
Parallelizing Data Race Detection

Benjamin Wester†∗

†Facebook

bwester@fb.com

David Devecsery∗ Peter M. Chen∗

Jason Flinn∗ Satish Narayanasamy∗

∗University of Michigan

{ddevec,pmchen,jflinn,nsatish}@umich.edu

Abstract

Detecting data races in multithreaded programs is a crucial part of
debugging such programs, but traditional data race detectors are too
slow to use routinely. This paper shows how to speed up race de-
tection by spreading the work across multiple cores. Our strategy
relies on uniparallelism, which executes time intervals of a pro-
gram (called epochs) in parallel to provide scalability, but executes
all threads from a single epoch on a single core to eliminate locking
overhead. We use several techniques to make parallelization effec-
tive: dividing race detection into three phases, predicting a subset of
the analysis state, eliminating sequential work via transitive reduc-
tion, and reducing the work needed to maintain multiple versions
of analysis via factorization. We demonstrate our strategy by par-
allelizing a happens-before detector and a lockset-based detector.
We find that uniparallelism can significantly speed up data race de-
tection. With 4× the number of cores as the original application,
our strategy speeds up the median execution time by 4.4× for a
happens-before detector and 3.3× for a lockset race detector. Even
on the same number of cores as the conventional detectors, the abil-
ity for uniparallelism to elide analysis locks allows it to reduce the
median overhead by 13% for a happens-before detector and 8% for
a lockset detector.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design; D.4.8 [Operating Systems]: Perfor-
mance

General Terms Design, Performance

Keywords Data race detection, Uniparallelism

1. Introduction

The prevalence of multicore processors has led to an increased use
of multithreaded programs. In such programs, several threads of
execution share a single address space and coordinate their accesses
to shared variables via synchronization operations, such as locks
and condition variables.

Multithreaded programs are subject to a variety of concurrency
bugs, of which a particularly pernicious type are data races [5].
A data race occurs when two threads access the same memory lo-
cation without being ordered by a synchronization operation and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

at least one access is a write. Data races tend to be nondetermin-
istic and difficult to debug, and they can lead to severe problems
at runtime [20, 31]. Even enumerating the possible behaviors of
programs with data races is difficult—the C and C++ language
specifications explicitly leave the behavior of such programs unde-
fined [4], and the Java specification for such programs is extremely
complex and currently has known bugs [41].

To address this problem, researchers have developed tools to de-
tect data races in multithreaded programs. We focus in this paper on
dynamic data race detectors; static race detectors also exist but cur-
rently suffer from an excess of false positives. During development,
data race detectors can help programmers find and eliminate data
races. During production, data race detectors can try to avoid racy
executions or can stop the program before it generates incorrect or
arbitrary output.

The main problem preventing the widespread use of dynamic
data race detectors is their high overhead, especially for tools that
can operate on arbitrary binaries. For example, Intel Inspector in-
curs an average of 233× slowdown for the SPLASH-2 bench-
marks [38], and Google’s ThreadSanitizer (happens-before mode)
incurs an average of 29× slowdown for a series of unit tests [40].
Even research systems that operate on managed code are slow, e.g.,
FastTrack [15], a state-of-the-art, precise race detector, imposes an
average of 8.5× slowdown on the execution time of Java programs.
The high overhead of these tools arises from needing to instrument
and analyze each potentially-racy memory operation.

Several strategies have been explored to reduce the overhead
of data race detection. One approach is to rely on custom hard-
ware [11, 24, 33, 51], but such support is not yet available on com-
modity processors. Another approach is to tolerate false negatives
(i.e., miss detecting some data races), such as by sampling only a
portion of the execution [6, 22] or data space [13], by refining the
granularity of detection at the cost of missing the first race on a
variable [50], or by detecting the outcome of races rather than the
race itself [43]. A third approach is to tolerate false positives (i.e.,
report some events that are not data races), such as by increasing
the granularity of detection [46].

This paper presents a new strategy for accelerating a data race
detector by enabling it to run in parallel across multiple cores.
Surprisingly, not only does our method of parallelization scale well
with increasing cores, it also usually reduces the overhead of data
race detection even when run on the original number of cores. Our
strategy relies on uniparallelism [44], which executes time intervals
of a program (called epochs) in parallel, but executes all threads
from a single epoch on a single core. To enable parallel execution
of epochs, we run a lightweight program replica that conducts little
race analysis, and we use this copy to predict future application
and partial analysis state. Executing epochs across cores increases
performance via parallelism. Executing all threads from a single
epoch on one core increases performance by eliminating the need
for the analysis code to acquire and release locks.

We demonstrate how to adapt two traditional data race detectors
(happens-before and lockset) to run in a uniparallel environment.
Each detector must be restructured into three phases: the first phase
runs epochs in sequence and predicts a subset of the analysis state,
the second phase runs epochs in parallel and performs the bulk of
the analysis, and the third phase merges together the results of the
parallel phase. The second phase detects races that occur within a
particular epoch, and the third phase detects races that occur across
epochs.

We find that uniparallelism can significantly speed up data race
detection. With 4× the number of cores as the original application,
our strategy speeds up the median execution time by 4.4× for a
happens-before detector and 3.3× for a lockset race detector. Even
on the same number of cores as the conventional detectors, the
ability for uniparallelism to elide analysis locks allows it to reduce
the median overhead by 13% for a happens-before detector and 8%
for a lockset detector.

In this paper, we make several novel contributions to the area of
race detection and parallel program analysis. First, we show how
running multiple epochs in parallel can parallelize race detection,
even though detecting races for one epoch depends on the analy-
sis done in prior epochs. We show how race detection in general
can be restructured into three phases: one that predicts a subset of
the analysis state, a second that runs the bulk of the analysis, and
a third that resolves the symbolic expressions that were logged in
the second phase. Second, we show how two classic race detectors
(based on happens-before and lockset) can be reimplemented in
this architecture. In particular, we show how to partition the work
of those race detectors effectively into phases, reduce the amount of
deferred work through transitive reduction, and reduce the amount
of work needed to deal with unknown initial states through lock-
set factorization. Third, we show how uniparallelism reduces the
overhead of fine-grained analyses such as race detection by elimi-
nating locking overhead. Finally, we demonstrate that parallel race
detection scales on commodity hardware.

2. Parallel race detection

It is challenging to parallelize fine-grained program analyses such
as race detection. Typically, the analysis is done synchronously
with the program, so the speeds of the program and analysis are
linked. In addition, some race detectors have strong dependencies
between instructions, i.e., the analysis of an instruction depends
upon the analysis of prior instructions.

One way to parallelize a race detector is to run the application
on more cores and run the race detector along with the scaled
application. There are three problems with this approach. First,
many applications cannot easily take advantage of more cores.
Second, as we show in Section 6, applications that can adapt to
more cores do not necessarily scale well, especially when run with
race detection. Finally, a developer may want to debug the original
application rather than an application that has been scaled to use
more cores.

Another way to parallelize race detection is to instrument an
application to log memory accesses and then feed the trace to
multiple threads that perform data race detection. The problem with
this approach is that the memory access logger must monitor every
memory operation, and this may become a performance bottleneck
without hardware support [7].

Our goal is to parallelize race detection in a way that does not
suffer from these problems. Specifically, we would like to paral-
lelize race detection without modifying the application, and we
would like the parallel race detector to scale well to more cores even
if the original application does not scale well. To achieve this goal,
we use a previously proposed technique called uniparallelism [44].

[Ep 7]

[Ep 6]

[Ep 5]

[Ep 4]

[Ep 3]

[Ep 2]

[Ep 1]

A

CPU 0

B

CPU 1

C

CPU 2

D

CPU 3

Epoch-parallel executionEpoch-sequential execution

CPU 7

[Ep 0]

T
I

M
E

checkpoints

and replay logs

CPU 4
[Ep 0]

CPU 5 CPU 6

C

B

D

A

A

D

B

C

A

D

C

B

B

C

A

D

B

C

A

D

A

D

C

B

B

C

D

A

B

D

A

C

CPU 8 CPU 9 CPU 10 CPU 11

D

C

B

A

C

D

B

A

B

A

D

C

D

A

B

C

A

C

D

B

A

D

C

B

B

C

D

A

A

D

B

C

[Ep 1]

[Ep 2]

[Ep 3]

[Ep 4]

[Ep 5]

[Ep 6]

[Ep 7]

Figure 1. Uniparallelism

We first present an overview of uniparallelism in the next section;
we then describe how we apply it to race detection.

2.1 Background: uniparallelism

Uniparallelism operates on unmodified applications. It achieves
parallelism via a technique called epoch parallelism [29] (also
called master/slave speculative parallelization [52] and predic-
tor/executor approach [42]).

In epoch parallelism, the application is divided into distinct time
intervals, called epochs. The goal of epoch parallelism is to run
these epochs in pipelined fashion, where later epochs start before
earlier ones finish. Epochs are isolated in their own address space,
and the program’s semantics are equivalent to a sequential execu-
tion: e.g., writes to local memory or files in one epoch are visible
to epochs that logically occur later. With more cores available, the
pipeline can be deeper and more epochs can run in parallel.

An immediate question that arises is: “How can a later epoch
start before an earlier epoch finishes?” Starting epochs early in this
manner depends on predicting the starting state of that epoch. The
predicted state includes the architectural state of the process (the
entire address space and all thread registers) as well as the relevant
system state (e.g., so that file accesses are consistent). To gener-
ate these predictions, epoch parallelism runs a second execution
of the application. This second execution runs normally, executing
epochs sequentially. In this paper, we refer to this execution as the
epoch-sequential execution, in contrast with the pipelined execu-
tion, which we refer to as the epoch-parallel execution. Figure 1
depicts these two executions.

Three properties must be true for epoch parallelism to work.
First, the epoch-sequential execution must run ahead of the epoch-
parallel execution, so it can predict the starting state of future
epochs. In our work, we provide this property by performing most
of the work of race detection only in the epoch-parallel execution.
Since the work performed for race detection is much greater than
the work to execute the original program, the epoch-sequential
execution quickly outpaces the epoch-parallel execution.

Second, the state predictions generated by the epoch-sequential
execution must usually be correct. While incorrect predictions do
not affect correctness, they do reduce performance. If the predicted
ending state for an epoch (generated by the epoch-sequential exe-
cution) does not match the actual ending state (generated by the

epoch-parallel execution), the system must flush the pipeline of
any epochs that depend on the incorrect prediction, and the epoch-
sequential execution must restart from the last committed state (this
is called a rollback). At any given time, the epoch that is currently
the oldest in the pipeline is non-speculative and can release output;
all other epochs are speculative and will be discarded in a rollback.
Each rollback causes the pipeline to be flushed, which reduces par-
allelism and wastes the CPU time spent on the flushed epochs.
Epoch parallelism ensures the accuracy of the predicted state in
the common case via online replay [19]. The epoch-sequential exe-
cution logs most sources of nondeterminism, and the logged values
are replayed during the epoch-parallel execution. Logged events in-
clude all synchronization operations (e.g., all pthread operations)
and input received from system calls (e.g., disk and network I/O).
All synchronization operations are replayed in a way that obeys the
happens-before partial order of synchronization objects observed
during recording.

Although the order of shared-memory accesses can also be non-
deterministic, these accesses are too expensive to log and replay.
However, since both executions use the same happens-before or-
der of synchronization objects, shared-memory accesses can cause
the epoch-sequential and epoch-parallel executions to diverge only
when there is a data race [35]. In fact, many data races may not
cause rollbacks because they do not affect the state of the pro-
gram [25]. Programs with frequent data races may cause frequent
rollbacks, but the speed of race detection is not critical for such
programs because even a slow race detector can find races easily if
they occur often.

Third, the system must detect when the state predicted by the
epoch-sequential execution is incorrect. Previous epoch-parallel
systems detect incorrect predictions by comparing the memory
state of the two executions. However, we observe that a useful
synergy exists when epoch parallelism is used to parallelize race
detection. Since the prediction can only be incorrect when a prior
epoch contains a data race, no memory comparison is required if
a sound data race detector has determined that all prior epochs are
race free.

Putting it all together, epoch parallelism runs the application
twice: an epoch-sequential execution to generate predictions of
future epoch states, and an epoch-parallel execution to conduct the
race analysis. Although the epoch-parallel execution takes place
in an unusual, pipelined manner, it is nonetheless a legitimate,
real execution of the application. Its computation and output are
identical to an execution in which the epochs are stitched together
sequentially, because the ending state of an epoch matches the
starting state of the next epoch (otherwise the system will rollback),
and output is released only as epochs commit.

Uniparallelism is a further refinement of epoch parallelism in
which all threads for a given epoch execute on the same core via
timeslicing. Threads are scheduled onto the core non-preemptively,
switching only when needed to follow the happens-before order
determined by the epoch-sequential execution. Uniparallelism was
motivated by the observation that some properties, such as de-
terministic record and replay [44] or the enforcement of specific
thread orders [43], are much less expensive to achieve on a single
processor than they are on a multiprocessor. Section 2.3 explains
how uniparallelism can increase the efficiency of race detection,
even when run on the same number of cores as a conventional de-
tector.

2.2 Parallelizing the analysis

While uniparallelism increases the degree of parallelism for an ap-
plication, it is not at all obvious how one can use epoch parallelism
to parallelize the work of detecting races for that application. A
key requirement of uniparallelism is that the epoch-sequential ex-

ecution must run faster than the epoch-parallel execution, and this
occurs only because the epoch-sequential execution is not encum-
bered by the work of detecting races. This means that the state
needed to detect races (analysis state) is not generated or main-
tained by the epoch-sequential execution and hence is not part of
the predicted state used to start epochs in the epoch-parallel ex-
ecution (application state). For example, for happens-before race
detectors, the epoch-sequential execution should not maintain the
vector clocks for each variable, and for lockset-based race detec-
tors, the epoch-sequential execution should not maintain the lock-
sets for each variable. Otherwise, it would run as slowly as the
epoch-parallel execution and would no longer be able to run ahead
to predict states for future epochs.

Our strategy for parallelizing the analysis of the application is to
divide it into three phases: the epoch-sequential phase, the epoch-
parallel phase, and the commit phase. The bulk of the work is per-
formed in the epoch-parallel phase; the epoch-sequential phase pre-
dicts a subset of the analysis state used in the epoch-parallel phase;
and the commit phase carries out work that cannot be performed
by the epoch-parallel phase because the epoch-parallel phase starts
with incomplete state. This section describes these phases indepen-
dently of the race detection algorithm; Sections 3 and 4 detail how
we divide the work of specific race detectors into these phases.

2.2.1 Epoch-sequential phase

The epoch-sequential phase of race detection runs in the epoch-
sequential execution. Its purpose is to predict a subset of the anal-
ysis state at the beginning of each epoch. The epoch-parallel phase
can then use this predicted state when it analyzes each epoch in the
epoch-parallel execution. Predicting a subset of the analysis state
is similar to how the epoch-sequential execution predicts the state
of the application at the beginning of each epoch. As with appli-
cation state, the subset of analysis state is generated twice: once in
the epoch-sequential phase to form the prediction, and another time
in the epoch-parallel phase to maintain this state and to verify the
prediction for the next epoch.

The work done in the epoch-sequential phase must meet three
requirements. First, the subset of analysis state must be self-
contained: updating the state subset must not depend on analysis
state outside the subset.

Second, the work done in the epoch-sequential phase must be
lightweight so that the epoch-sequential execution can continue to
run ahead of the pipelined epoch-parallel execution. All events in
the application that modify the analysis state in the subset must be
instrumented and analyzed during the epoch-sequential phase, so
the subset should ideally be chosen so that most instructions do not
require it to be updated.

Third, the predicted analysis state should usually match the
analysis state generated in the epoch-parallel execution, since mis-
predicted values cause rollbacks and thereby reduce performance.
Recall that we guarantee that the application states generated in the
epoch-sequential and epoch-parallel executions match for race-free
programs by logging and replaying all sources of non-determinism
except data races. Similarly, to avoid mispredictions in race-free
programs due to mismatches in predicted analysis state, in our
designs we ensure that all executions consistent with a happens-
before order of synchronization operations will generate the same
values for the subset of analysis state.

2.2.2 Epoch-parallel phase

The epoch-parallel phase of race detection runs as part of each
epoch in the epoch-parallel execution. This work is pipelined along
with the epochs and hence scales with increasing cores. To achieve
the greatest scalability, most race detection work should occur in
this phase.

Unfortunately, all the work of race detection cannot take place
in the epoch-parallel phase because detecting races in one epoch
depends on the analysis of prior epochs. Race detection algorithms
are stateful: the analysis state gathered by analyzing prior epochs
is required to correctly detect all races involving the current epoch.
As a trivial example, identifying a race that spans epochs requires
analysis state from both epochs. Further, even if the racing pair
of accesses occurs within the same epoch, a race detector may
require analysis state from prior epochs to identify the pair as
racing. For example, with a lockset-based race detector, analyzing
a variable access depends on knowing the set of locks that are held
by a thread, which depends on the synchronization actions of prior
epochs.

Some of the analysis state needed by the epoch-parallel phase
is predicted by the epoch-sequential phase. However, state outside
this subset is not known when the epoch starts. When the epoch-
parallel phase needs to evaluate an expression that contains un-
known state, it logs a symbolic form of the expression and defers
the evaluation of this expression until the commit phase.

2.2.3 Commit phase

Because the epoch-sequential phase predicts only a subset of the
analysis state, the epoch-parallel phase of race detection starts each
epoch with incomplete information and may thus be unable to
perform all the work of race detection. For example, it is too slow
for the epoch-sequential phase to update state on each variable
access, so the epoch-parallel phase will not be able to identify races
that depend on the analysis state for a variable at the beginning of
an epoch. To finish the work of race detection that was unable to be
completed in the epoch-parallel phase, we add a final phase of race
detection, which we call the commit phase.

The commit phase for an epoch E occurs after all prior epochs
have been committed (i.e., commit phases execute sequentially).
At this time, the complete analysis state at the beginning of epoch
E is known, having been generated by the commit phases of the
epochs prior to E. The commit phase can then use this complete
analysis state to resolve all unclassified events from the epoch and
to generate the complete analysis state for the end of epoch E.

Because the commit phase occurs after the epoch has finished,
races detected during this phase are detected later than they would
have been detected by a conventional on-the-fly detector. For some
uses of race detection, this delay has no effect. For example, race
detection could be used on a production system to provide fail-stop
behavior for races, and the delay has no effect because speculative
output is not released until the commit phase completes. However,
for debugging, developers may want to recover the program’s state
at the time of the access rather than at the end of the epoch. For such
a use case, the epoch could be replayed to the racing instruction via
the same log used to synchronize the epoch-parallel execution with
the epoch-sequential execution [35].

2.3 Eliding analysis locks

In addition to scaling race detection to more cores, uniparallelism
can reduce the overhead of race detection even when using the same
number of cores. To understand how, one must first consider how
the code used to detect races is itself multithreaded. Race detectors
read and write analysis state, and this state is shared across threads
when the detector is analyzing a multithreaded program. Even if
the original program contains no races, the race detector must be
written carefully to avoid introducing races on this analysis state.
For example, two threads may concurrently read an application
variable without causing a data race, but the analysis code for these
two events may update analysis state (e.g., a lockset) and must
therefore not execute concurrently. As another example, analyzing

accesses to separate variables may result in updating the same
analysis state, and these updates must not execute concurrently.

A conventional way to provide atomicity for parallel analysis
code is to use locks. The epoch-sequential phase of analysis uses
this strategy to provide atomicity. However, acquiring and releasing
locks can add significant overhead [10], especially when analyzing
high-frequency events such as memory accesses.

An advantage of uniparallelism is that it guarantees atomicity
for the race detection code that analyzes program events without
needing the code to acquire and release locks. Only a single thread
from each epoch executes at a time, and different epochs do not
share analysis state (until the commit phase, which is run sequen-
tially). Therefore, locks can easily be elided by restricting the code
points at which context switches can occur (i.e., as is done in uni-
parallelism where such switches occur only during synchronization
operations). Section 6 shows that eliminating the lock acquisitions
and releases for the epoch-parallel phase can reduce the total CPU
time needed for the epoch-parallel phase and thereby reduce the
overhead of race detection.

In summary, race detection benefits from uniparallelism in two
distinct ways. First, epoch parallelism allows race detection to scale
well with increasing numbers of cores, even if the underlying pro-
gram itself does not scale. Second, the refinement of uniparallelism
elides locks around analysis code to decrease the cost of race de-
tection for equivalent numbers of cores.

2.4 Synergy between race detection and uniparallelism

It is possible to completely separate the design of race detection
from that of uniparallelism, but doing so ignores the synergies
that are made possible by co-designing the two. For example, one
can implement any race detector by dividing it into two parts:
logging of events and analysis of events. One could then run this
detector in a uniparallel style without modification: the epoch-
parallel phase would log the events and the commit phase would
analyze the logged events. While this implementation is amenable
to all detectors, it is not scalable—the bulk of the work, i.e., the
analysis of those operations, would be done sequentially in the
commit phase. For performance to scale well with increasing cores,
we must move more of the work into the epoch-parallel phase.
Sections 3 and 4 show how we adapt the race detection algorithm
for use in a uniparallel execution style.

Just as adapting a race detector to uniparallelism has benefits, so
too does adapting the uniparallel execution system to the race de-
tector. Uniparallelism depends on predicting application state (and
analysis state, when used for program analysis). These predictions
are guaranteed to be correct if there are no data races, since the uni-
parallel execution replays the happens-before relationship from the
epoch-sequential execution. Prior uniparallel systems had to check
these predictions by comparing the memory state of the epoch-
sequential and epoch-parallel executions [44]. However, no mem-
ory comparison is needed when uniparallelism is used to parallelize
a sound race detector because the race detector itself can detect po-
tential mispredictions. We take advantage of this observation when
parallelizing a sound, happens-before race detector by eliding this
memory comparison.

3. Parallel happens-before

There are two main approaches used by race detectors: (1) de-
tect when conflicting memory accesses are not ordered by the
happens-before relationship [18] and (2) detect when a program
violates a particular locking discipline [39]. This section shows
how to parallelize a happens-before race detection algorithm. We
examine how to parallelize FastTrack [15], a state-of-the-art pre-
cise detection algorithm, as a representative example of happens-
before detectors (several other detection algorithms are closely re-

lated [3, 6, 11, 16, 32]). Section 4 describes how we parallelize the
other approach to race detection by examining a locking-discipline
detector.

Overview: We parallelize FastTrack by instrumenting only
synchronization operations, such as lock/unlock and fork/join, in
the epoch-sequential phase so that their happens-before order can
be predicted. Each epoch in the thread-parallel phase additionally
instruments memory accesses (i.e., it runs the full FastTrack algo-
rithm), though some race checks cannot be evaluated for lack of
data from earlier epochs. Those checks are logged for later evalua-
tion in the commit phase.

3.1 Conventional detection

Happens-before race detectors find accesses (at least one of which
is a write) to the same memory location that are not ordered with
respect to the happens-before relation of program actions [18].
The happens-before relation is the least-restrictive partial order that
obeys the following rules: (1) An event in one thread happens be-
fore a subsequent event in the same thread; and (2) a release of
a synchronization object (e.g., lock) happens before a subsequent
acquisition of that synchronization object. The happens-before re-
lation is a partial order and is therefore transitive. It can be used
with any synchronization operation such as locks, condition vari-
ables, barriers, atomic accesses, etc.. Creating a new thread can be
modeled as the parent thread releasing a synchronization object and
the new thread acquiring that object.

Race detectors process memory accesses and synchronization
events in some serial order that is consistent with the happens-
before relation; this serial order is usually determined by feeding
events to the race detector as they occur in real time. When dis-
cussing the ordering of events, we specifically note when we are
referring to the happens-before order. Otherwise, we are referring
to the serial order in which events are processed.

As is common for happens-before race detectors, FastTrack
guarantees detection only of the first race on each variable [3, 8,
15, 16, 32]. Detecting the first race on each variable is sufficient
for common uses of race detection, e.g., treating data races as
exceptions in production [12, 21] and trying to fix or annotate all
races when debugging [1]. Our parallel happens-before detector
preserves this detection guarantee.

FastTrack uses vector clocks [14, 23] to precisely model the
happens-before relationship of an execution1. A vector clock (VC)
is a vector of N logical clocks, each of which represents a logical
time for one of the N threads in the program. VCs are updated by
merge and increment operations. A thread merges VCb into VCa

by setting each element of VCa to the maximum of its current
value and the value of the corresponding element in VCb. A thread
i increments a VC by incrementing element i of that VC.

We associate a VC with each thread and each synchronization
object. The VC for a thread tracks its local logical time and shows
which logical times in other threads happen before the current in-
stant in the thread’s execution. The VC for a synchronization ob-
ject shows which logical times in each thread happened before
all releases to the object. When a thread acquires a synchroniza-
tion object, the synchronization object’s VC is merged into the
thread’s VC. When a thread releases a synchronization object, the
thread’s VC is merged into the synchronization object’s VC, then
the thread’s VC is incremented.

As each memory access is handled, the detector checks to see if
the access races with any previous access. It is sufficient to check

1 FastTrack represents most VCs using a sparse array rather than a naı̈ve
array. Although our implementation follows this same approach, we present
the algorithm here without distinguishing whether a VC is represented
sparsely or naı̈vely.

that: (1) on a read of the variable, the read must happen after the
last write to the variable, and (2) on a write, the write must happen
after the last write of the variable as well as the last read of the
variable by each thread. To implement these checks, we maintain
for each variable a read-VC and a write-VC, which store the local
logical clocks for a subset of the last read and write to the variable
by each thread. A thread performs a check by comparing the read-
VC and/or write-VC to the thread’s VC. If each element of the
variable’s VC is less than or equal to the corresponding element of
the thread’s VC, then the check succeeds. Otherwise, the detector
declares a race on the variable. After checking for a race, the
variable’s VC(s) are updated. On a write, the thread resets the read-
VC and write-VC by setting all elements to zero, then writes its
own logical time to its element in the write-VC (preserving only the
last write). On a read, the thread writes its logical time to its element
in the read-VC (preserving the last write and all other reads). If the
read happens after all previous reads, the thread may also overwrite
all other elements in the read-VC with zero (preserving only the last
write and read).

3.2 Epoch-sequential phase

The first task in designing a parallel happens-before race detector
is to decide what part of the analysis state to predict in the epoch-
sequential phase. Recall that predicting this part of the analysis
state should be much cheaper than the full race predictor, yet the
partial state being predicted should enable the epoch-parallel phase
to do most of the work of race detection.

It is instructive to consider the two extreme approaches we could
take, neither of which work well. If the epoch-sequential phase pre-
dicted all analysis state, it would be as slow as the full race detector
and the predictions would come too late to start new epochs. At the
other extreme, if the epoch-sequential phase predicted no analysis
state, each epoch would start without knowing any vector clocks
values. Since VCs always evolve by merging, incrementing, or set-
ting individual elements, no concrete VC values could be generated
by the epoch-parallel phase, and the entire task of race detection
would need to be deferred until the commit phase (when the VC
values at the start of the epoch have been determined).

In our design, the epoch-sequential phase predicts the VCs for
threads and synchronization objects, but it does not predict the
read-VCs or write-VCs for variables. We generate this state by in-
strumenting only the synchronization operations. This subset of
the analysis meets the criteria stated in Section 2.2.1. It is self-
contained, since the VCs for threads and synchronization objects
depend only on other VCs for threads and synchronization objects
(and not on VCs for variables). It is lightweight, since variable ac-
cesses comprise the vast majority of events that need to be mon-
itored. It will usually match the analysis state generated by the
epoch-parallel execution—online replay forces the epoch-parallel
execution to follow the happens-before order logged during the
epoch-sequential execution, so the prediction of this analysis state
can only diverge on a data race (which are rare and will be de-
tected).

3.3 Epoch-parallel phase

The epoch-parallel phase performs most of the work of race detec-
tion. All program events, synchronization operations and memory
accesses, are instrumented and handled using the full FastTrack al-
gorithm. It starts with the predicted VCs for threads and synchro-
nization objects and continues to maintain these during the epoch.

The epoch-parallel phase does not know the initial state of each
variable’s read-VC and write-VC at the beginning of the epoch,
since these are not predicted by the epoch-sequential phase. We
treat the whole write-VC and each unknown element of the read-
VC as a symbolic variable. Whenever the race detection algorithm

needs to evaluate an expression containing symbolic elements from
read-VCs or write-VCs, it logs a symbolic form of the expression
and defers its evaluation until the commit phase (when the initial
read-VCs and write-VCs are known). This can occur when the
detector compares a thread VC with a read-VC and/or write-VC
in order to check for races.

When an epoch begins, the write-VCs and all elements of the
read-VCs are symbolic, and all checks must be deferred. When a
thread reads a variable and updates the thread’s element in the read-
VC, that index takes on a concrete value. Once all elements of a
read-VC become concrete, the VC as a whole becomes concrete,
and all comparisons against it can be evaluated immediately rather
than being deferred. When a thread writes a variable, the entire
read-VC and write-VC are given concrete values. Further compar-
ison of that variable in the epoch can be evaluated immediately.

The system described up to this point defers an excessive
amount of checks to be handled in the commit phase. We can
use transitive reduction [28, 49] as an optimization to reduce the
number of checks that must be deferred. Once a check has verified
that an access b happens after a prior access a, we can henceforth
assume that the check succeeded, even if that check is deferred be-
cause it involves a symbolic value. (If a deferred check later fails, it
would reveal the first race on the variable, and finding subsequent
races on that variable is not required.) Any subsequent access c that
happens after b can therefore be assumed to happen after a. This
reasoning often allows checks to be evaluated immediately, even
when the read-VC and write-VC contain symbolic values. We use
transitive reduction in two circumstances.

First, we do not need to log a check for a read that happens
after a prior read in that epoch; we need only log checks for
concurrent reads. Consider a read r2 that happens after read r1
in the same epoch. r2 can race with the last write of a previous
epoch only if r1 also raced, so r2 needs only to be checked against
writes in the current epoch, and these checks can be evaluated
immediately. When a read is handled, the detector compares the
concrete portions of the read-VC to the thread’s VC to decide if the
read is concurrent with other reads in the epoch.

Second, consider a thread i that synchronizes (either directly
or transitively) with another thread j during the epoch, i.e., thread
i’s VC happens after some event by thread j in this epoch. By
transitivity, accesses by thread i after this point happen after all
accesses in prior epochs by thread j. If thread i synchronizes
with all threads during the epoch, subsequent accesses by thread
i are guaranteed to happen after all accesses in prior epochs by
all threads. In this situation, the detector need only check against
races in the current epoch, and these checks can be evaluated
immediately by examining the concrete values in the read-VCs and
write-VCs.

As a result of these optimizations, we can determine a maximum
bound on the number of checks per variables that can be deferred.
In a process with N threads, there can be at most N concurrent
reads, and there can be only a single first write. Hence, at most
N + 1 checks can be deferred per variable. In particular, when all
reads to a variable are totally ordered (e.g., data is thread-local or
is protected by a lock), only 2 checks are deferred.

3.4 Commit phase

The commit phase performs the operations that were deferred dur-
ing the epoch-parallel phase. Commit phases occur in program or-
der, so the commit phase for one epoch has access to the concrete
values of the final, complete analysis state for the prior epoch. In
particular, it has access to concrete read-VC and write-VC val-
ues for the beginning of its epoch. It uses these concrete values to
evaluate the symbolic expressions logged during the epoch-parallel
phase and any symbolic values in the analysis state.

Shared

Shared-mod

Exclusive to iVirgin
R,W (by i)

R

R,W
W

R,W (by i)

W (by non-i)

R (by non-i)

Figure 2. Eraser sharing state machine.

4. Parallel lockset

Another common approach to race detection is one based on lock-
sets [39]. Lockset-based race detectors find potential races by look-
ing for violations of a particular locking discipline. For example, a
race may be declared for variables whose accesses are not consis-
tently protected by at least one lock. Most lockset-based predictors
are neither sound nor precise—they may miss real races and report
false ones. Lockset detectors are nonetheless useful because they
may find potential races that did not appear in the monitored exe-
cution.

We use the Eraser algorithm for lockset-based race detec-
tion [39]. Eraser tracks the sharing state of each variable according
to the state machine shown in Figure 2. When a new variable is
allocated, it starts in the virgin state. When the variable is first ac-
cessed, it transitions to the exclusive state and remains there until a
different thread accesses it. If a different thread reads the variable,
it transitions to the shared state; if a different thread writes the
variable, it transitions to the shared-modified state.

The sharing state of a variable determines how the variable’s
lockset is updated. In the virgin state, the lockset is initialized
to the set containing all locks in the program; it remains at this
initial value while in the exclusive state. When the variable enters
or is accessed in the shared or shared-modified states, its lockset
is intersected with the locks currently held by the accessing thread
(which we call the thread lockset). A race is declared if a variable’s
lockset is empty while the variable is in the shared-modified state.
Eraser allows unlocked accesses to variables while they are being
initialized by a single thread and to variables that are only read.

As described in Section 2.2, we split the task of race detection
into three phases: epoch-sequential, epoch-parallel, and commit.

Overview: We instrument only synchronization and memory
allocation in the epoch-sequential execution to predict each thread’s
lockset. The epoch-parallel execution adds memory access instru-
mentation, allowing it to track a superset of the true lockset for each
variable. The commit phase merges a variable’s lockset with that of
previous epochs to reconstruct the actual lockset.

4.1 Epoch-sequential phase

The epoch-sequential phase predicts the thread locksets, but it does
not predict the lockset or sharing state of each variable. To gener-
ate these predictions, synchronization and memory allocation op-
erations are instrumented. This predicted subset of analysis state
meets the criteria stated in Section 2.2.1. It is self-contained since
thread locksets do not depend on variable states or variable lock-
sets. It is lightweight since lock acquisitions and releases are much
less frequent than variable accesses. It will usually match the anal-
ysis state generated by the epoch-parallel execution since the two
executions can only diverge due to a data race. Because Eraser may
miss data races, we verify that the predicted analysis state matches
the analysis state generated by the epoch-parallel phase by compar-
ing their values at the end of each epoch. In contrast, the parallel
happens-before detector does not compare values because it identi-
fies all data races.

Initial sharing state {ex sh, owner, modified}
{EX, NONE or i, *} {SH, *, minit} or {EX, 6= NONE ∧ 6= i, *}

after access 1 {EX, i, FALSE} {SH, *, minit ∨ wr1}
(by thread i) lockset = ALL lockset = LSinit ∩ TLS1

after access 2 {EX, i, FALSE} {SH, *, minit ∨ wr1 ∨ wr2}
(by thread i) lockset = ALL lockset = LSinit ∩ TLS1 ∩ TLS2

after access 3 {SH, *, wr3} {SH, *, minit ∨ wr1 ∨ wr2 ∨ wr3}
(by thread j) lockset = TLS3 lockset = LSinit ∩ TLS1 ∩ TLS2 ∩ TLS3

after access 4 {SH, *, wr3 ∨ wr4} {SH, *, minit ∨ wr1 ∨ wr2 ∨ wr3 ∨ wr4}
(by thread k) lockset = TLS3 ∩ TLS4 lockset = LSinit ∩ TLS1 ∩ TLS2 ∩ TLS3 ∩ TLS4

Table 1. The two versions of analysis state maintained by epoch-parallel phase. The first version of analysis state assumes the initial sharing
state is EX, and is owned either by NONE or by thread i (the thread that first accesses the variable in the epoch). The second version of analysis
state covers all other conditions. wra is true iff access a is a write. TLSa denotes the set of locks held by the accessing thread at the time of
access a. LSinit and minit denote the initial value of the variable’s lockset and modification status. * means the value is ignored.

4.2 Epoch-parallel phase

The epoch-parallel phase performs most of the work of race detec-
tion. Synchronization, memory allocation, and memory access op-
erations are all instrumented in this phase. An epoch starts with the
predicted set of locks held by each thread and continues to maintain
these during the epoch. However, the epoch-parallel phase does not
know the initial value of each variable’s lockset or sharing state,
since these are not predicted by the epoch-sequential phase.

Not knowing the variables’ initial sharing states has the poten-
tial to drastically slow down the epoch-parallel phase. The updates
to a variable’s lockset depends on the sharing state, so not knowing
the sharing state forces the race detector to maintain multiple ver-
sions of each variable’s lockset. For an application with N threads,
there are N + 3 states in the sharing state machine: one exclusive
state per thread, virgin, shared, and shared-modified. In the worst
case, each state would cause the race detector to maintain the vari-
able locksets differently, and this would require the race detector to
perform (N+3) times as many lockset manipulations as a conven-
tional implementation.

Fortunately, by encoding and factoring the sharing state care-
fully, we eliminate most of this extra overhead. Instead of N + 3
versions of the sharing state and lockset, we maintain only two ver-
sions, and we need to manipulate only one version per variable ac-
cess.

We encode the sharing state of a variable as a 3-tuple: {ex sh,

owner, modified}. The ex sh field denotes whether the variable
is exclusive to a single thread (EX) or shared by multiple threads
(SH). If ex sh is EX, then the owner field denotes which thread has
accessed the variable, and modified is FALSE (the virgin state is
handled as a special case of EX in which owner is NONE). If ex sh

is SH, owner is ignored, and the modified field denotes whether
or not the variable has been modified while shared.

Table 1 shows how we maintain the sharing state and lockset
for a variable, despite not knowing the initial sharing state or lock-
set. We maintain two versions of analysis state, which correspond
to two possible categories of initial values for the sharing state.
Conceptually, we maintain both versions of the sharing state and
choose the correct one when the true sharing state at the beginning
of the epoch is committed by the prior epoch. However, as we will
show, our implementation needs only to update a single lockset and
modified bit per access.

The first version of analysis state assumes the initial sharing
state is EX, and owner is either NONE or the thread that first accesses
the variable in the epoch. We call this version-EX because the first
access in the epoch results in ex sh=EX. The second version of
analysis state is used for all other situations, i.e., it assumes the
initial sharing state is SH, or it is EX and owner is a thread other
than the one that first accesses the variable in the epoch. We call

this version-SH because the first access in the epoch results in
ex sh=SH.

Consider the first access (in the epoch) to the variable by some
thread i and all subsequent accesses by thread i that occur be-
fore some other thread accesses the variable. This sequence of ac-
cesses has different effects on the two versions of sharing state. For
version-EX, this sequence of accesses leaves ex sh=EX, owner=i,
modified=FALSE, and lockset=ALL. For version-SH, this se-
quence of accesses leaves ex sh=SH; the modified variable starts
accumulating disjunctions of whether the access is a write or read;
and the variable’s lockset starts accumulating intersections of the
accessing thread’s lockset. Since disjunction and intersection are
associative, we maintain these as a function of a symbolic value
(minit or LSinit) and a concrete value (e.g., in Table 1 after access
2, the initial values are minit and LSinit, and the concrete values are
(wr1∨wr2) and (TLS1∩TLS2)). Note that, during this sequence
of accesses, the epoch-parallel phase needs only to maintain the
modified bit and the lockset for version-SH, since the modified

bit and lockset for version-EX are not changing.
If a second thread accesses the variable in the epoch, we con-

tinue to maintain version-EX and version-SH. Since two threads
have accessed the variable, ex sh=SH in both versions. However,
the value of modified and lockset continue to differ between the
versions: in version-EX, these values are independent of the first
sequence of accesses; in version-SH, these values depend on the
first sequence of accesses. We minimize the number of operations
needed to maintain modified and lockset for the two versions by
factoring them into the disjunction (for modified) or intersection
(for the lockset) of up to three expressions: the value at the begin-
ning of the epoch (a symbolic value), a disjunction or intersection
from the first thread’s sequence of accesses (e.g., TLS1 ∩ TLS2

in Table 1) and a disjunction or intersection from the accesses after
the second thread accesses the variable (e.g., TLS3 ∩ TLS4 in Ta-
ble 1). With this factorization, we only need to manipulate a single
instance of modified and lockset for each variable access.

4.3 Commit phase

The commit phase uses the final values for the lockset and sharing
state from the prior epoch to generate the final values for the current
epoch. It chooses between version-EX and version-SH based on the
final values of ex sh and owner from the prior epoch and the thread
that first accessed the variable in the current epoch. If version-SH
is chosen, it computes the final version of modified and lockset
by merging in (via disjunction or intersection) the final value of
modified or lockset from the prior epoch. After computing the
final values for the analysis state, the commit phase detects if a race
occurred on any variable accessed during this epoch by checking if
any variable with ex sh=SH has an empty lockset.

5. Implementation

Our execution system is based on the same infrastructure used in
DoublePlay [44]. DoublePlay runs a 32-bit PAE Linux 2.6 kernel
that has been heavily modified to provide uniparallelism. It uses
online replay [19] to synchronize the epoch-parallel execution with
the epoch-sequential execution, and it executes each epoch of the
epoch-parallel execution on a single core. It also uses a custom ver-
sion of glibc 2.5.1 to provide user-space logging for deterministic
replay.

Race detectors need to analyze synchronization operations,
memory management calls, and memory accesses. We intercept
synchronization operations and memory management calls via dy-
namic library interposition. In particular, intercepting malloc calls
allows lockset detectors to reinitialize analysis state on a new allo-
cation. We intercept memory accesses by instrumenting loads and
stores via a custom LLVM compiler pass. At default optimization
levels, LLVM omits explicit loads and stores to variables whose
references are proven not to escape the function. Consequently, we
do not analyze accesses to these variables. For type-safe programs,
these variables are guaranteed to be private to the thread. Since
memory errors (e.g., buffer overflows) lead to undefined behavior
and our race detector (like most such tools) runs in the address
space of the instrumented process, such errors should be detected
and fixed by other tools prior to running our detector.

For both happens-before and lockset race detectors, only the
epoch-parallel execution needs to monitor loads and stores. For
simplicity, we run the same program executable in both the epoch-
sequential and the epoch-parallel execution, and the instrumenta-
tion checks a global variable to determine whether or not to analyze
each instruction. The happens-before detector inlines this check
within program instructions. The lockset detector (which compares
the two executions’ memory images) performs this check in its own
function and additionally zeroes each new stack frame when it is
allocated. A faster, though more complicated, strategy would be to
run different program executables in the two executions [42]: the
epoch-sequential execution would use a version without load/store
instrumentation; the epoch-parallel execution would use a version
with load/store instrumentation. We leave this for future work.

External libraries must either be compiled with instrumentation
or have their functions annotated. We implement annotations for
glibc through wrapper functions that explicitly invoke the han-
dlers for analyzing loads and stores. For all other libraries, we com-
pile a version with instrumentation.

Because race detectors analyze multithreaded programs, their
analysis code must carefully handle the shared analysis state. Our
analysis code uses spinlocks to provide atomicity at low latency
in the common case. Analysis variables on a single cache line are
guarded by the same lock to reduce inter-cache traffic. We provide
a pool of spinlocks and hash the memory address being analyzed to
select which spinlock to use. The pool contains 1024 spinlocks—
large enough to avoid lock contention. These spinlocks are used by
the conventional race detectors and the epoch-sequential phase of
our race detector. The epoch-parallel phase instead ensures atomic-
ity of the analysis code by running on a single core (Section 2.1).

For both happens-before and lockset detectors, all program
memory is shadowed by analysis state, which is organized by a
single-level page table with 4 MB pages. The baseline space over-
head for the conventional and parallel happens-before detectors is
twice the size of the program state; the baseline space overhead
for the conventional and parallel lockset detectors is the size of
the program state. Both parallel detectors use copy-on-write to
minimize additional space overhead for the analysis state used by
concurrent epochs; the amount of this additional space overhead is
proportional to the number of epochs executing in parallel and the
working set of each epoch.

The happens-before detectors find races with byte granularity.
To minimize the analysis state and reduce the overhead of race
detection, we compress the analysis state using a design similar
to Valgrind’s Memcheck [27]. We initially shadow entire four-byte
words as single units. The first time an individual byte is accessed,
we duplicate the word’s analysis state and start shadowing each
byte separately. The lockset detectors shadow and detect races with
(fixed) word granularity without any compression.

6. Evaluation

This section evaluates experimentally the performance and scala-
bility of our parallel happens-before and lockset race detectors. We
compare the performance of our parallel race detectors with con-
ventional happens-before and lockset detectors. The conventional
detectors use the same race detection algorithms as the parallel de-
tectors, which are based on FastTrack [15] and Eraser [39]. They
use the same analysis infrastructure (LLVM) as the parallel detec-
tors but run as normal multithreaded processes rather than using
the uniparallel infrastructure. The main body of the analysis code
is the same for conventional and parallel detectors, except that the
parallel detectors do extra work to split the work across the epoch-
sequential, epoch-parallel, and commit phases, while the conven-
tional detectors acquire and release locks to guarantee atomicity for
the analysis code. We compare the performance of all race detectors
(both parallel and conventional) against uninstrumented versions of
each benchmark that perform no race detection.

All experiments were performed on an 8-core workstation with
4 dual-core 2.4 GHz Intel Xeon CPUs (12 MB cache) and 6 GB
RAM. We evaluate performance on five applications from the mod-
ified SPLASH-2 benchmark suite [48] (water-n2, lu, ocean-contig,
fft, radix) and one parallel application (pbzip2). The SPLASH-2
applications are CPU and memory intensive and contain little I/O.
Pbzip2 is used to compress an 8 MB file, with multiple threads
compressing different blocks of the file in parallel. We prefetch
this file in advance to keep the application from becoming I/O-
bound. We configure each application to use two worker threads;
this allows us to evaluate scalability up to a 4:1 ratio of cores to
threads; experiments with four worker threads had similar results
up to the maximum ratio (2:1) on our platform. We exclude many
of the other SPLASH-2 benchmarks because they contain frequent
data races. The performance of a race detector is most important
for programs that are mostly race-free and that run for an extended
amount of time before encountering a data race (frequent races can
be detected quickly even with a slow detector). When a race is de-
tected, our detector records the event, but does not otherwise alter
the execution of the target program.

We adjust the workload sizes so that each SPLASH-2 program
executes in about 2 minutes on a single core when no race de-
tection is used; pbzip2 take about 1 minute to run. For some ap-
plications, we scale the execution by looping through program’s
main computation multiple times. We also modify some applica-
tions to make periodic system calls, which allows our infrastructure
to break long-running epochs.2 All measurements are the mean of
at least 4 samples of a benchmark’s overall execute time. All graphs
show 90% confidence intervals.

6.1 Overhead

We start by evaluating the performance of the conventional and
parallel race detectors on a system with one core per worker thread
(i.e., two cores total). Figure 3 shows the overhead of each detector,
normalized to the execution time of the original application run
without any race detector. For each application, the left bar shows

2 The deterministic replay system we used ends epochs only at synchronous
preemption points.

0

10

20

30

40

50

60

water lu ocean fft pbzip2 radix

N
o
rm

al
iz

ed
 o

v
er

h
ea

d
 w

it
h
 2

 c
o
re

s

Application

Conventional FastTrack

Parallel FT w/ Locks

Parallel FastTrack:
 Commit phase
 Instrument R/W
 Instrument sync
 Replay

(a) Happens-before

0

10

20

30

40

50

60

water lu ocean fft pbzip2 radix

N
o
rm

al
iz

ed
 o

v
er

h
ea

d
 w

it
h
 2

 c
o
re

s

Application

Conventional Eraser

Parallel Eraser w/ Locks

Parallel Eraser:
 Commit phase
 Instrument R/W
 Instrument sync
 Replay

(b) Lockset

Figure 3. Overhead of race detection. Overhead values are normalized to the application’s running time without race detection. For each
application, the left bar shows the overhead of the conventional race detector; the right bar shows the overhead of the parallel race detector;
and the middle bar shows the overhead the parallel race detector would have if it did not benefit from eliding analysis locks. The workloads
shown use two worker threads and are run on two cores for both detectors.

 0

 1

 2

 3

 4

 5

 2 4 6 8

S
p
ee

d
u
p
 r

el
at

iv
e

to
 2

 t
h
re

ad
 C

o
n
v
en

ti
o
n
al

 F
as

tT
ra

ck

Number of Cores Available

linear sc
aling

no scaling

water
lu

ocean
fft

pbzip2
radix

(a) Happens-before

 0

 1

 2

 3

 4

 5

 2 4 6 8

S
p
ee

d
u
p
 r

el
at

iv
e

to
 2

 t
h
re

ad
 C

o
n
v
en

ti
o
n
al

 E
ra

se
r

Number of Cores Available

linear sc
aling

no scaling

water
lu

ocean
fft

pbzip2
radix

(b) Lockset

Figure 4. Scaling race detection via uniparallelism. Speedup is shown relative to the performance of the conventional race detector when
run on two cores.

 0

 1

 2

 3

 4

 5

 2 4 6 8

S
p
ee

d
u
p
 r

el
at

iv
e

to
 2

 t
h
re

ad
 C

o
n
v
en

ti
o
n
al

 F
as

tT
ra

ck

Number of Cores Available

linear sc
aling

no scaling

water
lu

ocean
fft

pbzip2
radix

(a) Happens-before

 0

 1

 2

 3

 4

 5

 2 4 6 8

S
p
ee

d
u
p
 r

el
at

iv
e

to
 2

 t
h
re

ad
 C

o
n
v
en

ti
o
n
al

 E
ra

se
r

Number of Cores Available

linear sc
aling

no scaling

water
lu

ocean
fft

pbzip2
radix

(b) Lockset

Figure 5. Scaling conventional race detection by increasing the number of worker threads in the application. Speedup is shown relative to
the performance of a 2-thread application using the conventional race detector. In all cases, the number of worker threads in the application
is equal to the number of cores used.

the overhead of the conventional race detector, and the right bar
shows the overhead of the parallel race detector. The middle bar
shows the overhead the parallel race detector would have if it did
not benefit from eliding analysis locks.

Overhead varies widely between applications, depending on
how frequently they access memory. Radix stands out as having
the lowest overhead for race detection, due to radix’s relatively low
ratio of non-stack memory accesses to computation. As we will see
later, radix’s low overhead leaves little room for improvement via
parallelization.

The middle bars in Figure 3 shows the overhead the parallel race
detector would have if it needed to acquire and release analysis
locks. Such a detector is slower than the conventional detector,
since it takes extra work to parallelize an algorithm. For the lockset
detector, lockset factorization greatly reduces the amount of extra
work that needs to be done by the parallel detector.

The right bars in Figure 3 show that uniparallelism’s ability to
elide analysis locks usually gains back the extra overhead caused by
parallelizing the algorithm. In fact, eliding analysis locks usually
allows the parallel detectors to outperform the conventional ones,
even when run on the same number of cores.

Overall, when both are run on the same number of cores, the
parallel happens-before detector is 25% faster to 9% slower than
the conventional detector (median 13% faster), and the lockset-
based detector is 28% faster to 29% slower than the conventional
detector (median 8% faster).

The rightmost bar in Figure 3 breaks the overhead for the par-
allel detectors into several components. Replay shows the time
added to replay the application via uniparallelism without per-
forming analysis on the replaying run. Instrument sync shows the
time added to analyze synchronization operations in the epoch-
sequential phase. Instrument read/write shows the time added to
analyze memory accesses. Commit phase shows the time added to
maintain and process the log of work that is deferred during the
epoch-parallel phase.

We measured the overhead added by each component by in-
crementally enabling components of the instrumentation. For ex-
ample, we measured overall running time with replay enabled
but no instrumentation or commit; then we measured the running
time with replay and instrumented synchronization calls but no
read/write instrumentation or commit; etc.

As expected, most overhead comes from analyzing memory ac-
cesses. This overhead parallelizes well because the work to analyze
memory accesses can be performed in the epoch-parallel phase.
Commit phases for multiple epochs execute sequentially in our sys-
tem, so they are a potential scalability bottleneck; however, Fig-
ure 3 shows that the commit phase is usually a small fraction of the
overall overhead. For the happens-before detector, transitive reduc-
tion reduces the number of checks that are deferred to the commit
phase; for the lockset detector, the commit phase has little work
to do for each variable that was accessed in the epoch. Analyzing
synchronization operations is done in the epoch-sequential phase in
both detectors and could therefore be a scalability bottleneck, but
Figure 3 shows that it adds a negligible amount to runtime.

6.2 Scalability

Our primary goal is to parallelize race detection across the available
cores in the system. For benchmarks with two worker threads, we
conduct experiments on 2, 4, 6, and 8 cores.

Figure 4 shows the speedup of our race detectors as we scale
between 2 and 8 cores. Each point shows the speedup relative to
the running time of the conventional race detector on 2 cores. The
happens-before race detector parallelizes well for all applications
except radix: with 8 cores, the median speedup over a 2-core con-
ventional race detector is 4.4× (range is 1.6-4.8×). Parallel lockset

also scales well for all applications except radix, but begins to reach
scalability limits at 6 cores: with 6 cores, the median speedup over a
2-core conventional race detector is 3.0× (range is 1.0-4.0×). The
lockset-based detector scales less well than the happens-before de-
tector because the lockset detector adds less amount of overhead,
so there is less room for improvement when scaling to more cores.
The limiting factor to scaling is the the infrastructure we use to in-
strument the epoch-sequential execution. Because we run the same
executable in both epoch-sequential and epoch-parallel executions,
the epoch-sequential execution must perform some work on each
memory access (viz., it must detect that it is running in the epoch-
sequential execution and decide not to analyze the memory access).
This per-access instrumentation causes the epoch-sequential execu-
tion to take about 3-5× as long as the original application. To scale
the overhead lower than this, the epoch-sequential execution could
use a different executable that eliminated this check [42].

For comparison, we show the speedup for two hypothetical par-
allel versions of the conventional detectors. First, the linear scal-
ing lines in Figures 4 show the ideal speedup of the conventional
detectors on 2 cores, assuming it could scale proportionally with
available cores.

Second, we evaluate another strategy for parallelizing conven-
tional detectors, which is to scale the application itself to use more
cores. Figure 5 shows the speedup of this strategy, relative to the
running time of the 2-thread application with a conventional race
detector on 2 cores. Figure 5 shows that this strategy does not scale
as well as our parallel detectors, in part because the applications
themselves do not scale perfectly. Besides poorer scalability, there
are two other downsides to this strategy. First, it works only for ap-
plications that can be easily configured to use more cores. Second,
this strategy works only if the scaled application exhibits the same
bugs as the original application. In contrast, parallelizing the race
detectors via uniparallelism can achieve speedups on the original
application, and it does not require the application itself to scale.

7. Related Work

Many researchers have studied how to detect data races dynami-
cally via software techniques [2, 8, 9, 12, 15, 16, 32, 34, 35, 39,
50] and hardware techniques [11, 24, 30, 33, 51]. Despite much
progress, dynamic data race detection remains expensive on com-
modity hardware, especially when analyzing unmanaged code.

Epoch parallelism was first used by Zilles and Sohi [52], who
called it master/slave speculative parallelization. In their work, a
fast, approximate version of a program to speed up a slow, cor-
rect version of the program. Others have since used epoch paral-
lelism to parallelize some program analyses, such as data cache
simulation [47], dynamic information flow tracking [29, 37], mem-
ory safety checks [17, 42], and program assertions [42]. Like us,
Ruwase, et al. track symbolic values during an epoch and resolve
them with concrete values when earlier epochs finish [37].

Uniparallelism, which is a variant of epoch parallelism, was first
used by Veeraraghavan, et al. to implement a fast, deterministic re-
play system for multithreaded programs [44]. They used uniparal-
lelism to minimize thread switches and thereby reduce the amount
of nondeterminism that need to be logged. We use uniparallelism
to eliminate thread switches while running analysis code, which
reduces overhead by eliminating lock acquisitions and releases.

Veeraraghavan, et al. also used uniparallelism to design an
outcome-based data race detector [43]. This algorithm detects races
by running multiple replicas with different schedules and compar-
ing their results [30]. Their outcome-based race detectors has low
overhead but allows false negatives because it fails to detect races
that do not affect the state at the end of the epoch. In contrast,
we use uniparallelism to accelerate two classic types of data race
detectors, namely happens-before and lockset analysis.

To our knowledge, ours is the first work that parallelizes con-
ventional data race detectors on commodity hardware in a scalable
way. Other researchers have split race detection across two pro-
cessors by decoupling the monitoring of memory accesses from
the race analysis of those accesses [7, 36], but this approach re-
quires hardware support to reduce the overhead of instrumenting
memory accesses and shipping logs to other processors. Uniparal-
lelism allows us to parallelize both the instrumentation and analysis
of memory accesses, and it reduces interprocessor communication
by allowing these two tasks to run on a single processor for each
epoch.

One benefit we gain from uniparallelism is its ability to pro-
vide mutual exclusion around analysis code without the overhead
of acquiring and releasing locks. There are several other ways to
provide mutual exclusion when analyzing multithreaded programs.
The most common approach is to use coarse or fine-grained lock-
ing [12, 26, 38, 40], but this leads to significant overhead for race
detectors because they need to acquire and release locks frequently
and because they write analysis data even when reading applica-
tion variables [45]. Using lock-free data structures can reduce this
overhead, but these structures are more complicated to use than
locks and cannot easily be applied in every situation (e.g., Race-
Track [50] uses lock-free lookups into a shared table, but it must
lock when adding entries). Other researchers have proposed using
hardware support for transactional memory to achieve the perfor-
mance of fine-grained analysis locks [10]. Through uniparallelism,
our system achieves the simplicity of a single lock, still allows anal-
ysis code to run in parallel, and eliminates the overhead of acquir-
ing and releasing any locks. Our results show that eliding locks in
this manner can significantly speed up race detection; this same ap-
proach could be used to speed up other high-frequency analyses.

8. Conclusions

This paper has shown how to speed up race detection via uniparal-
lelism. Uniparallelism executes epochs across cores to increase par-
allelism, and it executes each epoch on a single core to reduce anal-
ysis locking overhead. We divide race detectors into three phases
to enable them to run in a uniparallel environment: the epoch-
sequential phase predicts a subset of the analysis state, the epoch-
parallel phase carries out the bulk of the analysis, and the com-
mit phase resolves symbolic expressions logged during the epoch-
parallel phase.

We demonstrated our strategy by parallelizing a happens-before
race detector and a lockset-based race detector. Each detector re-
quired unique optimizations to work well across the three phases:
the happens-before detector used transitive reduction to reduce the
work that must be deferred to the commit phase, and the lockset-
based detector used lockset factorization to reduce the work needed
to maintain multiple lockset versions during the epoch-parallel
phase.

Our results showed that race detection can be parallelized effec-
tively via uniparallelism. With 4× the number of cores as the orig-
inal application, our strategy sped up the median execution time
by 4.4× for a happens-before detector and 3.3× for a lockset race
detector. Even on the same number of cores as the conventional de-
tectors, the ability for uniparallelism to elide analysis locks allowed
it to reduce the median overhead by 13% for a happens-before de-
tector and 8% for a lockset detector.

We believe that many of the lessons learned in parallelizing
data race detection can be applied to other heavyweight analyses of
multithreaded programs. Analyses that can be restructured into the
above three phases can benefit from uniparallelism, as long as most
work can be done in the epoch-parallel phase. For any analysis, a
key aspect of this restructuring is selecting the subset of the analysis
to predict in the epoch-sequential phase. In addition, analyses that

frequently acquire and release locks will benefit from the ability of
uniparallelism to elide those locks.

Acknowledgments

We would like to thank all the anonymous reviewers for their valu-
able feedback and suggestions. This work has been supported by
the National Science Foundation under award CNS-0905149 and
by Intel Corp.. Satish Narayanasamy is supported by NSF CA-
REER award CNS-1149773. The views and conclusions contained
in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or im-
plied, of NSF, Intel, Facebook, the University of Michigan, or the
U.S. government.

References

[1] S. Adve. Data races are evil with no exceptions. Communications of

the ACM, 53(11):84, November 2010.

[2] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting
data races on weak memory systems. In Proc. 1991 International

Symposium on Computer Architecture, pages 234–243.

[3] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. A theory of data race
detection. In 2006 Workshop on Parallel and Distributed Systems:

Testing and Debugging, pages 69–78.

[4] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In Proc. 2008 ACM Conference on Programming

Language Design and Implementation, pages 68–78.

[5] H.-J. Boehm and S. V. Adve. You Don’t Know Jack About Shared
Variables or Memory Models. Communications of the ACM, 55(2):
48–54, February 2012.

[6] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional de-
tection of data races. In Proc. 2010 ACM Conference on Programming

Language Design and Implementation, pages 255–268.

[7] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry,
R. Teodorescu, A. Ailamaki, L. Fix, G. R. Ganger, B. Lin, and S. W.
Schlosser. Log-Based Architectures for General-Purpose Monitoring
of Deployed Code. In 2006 Workshop on Architectural and System

Support for Improving Software Dependability.

[8] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded
object-oriented programs. In Proc. 2002 ACM Conference on Pro-

gramming Language Design and Implementation, pages 258–269.

[9] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging
parallel programs with flowback analysis. ACM Transactions on

Programming Languages and Systems, 13(4):491–530, October 1991.

[10] J. Chung, M. Dalton, H. Kannan, and C. Kozyrakis. Thread-Safe
Dynamic Binary Translation Using Transactional Memory. In Proc.

2008 Symposium on High Performance Computer Architecture, pages
279–289.

[11] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and
S. Qadeer. RADISH: Always-on sound and complete race detection
in software and hardware. In Proc. 2012 International Symposium on

Computer Architecture, pages 201–212.

[12] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and
transaction-aware Java runtime. In Proc. 2007 ACM Conference on

Programming Language Design and Implementation, pages 245–255.

[13] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
data-race detection for the kernel. In Proc. 2010 Symposium on

Operating Systems Design and Implementation, pages 151–162.

[14] C. J. Fidge. Timestamps in message-passing systems that preserve the
partial ordering. Australian Computer Science Communications, 10
(1):56–66, February 1988.

[15] C. Flanagan and S. N. Freund. FastTrack: Efficient and precise dy-
namic race detection. In Proc. 2009 ACM Conference on Program-

ming Language Design and Implementation, pages 121–133.

[16] A. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai. Toward inte-
gration of data race detection in DSM systems. Journal of Parallel

and Distributed Computing, 59(2):180–203, November 1999.

[17] K. Kelsey, T. Bai, C. Ding, and C. Zhang. Fast Track: A software sys-
tem for speculative program optimization. In Proc. 2009 International

Symposium on Code Generation and Optimization, pages 157–168.

[18] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.
ISSN 0001-0782.

[19] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,
and J. Flinn. Respec: Efficient online multiprocesor replay via specula-
tion and external determinism. In Proc. 2010 International Conference

on Architectural Support for Programming Languages and Operating

Systems, pages 77–90.

[20] N. G. Leveson and C. S. Turner. An Investigation of the Therac-25
Accidents. IEEE Computer, 26(7):18–41, July 1993.

[21] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict
exceptions: Simplifying concurrent language semantics with precise
hardware exceptions for data-races. In Proc. 2010 International Sym-

posium on Computer Architecture, pages 210–221.

[22] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective
sampling for lightweight data-race detection. In Proc. 2009 ACM

Conference on Programming Language Design and Implementation,
pages 134–143.

[23] F. Mattern. Virtual time and global states of distributed systems.
In Proc. 1988 International Workshop on Parallel and Distributed

Algorithms.

[24] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas. SigRace: Signature-
based data race detection. In Proc. 2009 International Symposium on

Computer Architecture, pages 337–348.

[25] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically Classifying Benign and Harmful Data Races Using
Replay Analysis. In Proc. 2007 ACM Conference on Programming

Language Design and Implementation, pages 22–31.

[26] N. Nethercote and J. Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proc. 2007 ACM Confer-

ence on Programming Language Design and Implementation, pages
89–100.

[27] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In Proc. 2007 ACM Conference on Virtual Execu-

tion Environments, pages 65–74.

[28] R. H. B. Netzer. Optimal Tracing and Replay for Debugging Shared-
Memory Parallel Programs. In 1993 ACM/ONR Workshop on Parallel

and Distributed Debugging.

[29] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing
security checks on commodity hardware. In Proc. 2008 International

Conference on Architectural Support for Programming Languages

and Operating Systems, pages 308–318.

[30] A. Nistor, D. Marinov, and J. Torrellas. Light64: Lightweight hard-
ware support for data race detection using systematic testing of parallel
programs. In Proc. 2009 International Symposium on Microarchitec-

ture, pages 541–552.

[31] K. Poulsen. Tracking the blackout bug. Technical report, SecurityFo-
cus, April 2004. http://www.securityfocus.com/news/8412.

[32] E. Pozniansky and A. Scheuster. Efficient on-the-fly data race detec-
tion in multithreaded C++ programs. In Proc. 2003 ACM Symposium

on Principles and Practice of Parallel Programming, pages 179–190.

[33] M. Prvulovic and J. Torrellas. ReEnact: Using thread-level speculation
mechanisms to debug data races in multithreaded codes. In Proc. 2003

International Symposium on Computer Architecture, pages 110–121.

[34] P. Ratasaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R. Nagpal,
and K. Pattabiraman. Detecting and tolerating asymmetric races. In
Proc. 2009 ACM Symposium on Principles and Practice of Parallel

Programming, pages 173–184.

[35] M. Ronsse and K. D. Bosschere. RecPlay: A fully integrated practical
record/replay system. ACM Transactions on Computer Systems, 17
(2):133–152, May 1999. ISSN 0734-2071.

[36] O. Ruwase, S. Chen, P. B. Gibbons, and T. C. Mowry. Decoupled
Lifeguards: Enabling Path Optimizations for Dynamic Correctness
Checking Tools. In Proc. 2007 ACM Conference on Programming

Language Design and Implementation, pages 245–255.

[37] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran, S. Chen,
M. Kozuch, and M. Ryan. Parallelizing Dynamic Information Flow
Tracking. In Proc. 2008 ACM Symposium on Parallelism in Algo-

rithms and Architectures, pages 35–45.

[38] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrellas. Accurate and
efficient filtering for the Intel Thread Checker race detector. In Proc.

2006 Workshop on Architectural and System Support for Improving

Software Dependability, pages 34–41.

[39] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, November
1997.

[40] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data race detec-
tion in practice. In Proc. 2009 Workshop on Binary Instrumentation

and Applications, pages 62–71.

[41] J. Sevcik and D. Aspinall. On Validity of Program Transformations
in the Java Memory Model. In Proc. 2008 European conference on

Object-Oriented Programming, pages 27–51.

[42] M. Süßkraut, T. Knauth, S. Weigert, U. Schiffel, M. Meinhold, and
C. Fetzer. Prospect: A compiler framework for speculative paralleliza-
tion. In Proc. 2010 International Symposium on Code Generation and

Optimization, pages 131–140.

[43] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. De-
tecting and surviving data races using complementary schedules. In
Proc. 2011 ACM Symposium on Operating Systems Principles, pages
369–384.

[44] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: Parallelizing sequential logging
and replay. In Proc. 2011 International Conference on Architectural

Support for Programming Languages and Operating Systems, pages
15–26.

[45] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Falsafi, P. B.
Gibbons, and T. C. Mowry. ParaLog: Enabling and Accelerating On-
line Parallel Monitoring of Multithreaded Applications. In Proc. 2010

International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 271–284.

[46] C. von Praun and T. R. Gross. Object race detection. In Proc.

2001 ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 70–82.

[47] S. Wallace and K. Hazelwood. SuperPin: Parallelizing dynamic in-
strumentation for real-time performance. In Proc. 2007 International

Symposium on Code Generation and Optimization, pages 209–220.

[48] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consider-
ations. In Proc. 1995 International Symposium on Computer Archi-

tecture, pages 24–36.

[49] M. Xu, M. D. Hill, and R. Bodik. A regulated transitive reduction
(RTR) for longer memory race recording. In Proc. 2006 International

Conference on Architectural Support for Programming Languages

and Operating Systems, pages 49–60.

[50] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient detection
of data race conditions via adaptive tracking. In Proc. 2005 ACM

Symposium on Operating Systems Principles, pages 221–234.

[51] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-assisted
lockset-based race detection. In Proc. 2007 Symposium on High

Performance Computer Architecture, pages 121–132.

[52] C. Zilles and G. Sohi. Master/slave speculative parallelization. In
Proc. 2002 International Symposium on Microarchitecture, pages 85–
96.

	Introduction
	Parallel race detection
	Background: uniparallelism
	Parallelizing the analysis
	Epoch-sequential phase
	Epoch-parallel phase
	Commit phase

	Eliding analysis locks
	Synergy between race detection and uniparallelism

	Parallel happens-before
	Conventional detection
	Epoch-sequential phase
	Epoch-parallel phase
	Commit phase

	Parallel lockset
	Epoch-sequential phase
	Epoch-parallel phase
	Commit phase

	Implementation
	Evaluation
	Overhead
	Scalability

	Related Work
	Conclusions

