
1

Abstract: Checkpointing is a general technique for recover-
ing applications. Unfortunately, current checkpointing sys-
tems add many seconds of overhead per checkpoint. Their
high overhead prevents them from making failures transpar-
ent to users and other external entities, so failures lose visi-
ble state. This paper presents a checkpointing system called
Discount Checking that is built on reliable main memory
and high-speed transactions. Discount Checking can be
used to make general-purpose applications recoverable eas-
ily and with low overhead. The checkpoints taken by Dis-
count Checking are extremely fast, ranging for our target
applications from 50µs to a few milliseconds. Discount
Checking’s low overhead makes it possible to provide ideal
failure transparency by checkpointing each externally visi-
ble event. Yet even with this high rate of checkpointing, Dis-
count Checking slows real applications down by less than
0.6%.

1. Introduction
On today’s computer systems, failures such as operat-

ing system and process crashes are a fact of life. Persistent
state refers to data on a computer system (such as user files)
that must survive such failures. Many applications running
on a typical computer manipulate persistent state. Examples
of such applications include e-mail programs, word proces-
sors, spreadsheets, CAD programs, databases, and file sys-
tems. These applications must be recoverable; that is, the
user must be able to restart the application after a crash
without losing persistent state. Most programs enable recov-
ery by adding application-specific code to save and recover
user data. This code may be invoked by the user (e.g. an edi-
tor’s save command) or by the application (e.g. an editor’s
autosave). This code may be complex and slow, and it usu-
ally does not save the complete state of the process. For
example, the undo log in most editors is not preserved
across program invocations.

Checkpointing offers a general way to recover a pro-
cess. Checkpointing is a form of backward error recovery
that periodically saves the complete state of a running pro-
cess to stable storage. Checkpointing with rollback recovery
is used most often as a fault-recovery technique, but it can
be used in other areas as well. Process migration can use
checkpointing to move a running process to a new computer
[Litzkow92]. Debuggers can use checkpoints to examine the
state of a process before a crash. Distributed simulation sys-
tems may allow a process to speculatively execute a path
rather than wait to synchronize with other processes. If the
speculation is incorrect, the system can use checkpointing to
recover the process to the point in time before the incorrect
speculation [Fujimoto90].

Checkpointing systems strive to be transparent in
terms of overhead during failure-free operation, handling of
failures, and modifications of the program needed to support
recovery.

• Performance transparency: The checkpointing system
should not increase significantly the time it takes to exe-
cute a program, and it should not increase significantly
the disk or memory space required to run the program.
Users should be unaware of any slowdown during nor-
mal operation.

• Failure transparency: The checkpointing system
should recover the process without losing work that is
visible to external entities (such as users). External enti-
ties are those whose state can not be undone easily. For
example, it is difficult to undo actions caused by sending
commands or output to humans, printers, and missile
launchers. As far as the outside world can tell, the pro-
cess should recover back to the same state it was in
before the crash. For example, a process should not print
a message indicating that a backup was taken, then fail
and recover to a point before the backup was taken. In
this scenario, a user would be misled if the process exe-
cuted differently after recovery and did not actually take
a backup. To achieve failure transparency, the system
must take a checkpoint to ensure that the state from

Discount Checking:
Transparent, Low-Overhead Recovery for General Applications

David E. Lowell and Peter M. Chen

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

University of Michigan
{dlowell,pmchen}@eecs.umich.edu

http://www.eecs.umich.edu/Rio

This research was supported in part by NSF grant
MIP-9521386 and Intel Technology for Education 2000.
Peter Chen was also supported by an NSF CAREER
Award (MIP-9624869).

2

which the system outputs a message to the user will
never be rolled back. This checkpoint is a form of “out-
put commit” [Strom85, Elnozahy93].

• Programmer transparency: Since checkpointing is a
general recovery technique, it offers the potential for
easily making many applications recoverable. A pro-
grammer should be able to use the checkpointing system
to make a program recoverable with minimal program-
ming effort. It should be much simpler to handle recov-
ery using a checkpointing library than by writing custom
recovery code for each new application.

Current checkpointing systems fail to attain one or
more of the above three goals for general-purpose pro-
grams. In particular, current checkpointing systems incur a
high overhead (many seconds) per checkpoint. Their high
overhead prevents them from providing failure transparency
for interactive applications, because it is infeasible for them
to take a checkpoint for every user-visible event.

In this paper, we present a checkpointing system, Dis-
count Checking, that is built on reliable main memory and
high-speed transactions. Discount Checking meets all three
of the above goals. Overhead per checkpoint for our target
applications ranges from 50µs to 2 milliseconds. This low
overhead makes it possible to provide ideal failure transpar-
ency by checkpointing each externally visible event. As far
as the user and other external entities can tell, a process
recovers back to exactly the same state it was in before the
crash. Even with this high rate of checkpointing, Discount
Checking slows real applications down by less than 0.6%.
Furthermore, Discount Checking is easy to use. For most
programs, the programmer simply links the program with
the Discount Checking library, adds an#include file, and
adds a call todc_init at the beginning of the program.
Discount Checking automatically takes checkpoints and
recovers the process during restart.

2. Related Work
Recovering a failed process means reconstructing the

state of the process, then restarting it. The process may be
restarted on the same machine (perhaps after a reboot) or on
a different machine (as is done with process pairs)
[Bartlett81, Gray86]. There are two main techniques for
reconstructing the state of a failed process: checkpointing
and log-and-replay [Elnozahy96].

2.1. Checkpointing
Checkpointing has been used for many years

[Chandy72, Koo87] and in many systems [Li90, Plank95,
Tannenbaum95, Wang95]. The primary limitation of current
checkpointing systems is the overhead they impose per
checkpoint. For example, [Plank95] measures the overhead
of a basic checkpointing system to be 20-159 seconds per
checkpoint on a variety of scientific applications. To amor-
tize this high overhead, today’s systems take checkpoints
infrequently. For example, the default interval between

checkpoints forlibckp is 30 minutes [Wang95]. The high
overhead per checkpoint and long interval between check-
points limit the use of checkpointing to long-running pro-
grams with a minimal need for failure transparency, such as
scientific computations. In contrast, we would like to make
checkpointing a general tool for recovering general-purpose
applications. In particular, interactive applications require
frequent checkpoints (at each user-visible event) to mask
failures from users.

Researchers have developed many optimizations to
lower the overhead of checkpointing. Incremental check-
pointing [Elnozahy92] only saves data that was modified in
the last checkpoint interval, using the page protection hard-
ware to identify the modified data. Incremental checkpoint-
ing often, but not always, improves performance. For
example, [Plank95] measures the overhead of incremental
checkpointing to be 4-53 seconds per checkpoint.

Asynchronous checkpointing (sometimes called
forked checkpointing) writes the checkpoint to stable stor-
age while simultaneously continuing to execute the program
[Li94]. In contrast, synchronous checkpointing (sometimes
called sequential checkpointing) waits until the write to sta-
ble storage is complete before continuing executing the pro-
cess. Asynchronous checkpointing can lower total overhead
by allowing the process to execute in parallel with the act of
taking the checkpoint. However, asynchronous checkpoint-
ing sacrifices failure transparency to gain this performance
improvement. To achieve failure transparency, a checkpoint
must complete before doing work that is visible exter-
nally—this guarantees that no visible work is lost during a
failure. In asynchronous checkpointing, the checkpoint does
not complete until many seconds after it is initiated. Visible
work performed after this checkpoint will be lost if the sys-
tem crashes before the checkpoint is complete. This may be
acceptable for programs that do not communicate fre-
quently with external entities, but it hinders the use of
checkpointing for general applications.

Memory exclusion is another technique used to lower
the overhead of checkpointing [Plank95]. In this technique,
the programmer explicitly specifies ranges of data that do
not need to be saved. Memory exclusion can reduce over-
head dramatically for applications that touch a large amount
of data that is not needed in recovery or is soon deallocated.
However, memory exclusion adds a significant burden to the
programmer using the checkpoint library.

2.2. Log-and-Replay
Log-and-replay is another general-purpose recovery

technique [Borg89]. Whereas checkpointingsaves the state
of the failed process, log-and-replayrecomputes the state of
the failed process. Log-and-replay starts from a prior state
and rolls the process forward by re-executing the instruc-
tions. Re-executing the process must use the same inputs
that were used the first time; otherwise the process will not
recover back to the same state it was in when it crashed.

3

These inputs are logged before a crash and used during
recovery. Unfortunately, there is a wide variety of inputs
that must be logged to recover the process back to the same
state, and many of these are difficult to log and replay. In
particular, all events that may cause non-deterministic exe-
cution must be logged and replayed carefully to ensure
repeatability. The following are examples of these events:

• Message-logging systems focus on logging and replay-
ing messages in the original order [Strom85, Koo87,
Johnson87, Borg89, Lomet98]. Input from the user can
be considered a form of messages.

• Signals and other asynchronous events are difficult to
log and replay, because the effect of these events may
depend on the exact processor cycle the process received
the signal [Slye96]. For this reason, Targon/32 chose to
checkpoint before each signal rather than log [Borg89].
In general, timing dependencies are a difficult input to
log and replay.

• Thread scheduling events must be logged and replayed
in the same order to ensure repeatability during the
recovery of multi-threaded applications. Multi-threaded
applications may also need to log shared-memory
accesses between cooperating threads.

• The results of many system calls must also be logged
and replayed [Elnozahy93, Russinovich93]. For exam-
ple, the application could execute code based on the time
of day returned by a system call. During recovery, the
system call must return the same time of day to enable to
process to execute the same code.

With sufficient effort, many of these inputs can be
logged and replayed [Elnozahy93]. As evident from the
above list, however, it is no simple matter to track down,
log, and replay repeatably all inputs that affect the roll-for-
ward phase. For example, [Slye96] required a custom thread
library and object-code instrumentation to successfully
track thread scheduling events and signals. The complexity
of dealing with these and other sources of non-determinism
has prevented the widespread use of log-and-replay in
recovering general applications [Birman96, Huang95].

2.3. Comparison of Recovery Techniques
Checkpointing is a more general recovery technique

than log-and-replay, because checkpointing saves the
crashed state and so obviates the need for reconstructing
state using repeatable re-execution. In other words, check-
pointing works for non-deterministic processes, whereas
log-and-replay must turn non-deterministic processes into
deterministic ones. The main motive for using log-and-
replay instead of checkpointing is its speed for output com-
mit. Logging inputs is faster than current checkpointing sys-
tems, unless the checkpoint interval is very long
[Elnozahy94].

In summary, prior work has provided two general-pur-
pose recovery techniques: checkpointing and log-and-
replay. Prior checkpointing systems add many seconds of

overhead per checkpoint, which prevents them from provid-
ing failure transparency for general applications. Log-and-
replay offers good failure transparency by reconstructing
the state of a failed process to the exact point of the crash.
However, it is very difficult to use log-and-replay for gen-
eral, non-deterministic programs.

The next section describes the design and implementa-
tion of a fast checkpointing library. Discount Checking pro-
vides fast, synchronous checkpoints, allowing
checkpointing to provide complete failure transparency for
general, non-deterministic programs.

3. Design and Implementation of Discount
Checking

3.1. Reliable Main Memory and Fast Transactions
The key to fast checkpointing is reliable main memory

and fast transactions. Reliable main memory is a form of
fast, stable storage that can be mapped directly into a pro-
cess’s address space. In our project, we use the reliable main
memory provided by the Rio file cache [Chen96] and the
fast transactions provided by the Vista transaction library
[Lowell97].

Like most file caches, Rio caches recently used file
data in main memory to speed up future accesses. Rio seeks
to protect this area of memory from its two common modes
of failure: power loss and system crashes. While systems
can protect against power loss in a straightforward manner
(by using a $100 uninterruptible power supply, for exam-
ple), protecting against software errors is trickier. Rio uses
virtual memory protection to prevent operating system
errors (such as wild stores) from corrupting the file cache
during a system crash. This protection scheme does not
affect performance significantly. After a crash, Rio writes
the file cache data in memory to disk, a process called warm
reboot. In essence, Rio makes the memory in the file cache
persistent. Chen et al. verified experimentally that the Rio
file cache was as safe as a disk from operating system
crashes. The version of Rio used in this paper is a modifica-
tion of FreeBSD 2.2.7. FreeBSD-Rio runs on standard PCs
without modifications to the hardware, firmware, or proces-
sor configuration.

Vista builds on the persistent memory provided by Rio
to provide fast transactions [Lowell97]. Applications use
Vista to allocate areas of persistent memory and perform
atomic, durable transactions on that memory. Vista uses sev-
eral optimizations to lower transaction overhead. First, all
data is stored or logged in Rio’s reliable memory, thus elim-
inating all disk I/O for working sets that fit in main memory.
Second, Vista uses a “force” policy [Haerder83] to update
the transactional memory eagerly, thus eliminating the redo
log and its associated complexity. Third, Vista maps the
transactional memory directly into the address space. This
style of mapping eliminates all systems calls and all-but-one
memory-to-memory copy, while not hurting reliability
[Ng97]. Fourth, Vista’s simplicity and small code size (700

4

lines of C) lead to very short code paths. As a result of these
optimizations, Vista’s transactions are extremely fast: small
transactions can complete in under 2µs.

3.2. Transactions and Checkpointing
Although they are rarely discussed together in the lit-

erature, transactions and application checkpointing are very
similar concepts. Figure 1 shows a process executing and
taking checkpoints. The same process can be viewed as a
series of transactions, where an interval between check-
points is equivalent to the body of a transaction. Taking a
checkpoint is equivalent to committing the current transac-
tion. After a crash, the state of the process is rolled back to
the last checkpoint; this is equivalent to aborting the current
transaction. The similarity between transactions and check-
pointing leads naturally to the idea of using Vista’s low-
latency transactions to build a very fast checkpointing
library.

3.3. Saving Process State
Building a checkpointing system on a transaction sys-

tem is conceptually quite simple: map the process state into
the transactional memory and insert transaction_begin and
transaction_end calls to make the interval between check-
points atomic. Discount Checking is a library that can be
linked with the application to perform these functions.
There are three main types of process state that must be
saved in the transactional memory: address space, registers,
and kernel state.

The bulk of a process’s state is stored in the process’s
address space. When the process starts, Discount Checking
loads the process’s data and stack segments into Vista’s
transactional memory. It loads the data segment by creating
a Vista segment, initializing it with the current contents of
the data segment, and mapping it in place over the original
data segment withmmap. To minimize the number of Vista
segments, Discount Checking moves the stack into a static

buffer in the data segment. A second Vista segment contains
data that is dynamically allocated using malloc. The process
then executes directly in the Vista segments; memory
instructions directly manipulate persistent memory. In con-
trast, other checkpointing libraries execute the process in
volatile memory and copy the process state at each check-
point. To rollback after a process crash, Discount Checking
must undo the memory modifications made during the cur-
rent interval. Vista logs this undo data in Rio using copy-on-
write [Appel91] and restores the memory image during
recovery.

A process’s address space is easy to checkpoint
because it can be mapped into Vista’s transactional memory.
However, a process’s state also includes register contents,
which can not be mapped into memory. Discount Checking
copies the register contents (stack pointer, program counter,
general-purpose registers) at each checkpoint using libc’s
setjmp function and logs the old values into Vista’s undo
log usingvista_set_range .

Some processes can be made recoverable by check-
pointing only the address space and registers. However,
making general processes recoverable requires saving mis-
cellaneous state stored in the kernel. Discount Checking
saves the pieces of this state that are required most often.
We occasionally need to add other pieces as we use Dis-
count Checking for new applications. Our basic strategy for
saving these pieces of state is to intercept system calls that
manipulate the state, save the values in Vista’s memory, and
restore the state during recovery. The following are some
examples of the types of kernel state recovered by Discount
Checking:

Open files/sockets and file positions: Discount
Checking intercepts calls toopen , close , read ,
write , andlseek to maintain a list of open files and their
file positions. During recovery, Discount Checking re-opens
and re-positions these files. Discount Checking also inter-

Figure 1: Equivalence of Checkpointing and Transactions. Transactions and checkpointing are very similar concepts.
This figure shows a process taking checkpoints as it executes. The interval between checkpoints is equivalent to the body of a
transaction. Taking a checkpoint is equivalent to committing the current transaction. After a crash, the state of the process is
rolled back to the last checkpoint; this is equivalent to aborting the current transaction. A checkpoint is taken before user
output to ensure the process recovers to a state consistent with that seen by external, non-abortable entities.

memory

checkpoint checkpoint

transaction 1 transaction 2

stores
memory
stores

user
output

checkpoint

transaction 3

5

cepts calls tounlink in order to implement the Unix
semantic of delayingunlink until the file is closed.

File system operations: File system operations such
as write update persistent file data. Discount Checking
must undo these operations during recovery, just like Vista
undoes operations to the transactional memory. To undo this
state, Discount Checking copies the before-image of the file
data to a special undo log and plays it back during recovery.
Discount Checking does not need to log any data when the
application extends a file, because there is no before-image
of that part of the file.

Bound sockets: Discount Checking intercepts calls to
bind , saves the name of the binding, and re-binds to this
name during recovery.

Connected sockets: Discount Checking intercepts
calls toconnect , remembers the destination address, and
uses this address when sending messages.

TCP: Much of the state used to implement the TCP
protocol is in the kernel. To access this state, we imple-
mented a user-level TCP library built on UDP. Since our
TCP library is part of the process, Discount Checking saves
its state automatically. To support applications that use X
Windows, we modified the X library and server to use our
TCP library.

Signals: Discount Checking interceptssigaction ,
saves the handler information, and re-installs the handler
during recovery. Discount Checking also saves the signal
mask at a checkpoint and restores it during recovery.

Timer : Discount Checking saves the current timer
interval and restores the interval during recovery.

Page protections: Some applications manipulate page
protections to implement functions such as copy-on-write,
distributed shared memory, and garbage collection
[Appel91]. Vista also uses page protections to copy the
before-image of modified pages to its undo log. Vista sup-
ports applications that manipulate page protections by inter-
cepting mprotect , saving the application’s page
protections, and installing the logical-and of Vista’s protec-
tion and the application’s protection. When a protection sig-
nal occurs, Vista invokes the appropriate handler(s).

3.4. Failure Transparency
In general, providing complete failure transparency

requires a checkpoint just before executing a non-abortable
event. An event that is visible to an external entity (such as
printing to the screen) is an example of a non-abortable
event. Taking a checkpoint right before such an event guar-
antees that the event is not forgotten in a crash. From the
point of view of an external entity (such as people), the
recovered process returns to the same state it was in before
the crash. In the worst case, the recovered process will re-
execute the non-abortable event. This duplicate event is
often harmless. For example, applications must already
cope with duplicate messages when using today’s unreliable

networks. The duplicate event can be eliminated if the event
is testable or can be made atomic with the checkpoint
[Gray93]. Otherwise the probability of the event being
duplicated may be minimized by taking another checkpoint
right after the event.

Without the checkpoint before a non-abortable event,
the process might (1) execute the non-abortable event, (2)
crash and recover to an earlier state, (3) take a different exe-
cution path due to non-determinism in the program (Section
2.2), then (4) not re-execute the non-abortable event. Under
this scenario, the process would recover to a state that is
inconsistent with the state seen by external, non-abortable
entities.

By taking a checkpoint before each non-abortable
event, Discount Checking guarantees failure transparency
for deterministic and non-deterministic programs. It is far
easier to identify non-abortable events, such as printing to
the screen, than to identify and make repeatable all inputs
and non-deterministic events, as is required by log-and-
replay (Section 2.2).

One aspect of designing Discount Checking is classi-
fying events as abortable or non-abortable. Events such as
printing to the screen must be classified as non-abortable, as
we know of no easy way to abort a user’s memory. Other
events may be considered abortable or non-abortable. For
example, we could consider writing to a file a non-abortable
event and preserve failure transparency by taking a check-
point before each file write. However, a faster way to pre-
serve failure transparency when files are not shared
concurrently is to make file writes abortable with an undo
log (Section 3.3) and eliminate the checkpoint.

Sending a message to a non-abortable entity (such as a
display server) must be considered a non-abortable event
and hence must induce a checkpoint. Taking a checkpoint
for each message send guarantees consistent, distributed
recovery [Lamport78, Koo87]. If the receiver’s state can be
rolled back, we can consider message sends abortable
events. This requires an atomic commitment protocol (such
as two-phase commit) between the sender and receiver.

3.5. Minimizing Memory Copies
As discussed above, Vista logs the before-image of

memory pages into Rio’s reliable memory. Vista then uses
this undo log during recovery to recover the memory image
at the time of the last checkpoint. As we will see in Section
5.1, copying memory images to the undo log comprises the
dominant overhead of checkpointing (copying a 4 KB page
takes about 40µs on our platform).

Discount Checking uses several techniques to mini-
mize the number of pages that need to be copied to the undo
log. One basic technique is copy-on-write. Instead of copy-
ing the address space at a checkpoint, Vista uses copy-on-
write to lazily copy only those pages that are modified dur-
ing the ensuing interval. Copy-on-write is implemented
using the virtual memory’s write protection. On some sys-

6

tems, system calls fail when asked to store information in a
protected page. Discount Checking intercepts these system
calls and pre-faults the page before making the system call.
Discount Checking reduces the number of stack pages that
need to be copied by not write-protecting the portion of the
stack that is unused at the time of the checkpoint.

Discount Checking must take special steps to use
copy-on-write on stack pages, because naively write pro-
tecting the stack renders the system incapable of handling
write-protection signals (delivering the signal generates
another write-protection signal). To resolve this conflict, we
use BSD’ssigaltstack system call to specify an alter-
nate stack on which to handle signals. The signal-handling
stack is never write protected; instead, its active portion is
logged eagerly during a checkpoint. This eager copy adds
very little overhead, because (1) the signal stack contains
data only when the checkpoint occurs in a signal handler,
and (2) the signal stack is usually not very deep even when
handling a signal.

In addition to the signal stack, Discount Checking
stores most of its own global variables in a Vista segment
that is not logged using copy-on-write. These variables
include the register contents at the last checkpoint, signal
mask, list of open files, and socket state. Discount Checking
copies these variables to the undo log as needed, rather than
using copy-on-write to copy the entire page containing a
variable.

As a result of these optimizations, Discount Checking
can copy very little data per checkpoint. The minimum
checkpoint size is 4360 bytes: a 4 KB page for the current
stack frame, plus 264 bytes for registers and some of Dis-
count Checking’s internal data.

3.6. Vista-Specific Issues
Discount Checking benefits substantially by building

on Vista’s transactional memory. The standard Vista library
provides much of the basic functionality needed in check-
pointing. For example, Vista provides a call (vista_map)
to create a segment and map it to a specified address. Vista
provides the ability to use copy-on-write or explicit copies
to copy data into the undo log, and Vista recovers the state
of memory by playing back the undo log. Vista also supplies
primitives (vista_malloc , vista_free) to allocate
and deallocate data in a persistent heap; Discount Checking
transforms calls tomalloc/free into these primitives.
Vista provides the ability to group together modifications to
several segments into a single, atomic transaction by using a
shared undo log.

For the most part, Discount Checking required no
modifications to Vista. The sole exception relates to Vista’s
global variables. Because Vista is a library, it resides in the
application’s address space. Our first implementation of
Discount Checking used Vista to recover the entire address
space, including Vista’s own global variables! Conse-
quently, Vista’s global variables (such as the list of Vista

segments) would suddenly change when the undo log was
played back during Vista’s recovery procedure. Instead, we
want Vista to manually recover its own variables, as it does
when not running with Discount Checking. One way to
view this is that a recovery system may recover client vari-
ables automatically, but it cannot use itself to recover its
own variables. To fix the problem, Discount Checking
moves Vista’s global variables to a portion of the address
space that is not recovered by Vista. This was done by mov-
ing Vista’s global variables to the segment that is not logged
via copy-on-write, and not copying the variables to the undo
log. Vista does not modify these variables during recovery
because there are no undo images for them.

4. Using Discount Checking
Checkpointing libraries provide a substrate for easily

making general applications recoverable. It should be much
simpler to handle recovery using a checkpointing library
than by writing custom recovery code for each new applica-
tion. Towards this goal, Discount Checking requires only
two minor source modifications to most programs. First, the
program must includedc.h in the module that contains
main . Second, the program must calldc_init as the first
executable line inmain . dc_init loads the program into
Vista’s transactional memory, moves the stack, and starts
the first checkpoint interval.dc_init takes several param-
eters, the most important of which is the file name to use
when storing checkpoint data. After making these two
changes, the programmer simply links withlibdc.a and
runs the resulting executable. Discount Checking currently
requires the executable to be linked statically to make it
easy to locate the various areas of the process’s address
space.

As discussed in Section 3.4, Discount Checking inserts
checkpoints automatically before non-abortable events such
as printing to the screen. Discount Checking also restarts
with little user intervention: the user simply re-invokes the
program. Whendc_init is called, it notices that there is
an existing checkpoint file and initiates recovery. The recov-
ery procedure restores the registers, memory, and kernel
state at the time of the last checkpoint, then resumes execu-
tion from the last checkpoint. From the user’s point of view,
the program has simply paused—no visible state is lost dur-
ing a crash. The program also is unaware that it has crashed,
as it simply resumes execution from the last checkpoint.

We expect most programmers to rest happily while
Discount Checking transparently checkpoints and recovers
their program. However, some may want to extend the
checkpointing library or play a more direct role during
recovery. For these advanced uses, Discount Checking
allows the programmer to specify a function to run during
recovery (e.g. to perform application-specific checks on its
data structures). Discount Checking also allows the pro-
grammer to specify a function to run before each check-
point.

7

To summarize, Discount Checking lets a programmer
write an application that modifies persistent data, without
having to worry about a myriad of complex recovery issues.
Once the application works, the programmer can make it
recoverable easily by linking it with Discount Checking and
making two minor source modifications.

5. Performance Evaluation
Our goal is to use checkpointing to recover general

applications with complete failure transparency. The feasi-
bility of this goal hinges on the speed of Discount Checking,
particularly during failure-free execution. In this section, we
measure the overhead added by Discount Checking for a
variety of applications.

We first use a microbenchmark to quantify the rela-
tionship between checkpoint overhead and working set size.
We then describe our suite of test applications and the over-
head needed to make them recoverable. Last, we explore the
relationship between checkpoint interval and overhead for
two programs from SPEC CINT95.

Table 1 describes the computing platform for all our
experiments. For all data points, we take five measurements,
discard the high and low, and present the average of the
middle three points. Standard deviations for all data points
is less than 1% of the mean.

5.1. Microbenchmark
Copying memory pages to Vista’s undo log comprises

the dominant overhead of checkpointing. Figure 2 shows the
relationship between the number of bytes touched per
checkpoint interval and the overhead incurred per interval.
The program used to generate this data is a simple loop,
where each loop iteration touches the specified number of
bytes, then takes a checkpoint.

The minimum overhead is 50µs per checkpoint. This
overhead is achieved when touching a single 4 KB page per
checkpoint (for example, as might be done by a program
operating only on the stack). As expected, checkpoint over-
head increases linearly with the number of bytes touched.

Each 4 KB page takes 45µs to handle the write protection
signal and copy the before-image to Vista’s in-memory
undo log (32µs for working sets that fit in the L2 cache).
For example, a program that touches 1 MB of data during an
interval will see 12 ms overhead per checkpoint. Prior
checkpointing libraries incur many seconds of overhead per
checkpoint, so Discount Checking is thousands of times
faster than these libraries even for programs that touch a
large amount of data per interval.

In general, there is no fixed relationship between abso-
lute overhead (seconds) and relative overhead (fraction of
execution time). Real programs that touch a larger amount
of data in an interval are likely to spend more time comput-
ing on that data than programs that touch only a small
amount of data. Hence their checkpoint overhead will be
amortized over a longer period of time. The main factor
determining relative overhead is locality. Programs that per-
form more work per touched page will have lower relative
overhead than programs that touch many pages without per-
forming much work.

5.2. Applications
We use four benchmarks to measure how Discount

Checking affects performance on real applications:vi ,
magic , oleo , and rogue . vi is one of the earlier text
editors for Unix. The version we use isnvi . magic is a
VLSI layout editor. oleo is a spreadsheet program.
rogue is a game that simulates an adventure through a
dungeon.

vi , oleo , androgue are full-screen text programs
that manipulate the terminal state through thecurses
library. To recover the terminal state after a crash, we spec-

Table 1: Experimental Platform.

Processor Pentium II (400 MHz)

L1 Cache Size 16 KB instruction / 16 KB data

L2 Cache Size 512 KB

Motherboard Acer AX6B (Intel 440 BX)

Memory 128 MB (100 MHz SDRAM)

Network Card Intel EtherExpress Pro 10/100B

Network
100 Mb/s switched Ethernet
(Intel Express 10/100 Fast

Ethernet Switch)

Disk
IBM Ultrastar DCAS-34330W

(ultra-wide SCSI)

Figure 2: Checkpoint Overhead for Microbenchmark.
Checkpoint overhead is proportional to the number of
pages touched per checkpoint. Each 4 KB page takes
approximately 45µs to handle the write-protection signal
and copy the page to Vista’s in-memory undo log (32µs for
working sets that fit in the L2 cache).

1 KB 10 KB 100 KB 1 MB 10 MB
Bytes Touched per Checkpoint

0.01

0.10

1

10

100

C
he

ck
po

in
t O

ve
rh

ea
d

(m
s)

8

ify a user recovery function when callingdc_init . The
recovery function is six lines ofcurses function calls.
These six lines and the call todc_init are the only
changes required to makevi , oleo , androgue recover-
able with Discount Checking.magic is an X11-based
application and communicates with the X server using mes-
sages. To provide failure transparency, Discount Checking
intercepts message sends and checkpoints before communi-
cating with the X server. Other than the call todc_init ,
no changes were needed inmagic to use Discount Check-
ing.

Conducting performance measurements of interactive
programs requires some care to achieve repeatable results.
We make the runs repeatable by playing back input from a
log file instead of the terminal. Forvi , oleo , androgue ,
we simulate a very fast typist by delaying 100 ms each time
the programs asks for a character. Formagic , we delay 1
second between mouse-generated commands. We use this
type of delay instead of fixing the interarrival time between
characters because it more faithfully simulates real interac-
tion; typists often wait for the output from the last keystroke
before typing the next keystroke. This type of delay also
presents a pessimistic view of checkpointing overhead
because checkpoint overhead is never overlapped with the
delay. Fixing the interarrival time between characters would
allow some of the checkpoint overhead (and other computa-
tion) to be hidden in the 100 ms interarrival time. Note that
we measure performance using an input rate much faster
than people can interact with the program. With real human
interaction, the relative overhead added by Discount Check-
ing would be even lower.

For vi , we replay the keystrokes used when writing
the introduction to this paper. Formagic , we replay the
commands used to layout a simple inverter. Foroleo , we
replay the keystrokes used to create the budget for a grant
proposal. Forrogue , we replay the keystrokes used to nav-
igate through one level of the dungeon.

Table 2 shows the overhead added by Discount Check-
ing in terms of running time and memory usage. Discount
Checking adds negligible run-time overhead for these appli-

cations (at most 0.6%). As expected, the bottleneck for
interactive applications is the user. Even with interactive
input rates, however, prior checkpointing libraries would
have slowed these applications by a factor of 10-100 to
achieve complete failure transparency. A unique strength of
Discount Checking is its ability to recover general-purpose,
interactive applications—this is one of the target classes of
applications for our work.

Discount Checking uses extra memory to store the
undo log. Table 2 shows the average and maximum size
used by the undo log, where average refers to the average
size of the undo log at the end of a checkpoint interval. The
extra memory used by Discount Checking for these applica-
tions is usually only 100 KB.

Besides adding little overhead to failure-free opera-
tion, Discount Checking also recovers very quickly.
Because there is no roll-forward during recovery, Discount
Checking is able to recover these programs in a fraction of a
second.

5.3. Varying the Checkpoint Interval
We next measure how Discount Checking performs for

different checkpoint intervals. The benchmarks we use are
non-interactive computations from SPEC CINT95. Prior
checkpointing research has focused on these types of appli-
cations because they generate little output and hence require
very few checkpoints for failure transparency. We use
ijpeg and m88ksim ; other benchmarks in the SPEC95
suite give similar results. The only modification needed to
make these recoverable with Discount Checking was the
call todc_init (and the accompanying#include).

Figure 3 graphs the relative overhead incurred as a
function of checkpoint interval. For these programs, few
checkpoints are required for failure transparency because
they produce very little output. Instead, we use periodic
timer signals to trigger checkpoints at varying intervals. As
expected, relative overhead drops as checkpoints are taken
more frequently. At very short checkpoint intervals, over-
head remains relatively constant because lengthening the
interval increases the amount of bytes logged in the interval.

Table 2: Application Overhead. Discount Checking adds very little run-time or memory overhead in making programs
recoverable, yet it provides completes failure transparency by not losing any visible state after a crash.

Program Running Time
of

Checkpoints

Size of Undo Log

Name Type Original
Discount
Checking

Overhead Average Max

vi editor 881.90 sec 882.76 sec 0.1% 7940 74 KB 144 KB

magic CAD 89.54 sec 90.04 sec 0.6% 208 126 KB 734 KB

oleo spreadsheet 57.91 sec 58.02 sec 0.2% 396 94 KB 123 KB

rogue game 16.51 sec 16.58 sec 0.4% 231 49 KB 82 KB

9

In other words, the working set of these applications is pro-
portional to interval length for short intervals, then increases
more slowly for longer intervals.

The interval used in prior checkpointing studies has
ranged from 2-30 minutes for these types of applications.
Discount Checking is able to take checkpoints every second
while adding only 6-10% overhead. Such a high frequency

of checkpoints is not needed for these applications, but it
serves to demonstrate the speed of Discount Checking on a
wider range of applications. Other SPEC benchmarks gave
similar results, with overhead ranging from 0-10% with a 1
second checkpoint interval.

Figure 3 also shows how the average and maximum
size of the undo log varies as a function of checkpoint inter-

Figure 3: Checkpoint Overhead for Varying Intervals. We useijpeg andm88ksim to measure how the interval of
checkpointing affects overhead. As checkpoints are taken less frequently, the relative overhead drops and the size of the undo
log generally increases. Checkpointing adds little overhead even at high rates of checkpointing.

maximum

average

(b) m88ksim

(a) ijpeg

0.01 0.1 1 10
Checkpoint Interval (Seconds)

0

5

10

15

Lo
g

S
iz

e
(M

B
)

0.01 0.1 1 10
Checkpoint Interval (Seconds)

0

10

20

30

40

50

60

70

80

90

100
P

er
ce

nt
 O

ve
rh

ea
d

0.01 0.1 1 10
Checkpoint Interval (Seconds)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 O
ve

rh
ea

d

0.01 0.1 1 10
Checkpoint Interval (Seconds)

0

5

10

15
Lo

g
S

iz
e

(M
B

)

maximum

average

10

val. As checkpoints become less frequent, the size of the
undo log generally increases because more data is being
logged during longer intervals.ijpeg shows a deviation
from this general trend, where the undo log size eventually
shrinks for longer checkpoint intervals. This occurs because
of how Vista handles memory allocation within a transac-
tion [Lowell97]. Vista defersfree operations until the end
of the transaction unless the correspondingmalloc was
performed in the current transaction. Hence, longer intervals
allow Vista to re-use memory regions for new allocations.

6. Contributions
This paper makes a number of contributions to recov-

ery research.

First, we show how to build a fast checkpointing sys-
tem from reliable memory and fast transactions. Discount
Checking’s checkpoints typically take between 50µs and a
few milliseconds to complete, much less time than the many
seconds of overhead traditional checkpoints incur.

Micro and millisecond checkpoints are important not
just because they speed up recoverable applications. Fast
checkpoints enable recovery techniques that would be
impractical with classical checkpoints. For example, with
fast checkpoints it becomes feasible to recover distributed
systems by taking a checkpoint before every message send.

Fast checkpoints also expand the domain of applica-
tions that can use checkpointing. For example, as we show
in this paper, fast checkpoints can be used to make interac-
tive applications transparently recoverable with low over-
head. Programs with lots of human interaction are some of
the most deserving of strong recovery properties, as human
labor is difficult and painful to rebuild. Unfortunately, tradi-
tional checkpoints have been too slow to provide failure
transparency for interactive applications.

Another of our contributions is to focus this research
on checkpointing general applications, for which numerous
system calls and plentiful kernel state are the norm. In con-
trast, classical checkpointing research has focused on taking
checkpoints in scientific compuations. Scientific computa-
tions are concerned mainly with computing mathematical
results and as such do few system calls, and have minimal
kernel state. As a result, checkpointing systems targeted for
such applications need not be very general.

Furthermore, we show it is possible to duplicate suffi-
cient kernel state outside the kernel to enable full process
checkpointing at user level—even for applications that exe-
cute a wide variety of system calls.

Finally, we illustrate an important use for reliable
memory and fast transactions: recovering process state. Pro-
cess state is a class of data that fits in memory, benefits from
being made recoverable, and for which traditional stable
storage and transactions are too slow.

7. Future Work
We are exploring more fully how fast checkpoints

affect distributed recovery. For example, fast checkpoints
remove the main bottleneck (writing to stable storage) in
algorithms used in distributed transactions and coordinated
checkpointing, such as two-phase commit [Gray78]. As
mentioned in section 6, fast checkpoints also make practical
new algorithms in distributed recovery. For example, taking
a checkpoint before sending each message guarantees glo-
bally consistent recovery without sending extra messages
[Koo87]. With fast checkpoints, these schemes provide low-
overhead recovery for general-purpose, distributed applica-
tions.

We are also considering ways to recover from bugs
that violate the fail-stop model [Schneider84, Chandra98,
Chandra99]. Programs with such a bug may run for a long
time after the bug is activated. We know of no current recov-
ery system that can recover from such a bug, because the
corruption caused by the bug may be preserved in the recov-
ery data (checkpoint or log). One way to recover from these
bugs is to keep a number of past checkpoints and roll back
more than one checkpoint until before the bug was activated
[Wang93]. Most bugs in production systems are triggered
by non-deterministic events (so-called Heisenbugs)
[Gray86] and may not occur again after recovery.

8. Conclusions
This paper has presented a checkpointing system that

is built on reliable main memory and high-speed transac-
tions. Discount Checking can be used to make general-pur-
pose applications recoverable easily and with low overhead.
The checkpoints taken by Discount Checking are extremely
fast, taking between 50µs and 2 milliseconds for our target
applications.

Discount checking strives to be transparent in three
important ways. Its performance is transparent—users are
unaware of a 0.6% performance degradation. It makes fail-
ures transparent—every single update to the user’s display
is recovered. Finally, it is transparent to the programmer—
applications need only two small source code modifications
to be made recoverable.

9. Software Availability
Source code for Discount Checking, Vista, and the

FreeBSD version of Rio will be made available at
http://www.eecs.umich.edu/Rio .

10. Acknowledgments
We owe thanks to George Dunlap for adding support

for our user-level TCP protocol to the X Windows library.
The other members of the Rio team (Wee Teck Ng and Sub-
hachandra Chandra) contributed in discussions and debug-
ging sessions during the design and implementation of
Discount Checking.

11

11. References
[Appel91] Andrew W. Appel and Kai Li. Virtual

Memory Primitives for User Programs. In
Proceedings of the 1991 International Con-
ference on Architectural Support for Pro-
gramming Languages and Operating
Systems (ASPLOS-IV), pages 96–107, April
1991.

[Bartlett81] Joel F. Bartlett. A NonStop Kernel. InPro-
ceedings of the 1981 Symposium on Operat-
ing System Principles, pages 22–29,
December 1981.

[Birman96] Kenneth P. Birman.Building Secure and
Reliable Network Applications. Manning
Publications, 1996.

[Borg89] Anita Borg, Wolfgang Blau, Wolfgang Gra-
etsch, Ferdinand Herrman, and Wolfgang
Oberle. Fault Tolerance Under UNIX.ACM
Transactions on Computer Systems, 7(1):1–
24, February 1989.

[Chandra98] Subhachandra Chandra and Peter M. Chen.
How Fail-Stop are Faulty Programs? In
Proceedings of the 1998 Symposium on
Fault-Tolerant Computing (FTCS), pages
240–249, June 1998.

[Chandra99] Subhachandra Chandra and Peter M. Chen.
Recovery in the Presence of Fail-Stop Vio-
lations. Submitted to the1999 Symposium
on Fault-Tolerant Computing (FTCS). June
1999.

[Chandy72] K. M. Chandy and C. V. Ramamoorthy.
Rollback and Recovery Strategies for Com-
puter Programs.IEEE Transactions on
Computers, C-21(6):546–556, June 1972.

[Chen96] Peter M. Chen, Wee Teck Ng, Subhachan-
dra Chandra, Christopher M. Aycock, Gu-
rushankar Rajamani, and David Lowell. The
Rio File Cache: Surviving Operating Sys-
tem Crashes. InProceedings of the 1996 In-
ternational Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS), October
1996.

[Elnozahy92] E. N. Elnozahy, David B. Johnson, and Wil-
ly Zwaenepoel. The Performance of Consis-
tent Checkpointing. InProceedings of the
1992 Symposium on Reliable Distributed
Systems, pages 39–47, October 1992.

[Elnozahy93] E. N. Elnozahy. Manetho: Fault Tolerance
in Distributed Systems Using Rollback-Re-

covery and Process Replication. Technical
Report TR93-212, Rice University, October
1993. Ph.D. thesis.

[Elnozahy94] E. N. Elnozahy and W. Zwaenepoel. On the
Use and Implementation of Message Log-
ging. In Proceedings of the 1994 Interna-
tional Symposium on Fault-Tolerant
Computing (FTCS), pages 298–307, June
1994.

[Elnozahy96] E. N. Elnozahy, D. B. Johnson, and Y. M.
Wang. A Survey of Rollback-Recovery Pro-
tocols in Message-Passing Systems. Tech-
nical Report CMU TR 96-181, Carnegie
Mellon University, 1996.

[Fujimoto90] R. M. Fujimoto. Parallel Discrete Event
Simulation.Communications of the ACM,
33(10):30–53, October 1990.

[Gray78] J. N. Gray.Operating Systems: An Ad-
vanced Course. Springer-Verlag, 1978.
Notes on Database Operating Systems.

[Gray86] Jim Gray. Why do computers stop and what
can be done about it? InProceedings of the
1986 Symposium on Reliability in Distribut-
ed Software and Database Systems, pages
3–12, January 1986.

[Gray93] Jim Gray and Andreas Reuter.Transaction
Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, Inc., 1993.

[Haerder83] Theo Haerder and Andreas Reuter. Princi-
ples of Transaction-Oriented Database Re-
covery. ACM Computing Surveys,
15(4):287–317, December 1983.

[Huang95] Yennun Huang and Yi-Min Wang. Why
Optimistic Message Logging Has Not Been
Used in Telecommunications Systems. In
Proceedings of the 1995 International Sym-
posium on Fault-Tolerant Computing
(FTCS), pages 459–463, June 1995.

[Johnson87] David B. Johnson and Willy Zwaenepoel.
Sender-Based Message Logging. InPro-
ceedings of the 1987 International Sympo-
sium on Fault-Tolerant Computing, pages
14–19, July 1987.

[Koo87] R. Koo and S. Toueg. Checkpointing and
Rollback-Recovery for Distributed Sys-
tems.IEEE Transactions on Software Engi-
neering, SE-13(1):23–31, January 1987.

[Lamport78] Leslie Lamport. Time, Clocks, and the Or-
dering of Events in a Distributed System.
Communications of the ACM, 21(7):558–

12

565, July 1978.

[Li90] C-C. J. Li and W. K. Fuchs. CATCH–Com-
piler-Assisted Techniques for Checkpoint-
ing. In Proceedings of the 1990
International Symposium on Fault-Tolerant
Computing (FTCS), pages 74–81, 1990.

[Li94] Kai Li, J. F. Naughton, and James S. Plank.
Low-Latency, Concurrent Checkpointing
for Parallel Programs.IEEE Transactions
on Parallel and Distributed Systems,
5(8):874–879, August 1994.

[Litzkow92] Michael Litzkow and Marvin Solomon.
Supporting Checkpointing and Process Mi-
gration outside the Unix Kernel. InPro-
ceedings of the Winter 1992 USENIX
Conference, January 1992.

[Lomet98] David Lomet and Gerhard Weikum. Effi-
cient Transparent Application Recovery in
Client-Server Information Systems. InPro-
ceedings of the 1998 ACM SIGMOD Inter-
national Conference on Management of
Data, pages 460–471, June 1998.

[Lowell97] David E. Lowell and Peter M. Chen. Free
Transactions with Rio Vista. InProceedings
of the 1997 Symposium on Operating Sys-
tems Principles, October 1997.

[Ng97] Wee Teck Ng and Peter M. Chen. Integrat-
ing Reliable Memory in Databases. InPro-
ceedings of the 1997 International
Conference on Very Large Data Bases
(VLDB), pages 76–85, August 1997.

[Plank95] James S. Plank, Micah Beck, and Gerry
Kingsley. Libckpt: Transparent Check-
pointing under Unix. InProceedings of the
Winter 1995 USENIX Conference, January
1995.

[Russinovich93] Mark Russinovich, Zary Segall, and
Daniel P. Siewiorek. Application Transpar-
ent Fault Management in Fault Tolerant
Mach. InProceedings of the 1993 Interna-
tional Symposium on Fault-Tolerant Com-
puting, pages 10–19, June 1993.

[Schneider84] Fred B. Schneider. Byzantine Generals in
Action: Implementing Fail-Stop Processors.
ACM Transactions on Computer Systems,
2(2):145–154, May 1984.

[Slye96] J. H. Slye and E. N. Elnozahy. Supporting
Nondeterministic Execution in Fault-Toler-
ant Systems. InProceedings of the 1990 In-
ternational Symposium on Fault-Tolerant

Computing (FTCS), pages 250–259, June
1996.

[Strom85] Robert E. Strom and Shaula Yemini. Opti-
mistic Recovery in Distributed Systems.
ACM Transactions on Computer Systems,
3(3):204–226, August 1985.

[Tannenbaum95] T. Tannenbaum and M. Litzkow. The Con-
dor Distributed Processing System.Dr.
Dobb’s Journal, pages 40–48, February
1995.

[Wang93] Yi-Min Wang, Yennun Huang, and W. Kent
Fuchs. Progressive Retry for Software Error
Recovery in Distributed Systems. InPro-
ceedings of the 1993 International Sympo-
sium on Fault-Tolerant Computing (FTCS),
June 1993.

[Wang95] Yi-Min Wang, Yennun Huang, Kiem-
Phong Vo, Pi-Yu Chung, and Chandra Kin-
tala. Checkpointing and Its Applications. In
Proceedings of the 1995 International Sym-
posium on Fault-Tolerant Computing
(FTCS), June 1995.

