
Abstract

Fault injection is typically used to characterize failures
and to validate and compare fault-tolerant mechanisms.
However, fault injection is rarely used for all these pur-
poses to guide the design and implementation of a fault-
tolerant system. We present a systematic and quantitative
approach for using software-implemented fault injection
to guide the design and implementation of a fault-tolerant
system. Our system design goal is to build a write-back file
cache on Intel PCs that is as reliable as a write-through
file cache. We follow an iterative approach to improve
robustness in the presence of operating system errors. In
each iteration, we measure the reliability of the system,
analyze the fault symptoms that lead to data corruption,
and apply fault-tolerant mechanisms that address the fault
symptoms. Our initial system is 13 times less reliable than
a write-through file cache. The result of several iterations
is a design that is both more reliable (1.9% vs. 3.1% cor-
ruption rate) and 5-9 times as fast as a write-through file
cache.

1 Introduction
Software-implemented fault injection (SWIFI) is a

common technique in the fault-tolerant community [12].
Software fault injection can be used for many purposes,
such as comparing the robustness of different systems [24,
29, 16], understanding how systems behave during a fault
[8, 4, 15], and validating fault-tolerant mechanisms [3, 11,
21, 6]. However, there are very few case studies that use
fault injection for all three of these purposes to guide the
design and implementation of a fault-tolerant system.

In this paper, we present a systematic approach for
using software-implemented fault injection to guide the
design and implementation of a fault-tolerant system,
focusing on the file system and file cache modules of the
FreeBSD operating system. Our system design goal is to
enable data in memory to survive operating system crashes
as reliably as data on disk. Specifically, we want to build a
software file cache that leaves dirty file data in memory (a
write-back file cache), yet loses file data as seldomly as if
it wrote data immediately to disk (a write-through file
cache). Normal write-back file caches are very fast but are
much less reliable than write-through caches. For exam-
ple, the default write-back file cache in FreeBSD loses
data during 39% of operating system crashes, while a

write-through file cache loses data during 3% of the
crashes. Write-back file caches are less reliable because
they are often unable to write dirty file data to disk during
a crash.

We follow an iterative approach to improve the robust-
ness of a write-back file cache in the presence of operating
system errors. In each iteration, we measure the reliability
of the system, analyze the fault symptoms that lead to data
corruption, and apply fault-tolerant mechanisms that
address the fault symptoms. The result of several iterations
is a design that improves reliability by a factor of 21. The
resulting write-back file cache is both more reliable (1.9%
vs. 3.1% corruption rate) and 5-9 times as fast as a write-
through file cache.

This paper makes two main contributions:
• We describe the design and implementation of a reliable

write-back file cache on Intel PCs. We call this theRio
file cache (Rio stands for RAM I/O). An earlier study
showed how to implement a write-back file cache on
Digital Alpha workstations that is as robust against soft-
ware errors as a write-through file cache [7]. The earlier
study useswarm reboot, which writes file cache data to
disk during reboot. Unfortunately, warm reboot relies
on several Alpha-specific hardware features, such as a
reset button that does not erase memory. In this paper,
we use a new software technique calledsafe sync that
writes dirty file cache data reliably to disk during the
last stage of a crash. Safe sync requires no hardware
support and can be used on a wide variety of platforms.

• We present a detailed case study of using software fault
injection to systematically improve the robustness of a
large software system through several iterations. A key
feature of our methodology is using quantitative data to
guide the design and implementation of the system. At
each iteration, we use fault injection to evaluate the reli-
ability of our design, identify vulnerabilities, and pro-
vide quantitative results that help select techniques to
address these vulnerabilities. We find that several
design iterations are needed to reach our reliability
goal, because the first iteration may introduce new bugs
or leave secondary vulnerabilities hidden. Another fea-
ture of our methodology is that we use fault injection to
remove faults on real systems, unlike prior simulation-
based fault removal studies [12]. Since we inject faults
into real systems, we can accurately characterize the
system failure process and fault propagation without the
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performance overheads of simulation-based tools.

2 Experimental Methodology
Our experiments are performed on PCs running the

FreeBSD 2.2.7 operating system [18]. Each PC has an
Intel Pentium processor, 128 MB of memory, a 2 GB IDE
hard drive, and the Phoenix 4.0 BIOS. We quantify reli-
ability for a design by injecting various faults into a run-
ning operating system, letting it crash and reboot, and
measuring how frequently the file system is corrupted.
Corruption rate is the fraction of crashes that corrupt file
data. The following sections describe the faults we inject
into the operating system, how we inject faults, and how
we detect file system corruption.
2.1 Description of Faults

This section describes the types of faults we inject into
the operating system. Our primary goal in designing our
fault model is to generate awide variety of operating sys-
tem crashes. Our models are derived from studies of com-
mercial operating systems and databases [27, 26, 17] and
from prior models used in fault-injection studies [4, 15,
14, 7]. The faults we inject range from low-level hardware
faults such as flipping bits in memory to high-level soft-
ware faults such as memory allocation errors. We concen-
trate on software faults because studies have shown that
software has become the dominant cause of system out-
ages [10]. We classify injected faults into three categories:
bit flips, low-level software faults, and high-level software
faults.

The first category of faults flips random bits in the ker-
nel’s address space [4, 14]. We target three areas of the
kernel’s address space: thetext, heap, and stack. These
faults are easy to inject, and they cause a variety of differ-
ent crashes. They are the least realistic of our bugs, how-
ever. It is difficult to relate a bit flip with a specific error in
programming, and most hardware bit flips would be
caught by parity on the data or address bus.

The second category of fault changes individual
instructions in the kernel text segment. These faults are
intended to approximate the assembly-level manifestation
of real C-level programming errors [15]. We corrupt
assignment statements by changing thesource or destina-
tion register. We corrupt conditional constructs by deleting
branches. We also deleterandom instructions (both
branch and non-branch).

The last and most extensive category of faults imitate
specific programming errors in the operating system [26].
These are targeted more at specific programming errors
than the previous fault category. We inject aninitialization
fault by deleting instructions responsible for initializing a
variable at the start of a procedure [15, 17]. We inject
pointer corruption by corrupting the addressing bytes of
instructions which access operands in memory [26, 17].
We either flip a bit within the addressing-form specifier
byte (ModR/M) or the scale, index or base (SIB) byte fol-
lowing the instruction opcode [2]. We do not corrupt the
stack pointer registers (i.e.esp andebpregisters) as these

are used to access local variables instead of as a pointer
variable. We inject anallocation management fault by
modifying the kernel’s malloc procedure to occasionally
free the newly allocated block of memory after a delay of
0-64 ms. Malloc is set to inject this error every 1000-4000
times it is called; this fault occurs approximately every 10
seconds on our system. We inject acopy overrun fault by
modifying the kernel’s data copy procedures to occasion-
ally increase the number of bytes they copies. The length
of the overrun is distributed as follows: 50% corrupt one
byte; 44% corrupt 2-1024 bytes; 6% corrupt 2-4 KB. This
distribution was chosen by starting with the data gathered
in [26] and modifying it according to our specific platform
and experience. The copy routines are set to inject this
error every 1000-4000 times it is called; this fault occurs
approximately every 5 seconds on our system. We inject
off-by-one errors by changing conditions such as > to >=,
< to <=, and so on. We mimic commonsynchronization
errors by randomly causing the procedures that
acquire/free a lock to return without acquiring/freeing the
lock. We injectmemory leaks by modifying free() to occa-
sionally return without freeing the block of memory. We
inject interface errors by corrupting one of the arguments
passed to a procedure.

We collect data on 100 crashes (each using a different
random seed) for each of the 15 fault types above for each
of the five designs in this paper—this represents about 8
machine-months of continuous operating system crashes.
Fault injection cannot mimic the exact behavior of all real-
world operating system crashes. However, the wide variety
of faults we inject (15 types), the random nature of the
faults, and the sheer number of crashes we performed
(7500) give us confidence that our experiments cover a
wide range of real-world crashes.
2.2 Injecting Faults

Our fault injection tool uses object-code modification
to inject bugs into the kernel text. It is embedded into the
kernel and, when triggered, will select an instruction in the
kernel text and corrupt it. Some fault types, such as mem-
ory leaks, are implemented by modifying the relevant ker-
nel routines (e.g. malloc) to occasionally fail when the
fault is triggered. The fault trigger and injection location
within the kernel text are determined by a random seed.
We do not inject fault into the recovery and fault-tolerant
code we added into the system.

Unless otherwise stated, we inject 10 faults for each
run to increase the chance of triggering a fault. Most
crashes occur within 10 seconds from the time the fault
was injected. If a fault does not crash the operating system
after fifteen minutes, we restart the system and discard the
run; this happens about 40% of the time. Note that faults
that leave the system running will corrupt data on disk for
both write-back and write through file caches, so these
runs do not change the relative reliability between file
caches.



2.3 Detecting Corruption after a Crash
We run a repeatable, synthetic workload called

memTest to detect file system corruption.memTest gener-
ates a repeatable stream of file and directory creations,
deletions, reads, and writes, reaching a maximum file set
size of 128 MB. Actions and data inmemTest are con-
trolled by a pseudo-random number generator. After each
iteration,memTest records its progress in a status file on a
network disk that is not affected by the fault injection
experiments. After the system crashes, we reboot the sys-
tem and runmemTest until it reaches the point when the
system crashed. This reconstructs the correct contents of
the test directory at the time of the crash, and we then
compare the reconstructed, correct contents with the
rebooted file system. The experiments are controlled by a
host connected to each test system via a serial link. The
control host logs relevant data (crash latencies, fault symp-
toms, etc.) for subsequent analysis.

3 Design Process
We follow an iterative approach, as described in [23],

to improve the robustness of a write-back file cache in the
presence of operating system errors (Figure 1). In each
iteration, we measure the reliability of the system using
the approach described in Section 2, analyze the fault
symptoms that lead to data corruption, and apply fault-tol-
erant mechanisms that address the fault symptoms. We use
software fault injection at each stage to provide quantita-
tive data to help guide our design. For example, we evalu-
ate the reliability of our system quantitatively to decide if
it meets our design goal. We also use the data collected
during fault injection to analyze and fix faults. Note that
we do not merely fix the faults we ourselves have injected.
Rather, we use the bugs we inject to reveal categories of
faults, then we fix the entire category.

Our goal is to make Rio (our write-back file cache) as
reliable as a write-through file cache. Write-through file
caches are considered very reliable against software

crashes because they propagate data immediately to disk,
and disks are not easily corrupted by operating system
crashes [25, 28, 7]. We configure FreeBSD to use a write-
through file cache, then measure the corruption rate to be
3.1% using the method described in Section 2. That is,
3.1% of the crashes corrupt some data in the file system.
Table 1 summarizes the corruption rate by fault category
of all our designs in this paper.

4 Design Iterations
This section describes the four design iterations we

went through to arrive at the final system. Each subsection
(4.1-4.4) describes the write-back file cache used in a
design iteration, presents results from the fault-injection
tests on that design, then analyzes the results to select
techniques to fix the revealed fault categories.

In all our designs, we modify the FreeBSD file cache
in two ways to be a pure write-back file cache. First,
FreeBSD normally writes dirty file data to disk every 30
seconds or when a full file block is written. We disable this
reliability-induced write-back, so the system only writes
data back to disk when dirty blocks are replaced in the file
cache. Second, FreeBSD normally limits the amount of

Figure 1: Design Process. The bold boxes represent the
stages that use fault injection data to guide the design process.

Initial write-back

measure reliability of design
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via fault injection tests
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Table 1: Comparing Reliability. This table shows how often
each type of fault corrupts data for a write-through file cache (our
reliability target) and the four designs for a reliable write-back file
cache.

Fault Type

Write-
 Thru
File

Cache

Write-Back File Caches

Default
FreeBSD

 Sync

Basic
Safe
Sync

Enhanced
Safe Sync

BIOS
Safe
Sync

text 3 51 7 5 2

stack 0 3 3 2 0

heap 5 28 8 3 1

initialization 10 45 9 7 4

delete ran-
dom inst. 4 43 8 2 4

dest. reg. 4 42 9 5 2

source reg. 4 43 10 3 1

delete
branch 4 51 14 4 5

pointer 3 38 5 4 2

allocation 0 100 5 0 0

copy overrun 4 36 1 3 2

synchroniza-
tion 0 3 1 0 0

off-by-one 4 59 16 9 3

mem. leak 0 0 0 0 0

 interface 1 47 8 3 2

Total
of 1500

46
(3.1%)

589
(39%)

104
(6.9%)

50
(3.3%)

28
(1.9%)



dirty file cache data to 10% of available system memory.
We increase this limit by allowing dirty file data to migrate
from the file cache to the virtual memory system, as is
done in memory-mapped file systems [5].
4.1 Design Iteration 1: Default FreeBSD Sync
4.1.1  Design

We start the design process with the default sync used
in FreeBSD. Sync refers to the routine that writes dirty
file-cache data to disk during a crash. FreeBSD’s default
sync routine examines all blocks in the file cache and
writes dirty blocks to disk using normal file system rou-
tines.

4.1.2  Results and Analysis
Unfortunately, the default FreeBSD sync is not very

robust during operating system crashes. As shown in Table
1, 39% of crashes corrupted some file system data when
using the default FreeBSD sync. This corruption rate is 13
times as high as that of a write-through file cache.

We next examine the corrupted runs in greater detail,
focusing on where the faults are injected into the system
and how the system crashes. We determine how the system
crashes by looking at the crash messages and tracing fault
propagation with the aid of the FreeBSD kernel debugger.
Our fault-injection tool helps by printing the kernel routine
name and location of corrupted code. We use this informa-
tion to divide the fault symptoms into categories:
• Hang before sync: Most data corruptions occur because

the system hangs and fails to call the sync routine.
Many workstations have a reset key that allows the user
to drop the system into the console prompt. The user
can then issue a sync command directly or initiate
recovery using a user-written routine. But most PCs do
not have such a feature, and those that are equipped
with a reset switch typically erase memory (including
dirty file cache data).

• Page fault during sync: Sync often fails because it
encounters a page fault while trying to write dirty file
cache data to disk. The page fault occurs when the oper-
ating system accesses unmapped data or mapped data
with the wrong permission settings. It can also happen
when the code is invalid or unmapped. The FreeBSD
sync routine uses many different kernel routines and
data structures (e.g. mounted file system list, vnode data
structures, buffer hash list), so this fault is quite com-
mon.

• Buffer locked during sync: FreeBSD’s sync routine
obeys the locking protocol used during normal opera-
tion. It does not write to disk any file cache blocks that
are locked, so data in these blocks are lost.

• Double fault: The Pentium processor calls a double-
fault handler if it detects an exception while servicing a
prior exception [2]. The processor will reset and aban-
don sync if another exception occurs when the double
fault handler is being serviced.

• File system errors: Our tool may inject faults into any
part of the kernel. Faults that are injected into file sys-

tem routines often cause data corruption. For example,
the file system’s write routine might be changed to write
to the wrong part of the file. We do not attempt to fix
this fault symptom because the write-through file cache
is also susceptible to these errors.

• Device Timeout: Sync sometimes fails because it expe-
riences repeated device timeouts when writing to the
hard drive.

• Unknown: A few data corruptions are due to unknown
causes. For these corruptions, the sync routine appears
to be successful, and the injected bugs appear to be
benign. We do not attempt to overcome this problem
because of the lack of information and the low fre-
quency of this fault symptom.
Table 2 summarizes the categories of fault symptoms

and some potential solutions we developed (discussed in
the next section) to reduce the vulnerability of the system
to that fault symptom.
4.2 Design Iteration 2: Basic Safe Sync
4.2.1  Design

A write-back file cache must do two steps to write dirty
data back to disk during a crash. First, the system must
transfer control to the sync routine. Second, the sync rou-
tine must write dirty file data successfully to disk. Most of
the corruptions experienced using the default FreeBSD
sync fail one of these two steps.Hang before sync fails to
transfer control to the sync routine during a crash. Most of
the other fault symptoms transfer control to sync but expe-
rience an error during sync.

We address errors in these two steps separately. First,
we must make it more likely that the system will success-
fully transfer control to the sync routine during a crash. To
fix hang before sync, we use a software reset key that calls
sync when pressed. We modify the low-level keyboard
interrupt handler of FreeBSD to call sync whenever it
detects a certain key sequence (e.g. control-alt-delete).
This addresses the dominant fault symptom in Table 2.

Second, we must make it more likely that the sync rou-
tine, once called, will write dirty file data successfully to

Table 2: Fault Symptoms for Default FreeBSD Sync.

Fault Symptom
# of

Corruptions

Solutions Used in
the Next Design
(Section 4.2.1)

hang before sync 268 (17.9%) software reset key

page fault during sync 163 (10.9%) registry, safe sync

buffer locked during sync 89 (5.9%) registry, safe sync

double fault 39 (2.6%) disable interrupt in
safe sync

file system error 25 (1.7%)

device timeout 3 (0.2%)

unknown 2 (0.1%)

Total of 1500 589 (39.3%)



disk. Default FreeBSD sync fails this step because it
depends on many parts of the kernel. The default FreeBSD
sync calls many routines and uses many different data
structures. Sync fails ifany of the routines or data struc-
tures are corrupted. To make sync more robust, we must
minimize the scope of the system that it depends on.

To minimize data dependencies, we implement infor-
mational redundancy [13] by creating a new data structure
called theregistry. The registry contains all information
needed to find, identify, and write all file cache blocks. For
each block in the file cache, the registry contains the phys-
ical memory address, file ID (device number and inode
number), file offset, and size. The registry allows sync to
operate without using previously needed kernel data struc-
tures, such as file system and disk allocation data. The reg-
istry is wired in memory to reduce the likelihood of page
faults during sync. Registry information changes relatively
infrequently during normal operation, so the overhead of
maintaining it is low.

We replace FreeBSD’s default sync routine with a new
routine (calledsafe sync) that uses the registry when writ-
ing data to disk. Safe sync examines all valid entries in the
registry and writes dirty file cache data directly to disk. By
using information in the registry, safe sync does not
depend on normal file system routines or data structures.
Safe sync also takes additional precautions to increase its
chances of success. First, safe sync operates below the
locking protocol to avoid being stymied by a locked buffer.
Second, safe sync disables interrupts to reduce the likeli-
hood of double faults while writing to disk.

In addition to adding the registry and using a new sync
routine, we also use the virtual memory system to protect
file cache data from wild stores [7]. We turn off the write-
permission bits in the page table for file cache pages, caus-
ing the system to generate protection violations for unau-
thorized stores. File cache procedures must enable the
write-permission bit in the page table before writing a
page and disable writes afterwards.

4.2.2  Results and Analysis
Fault injection tests on the new design show substantial

improvement over the default FreeBSD sync. Table 1
shows that the new design has a corruption rate of 6.9%,
which is six times better than the default FreeBSD sync.
However, it still has twice as many corruptions as a write-
through file cache. Table 3 breaks down the fault symp-
toms for our current design. The fault symptoms are very
similar to those in Table 2, but the corruption rates are
reduced significantly due to the fault-tolerant measures
introduced in Section 4.2.1. We analyze the fault symp-
toms from this design to see how we can make safe sync
more robust in the next iteration:
• Hang before sync: Table 3 shows that the reset button

reduces the corruption rates substantially from the
default FreeBSD sync (from 17.9% to 3.0%). We exam-
ine the remaining cases and the keyboard interrupt han-
dler to determine what causes the reset key to fail. The
dominant reason is that FreeBSD sometimes masks

keyboard interrupts. If the system hangs while keyboard
interrupts are masked, the reset key will not transfer
control to safe sync. To fix this, we add a watchdog
timer to the system timer interrupt handler [13]. The
system timer interrupt handler watches for pending key-
board interrupts and calls safe sync if the keyboard
interrupt does not get serviced for a long time. For five
of the corruptions, the fault was injected into the termi-
nal output routine, and safe sync failed when it tried to
print some debugging information. We fix this fault by
disabling debugging print statements during safe sync.

• File system error: Again, we do not attempt to fix this
fault symptom because the write-through file cache is
also susceptible to these errors. Note that the corruption
rate for file system errors is similar between Table 2 and
Table 3. The slight differences are due to the non-deter-
minism inherent to testing a complex, timing-dependent
system.

• Page fault during sync: This fault symptom occurs for a
variety of reasons, and we develop a variety of solutions
to fix it. For example, some faults corrupt the Intel seg-
ment registers that are used by some instructions in safe
sync. To fix this error, we can re-initialize the segment
registers to their correct value at the beginning of safe
sync. Other faults cause wild stores to write over kernel
code. To fix this error, we can map the kernel code as
read-only (of course, our fault injector can still modify
kernel code).

• Data corruption: Some faults corrupted data in the file
cache before crashing the system. For these runs, safe
sync completed successfully but wrote out the cor-
rupted data. While investigating the source of this cor-
ruption, we uncovered a bug in FreeBSD’s protection
code that sometimes allowed wild stores to overwrite
the file cache and kernel code.

• Double fault: This bug occurs when part of the stack
segment is unmapped by the injected fault but the TLB
is not invalidated. The system will continue to function
until the stack pointer advances beyond the valid page
in the TLB, and encounter multiple page faults when it
tries to fault in subsequent pages from the bogus stack.
To fix this, we pre-allocate a stack for safe sync during

Table 3: Fault Symptoms for Basic Safe Sync.

Fault Symptom
# of

Corruptions
Solutions Used in the Next

Design (Section 4.3.1)

hang before sync 45 (3.0%) watchdog timer, no print

file system error 24 (1.6%)

page fault during
sync 18 (1.2%) read-only text, private stack,

restore segment registers

data corruption 11 (0.7%) fix VM protection

double fault 4 (0.3%) private stack

device timeout 2 (0.1%)

Total of 1500 104 (6.9%)



bootup and wire it in memory. Safe sync’s first action is
to switch to this private stack.

4.3 Design Iteration 3: Enhanced Safe Sync
4.3.1  Design

Our next design improves on the basic safe sync design
from the last iteration using the fixes suggested in Section
4.2.2. First, we add a watchdog timer to call safe sync if
the system hangs with keyboard interrupts disabled. Sec-
ond, we disable print statements during safe sync to
remove dependencies on the print routines. Third, we re-
initialize the segment registers to their proper value.
Fourth, we map the kernel code as read-only and fix a bug
in FreeBSD’s protection code. Finally, we switch to a pre-
allocated, wired stack at the beginning of safe sync to
remove dependencies on the system stack.

4.3.2  Results and Analysis
We conduct fault injection tests on the new design and

find that it has a corruption rate of 3.3%, versus 6.9% for
the basic safe sync design of iteration 2. Enhanced safe
sync is nearly as reliable as a write-through file cache.
Table 4 breaks down the fault symptoms of our current
design.

There are two basic dependencies remaining in our
system. First, all kernel code, including safe sync, runs in
virtual-addressing mode with paging enabled [2], which
uses virtual addresses to access code and data. Because
safe sync accesses virtual addresses, it depends on the
FreeBSD virtual memory code and data (such as the dou-
bly linked address map entries [20]). To fix this depen-
dency, we must configure the processor to use physical
addresses during safe sync.

Second, safe sync uses the low-level kernel device
drivers to write data to disk. The FreeBSD disk device
drivers are quite complex, and there is no simple disk
device driver routine to initialize the device driver state or
reset the hard drive and disk controller card. Our safe sync
code can thus hang or timeout whenever it access the disk.
To remove this dependency, we must bypass the complex
device driver for a simpler disk interface.

4.4 Design Iteration 4: BIOS Safe Sync
4.4.1  Design

In our final design, we want to remove dependencies
on the virtual memory system and device drivers. We
remove dependencies on the virtual memory system by
switching the processor to use physical addresses [2]. We
remove dependencies on the kernel device drivers by using
the BIOS interface to the disk [9]. BIOS (Basic Input/Out-
put Service) routines are implemented in the firmware of
the I/O controller. Both physical addressing and BIOS rou-
tines have limited features and are used normally to load
the operating system from disk during system boot. Mod-
ern operating systems like FreeBSD use virtual addressing
and replace the BIOS with their own device drivers.

Our final design replaces the safe sync code used in
design iteration 3. The new safe sync procedure is summa-
rized below (the full source code is available at
http://www.eecs.umich.edu/Rio):
• Part 1: Initial setup: we followed the instructions out-

lined in Section 8.8.1 of [2], which includes setting up a
linearly mapped segments for data and code, setting the
global (code/data) and interrupt descriptor table regis-
ters for real-mode operation, and making a long jump to
the real-mode switch code.

• Part 2: Mode switching: the real-mode switch code dis-
ables paging, loads the segment registers with real-
mode segments, and clears the paging enable bit before
making a jump to the real-mode safe sync code. This
jump brings the processor to real-mode operation.

• Part 3: Real-mode setup: BIOS safe sync begins by ini-
tializing the remaining segment registers, setting the
interrupt controllers to real-mode operation [1], and ini-
tializing the video console and disk controller using the
BIOS interface [9]. The rest of BIOS safe sync is fairly
straightforward and is generated from the C version of
enhanced safe sync. We modify the resulting assembly
code by adding address/data overrides [2] and using a
large data segment (i.e. big real-mode [22]) to access
data beyond the first 1 MB of memory. During sync, we
copy the file cache data into the lower 1 MB of memory
because the BIOS disk interface uses 16-bit segment
addressing.
Part 1 of BIOS safe sync is a C function and can be

invoked directly by the FreeBSD kernel. The rest of BIOS
safe sync code is written in assembly and is not accessible
to the FreeBSD kernel, because it resides in unmapped
physical memory pages that are hidden from the FreeBSD
page allocator.

4.4.2  Results and Analysis
We conduct fault injection tests on our BIOS safe sync.

Table 5 breaks down the fault symptoms for our latest
design. The overall corruption rate is 1.9%, which is 40%
more reliable than a write-through file cache. We speculate
that Rio is able to achieve higher reliability than a write-
through file cache because the virtual memory protection

Table 4: Fault Symptoms For Enhanced Safe Sync.

Fault Symptom
# of

Corruptions
Solutions Used in the

Next Design (Section 4.4.1)

hang before sync 21 (1.4%) BIOS I/O, real-mode
addressing

file system error 20 (1.3%)

page fault during
sync 4 (0.3%) real-mode addressing

device timeout 3 (0.2%) BIOS I/O

data corruption 2 (0.1%)

Total of 1500 50 (3.3%)



described in Section 4.2.1 can protect the file cache (and
thus indirectly protect the disk) from wild stores.

It may be possible to improve upon BIOS safe sync by
adding a hardware reset key and modifying the PC firm-
ware and motherboard to not initialize memory on
reset/reboot. This would allow the system to do a complete
reset, then to perform a warm reboot as was done in [7].
Doing so should fix the remaining hangs before sync and
device timeouts, but it would incur significant system cost.

5 Discussion
We would like to address the scalability, portability,

and cost of our design approach.
• Scalability: Our target system is fairly representative of

a medium-size software development project. The rele-
vant operating system code (file system, VM, interrupt,
etc.) spans approximately 40 files and 20,000 lines of
code. We added 3 files and 2000 lines of code. The
development effort took one man-year. This includes
the substantial time it took to understand FreeBSD and
the Intel PC architecture (microarchitecture, assembly
language, system BIOS). Since our experimental setup
was fully automated and we had sufficient machines to
run the experiments in parallel, most of our time was
devoted to uncovering fault symptoms and debugging
code. The analysis process was largely manual, though
we wrote several tools to expedite this process. Our
design approach is applicable to many software devel-
opment projects as long as there are enough resources
to perform the fault injection experiments and sufficient
expertise to implement the fault-tolerant mechanisms.

• Portability: We demonstrated our design methodology
on FreeBSD running on Intel PCs. We have also tried
this approach on a limited scale when implementing a
reliable write-back file cache on Digital Alpha worksta-
tions [7] and the Postgres database [19]. We are confi-
dent that our approach is portable to other systems.

• Cost: Our design took four iterations, requiring 8
machine-months of testing. We tackled the dominant
fault symptoms in the first iteration, with diminishing
returns on successive iterations. Using software fault
injection provided quantitative data on when our system
reached our reliability goal. For example, we could
have stopped after enhanced safe sync, because its cor-
ruption rate was statistically indistinguishable from a

write-through file cache. Choosing a reliability goal is a
tradeoff between design cost and application require-
ments.

6 Performance
Table 6 compares the performance of our reliable

write-back file cache (Rio) with different Unix file systems
(UFS), each providing different guarantees on when data
is made permanent. UFS is the default FreeBSD Unix file
system. It writes data asynchronously to disk when 64 KB
of data has been collected, when the user writes non-
sequentially, or when the update daemon flushes dirty file
data (once every 30 seconds). UFS writes metadata syn-
chronously to disk to enforce ordering constraints. The
write-through file cache writes data and metadata synchro-
nously to disk. The last row shows the performance of the
Rio write-back file cache.

We run two workloads, cp+rm and Andrew. cp+rm
recursively copies then removes the FreeBSD source tree
(23 MB). Andrew models a software development work-
load. All results represent an average of 20 runs.

Table 6 shows that our Rio file cache prototype is 5-9
times as fast as a write-through file cache. It is also 1.5-2.7
times as fast as the standard Unix file system. Rio is
roughly equivalent in reliability to a write-through file
cache. Both Rio and a write-through file cache are more
reliable than standard UFS. UFS loses up to 30 seconds of
data on a crash, while Rio and a write-through file cache
typically lose no data on a crash.

7 Conclusions
We have presented a systematic and quantitative

approach for using software-implemented fault injection
to guide the design and implementation of a fault-tolerant
system. Our goal was to build a write-back file cache on
Intel PCs that was as reliable as a write-through file cache.
We followed an iterative approach to improve the robust-
ness of a write-back file cache in the presence of operating
system errors. In each iteration, we measured the reliabil-
ity of the system, analyzed the fault symptoms that led to
data corruption, and applied fault-tolerant mechanisms
that addressed the fault symptoms. The result of several
iterations was a design that improved reliability by a factor
of 21. The resulting write-back file cache is both more reli-
able (1.9% vs. 3.1% corruption rate) and 5-9 times as fast
as a write-through file cache.

Table 5: Fault Symptoms For BIOS Safe Sync.

Fault Symptom # of Corruptions
Possible
Solutions

file system errors 17 (1.1%)

hang before sync 5 (0.3%) hardware reset

data corruption 4 (0.3%)

device timeout 2 (0.1%) warm reboot

Total of 1500 28 (1.9%)

Table 6: Performance Comparison. All performance
measurements were made on a PC with a 400 MHz Pentium-II
processor, 128 MB of 100 MHz SDRAM, and a IBM DCAS-
34330W SCSI disk (with the disk write-cache enabled).

File System cp+rm Andrew

UFS 54.0 seconds 1.9 seconds

write-through file cache 186.3 seconds 6.7 seconds

write-back file cache (Rio) 19.9 seconds 1.3 seconds
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