine learning system to match a paraphrase to
a canonical form, and therefore to an action in the domain. The result is a powerful natural
language parser that also has a spanning set of canonical natural language utterances that is
guaranteed to cover its functionality. To speed up the development process of these systems,
the authors released a toolkit called SEMPRE.

Almond is an IoT virtual assistant built on the SEMPRE architecture [154]. The authors
used crowdsourcing to train a parser to understand various smart home commands and
queries. The system translated natural language input into a domain-specific language called
ThingTalk that could be executed by a controller that interfaced with the available devices
and services. While the parser struggled to understand open-ended sentences, when users
were aided by first seeing a “cheat sheet” of what the assistant could understand, Almond
successfully parsed 80% of the simple phrases and 41% of the compound phrases that users
provided.

Our ARticulate implementation also supports the feasibility of this general approach in
smart spaces. We wrote a template grammar and populated the possible names and states
by discovering the device capabilities through the SmartThings API. This required manually
constructing a small type system that allowed us to convert the device capability descriptions to
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natural language, but ultimately this allowed us to demonstrate that autocomplete suggestions
could be dynamically assembled from system APIs. Though the templates provided users
with a canonical set of options, the assistant we built could understand arbitrary paraphrases.

While less than ideal due to inconsistencies in the user experience and the cost of managing
separate infrastructure, our implementation demonstrates that it is possible for a third party
to construct these “parallel shadow assistants” in order to provide text interactions and
autocomplete services if the companies do not incorporate it natively into the intelligent
assistants.

7.2 Beyond the Proper Name Paradigm

The proper device name paradigm is a leaky abstraction that has come up from the system
design and become a part of smart phone control apps and then intelligent assistants, even
though it is not how people intuitively refer to devices. We need to move towards multi-modal,
contextually aware interactions with smart space assistants that are able to combine words
with other information like gaze direction, pointing, or contextual information to resolve
pronouns. We also need to move towards supporting interoperability and applications that
are more centered around high-level goals and behaviors and less tied to individual devices.
Finally, we need to support more assistant initiative for asking the humans to demonstrate
commands, so that the assistant can learn new names and phrases. Assistants start with
a baseline mapping of language to action, but if we provide a process for the assistant to
extend that language and acquire even more language understanding, assistants could become
powerful and personalized to each space.

7.2.1 Multi-modal entity resolution

The first step in re-evaluating how we approach smart home assistant interactions is to
combine verbal utterances with contextual information in order to resolve entity references,
instead of relying on proper names. In our study of ARticulate, we had participants who
expressed that they should be able to tell Alexa to turn off the only light that is on, and
that Alexa should be able to figure out which device they’re referring to if they say “sensor”
and there is only one sensor in the room. Similarly, saying “Turn off the light” when only
one light would be completely natural when speaking to another human, but is not currently
supported. Existing smart home assistants, such as Alexa, have the ability to resolve these
types of references simply by querying the states and types of the devices that they already
have access to through their cloud endpoints.

An additional source of information that is not currently captured but which would be
invaluable is gaze direction during the utterance. Users say generic phrases like “Turn off the
light,” but in the vast majority of cases they look at the light they are referring to [87]. In a
way, ARticulate works by capturing gaze information. However, there could be many other
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approaches to gaze detection. Gaze combined with the utterance should be enough to resolve
entity references in the vast majority of cases, without use of any proper names.

In Wizard-of-Oz studies where secret human researchers are able to simulate more capable
smart home assistants, participants also use location or relational phrases such “turn off
the light in the corner” or “turn on the light to the left of the TV” [87]. This contextual
information could potential be solved with more sensing or data collection about object
locations. However, assistants could also learn which device these phrases refer to—without
any additional sensing—by asking the user to demonstrate the correct action, which we
discuss next.

7.2.2 Assistants with learning initiative

Smart space assistants currently act as passive translation layers for human intention. As
illustrated in Figure 7.2, human users hold a mental model of the world, and to place the
world into a desired goal state, they communicate to the assistant, which directly converts
their natural language utterance into an action on the world. The human observes the result,
and repeats as needed. In this workflow, the assistant is little more than the natural language
equivalent of a button interface.

However, if the assistant is also given a mental model of the world and the agency to act,
then many more powerful workflows emerge that allow the assistant to learn new capabilities,
entities, and phrases. The assistant can act on the human, such as by asking them to perform
a task, who then interacts with the world, which the assistant can observe. This means
that when a user uses a command or device reference that the smart space assistant does
not understand, the assistant could ask the human to demonstrate it using one of the other
smart space interfaces, and thus acquire the understanding of a new phrase. Concretely, the
assistant could learn which device the phrase the “light in the corner” refers to, or what “when
I leave the house” looks like from a sensor standpoint. Similarly, the human can interact with
the world directly, such as by using another smart space app, and the assistant can observe
both the user’s actions and the events leading up to it. This would enable imitation learning,
where the assistant learns to anticipate and perform smart space actions that the user would
normally perform. The assistant can take initiative and interact with the world on its own,
or the assistant and human can interact with each other. This way of thinking echoes themes
in mixed initiative interfaces [155-158], agent interfaces [82, 159-161], and task-oriented
reinforcement learning [34], especially when tasks are specified by natural language [162-167].
One ubiquitous computing system, Roadie, provides an example implementation of such an
approach, by mapping users goals to device functionality and using a partial planner and
mixed-initiative Al to help users debug [168]. Moving in this direction would allow for a future
where smart home intelligent assistants become more extensible, powerful, and personalized.
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Figure 7.2: The present and future of intelligent agents in smart spaces. In the current model,
a human user maintains a mental model of the world. To achieve their desired goal state in
the world, they initiate an interaction with the agent, which exists merely as a pass-through
for translating the human’s interaction into a command that affects the world. The human
observes the new state of the world and repeats until the goal state is reached. However,
if we consider the agent as also having a mental model of the world and a similar level of
agency and initiative, we are put into the paradigm on the right. In this paradigm there are
many kinds of possible interactions between agent and human. Many of these workflows are
critical for agents to learn new phrases, new functionality, and user preferences.

7.2.3 Language-free assistant interfaces

Another option for avoiding the problem of proper names is by not using language at all to
interact with intelligent assistants. Reliance on language comes with downsides to accessibility.
A large percent of households in the US do not speak English at home. At least one participant
in the ARticulate study, Participant 6, had a strong accent and reported that she stopped
using intelligent assistants because they had trouble understanding her. Additionally, children
are a significant category of smart home passenger users, but they often struggle with language
interfaces. There is a window of development where children may want to operate basic
functionality of their home, but may lack reading and writing proficiency, and additionally
face difficulties being understood verbally by intelligent assistants. While no doubt speech
recognition technology will continue to progress, we feel there is fertile unexplored territory
in language-free smart home assistants.

The key metaphor to draw on for language-free smart home assistant design is that of
animism. All around the world early human societies tapped in to animistic explanations for
why their natural environment behaved the way that it did, a proclivity that has continued
through the modern day — contemporary studies have found that humans frequently ascribe
animistic characteristics to technology [169-171]. While early anthropological work framed
animism as an explanatory framework that is fundamentally in error about the way the
world truly operates, recent work has recast animism as a valid way to conceptualize our
relationships with the objects around us [172]. Drawing on this new line of thinking, several
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Figure 7.3: Pixie augmented reality interface supporting discovery and invocation of smart
space functionality. The left image illustrates the exposed functionality of two smart devices:
a smart switch that can be turned on and off, and a smart light that also has dimming and
color changing ability. The pixies have their eyes closed so that residents do not feel socially
uncomfortable. The right image shows the pixies opening their eyes and engaging with the
user as the user approaches and they come into “focus.” Functionality is invoked by pinching
or pinch-and-dragging the pixies, who giggle like it tickles. Pixies are anthropomorphized, like
current smart space assistants, but are language-free, making them more widely accessible to
populations like children and residents who prefer to speak other languages at home.

HCI researchers have proposed using animism in the design of smart spaces and connected
devices [173-178].

To design language-free smart home assistants, we can draw on animistic archetypes of
wild animals and spirits — entities that are intelligent, privately motivated, and may have
messages they want to communicate, but which may not speak human language. One example
design is what we call pixies. The pixies are a concept for an augmented reality interface
that also helps with affordance discovery like ARticulate, but is language-free (and thus
more accessible). The idea is that each smart device is represented as a “magical hotspot”
that attracts “pixies.” Each pixie represents a particular action that can be taken, such as
dimming, changing the color, or turning the device on and off. The idea to standardize
around actions, or verbs, instead of devices builds off of prior work that found that while
smart home users employ many unique nouns in their commands, they use very few unique
verbs [87]. This design choice means that even when encountering a novel smart device, the
user will be able to understand and use the familiar actions (such as on and off).

Figure 7.3 shows an example of pixies in the ambient environment, and pixies when the
user approaches the magical area and they come into focus. To invoke the device functionality,
users grasp or pinch the pixies, who respond as though the interaction tickled pleasantly. By
pinching the on or off pixie, the device will turn on or off. By pinch-and-dragging the dimming
or hue pixie, the user can change qualities of the light. This leads to natural interactions, such
as throwing the hue pixie across the room to cause the light to scroll through the rainbow.

Though this illustration shows the potential direction of language-free smart home assis-
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tants inspired by concepts from animism, there are more design challenges to address. To
bring this interface into functional parity with existing device-oriented app would require
determining how to manipulate groups of devices together, how to represent the concept of
scenes, and how to represent ambient qualities such as temperature or humidity or whole-home
energy usage. Video feeds from networked cameras have also not been addressed, but could
perhaps draw upon a “magic mirror” or scrying metaphor.

7.3 Assistants for Automation and Debugging

In this dissertation we only evaluated systems where the assistant performed “immediate
actions,” which result in an immediate change in the environment or an immediate answer
about the present moment. However, if assistants were extended to understand time, so that
they could represent concepts of events and causality, then the assistant could help with two
significant smart home activities: authoring automation rules, and debugging.

7.3.1 Assistants for automation rules

Authoring automation rules is a significant activity performed by smart home users. How-
ever, humans are quite bad at authoring smart home automation rules. Recent work has
outlined common cognitive errors that people make while crafting automation rules [179-181].
Assistants could dramatically shorten the iteration cycle and help humans make rules work
as expected the first time by looking for these common errors. For example, if a user sets a
rule that turns the lights on, an assistant could ask if they would like a rule that also turns
the lights off. Alternatively, the assistant could ask the user what they expect the rule to do
in a set of cleverly selected scenarios, and then offer suggestions for how to change the rule
to do what they want in the various scenarios.

7.3.2 Assistants for debugging

Debugging is strongly related to automation rules. As soon the system starts behaving
autonomously, users will want to know why things are happening. It would be helpful
during debugging to be able to credit a behavior to the rule that caused it. Approaches to
helping users understand the behavior of their system can draw inspiration from past work on
explanation-oriented interfaces like Whyline [182], the principles of which have been applied
to some ubiquitous computing contexts by Lin and Dey [183]. Fruitful areas for exploration
include making sure that explanations occur at the appropriate level of detail, combining
the partial knowledge that the assistant has access to with the partial knowledge that the
human has access to, and collaboratively guiding users through hypothesis testing to begin
systematically ruling out potential explanations.
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7.4 When the Unfamiliar Becomes Familiar

The goal of this dissertation was to understand and address a major challenge facing smart
spaces as they become more ubiquitous and users have more frequent encounters with
unfamiliar smart spaces that they did not set up themselves. We observed that the proper
device name paradigm that smart spaces are currently designed around poses a significant
obstacle to usability when users first enter an unfamiliar smart space.

To systematically explore the effects of the proper name paradigm on user discovery, we
ran two studies. The first examined the effects of device-centrism, and found that framing
interactions around a collection of smart devices resulted in limited user expectations of
automation and interoperability. However, adding an intelligent assistant as a mediating
layer on top of the devices was able to mitigate some of the limiting effects on end user
mental models. This means that to encourage users to perceive smart spaces as supporting
valuable high-level applications, device-centric smart space interfaces should at least use an
intelligent assistant interaction framing. The second study examined proper names, and
found that not only were proper names for smart devices inherently difficult to guess, even
when given a proper name, users may struggle to determine which real-world device the
name refers to. This means that providing users with a list of device names will only bound
their trial-and-error guesses—it will not enable one-shot interactions or help users understand
when a goal is not possible.

Based on the results of those two studies, we designed a messaging interface for communi-
cating with intelligent smart space assistants that enables users in unfamiliar smart spaces to
accomplish their goals on the first attempt. Further, after a few uses, this interface unlocks
the ability to use voice and potentially other name-centric smart space interfaces. The key
discovery mechanisms that we used are augmented reality markers for smart devices, and
autocomplete suggestions for composing the message to the assistant. This design bring us
closer to a future in which anyone can walk into an unfamiliar smart space and immediately
interact with it as if messaging an old friend.
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Appendix A

Interaction Framings Dataset

The dataset used in the interaction framings analysis in Chapter 3 is available as a supplemental
download with the paper “Devices and Data and Agents, Oh My” on the ACM library [63],
which can be found at the archival link: https://dl.acm.org/doi/10.1145/3132031

The supplemental material includes the dataset in a database, a detailed description
of the database schema, and example Python scripts for accessing the database. The
dataset is further described in the paper “The Big House Dataset: Desired Applications and
Interactions” [184].
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