
The Design and Verification
of the Rio File Cache

Wee Teck Ng and Peter M. Chen, Senior Member, IEEE

AbstractÐToday's file systems are limited in speed and reliability by memory's vulnerability to operating system crashes. Because

memory is viewed as unsafe, systems periodically write modified file data back to disk. These extra disk writes lower system

performance and the delay period before data is safe lowers reliability. The goal of the Rio (RAM I/O) file cache is to make ordinary

main memory safe for persistent storage by enabling memory to survive operating system crashes. Reliable main memory enables the

Rio file cache to be as reliable as a write-through file cache, where every write is safe instantly, and as fast as a pure write-back file

cache, with no reliability-induced writes to disk. This paper describes the systematic, quantitative process we used to design and verify

the Rio file cache on Intel PCs running FreeBSD and the reliability and performance of the resulting system.

Index TermsÐFile systems, reliable main memory, software fault injection.

æ

1 INTRODUCTION

A modern storage hierarchy combines random-access
memory, magnetic disk, and possibly optical disk or

magnetic tape to try to keep pace with rapid advances in
processor performance. I/O devices such as disks and tapes
are considered reliable places to store persistent data such
as user files. However, random-access memory is viewed as
an unreliable place to store persistent data because it is
vulnerable to power outages and operating system crashes.

Memory's vulnerability to power outages is straightfor-

ward to understand and fix. A $100 uninterruptible power

supply can keep a system running long enough to dump

memory to disk in the event of a power outage [3], or one

can use non-volatile memory such as Flash RAM [73]. We

do not consider power outages further in this paper.
Memory's vulnerability to operating system crashes is

more challenging. Most people would feel nervous if their

system crashed while the sole copy of important data was in

memory, even if the power stayed on [68], [63], [28].

Consequently, file systems write data periodically to disk

and transaction processing applications view transactions

as committed only when data is written to disk.
Memory's perceived unreliability forces a trade-off

between performance and reliability (Fig. 1):

. Applications requiring high reliability, such as
transaction processing, write data synchronously
through to disk, but this limits performance to that
of disk. While optimizations such as logging and
group commit can increase effective throughput [58],

[59], [26], [18], they work well only when there are
concurrent or delayed operations that can be
grouped together and they cannot improve the
latency of individual operations.

. Most file systems mitigate the performance lost in
synchronous, reliability-induced writes by writing
data asynchronously to disk. This allows a greater
degree of overlap between CPU time and I/O time.
Unfortunately, asynchronous writes make no firm
guarantees about when the data is safe on disk; the
exact moment depends on the disk queue length and
disk speed. On these systems, users must resign
themselves to the fact that their data may not be safe
on disk when a write or close finishes.

. Many file systems improve performance further by
delaying some writes to disk in the hopes of the new
data being deleted or overwritten [54]. This delay is
often set to 30 seconds, which risks the loss of data
written within 30 seconds of a crash. Unfortunately,
1/3 to 2/3 of newly written data lives longer than 30
seconds [5], [27] and this data is written through to
disk under this policy. File systems differ in how
much data is delayed. For example, BSD 4.4 only
delays partially written blocks and then only until
the file is closed. Systems that delay more types of
data and have longer delay periods are better able to
decrease disk traffic, but risk losing more data.

. Applications that desire maximum performance use
a pure write-back scheme where data is written to
disk only when the memory is full [48]. This can only
be done by applications for which reliability is not
an issue, such as compilers that write temporary
files.

It is common for file systems to use a combination of

write-back strategies. For example, many Unix file systems

delay partially written file blocks while initiating asynchro-

nously writes immediately for complete file blocks. How-

ever, all these strategies suffer from the same basic trade-

off: Avoiding disk writes to achieve good performance

322 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 4, APRIL 2001

. W.T. Ng is with Bell Laboratories, Rm. 2A-318, 600 Mountain Ave.,
Murray Hill, NJ 07974. E-mail: weeteck@research.bell-labs.com.

. P.M. Chen is with the Computer Science and Engineering Division,
Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI 48109-2122.
E-mail: pmchen@eecs.umich.edu.

Manuscript received 13 July 1999; revised 10 July 2000; accepted 23 Jan.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 110440.

0018-9340/01/$10.00 ß 2001 IEEE

inevitably leads to a loss of reliability. The goal of the Rio

(RAM I/O) file cache is to break this fundamental trade-off

by improving the reliability of memory to be comparable to

the reliability of disk. Reliable main memory allows Rio to

use a pure write-back strategy (no reliability-induced writes

to disk) while achieving reliability equivalent to that of a

write-through file cache.
We implement the Rio file cache in the FreeBSD

operating system (version 2.2.7) by starting with the default

write-back file cache and following an iterative, quantitative

approach to improve its robustness during operating

system crashes. In each iteration, we measure the reliability

of the system using fault injection, analyze the fault

symptoms that lead to data corruption, and apply fault-

tolerant mechanisms that address the fault symptoms. The

result of several iterations is a design that improves

reliability by a factor of 21 over the default write-back

cache. The resulting Rio file cache is at least as reliable as a

write-through file cache (1.9 percent vs. 3.1 percent

corruption rate) and 4-37 times as fast as the standard Unix

file system.
This paper makes two main contributions:

. We describe the design, implementation, and per-
formance of a reliable, write-back file cache on Intel
PCs, using software techniques we develop to make
file cache data reliable against software errors. These
techniques are applicable to many platforms. An
earlier study showed how to implement a reliable
file cache on Digital Alpha workstations [15]. The
earlier study used warm reboot, which writes file
cache data to disk during reboot. Unfortunately,
warm reboot relies on several Alpha-specific hard-
ware features, such as a reset button that does not
erase memory, and is not applicable to most Intel
PCs. In this paper, we use a new software technique,
called safe sync, that writes dirty file cache data
reliably to disk during the last stage of a crash. Safe
sync is a general technique that requires no hard-
ware support and can be used on a wide variety of
platforms, including those with write-back CPU
caches and that erase memory during reboot. It is
also potentially less robust than warm reboot as it
writes important file cache data to disk while the
system is crashing. In this paper, we demonstrate
how we can systematically make safe sync as reliable
as a write-through file cache.

. We present a detailed case study of using software
fault injection to improve systematically the robust-
ness of a large software system through several
iterations. Software-implemented fault injection [34]
is used commonly to compare the robustness of
different systems [61], [69], [42], understand how
systems behave during a fault [16], [10], [39], and
validate fault-tolerant mechanisms [4], [31], [57],
[13]. However, there are very few case studies that
use fault injection for all three of these purposes to
guide the design and implementation of a fault-
tolerant system. In our study, we use fault injection
for all three of these purposes to improve iteratively
the fault tolerance of our reliable file cache. At each
iteration, we use fault injection to evaluate the
reliability of our design, identify vulnerabilities,
and provide quantitative results that help select
techniques to address these vulnerabilities.

2 QUANTIFYING RELIABILITY

A crucial aspect of our design process (Section 3) is its
quantitative nature. At each step in the design process, we
quantify reliability for the current design by injecting
various faults into a running operating system, letting it
crash and reboot, and measuring how frequently the file
system is corrupted. Corruption rate is the fraction of crashes
where there is any corrupted file data. This section
describes the faults we inject into the operating system
and how we detect file system corruption. We implement
our system on PCs running the FreeBSD 2.2.7 operating
system [49]. Each PC has an Intel Pentium processor, 128
MB of memory, a 2 GB IDE hard drive, and the Phoenix 4.0
BIOS.

2.1 Description of Faults

We first describe the types of faults we inject into the
operating system. Our primary goal in designing these
faults is to generate a wide variety of operating system
crashes. Our models are derived from studies of commer-
cial operating systems and databases [66], [65], [43] and
from prior models used in fault-injection studies [10], [39],
[38], [15]. The faults we inject range from low-level
hardware faults, such as flipping bits in memory, to high-
level software faults, such as memory allocation errors.
Table 1 shows examples of how how real-world program-
ming errors can manifest themselves as some of the faults
we inject in our experiments.

NG AND CHEN: THE DESIGN AND VERIFICATION OF THE RIO FILE CACHE 323

Fig. 1. Memory's unreliability forces trade-off between performance and reliability. The longer the interval between when new data enter the file

cache and when it is written to disk, the better the performance, but the worse the reliability.

We concentrate on software faults because studies have
shown that software has become the dominant cause of
system outages [23], [24]. We classify injected faults into
three categories: bit flips, low-level software faults, and
high-level software faults. Unless otherwise stated, we
inject 10 faults for each run to increase the chances that a
fault will be triggered. Most crashes occurred within
10 seconds from the time the fault was injected. If a fault
does not crash the operating system after 15 minutes, we
restart the system and discard the run; this happens about
40 percent of the time. Note that faults that leave the system
running will corrupt data on disk for both write-back and
write-through file caches, so these runs do not change the
relative reliability between file caches.

The first category of faults flips random bits in the
kernel's address space [10], [38]. We target three areas of the
kernel's address space: the text, heap, and stack. These faults
are easy to inject and they cause a variety of different
crashes. They are the least realistic of our bugs, however. It
is difficult to relate a bit flip with a specific error in
programming and most hardware bit flips would be caught
by parity on the data or address bus.

The second category of fault changes individual instruc-
tions in the kernel text segment. These faults are intended to
approximate the assembly-level manifestation of real
C-level programming errors [39]. We corrupt assignment
statements by changing the source or destination register. We
corrupt conditional constructs by deleting branches. We also
delete random instructions (both branch and nonbranch).

The last and most extensive category of faults imitate
specific programming errors in the operating system [65].
These are targeted more at specific programming errors

than the previous fault category. Table 1 provides a
summary of the programming errors we inject. The
implementation details can be found in [52].

We collect data on 100 crashes (each using a different
random seed) for each of the 15 fault types above for each of
the five designs in this paperÐthis represents about eight
machine-months of continuous operating system crashes.
Fault injection cannot mimic the exact behavior of all real-
world operating system crashes. However, the wide variety
of faults we inject (15 types), the random nature of the
faults, and the sheer number of crashes we performed
(7,500) give us confidence that our experiments cover a
wide range of real-world crashes.

2.2 Detecting Corruption after a Crash

We run a repeatable, synthetic workload called memTest to
detect file system corruption. memTest generates a repea-
table stream of file and directory creations, deletions, reads,
and writes, reaching a maximum file set size of 128 MB.
Actions and data in memTest are controlled by a
pseudorandom number generator. After each iteration,
memTest records its progress in a status file on a network
disk that is not affected by the fault injection experiments.
After the system crashes, we reboot the system and run
memTest until it reaches the point when the system crashed.
This reconstructs the correct contents of the test directory at
the time of the crash and we then compare the recon-
structed, correct contents with the rebooted file system. The
experiments are controlled by a host connected to each test
system via a serial link. The control host logs relevant data
(crash latencies, fault symptoms, etc.) for subsequent
analysis.

324 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 4, APRIL 2001

TABLE 1
Relating Faults to Programming Errors

This table shows examples of how real-world programming errors can manifest themselves as some of the faults we inject in our experiments. None
of the errors shown above would be caught during compilation.

3 DESIGN PROCESS

We follow an iterative approach [62] to improve the

robustness of a write-back file cache in the presence of

operating system errors (Fig. 2). In each iteration, we

measure the reliability of the system using the approach

described in Section 2, analyze the fault symptoms that lead

to data corruption, and apply fault-tolerant mechanisms

that address the fault symptoms. We use software fault

injection at each stage to provide quantitative data to help

guide our design. For example, we evaluate the reliability of

our system quantitatively to decide if it meets our design

goal. We also use the data collected during fault injection to

analyze and fix faults. Note that we do not merely fix the

faults we ourselves have injected. Rather, we use the bugs

we inject to reveal categories of faults, then we fix the entire

category.
Our goal is to make the Rio file cache as reliable as a

write-through file cache. Write-through file caches are

considered very reliable against software crashes because

they propagate data immediately to disk and disks are not

easily corrupted by operating system crashes [63], [68], [15].

We configure FreeBSD to use a write-through file cache,

then measure the corruption rate to be 3.1 percent using the

method described in Section 2. That is, 3.1 percent of the

crashes corrupt some data in the file system. Our reliability

goal for the Rio file cache is thus to achieve a corruption rate

as low or lower than 3.1 percent.
Table 2 summarizes the corruption rate by fault category

of all our designs in this paper.

NG AND CHEN: THE DESIGN AND VERIFICATION OF THE RIO FILE CACHE 325

Fig. 2. Design process.

TABLE 2
Comparing Reliability

This table shows how often each type of fault corrupts data for a write-through file cache (out reliability target) and the four designs for a reliable
write-back file cache. We conduct 1,500 crashes for each system (100 for each fault type). The last row shows the 95 percent confidence interval for
the mean corruption rate.

4 DESIGN ITERATIONS

This section describes the four iterations we go through to

design the Rio file cache. Each subsection (4.1-4.4) describes

the write-back file cache used in a design iteration, presents

results from the fault-injection tests on that design, then

analyzes the results to select techniques to fix the revealed

fault categories. Table 3 summarizes the four design

iterations. Each design iteration is labeled by the method

used to write data back to disk (a task known as ªsyncingº

the data to disk) during a crash because this is the major

determiner for the reliability of a write-back file cache.
In all our designs, we modify the FreeBSD file cache in

two ways to be a pure write-back file cache. First, FreeBSD

normally writes dirty file data to disk every 30 seconds or

when a full file block is written. We disable this reliability-

induced write, so the system only writes data back to disk

when dirty blocks are replaced in the file cache. Second,

FreeBSD normally limits the amount of dirty file cache data

to 10 percent of available system memory. We increase this

limit by allowing dirty file data to migrate from the file

cache to the virtual memory system, as is done in memory-

mapped file systems [11].

4.1 Design Iteration 1: Default FreeBSD Sync

4.1.1 Design

We start the design process with the default sync used in
FreeBSD. FreeBSD's default sync routine examines all
blocks in the file cache and writes dirty blocks to disk
using normal file system routines.

4.1.2 Results and Analysis

Unfortunately, the default FreeBSD sync is not very robust
during operating system crashes. As shown in Table 2,
39 percent of crashes corrupted some file system data when
using the default FreeBSD sync. This corruption rate is
13 times as high as that of a write-through file cache. We
also observe from Table 2 that there is no overlap between
the 95 percent confidence intervals of default FreeBSD sync
and the write-through file cache. This can be seen in Fig. 3,
which depicts the mean corruption rate and 95 percent
confidence intervals for the write-through file cache and all
our designs. Thus, we conclude with 95 percent confidence
that a write-back file cache that uses the default FreeBSD
sync is less reliable than the write-through file cache.

We next examine the corrupted runs in greater detail,
focusing on where the faults are injected into the system
and how the system crashes. We determine how the system

326 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 4, APRIL 2001

TABLE 3
Design Iterations for the Rio File Cache

Fig. 3. Comparing Design Alternatives. This figure plots the 95 percent confidence interval of mean corruption rate for the write-through file cache

and all our designs. We use the approximate visual test [35] to compare our designs.

crashes by looking at the crash messages and tracing fault

propagation with the aid of the FreeBSD kernel debugger.

Our fault-injection tool helps by printing the kernel routine

name and location of corrupted code. We use this

information to divide the fault symptoms into categories:

. Hang before sync: Most data corruptions occur
because the system hangs and fails to call the sync
routine. Many workstations have a reset key that
allows the user to drop the system into the console
prompt. The user can then issue a sync command
directly or initiate recovery using a user-written
routine. But, most PCs do not have such a feature
and those that are equipped with a reset switch
typically erase memory (including dirty file cache
data).

. Page fault during sync: Sync often fails because it
encounters a page fault while trying to write dirty
file cache data to disk. The page fault occurs when
the operating system accesses unmapped data or
mapped data with the wrong permission settings. It
can also happen when the code is invalid or
unmapped. The FreeBSD sync routine uses many
different kernel routines and data structures (e.g.,
mounted file system list, vnode data structures,
buffer hash list), so this fault is quite common.

. Buffer locked during sync: FreeBSD's sync routine
obeys the locking protocol used during normal
operation. It does not write to disk any file cache
blocks that are locked, so data in these blocks are
lost.

. Double fault: The Pentium processor calls a double-
fault handler if it detects an exception while
servicing a prior exception [33]. The processor will
reset and abandon sync if another exception occurs
when the double fault handler is being serviced.

. File system errors: Our tool may inject faults into any
part of the kernel. Faults that are injected into file
system routines often cause data corruption. For
example, the file system's write routine might be
changed to write to the wrong part of the file. We do
not attempt to fix this fault symptom because the

write-through file cache is equally susceptible to
these errors.

. Device Timeout: Sync sometimes fails because it
experiences repeated device timeouts when writing
to the hard drive.

. Unknown: A few data corruptions are due to
unknown causes. For these corruptions, the sync
routine appears to run successfully and the injected
bugs appear to be benign. We do not attempt to
overcome this problem because we lack sufficient
information and the frequency of this fault symptom
is very low.

Table 4 summarizes the categories of faults symptoms
and some potential solutions we developed (discussed in
Section 4.2.1) to reduce the vulnerability of the system to
each fault symptom.

4.2 Design Iteration 2: Basic Safe Sync

4.2.1 Design

A write-back file cache must do two steps to write dirty
data back to disk during a crash. First, the system must
transfer control to the sync routine. Second, the sync routine
must write dirty file data successfully to disk. Most of the
corruptions experienced using the default FreeBSD sync fail
one of these two steps. Hang before sync fails to transfer
control to the sync routine during a crash. Most of the other
fault symptoms transfer control to sync but experience an
error during sync.

We address errors in the two steps separately. First, we
must make it more likely that the system will successfully
transfer control to the sync routine during a crash. To fix
hang before sync, we use a software reset key that calls sync
when pressed. We modify the low-level keyboard interrupt
handler of FreeBSD to call sync whenever it detects a certain
key sequence (e.g., control-alt-delete). This addresses the
most common fault symptom in Table 4.

Second, we must make it more likely that the sync
routine, once called, will write dirty file data successfully to
disk. Default FreeBSD sync fails this step because it
depends on many parts of the kernel. The default FreeBSD
sync calls many routines and uses many different data
structures. Sync fails if any of the routines or data structures

NG AND CHEN: THE DESIGN AND VERIFICATION OF THE RIO FILE CACHE 327

TABLE 4
Categories of Fault Systems for Default FreeBSD Sync

are corrupted. To make sync more robust, we must
minimize the scope of the system that it depends on.

To minimize data dependencies, we implement informa-
tional redundancy [37] by creating a new data structure
called the registry. The registry contains all information
needed to find, identify, and write to disk all file cache
blocks. For each block in the file cache, the registry contains
the physical memory address, file ID (device number and
inode number), file offset, and size. The registry allows sync
to operate without using previously needed kernel data
structures, such as file system and disk allocation data. The
registry is wired in memory to reduce the likelihood of page
faults during sync. Registry information changes relatively
infrequently during normal operation, so the overhead of
maintaining it is low.

We replace FreeBSD's default sync routine with a new
routine (called safe sync) that uses the registry when writing
data to disk. Safe sync examines all valid entries in the
registry and writes dirty file cache data to disk. By using
information in the registry, safe sync does not depend on
normal file system routines or data structures. Safe sync
also takes additional precautions to increase its chances of
success. First, safe sync operates below the locking protocol
to avoid being stymied by a locked buffer. Second, safe sync
disables interrupts to reduce the likelihood of double faults
while writing to disk.

In addition to adding the registry and using a new sync
routine, we also use the virtual memory system to protect
file cache data from wild stores [15]. We turn off the write-
permission bits in the page table for file cache pages,
causing the system to generate protection violations for
unauthorized stores. File cache procedures must enable the
write-permission bit in the page table before writing a page
and disable writes afterwards.

4.2.2 Results and Analysis

Fault injection tests on basic safe sync show substantial
improvement over the default FreeBSD sync. Table 2 shows
that basic safe sync has a corruption rate of 6.9 percent,
which is six times better than the default FreeBSD sync.
However, it still has twice as many corruptions as a write-
through file cache. Fig. 3 shows that the 95 percent

confidence intervals of basic safe sync and the write-
through file cache do not overlap. We thus conclude, with
95 percent confidence, that this design is less reliable than a
write-through file cache.

Table 5 breaks down the fault symptoms for our current
design. The fault symptoms are very similar to those in
Table 4, but the corruption rates are reduced significantly
due to the fault-tolerant measures introduced in
Section 4.2.1. We analyze the fault symptoms from this
design to see how we can make safe sync more robust in the
next iteration:

. Hang before sync: Table 5 shows that the reset button
reduces the corruption rates substantially from the
default FreeBSD sync (from 17.9 percent to 3.0
percent). We examine the remaining cases and the
keyboard interrupt handler to determine what
causes the reset key to fail. The dominant reason is
that FreeBSD sometimes masks keyboard interrupts.
If the system hangs while keyboard interrupts are
masked, the reset key will not transfer control to safe
sync. To fix this, we add a watchdog timer to the
system timer interrupt handler [37]. The system
timer interrupt handler watches for pending key-
board interrupts and calls safe sync if the keyboard
interrupt does not get serviced for a long time. For
five of the corruptions, the fault was injected into the
terminal output routine and safe sync failed when it
tried to print some debugging information. We can
fix this fault by disabling debugging print state-
ments during safe sync.

. File system error: Again, we do not attempt to fix this
fault symptom because the write-through file cache
is also susceptible to these errors. Note that the
corruption rate for file system errors is similar
between Table 4 and Table 5. The slight differences
are due to the nondeterminism inherent in testing a
complex, timing-dependent system.

. Page fault during sync: This fault symptom occurs for
a variety of reasons and we develop a variety of
solutions to fix it. For example, some faults corrupt
the Intel segment registers that are used by some
instructions in safe sync. To fix this error, we can

328 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 4, APRIL 2001

TABLE 5
Categories of Fault Symptoms for Basic Safe Sync

reinitialize the segment registers to their correct
value at the beginning of safe sync. Other faults
cause wild stores to write over kernel code. To fix
this error, we can map the kernel code as read-only
(of course, our fault injector can still write over
kernel code).

. Data corruption: Some faults corrupted data in the file
cache before crashing the system. For these runs,
safe sync completed successfully, but wrote out the
corrupted data. While investigating the source of
this corruption, we uncovered a bug in FreeBSD's
protection code that sometimes allowed wild stores
to overwrite the file cache and kernel code.

. Double fault: This bug occurs when part of the stack
segment is unmapped by the injected fault but the
TLB is not invalidated. The system will continue to
function until the stack pointer advances beyond the
valid page in the TLB and will encounter multiple
page faults when it tries to fault in subsequent pages
from the bogus stack. To fix this, we preallocate a
stack for safe sync during bootup and wire it in
memory. Safe sync's first action is to switch to this
private stack.

4.3 Design Iteration 3: Enhanced Safe Sync

4.3.1 Design

Our next design improves on the basic safe sync design

from the last iteration using the fixes suggested in Section

4.2.2. First, we add a watchdog timer to call safe sync if the
system hangs with keyboard interrupts disabled. Second,

we disable print statements during safe sync to remove

dependencies on the print routines. Third, we reinitialize
the segment registers to their proper value. Fourth, we map

the kernel code as read-only and fix a bug in FreeBSD's

protection code. Finally, we switch to a preallocated, wired
stack at the beginning of safe sync to remove dependencies

on the system stack.

4.3.2 Results and Analysis

We conduct fault injection tests on the new design and find
that it has a corruption rate of 3.3 percent, versus 6.9 percent

for the basic safe sync design of iteration 2. Fig. 3 shows that

there is significant overlap between the 95 percent
confidence intervals of enhanced safe sync and the write-

through file cache and the mean corruption rate of our new

design falls in the confidence interval of the mean

corruption rate of the write-through file cache. We thus

conclude, with 95 percent confidence, that our new design

has comparable reliability as a write-through file cache; we

have thus reached our design goal of creating a write-back

file cache that is as reliable as a write-through file cache.
Although we have reached our reliability goal, we

choose to carry out one more design iteration to explore

the limits of reliability for write-back file caches. Table 6

breaks down the fault symptoms of enhanced safe sync.

Enhanced safe sync depends on two areas of kernel

functionality. First, all kernel code, including safe sync,

runs in virtual-addressing mode with paging enabled [33],

which uses virtual addresses to access code and data.

Because safe sync accesses virtual addresses, it depends on

the FreeBSD virtual memory code and data (such as the

doubly linked address map entries [56]). To fix this

dependency, we must configure the processor to use

physical addresses during safe sync.
Second, safe sync uses the low-level kernel device

drivers to write data to disk. The FreeBSD disk device

drivers are quite complex and there is no simple disk device

driver routine to initialize the device driver state or reset the

hard drive and disk controller card. Our safe sync code can

thus hang or timeout whenever it accesses the disk. To

remove this dependency, we must bypass the complex

device driver for a simpler disk interface.

4.4 Design Iteration 4: BIOS Safe Sync

4.4.1 Design

In our final design, we want to remove dependencies on the

virtual memory system and device drivers. We remove

dependencies on the virtual memory system by switching

the processor to use physical addresses [33]. We remove

dependencies on the kernel device drivers by using the

BIOS interface to the disk [22]. The BIOS (Basic Input/

Output Service) interface is implemented in the firmware of

the I/O controller. Both physical addressing and BIOS

routines have limited features and are used normally to

load the operating system from disk during system boot.

Modern operating systems like FreeBSD use virtual

addressing and replace the BIOS with their own device

drivers.

NG AND CHEN: THE DESIGN AND VERIFICATION OF THE RIO FILE CACHE 329

TABLE 6
Categories of Fault Symptoms for Enhanced Safe Sync

Our final design (BIOS safe sync) replaces the enhanced
safe sync code. The new safe sync procedure is summarized
below:

. Part 1: Initial setup: We follow standard procedure to
switch to real mode [33], which includes setting up
linearly mapped segments for data and code, setting
the global (code/data) and interrupt descriptor table
registers for real-mode operation, and making a long
jump to the real-mode switch code.

. Part 2: Mode switching: The real-mode switch code
disables paging, loads the segment registers with
real-mode segments, and clears the paging enable bit
before making a jump to the real-mode safe sync
code. The jump brings the processor to real-mode
operation.

. Part 3: Real-mode setup: BIOS safe sync begins by
initializing the remaining segment registers, setting
the interrupt controllers to real-mode operation
[32], and initializing the video console and disk
controller using the BIOS interface [22]. The rest of
BIOS safe sync is fairly straightforward and is
generated from the C version of enhanced safe
sync. We modify the resulting assembly code by
adding address/data overrides [33] and using a
large data segment (i.e., big real-mode [60]) to
access data beyond the first 1 MB of memory.
During sync, we copy the file cache data into the
lower 1MB of memory because the BIOS disk
interface uses 16-bit segment addressing.

Part 1 of BIOS safe sync is a C function and can be
invoked directly by the FreeBSD kernel. The rest of BIOS
safe sync code is written in assembly and is not accessible to
FreeBSD kernel because it resides in unmapped physical
memory pages that are hidden from the FreeBSD page
allocator.

4.4.2 Results and Analysis

We conduct fault injection tests on BIOS safe sync. Table 7
breaks down the fault symptoms for our latest design. The
overall corruption rate is down to 1.9 percent, which is
about 40 percent more reliable than a write-through file
cache. Fig. 3 shows that the confidence intervals of BIOS
safe sync and the write-through file cache overlap slightly.
Because BIOS safe sync's mean corruption rate is not in the
confidence interval of the write-through file cache, we use
the t-test statistical procedure to compare the two designs
[35]. We compute the mean difference in corruption rates

between the two designs and the standard deviation of the
mean difference. This allows us to derive the 95 percent
confidence interval for the difference in mean corruption
rates, which is (1.0-2.3 percent). Because the resulting
confidence interval does not include zero, we conclude,
with 95 percent confidence, that our BIOS safe sync design
is more reliable than the write-through file cache.

While the difference in reliability between BIOS safe sync
and the write-through file cache is not large, it is surprising
that any write-back file cache is able to achieve even
marginally higher reliability than a write-through file cache
because write-back file caches have additional sources of
vulnerability (e.g., hanging before sync). To understand
how BIOS safe sync can achieve higher reliability, we
compare the frequency of different fault symptoms for BIOS
safe sync and the write-through file cache (Fig. 4). The
difference in reliability is due primarily to an increase in file
system errors and VM errors:

. Rio with BIOS safe sync is less vulnerable to file
system errors than the write-through file cache
because Rio rarely uses the full file system code.
For most user-level write calls, Rio needs only to
copy data to the file cache. Copying data to the file
cache is a simple operation that uses very little of the
file system code. This memory data is often over-
written or deleted before needing to be written to
disk [5]; hence, Rio rarely uses the bulk of the
complex file system code. In contrast, with a write-
through file cache, each user-level write call initiates
a complex traversal of file system functions to write
the data to disk. When bugs are injected into the file
system code (but before the system crashes), a write-
through file cache can easily corrupt disk data,
especially before the system begins to crash notice-
ably. Thus, errors in the file system code more easily
corrupt data when using a write-through file cache
than when using a write-back file cache.

. Rio with BIOS safe sync is less vulnerable to
VM errors than the write-through file cache because
Rio uses VM protection and relies on the registry to
write data to disk during safe sync. In contrast, the
write-through file cache uses virtual addressing and
assumes that it has a valid VM mapping for the file
cache data. So, a VM error may corrupt the VM
mappings for a buffer page before the data is written
to disk, causing a write-through file cache to write
the wrong data to disk. Rio does not depend on these

330 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 4, APRIL 2001

TABLE 7
Categories of Fault Symptoms for BIOS Safe Sync

VM mappings. It already has the correct information
in the registry, which contains the physical address
of the buffer page and is protected by its restricted
interface and by consistency checks performed when
updating its contents. Its content is updated at the
earliest instance when the page is written to and
valid.

A potentially offsetting factor to Rio's robustness to file
system and VM errors is the robustness of writing data to
disk at the end of a crash. As noted before in this paper, a
write-through file cache does not need to write data to disk
at the end of a crash because it has written all data through
to disk before the crash. In contrast, Rio must write data to
disk using the safe sync routine. With BIOS safe sync, the
code to write this data is small (250 lines of code), simple,
and, therefore, robust. It is specialized to do a single type of
I/O (block-level, synchronous write) and uses a protected
BIOS I/O interface that resides in EEPROM. Because of this,
the additional vulnerability of Rio during the end of the
crash is less significant than the vulnerability of a write-
through file cache to file system and VM errors before the
crash.

It is important to note that Rio has marginally higher
reliability than write-through file cache against software
errors. We will elaborate on the limitations of Rio against
hardware errors in Section 8.

We observe from Table 7 that it may be possible to
improve BIOS safe sync by adding a hardware reset key
and modifying the PC firmware and motherboard to not
initialize memory on reset/reboot. This would allow the
system to do a complete reset, then to perform a warm
reboot as was done in [15]. Doing so should fix the
remaining hangs before sync and device timeouts, but it
would incur significant system cost.

5 EFFECTS OF LARGE MEMORY AND VIRTUAL

MEMORY PROTECTION

In this section, we look more specifically at two related
factors that may affect the relative reliability of Rio and

write-through file caches. The first factor is the amount of

physical memory. More memory allows Rio to cache more

dirty file data and filter write traffic more effectively.

Keeping more dirty file data in memory renders it more

vulnerable to wild stores, so Rio's reliability may suffer

when memory sizes increase. The second factor is virtual

memory protection. VM protection may benefit write-

through file caches, and this may also change the relative

reliabilities of Rio and the write-through file cache. These

two factors interact because VM protection reduces the

likelihood of wild stores.
In this section, we use a slightly different hardware

platform than in Section 4 (Intel Pentium processor, 128 or

512 MB memory, SCSI disk drive) due to our inventory of

large memory configurations. As a result of the different

hardware configuration and device drivers, the reliability

data in this section cannot be compared directly with the

data in Section 4 (in general, the reliability of the SCSI

systems is slightly better, which we speculate is due to the

increased intelligence in the SCSI controller, e.g., error

checking). The Rio design used in this section is enhanced

safe sync because of the difficulty of programming a

portable BIOS safe sync for SCSI.
Table 8 shows the effect of main memory size on four

types of file cache: Rio file cache without VM protection, Rio

file cache with VM protection, write-through file cache

without VM protection, and write-through file cache with

VM protection. As expected, without protection, the

corruption rate increases for the Rio file cache. Interestingly,

the corruption rate also increases for the write-through file

cache without protection.
We also observe that VM protection mitigates the

reliability impact of larger memory sizes. With VM

protection, both the write-through file cache and Rio

maintain comparable reliability for different memory sizes.

However, Rio needs VM protection to approach the

reliability of the write-through file cache, in addition to

needing it to maintain reliability for larger memories.

NG AND CHEN: THE DESIGN AND VERIFICATION OF THE RIO FILE CACHE 331

Fig. 4. Why is Rio with BIOS Safe Sync More Reliable? We breakdown the fault symptoms for both Rio file cache with BIOS safe sync and write-

through file cache. The y-axis shows the mean corruption rates.

6 PERFORMANCE

The main benefit of Rio measured so far is reliability: All
writes to the file cache are immediately as permanent and
safe as files on disk. In this section, we show that Rio also
improves performance by eliminating all reliability-induced
writes to disk.

Table 9 compares the performance of our Rio file cache
with different types of file systems, each providing different
guarantees on when data is made permanent.1 The file
systems in Table 9 are ordered from least reliable (Memory
File System) to most reliable (Rio). The Memory File System is
shown to illustrate optimal performance [48]. The Memory
File System is very fast because it is completely memory-
resident, does no disk I/O, and is hence very simple.
However, data stored in the Memory File System is never
made permanent; it is simply discarded when the system
shuts down or crashes. UFS (Unix File System) is the default
FreeBSD Unix file system. We measure several variants.
UFS pure write-back is UFS without any reliability-induced
writes. It demonstrates the performance of a pure write-

back file system (whereas MFS demonstrates the perfor-

mance of a memory-only file system). UFS pure write-back

can lose arbitrarily old data during a crash. UFS delayed data

and metadata is similar to UFS pure write-back, but syncs its

data and metadata to disk every 30 seconds. This is the

optimal ªno-orderº system in [21] and is faster than soft

update [50] file systems as it does not need to maintain

dependencies between updates. UFS delayed data and

metadata loses up to 30 seconds of data and metadata

during a crash. The standard UFS uses a combination of

write-back policies. It writes data asynchronously to disk

when 64 KB of data has been collected, when the user writes

nonsequentially, or when the sync daemon flushes dirty file

data (once every 30 seconds). UFS writes metadata

synchronously to disk to enforce ordering constraints [21].

We also measure the behavior of a write-through file cache

which writes all user data synchronously to disk. This

achieves comparable reliability as Rio, but at significant

performance penalty. The Rio file cache uses the enhanced

safe sync (with protection) described in Section 5.
We run two workloads, cp+rm and Andrew. cp+rm

recursively copies then removes the FreeBSD source tree

(32 MB). Andrew models a software development work-

load. All results represent an average of 20 runs.

332 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 4, APRIL 2001

TABLE 8
Effect of Physical Memory Size on Reliability

This table shows the reliability of different file cache systems on a system with 128 MB and 512 MB main memory. The systems studied are Rio file
cache with and without VM protection and the write-through file cache with and without VM protection.

1. The data in Table 9 is different from the data in [52] for the following
reasons: The configuration in [52] limited the amount of metadata stored in
the file cache, used a smaller workload for cp+rm, and incorrectly uses the
ªasyncº version of UFS, which performs most metadata writes to disk
asynchronously and does not guarantee file system integrity.

Table 9 shows that our Rio file cache is 12-55 times as fast
as a write-through file cache which has comparable
reliability. It is also significantly faster (4-37 times) than
the standard Unix file system, yet provides much stronger
reliability guarantees. Rio's performance approaches that of
an optimal memory-based file system and pure write-back
file system.

Rio is significantly faster than the write-through and
delayed write file caches because it eliminates reliability-
induced writes to disk. Table 9 breaks down the number of
synchronous and asynchronous disk writes for each type of
file systems. File systems with no synchronous writes (Rio
and the pure write-back and delayed write systems)
perform significantly better than the other file systems that
have a large number of synchronous writes. Rio also does
not need to periodically sync its file cache data to disk,
which enables Rio to outperform the delayed write file
system.

7 RELATED WORK

We divide the research related to this paper into four areas:
other reliable memory systems, field studies of failures,
fault injection, and low-latency writes.

7.1 Reliable Memory Systems

Several researchers have proposed ways to protect memory
from software failures [17], though, to our knowledge, none
have evaluated how effectively memory withstood these
failures.

The only file system we are aware of that attempts to
make all permanent files reliable while in memory is
Phoenix [20]. Phoenix keeps two versions of an in-memory
file system. One of these versions is kept write-protected;
the other version is unprotected and evolves from the write-
protected one via copy-on-write. At periodic checkpoints,
the system write-protects the unprotected version and
deletes obsolete pages in the original version. Our proposed
mechanism in Section 4 differs from Phoenix in two major

ways: 1) Phoenix does not ensure the reliability of every
write; instead, writes are only made permanent at periodic
checkpoints; 2) Phoenix keeps multiple copies of modified
pages, while we keep only one copy.

Rio strives to make the memory on a single machine
reliable. An orthogonal approach to improving the relia-
bility of memory is to replicate its contents in the memory of
several independent computers, as was done in Harp [44]
and Network RAM [55]. The Recovery Box keeps a special
system state in a region of memory accessed only through a
rigid interface [7]. No attempt is made to prevent other
procedures from accidentally modifying the recovery box,
although the system detects corruption by maintaining
checksums. Banatre et al. implement stable transactional
memory, which protects memory contents with dual
memory banks, a special memory controller, and explicit
calls to allow write access to specified memory blocks [8],
[9]. Our work seeks to make all files in memory reliable
without special-purpose hardware or replication.

General mechanisms may be used to help protect
memory from software faults. Needham et al. [51] suggest
changing a machine's microcode to check certain conditions
when writing a memory word. This is similar to modifying
the memory controller to enforce protection, as are
Johnson's and Wahbe's suggestions for various hardware
mechanisms to trap the updates of certain memory
locations [36], [70]. Hive uses the Flash firewall to protect
memory against wild writes by other processors in a
multiprocessor [14]. Hive preemptively discards pages that
are writable by failed processors, an option not available
when storing permanent data in memory. Object code
modification has been suggested as a way to provide data
breakpoints [40], [70] and fault isolation between software
modules [71]. One can also isolate memory from the
operating system by hiding the memory [19] via a device
driver interface or by physically isolating the memory via a
hardware interface. The former approach requires user
applications and kernel to access memory via a protected

NG AND CHEN: THE DESIGN AND VERIFICATION OF THE RIO FILE CACHE 333

TABLE 9
Performance Comparison

This table compares the running time and number of synchronous and asynchronous disk writes for different file systems. Each file system provides
different reliability guarantees and they are ordered from least reliable (Memory File System) to most reliable (Rio). cp+rm recursively copies, then
recursively removes the FreeBSD source tree (32 MB); Andrew models software development. All performance measurements were made on a PC
with a 400 MHz Pentium-II processor, 128 MB of 100 MHz SDRAM, and an IBM DCAS-34330W SCSI disk (with the disk write-cache enabled). For
all file systems, FreeBSD was configured to enable the file cache to store all metadata used in each workload.

device driver interface. The latter requires a hardware
interface to memory (e.g., solid state disks). These
approaches are significantly slower than Rio as memory
references are several order of magnitude faster than I/O
instructions [33].

Other projects seek to improve the reliability of memory
against hardware faults such as power outages and board
failures. eNVy implements a memory board based on
nonvolatile, flash RAM [73]. eNVy uses copy-on-write, page
remapping, and a small, battery-backed, SRAM buffer to
hide flash RAM's slow writes and bulk erases. The Durable
Memory RS/6000 uses batteries, replicated processors,
memory ECC, and alternate paths to tolerate a wide variety
of hardware failures [1].

Finally, many papers have examined the performance
advantages and uses of reliable memory [17], [6], [12], [2],
[45], [46].

7.2 Field Studies of Failures

Studies have shown that software is the dominant cause of
system outages [23], [24] and several studies have investi-
gated system software errors. Sullivan and Chillarege
classify software faults in the MVS operating system; in
particular, they analyze faults that corrupt program
memory (overlays) [65]. Lee and Iyer study and classify
software failures in Tandem's Guardian operating system
[43]. These studies provide valuable information about
failures in production environments; in fact, many of the
fault types in Section 2.1 were inspired by the major error
categories from [65] and [43]. However, these studies do not
provide data on how often system crashes corrupt the file
cache, which may have different failure characteristics than
randomly accessed data structures [67].

7.3 Fault Injection

Software fault injection can be used for many purposes,
such as understanding how systems behave during a fault,
validating fault-tolerant mechanisms, and comparing the
robustness of different systems. See [34] for an excellent
introduction to the overall area and a summary of much of
the past work on fault injection.

Fault injection is traditionally used to understand how
systems behave during a fault. Chillarege and Bowman [16]
use fault injection to characterize large system failures. They
inject software bugs on a commercial transaction processing
system, and analyze the crash data to measure system
component failure rates and fault latency. Barton et al. [10]
use the FIAT fault injection tool to inject memory bit faults
into data and code of two different applications. They
produce detailed statistics on fault manifestations and error
detection latencies. Kao et al. [39] use the FINE fault
injection tool to study fault propagation in the UNIX
operating system and construct a fault propagation model
based on Markov chains.

Fault injection is also widely used to validate fault-
tolerant mechanisms and system dependability. Arlat et al.
[4] use fault injection to validate the dependability of fault-
tolerant systems against transient hardware/software
faults. Hudak et al. [31] conduct fault injection tests to
determine the effectiveness of various fault-tolerant soft-
ware techniques, such as n-version programming, against

design and hardware faults. Rela et al. [57] use fault
injection to evaluate the effectiveness of software consis-
tency checks against transient hardware faults. They inject
pin-level faults into a processor and measure its effect on
software applications. Silva et al. [64] use the Xception fault
injection tool [13] to injection transient faults into parallel
computers running large applications. They measure the
effectiveness of various fault tolerant techniques (e.g.,
memory protection, assertions) in increasing the system's
error detection coverage.

Several papers use fault injection to compare the
robustness of different systems. Siewiorek et al. [61]
propose a benchmark suite to measure system robustness
using fault injection. The system components under study
include the file system, memory management, fault-tolerant
mechanisms in user application, and C library functions.
Tsai et al. [69] extend the benchmark approach to depend-
able systems. They used the FTAPE tool to evaluate two
fault-tolerant computers. Koppman et al. measure the
robustness of various commercial UNIX operating systems
[42] and different releases of the same operating systems
[41]. They inject faults into system calls by changing the
input data values and observe the system response.

7.4 Low-Latency Writes

The main techniques for doing low-latency writes to disk is
by staging the writes to a faster nonvolatile device like
NVRAM or by minimizing disk head movements during
disk writes. The former technique is used extensively in
commercial products like Prestoserve [47] and NetApp Filer
[29]. But, it is expensive as it uses SRAM or dual battery-
backed DRAM. It is also slower than main memory as the
NVRAM typically resides on an I/O bus. The latter
approach is traditionally done by writing data to sequential
locations in disk. Write-ahead logging systems [25] accu-
mulate small updates in a log and replay the modifications
later by updating in place. These systems typically use a
separate log disk to avoid conflict with reads. The Log-
structured File System [58], [59] writes data to disk
sequentially in a log-like structure. The log contains
indexing information so that file data can be read back
from the log efficiently. Another way to minimize disk head
movement is to write to a disk location that is close to the
current disk head location [72].

There are also hybrid approaches that combine NVRAM
with disk head minimizing techniques during writes. In
DCD [30], disk writes are first staged to NVRAM and later
written sequentially to a cache disk. The data in the cache
disk is subsequently updated in place in the data disk. The
two level cache (NVRAM+cache disk) thus appear to the
host as a large NVRAM cache with a size close to the cache
disk size. The NVRAM can be replaced by main memory
with a slight trade-off in reliability [53].

The main difference between Rio and other low-latency
write schemes is that Rio writes directly to main memory,
rather than to disk or an NVRAM board on an I/O bus.
Main memory is much faster than even sequential disk I/O
and main memory is typically larger and faster to access
than NVRAM boards on the I/O bus. We view Rio as
adding a new layer (reliable main memory) to the storage

334 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 4, APRIL 2001

hierarchy. Logging and other disk optimizations can then
be added to accelerate the transfers between Rio and disk.

An important contribution of our work relative to other
uses of nonvolatile memory is that we quantify the
reliability implications of our design choices. This is
especially important for us to do because we are potentially
exposing memory to more errors (because it is not hidden
behind a device driver interface). Most NVRAM systems
preserve a disk-like interface and thus have similar
reliability as a write-through file cache.

8 LIMITATIONS

The main focus of Rio is to protect data against software
errors. It would be dangerous to apply our results
indiscriminately against other types of system failures
and, hence, we address in this section some possible
limitations of our work.

We focus on hardening our design against software
errors as many studies have shown that software errors
have become a major cause of system crash [23], [24], [19]
and because many system designers [1], [62] feel it is easier
to make fault-tolerant hardware than software. Rio without
any complementary hardware techniques will not protect
against hardware errors like equipment failures, processor
faults, bus failures, etc. We have explored various archi-
tecture support for reliable file cache in [15] to make Rio as
reliable as write-through file cache against hardware errors.

Our fault injection experiments use synthetic faults
derived from field studies of system crashes and the system
we designed may not be fault-tolerant against ªrealº system
crashes. To further test and prove our ideas, we have
installed a file server in our department using the Rio file
cache with protection and with reliability-induced writes to
disk turned off. Among other things, this file server
(rio.eecs.umich.edu) stores our kernel source tree, the only
copy of this paper, and our mail. The server has been
operational for the past four years and we experienced
more than 10 software crashes. The Rio file cache worked
remarkably well during these crashes and we did not lose
any user data. The source code for our system can be found
at http://www.eecs.umich.edu/Rio.

9 CONCLUSIONS

We have described the design and verification of the Rio file
cache. By using a systematic, quantitative approach, we
were able to improve the reliability of a write-back file
cache by a factor of 21. The resulting system had
comparable reliability to a write-through file system while
outperforming it by a factor of 12-55. Rio also outperformed
the standard Unix file system by a factor of 4-37 while
providing much stronger reliability guarantees.

The Rio file cache provides a new type of persistent
storage with intriguing characteristics. It is as fast as main
memory, directly addressable, and as reliable as disk from
operating system crashes. We have found this type of
storage very useful in our work on lightweight transactions
and distributed recovery. In particular, the direct
addressability of memory enables applications to save
persistent data without system calls or extra copying and

the random-access, high-speed nature of memory enables

applications to save data using much simpler logging and

layout strategies than those required for disk. We look

forward to seeing how other system designers use this new

storage medium.

ACKNOWLEDGMENTS

This research was supported in part by US National Science

Foundation (NSF) grant MIP-9521386, AT&T Labs, the IBM

University Partnership Program, and Intel Technology for

Education 2000. Peter Chen was also supported by NSF

CAREER Award MIP-9624869.

REFERENCES

[1] M. Abbott, D. Har, L. Herger, M. Kauffmann, K. Mak, J. Murdock,
C. Schulz, T.B. Smith, B. Tremaine, D. Yeh, and L. Wong, ªDurable
Memory RS/6000 System Design,º Proc. 1994 Int'l Symp. Fault-
Tolerant Computing (FTCS), pp. 414-423, June 1994.

[2] S. Akyurek and K. Salem, ªManagement of Partially Safe Buffers,º
IEEE Trans. Computers, vol. 44, no. 3, pp. 394-407, Mar. 1995.

[3] ªThe Power Protection Handbook,ºtechnical report, Am. Power
Conversion, 1996.

[4] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, ªFault Injection for Dependability
Validation: A Methodology and Some Applications,º IEEE Trans.
Software Eng., vol. 16, no. 2, pp. 166-182, Feb. 1990.

[5] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and J.K.
Ousterhout, ªMeasurements of a Distributed File System,º Proc.
13th ACM Symp. Operating Systems Principles, pp. 198-212, Oct.
1991.

[6] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer, ªNon-
Volatile Memory for Fast Reliable File Systems,º Proc. Fifth Int'l
Conf. Architectural Support for Programming Languages and Operating
Systems (ASPLOS-V), pp. 10-22, Oct. 1992.

[7] M. Baker and M. Sullivan, ªThe Recovery Box: Using Fast
Recovery to Provide High Availability in the UNIX Environment,º
Proc. USENIX Summer Conf., June 1992.

[8] M. Banatre, G. Muller, B. Rochat, and J. Banatre, ªEnsuring Data
Security and Integrity with a Fast Stable Storage,º Proc. 1988 Int'l
Conf. Data Eng., pp. 285-293, Feb. 1988.

[9] M. Banatre, G. Muller, B. Rochat, and P. Sanchez, ªDesign
Decisions for the FTM: A General Purpose Fault Tolerant
Machine,º Proc. 1991 Int'l Symp. Fault-Tolerant Computing, pp. 71-
78, June 1991.

[10] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek, ªFault
Injection Experiments Using FIAT,º IEEE Trans. Computers, vol. 39,
no. 4, pp. 575-582, Apr. 1990.

[11] A. Bensoussan, C.T. Clingen, and R.C. Daley, ªThe Multics Virtual
Memory: Concepts and Design,º Comm. ACM, vol. 15, no. 5,
pp. 308-318, May 1972.

[12] P. Biswas, K.K. Ramakrishnan, D. Towsley, and C.M. Krishna,
ªPerformance Analysis of Distributed File Systems with Non-
Volatile Caches,º Proc. 1993 Int'l Symp. High Performance
Distributed Computing (HPDC-2), pp. 252-262, July 1993.

[13] J. Carreira, H. Madeira, and J.G. Silva, ªXception: A Technique for
the Experimental Evaluation of Dependability in Modern Com-
puters,º IEEE Trans. Software Eng., vol. 24, no. 2, pp. 125-136, Feb.
1998.

[14] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A.
Gupta, ªHive: Fault Containment for Shared-Memory Multi-
processors,º Proc. 1995 Symp. Operating Systems Principles, Dec.
1995.

[15] P.M. Chen, W.T. Ng, S. Chandra, C.M. Aycock, G. Rajamani, and
D. Lowell, ªThe Rio File Cache: Surviving Operating System
Crashes,º Proc. 1996 Int'l Conf. Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pp. 74-83, Oct.
1996.

[16] R. Chillarege and N.S. Bowen, ªUnderstanding Large System
FailureÐA Fault Injection Experiment,º Proc. 1989 Int'l Symp.
Fault-Tolerant Computing (FTCS), pp. 356-363, 1989.

NG AND CHEN: THE DESIGN AND VERIFICATION OF THE RIO FILE CACHE 335

[17] G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith, ªThe
Case for Safe RAM,º Proc. 15th Int'l Conf. Very Large Data Bases,
pp. 327-335, Aug. 1989.

[18] D.J. DeWitt, R.H. Katz, F. Olken, L.D. Shapiro, M.R. Stonebraker,
and D. Wood, ªImplementation Techniques for Main Memory
Database Systems,º Proc. 1984 ACM SIGMOD Int'l Conf. Manage-
ment of Data, pp. 1-8, June 1984.

[19] F. Eskesen, M. Hack, A. Iyengar, R.P. King, and N. Halim,
ªSoftware Exploitation of a Fault-Tolerant Computer with a Large
Memory,º Proc. 1998 Symp. Fault-Tolerant Computing (FTCS),
pp. 336-345, June 1998.

[20] J. Gait, ªPhoenix: A Safe In-Memory File System,º Comm. ACM,
vol. 33, no. 1, pp. 81-86, Jan. 1990.

[21] G.R. Ganger and Y.N. Patt, ªMetadata Update Performance in File
Systems,º Proc. 1994 Operating Systems Design and Implementation
(OSDI), Nov. 1994.

[22] F. Van Gilluwe, The Undocumented PC: A Programmer's Guide to I/O,
CPUs, and Fixed Memory Areas. Addison-Wesley Developer Press,
1997.

[23] J. Gray, ªA Census of Tandem System Availability between 1985
and 1990,º IEEE Trans. Reliability, vol. 39, no. 4, Oct. 1990.

[24] J. Gray and D. Siewiorek, ªHigh-Availability Computer Systems,º
Computer, vol. 24, no. 9, Sept. 1991.

[25] T. Haerder and A. Reuter, ªPrinciples of Transaction-Oriented
Database Recovery,º ACM Computing Surveys, vol. 15, no. 4,
pp. 287-317, Dec. 1983.

[26] R.B. Hagmann, ªReimplementing the Cedar File System Using
Logging and Group Commit,º Proc. 1987 Symp. Operating Systems
Principles, pp. 155-162, Nov. 1987.

[27] J.H. Hartman and J.K. Ousterhout, ªLetter to the Editor,º
Operating Systems Review, vol. 27, no. 1, pp. 7-9, Jan. 1993.

[28] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, second ed., p. 493. Morgan Kaufmann, 1990.

[29] D. Hitz, J. Lau, and M. Malcolm, ªFile System Design for an NFS
File Server Appliance,º Proc. 1994 USENIX Winter Conf., Jan. 1994.

[30] Y. Hu and Q. Yang, ªDCDÐDisk Caching Disk: A New Approach
for Boosting I/O Performance,º Proc. 1996 Int'l Symp. Computer
Architecture, May 1996.

[31] J. Hudak, B.-H. Suh, D. Siewiorek, and Z. Segall, ªEvaluation and
Comparison of Fault-Tolerant Software Techniques,º IEEE Trans.
Reliability, vol. 42, no. 2, June 1993.

[32] ªIntel 82371AB PCI ISA IDE Xcelerator (PIIX4) Datasheet,º Intel
Corp., 1997.

[33] ªIntel Architecture Software Developer's Manual: Volumes 1-3,º
Intel Corp., 1997.

[34] R.K. Iyer, ªExperimental Evaluation,º Proc. 1995 Int'l Symp. Fault-
Tolerant Computing, pp. 115-132, July 1995.

[35] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[36] M.S. Johnson, ªSome Requirements for Architectural Support of
Software Debugging,º Proc. 1982 Int'l Conf. Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
pp. 140-148, Apr. 1982.

[37] B.W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley, 1989.

[38] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham, ªFERRARI: A
Flexible Software-Based Fault and Error Injection System,º IEEE
Trans. Computers, vol. 44, no. 2, pp. 248-260, Feb. 1995.

[39] W.-L. Kao, R.K. Iyer, and D. Tang, ªFINE: A Fault Injection and
Monitoring Environment for Tracing the UNIX System Behavior
under Faults,º IEEE Trans. Software Eng., vol. 19, no. 11, pp. 1105-
1118, Nov. 1993.

[40] P.B. Kessler, ªFast Breakpoints: Design and Implementation,º
Proc. 1990 Conf. Programming Language Design and Implementation
(PLDI), pp. 78-84, June 1990.

[41] P.J. Koopman and J. DeVale, ªComparing the Robustness of
POSIX Operating Systems,º Proc. 1999 Symp. Fault-Tolerant
Computing (FTCS), June 1999.

[42] N.P. Kropp, P.J. Koopman, and D.P. Siewiorek, ªAutomated
Robustness Testing of Off-the-Shelf Software Componentsº Proc.
1998 Symp. Fault-Tolerant Computing (FTCS), June 1998.

[43] I. Lee and R.K. Iyer, ªFaults, Symptoms, and Software Fault
Tolerance in the Tandem GUARDIAN Operating System,º Proc.
1993 Int'l Symp. Fault-Tolerant Computing (FTCS), pp. 20-29, 1993.

[44] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M.
Williams, ªReplication in the Harp File System,º Proc. 1991 Symp.
Operating System Principles, pp. 226-238, Oct. 1991.

[45] D.E. Lowell and P.M. Chen, ªFree Transactions with Rio Vista,º
Proc. 1997 Symp. Operating Systems Principles, pp. 92-101, Oct. 1997.

[46] D.E. Lowell, S. Chandra, and P.M. Chen, ªExploring Failure
Transparency and the Limits of Generic Recovery,º Proc. 2000
Operating Systems Design and Implementation (OSDI), Oct. 2000.

[47] B. Lyon and R. Sandberg, ªBreaking through the NFS Performance
Barrier,º technical report, Legato Systems, Inc., 1990.

[48] M.K. McKusick, M.J. Karels, and K. Bostic, ªA Pageable Memory
Based Filesystem,º Proc. USENIX Summer Conf., June 1990.

[49] M.K. McKusick, K. Bostic, M.J. Karels, and J.S. Quarterman, The
Design and Implementation of the 4.4BSD Operating System.
Addison-Wesley, 1996.

[50] M.K. McKusick and G.R. Ganger, ªSoft Updates: A Technique for
Eliminating Most Synchronous Writes in the Fast Filesystem,º
Proc. 1999 USENIX Ann. Technical Conf.: FREENIX Track, June
1999.

[51] R.M. Needham, A.J. Herbert, and J.G. Mitchell, ªHow to Connect
Stable Memory to a Computer,º Operating System Review, vol. 17,
no. 1, p. 16, Jan. 1983.

[52] W.T. Ng and P.M. Chen, ªThe Systematic Improvement of Fault
Tolerance in the Rio File Cache,º Proc. 1999 Symp. Fault-Tolerant
Computing (FTCS), June 1999.

[53] T. Nightingale, Y. Hu, and Q. Yang, ªThe Design and Implemen-
tation of a DCD Device Driver for Unix,º Proc. 1999 USENIX
Technical Conf., June 1999.

[54] J.K. Ousterhout et al., ªA Trace-Driven Analysis of the UNIX 4.2
BSD File System,º Proc. 1985 Symp. Operating System Principles,
pp. 15-24, Dec. 1985.

[55] D. Pnevmatikatos, E.P. Markatos, G. Magklis, and S. Ioannidis,
ªOn Using Network RAM as a Non-Volatile Buffer,º Cluster
Computing, vol. 2, pp. 295-303, 1999.

[56] R.F. Rashid Jr., A. Tevanian, M. Young, D. Golub, R. Baron, D.
Black Jr., W.J. Bolosky, and J. Chew, ªMachine-Independent
Virtual Memory Management for Paged Uniprocessor and Multi-
processor Architectures,º IEEE Trans. Computers, vol. 37, no. 8,
pp. 896-908, Aug. 1988.

[57] M.Z. Rela, H. Madeira, and J.G. Silva, ªExperimental Evaluation
of the Fail-Silent Behavior in Programs with Consistency Checks,º
Proc. 1996 Symp. Fault-Tolerant Computing (FTCS), June 1996.

[58] M. Rosenblum, ªThe Design and Implementation of a Log-
structured File System,º PhD thesis, Univ. of California at
Berkeley, June 1992.

[59] M. Rosenblum and J.K. Ousterhout, ªThe Design and Implemen-
tation of a Log-Structured File System,º ACM Trans. Computer
Systems, vol. 10, no. 1, pp. 26-52, Feb. 1992.

[60] T. Shanley, Protected Mode Software Architecture. Addison-Wesley
Developer Press, 1996.

[61] D.P. Siewiorek, J.J. Hudak, B.-H. Suh, and Z. Segal, ªDevelopment
of a Benchmark to Measure System Robustness,º Proc. 1993 Int'l
Symp. Fault-Tolerant Computing, pp. 88-97, June 1993.

[62] D.P. Siewiorek, Reliable Computer Systems: Design and Evaluation.
A K Peters, 1998.

[63] A. Silberschatz and P.B. Galvin, Operating System Concepts.
Addison-Wesley, 1994.

[64] J.G. Silva, J. Carreira, H. Madeira, D. Costa, and F. Moreira,
ªExperimental Assessment of Parallel Systems,º Proc. 1996 Symp.
Fault-Tolerant Computing (FTCS), June 1996.

[65] M. Sullivan and R. Chillarege, ªSoftware Defects and Their Impact
on System AvailabilityÐA Study of Field Failures in Operating
Systems,º Proc. 1991 Int'l Symp. Fault-Tolerant Computing, June
1991.

[66] M. Sullivan and R. Chillarege, ªA Comparison of Software Defects
in Database Management Systems and Operating Systems,º Proc.
1992 Int'l Symp. Fault-Tolerant Computing, pp. 475-484, July 1992.

[67] M. Sullivan personal communication, Dec. 1995.
[68] A.S. Tanenbaum, Distributed Operating Systems. Prentice Hall,

1995.
[69] T.K. Tsai, R.K. Iyer, and D. Jewett, ªAn Approach towards

Benchmarking of Fault-Tolerant Commercial Systems,º Proc. 1996
Symp. Fault-Tolerant Computing (FTCS), June 1996.

[70] R. Wahbe, ªEfficient Data Breakpoints,º Proc. 1992 Int'l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Oct. 1992.

[71] R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham, ªEfficient
Software-Based Fault Isolation,º Proc. 14th ACM Symp. Operating
Systems Principles, pp. 203-216, Dec. 1993.

336 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 4, APRIL 2001

[72] R.Y. Wang, T.E. Anderson, and D.A. Patterson, ªVirtual Log
Based File Systems for a Programmable Disk,º Proc. 1995 Symp.
Operating Systems Principles, pp. 29-43, Feb. 1999.

[73] M. Wu and W. Zwaenepoel, ªeNVy: A Non-Volatile, Main
Memory Storage System,º Proc. 1994 Int'l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Oct. 1994.

Wee Teck Ng received a BS degree in electrical
engineering from the University of Houston in
1986, an MEng degree in electrical engineering
from the National University of Singapore,
Singapore, in 1994, and MS and PhD degrees
in computer science and engineering from the
University of Michigan, Ann Arbor, in 1996 and
1999, respectively. He is currently a researcher
at Bell Laboratories, Murray Hill, New Jersey.
His research interests are in the area of storage

systems, operating systems, and main memory databases.

Peter M. Chen received a BS degree in
electrical engineering from the Pennsylvania
State University in 1987 and MS and PhD
degrees in computer science from the University
of California at Berkeley in 1989 and 1992. He is
currently an associate professor in the Depart-
ment of Electrical Engineering and Computer
Science at the University of Michigan at Ann
Arbor. His research interests include operating
systems, distributed systems, and fault-tolerant

computing. He is a senior member of the IEEE.

NG AND CHEN: THE DESIGN AND VERIFICATION OF THE RIO FILE CACHE 337

