ExtraVirt: Detecting and recovering from transient
processor faults

Dominic Lucchetti

Steven K. Reinhardt

Peter M. Chen

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Ml 48109-2122
covirt@umich.edu

Reliability is becoming an increasingly important issue in
modern processor design. Smaller feature sizes and more nu-
merous transistors are projected to increase the frequency
of transient faults [4, 5]. Our project, ExtraVirt, leverages
the trend toward multi-core and multi-processor systems to
survive these transient faults. Our goals are (1) to add fault
tolerance without modifying existing operating systems, ap-
plications or hardware, (2) to minimize the time spent exe-
cuting software that cannot tolerate faults, and (3) to min-
imize the time and space overhead needed to detect and
recover from faults. We accomplish these goals by leverag-
ing virtual-machine technology and by sharing memory and
I/0O devices across replicas. ExtraVirt extends prior work
on VM-level fault tolerance[2] by detecting and recovering
from non-fail-stop faults and by running multiple replicas
efficiently on a single machine.

Detecting and recovering from processor faults requires
running multiple replicas, comparing their outputs before
they go to external devices (e.g., network, disk, monitor),
and correcting faulty replicas before their output becomes
visible. The unit of replication in ExtraVirt is a virtual
machine; this accomplishes our first goal of enabling fault
tolerance without modifying existing operating systems, ap-
plications or hardware[2]. ExtraVirt keeps replicated vir-
tual machines consistent in the presence of non-deterministic
input and events through virtual-machine logging and re-
play[2, 3], leaving only processor faults as non-determined
input. Any divergence in output can thus be attributed to
a processor fault. ExtraVirt manages its replicas and addi-
tional functionality through extensions residing in the Xen
virtual-machine monitor[1].

Our second goal is to maximize the system’s tolerance of
faults by minimizing the time spent executing software that
is not replicated. Since only software above the replication-
management layer (RML) is replicated automatically, this
goal dictates that we locate the RML below as much soft-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SOSP’ 05, October 23-26, 2005, Brighton, United Kingdom.

Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

ware as possible. Implementing the RML as an extension to
a virtual-machine monitor is the first step toward this goal:
all operating system and application software runs in a repli-
cated virtual machine above the RML. Even with a virtual-
machine approach, however, the virtual-machine monitor
and RML remain vulnerable to faults. An open research
question is how to tolerate faults that occur while executing
outside the automatically replicated software. One possible
approach being the use of a compiler based approach for
replication of execution within the hypervisor[6].

Our third goal is to minimize time and space overhead
needed to detect and recover from faults. To minimize time
overhead, we leverage the fact that detecting a fault requires
only two replicas, while identifying which replica is faulty
requires a third. Thus when the two replicas used for detec-
tion diverge ExtraVirt dynamically create a third replica by
replaying from a prior, known-good state. ExtraVirt peri-
odically creates a known-good state by stopping the replicas
at an identical point in their executions and verifying that
their states remain identical.

To minimize the memory overhead of running multiple
replicas, ExtraVirt shares memory between replica using a
copy-on-write approach to ensure isolation. Using the copy-
on-write technique creates a private copy of a page when
either replica modifies it and thereby allows sharing while
preserving the independence of failures between replicas’.
In the absence of faults, the memory contents of one replica
at a given point of execution should match the memory con-
tents of the other replica at the same point of execution. Ex-
traVirt takes advantage of this similarity by combining op-
portunistically pages that have been verified to be identical
between replicas[7]. ExtraVirt verifies output before send-
ing it to external devices and so does not need to replicate
disk storage, nor does it suffer increased network overhead.

We are currently implementing replica management in Ex-
traVirt. Open research issues include how to handle perma-
nent faults, how to tolerate faults that occur while executing
outside the automatically replicated software, and where the
RML should be located relative to device drivers.

1. REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen

'A hardware memory fault to a shared page could affect
both replicas, but we assume these are handled by ECC
memory.

and the Art of Virtualization. In Proceedings of the
19th ACM Symposium on Operating Systems Principles
(SOSP 2003), October 2003.

T. C. Bressoud and F. B. Schneider. Hypervisor-Based
Fault Tolerance. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP
1995), December 1995.

G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and

P. M. Chen. ReVirt: Enabling Intrusion Analysis
through Virtual-Machine Logging and Replay. In
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI 2002),
December 2002.

S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The
Soft Error Problem: An Architectural Perspective. In
Proc. 11th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Februrary 2005.

Flips Happen

m Increasing transient
fault risk
= Decreasing feature
size
m Decreasing voltage
levels
m Increasing clock rates

Example: Memory

= Copy oh write Verify

= Reduces overhead Checkpoint Checkpoint
= Protects checkpoints
m Merge on checkpoint
m Verify correctness
= Re-execute on
deviation

= Memory Fault
Protection
= ECC against RAM
faults

= MMU against CPU
faults

[5]

(6]

E. Normand. Single Event Upset at Ground Level.
IEEE Transactions on Nuclear Science, 43(6),
December 1996.

George A. Reis, Jonathan Chang, Neil Vachharajani,
Ram Rangan, and David I. August. SWIFT: Software
implemented fault tolerance. In Proceedings of the 3rd
International Symposium on Code Generation and
Optimization, March 2005.

C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI 2002), 2002.

Multi-Processor + Virtual Machine

m Multi-Processor
= Ensure error independence
= Enable fault detection
m Efficient resource sharing
m Virtual Machine
= No changes to OS or
applications
n VM replay to synchronize
replicas and recover correct
state

Outstanding Issues

Device
Drivers

HyperVisor/RML

m Not all execution is duplicated
m Compiler or manual replication
= Fault Model
= Permanent failure
m Partitioning failure
m Hypervisor/replication failure
m Reducing risk of 1/0 faults
= Direct I/O control
= Including drivers in replication

