
High-Performance Transactions for Persistent Memories

Aasheesh Kolli
University of Michigan

akolli@umich.edu

Steven Pelley
Snowflake Computing

steven.pelley@snowflake.net

Ali Saidi
ARM

ali.saidi@arm.com

Peter M. Chen
University of Michigan

pmchen@umich.edu

Thomas F. Wenisch
University of Michigan
twenisch@umich.edu

Abstract
Emerging non-volatile memory (NVRAM) technologies of-
fer the durability of disk with the byte-addressability of
DRAM. These devices will allow software to access per-
sistent data structures directly in NVRAM using processor
loads and stores, however, ensuring consistency of persistent
data across power failures and crashes is difficult. Atomic,
durable transactions are a widely used abstraction to enforce
such consistency. Implementing transactions on NVRAM
requires the ability to constrain the order of NVRAM writes,
for example, to ensure that a transaction’s log record is com-
plete before it is marked committed. Since NVRAM write
latencies are expected to be high, minimizing these order-
ing constraints is critical for achieving high performance.
Recent work has proposed programming interfaces to ex-
press NVRAM write ordering constraints to hardware so that
NVRAM writes may be coalesced and reordered while pre-
serving necessary constraints. Unfortunately, a straightfor-
ward implementation of transactions under these interfaces
imposes unnecessary constraints. We show how to remove
these dependencies through a variety of techniques, notably,
deferring commit until after locks are released. We present a
comprehensive analysis contrasting two transaction designs
across three NVRAM programming interfaces, demonstrat-
ing up to 2.5x speedup.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management—Main memory

Keywords Non-Volatile Memory, Memory Persistency,
Recoverability, Transactions

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

ASPLOS ’16 April 2–6, 2016, Atlanta, Georgia, USA.
Copyright © 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2872362.2872381

1. Introduction
New types of memory technology are emerging that could
significantly change how software handles persistent data.
These new technologies, such as phase-change memory,
spin-transfer torque MRAM, memristors, and the recently
announced Intel/Micron 3D XPoint technology [15], are
non-volatile like magnetic disk and flash memory, but of-
fer much faster access latencies than existing non-volatile
storage technologies (though likely not as fast as DRAM).
Future systems will likely attach these non-volatile memo-
ries (NVRAM) directly to the memory bus and allow pro-
cessors to access them at word granularity via load and store
instructions [14, 27].

For compatibility, some software will continue to access
persistent data in NVRAM through a block-based, file sys-
tem interface. However, we expect many programs to access
persistent data structures directly in NVRAM using proces-
sor loads and stores. Doing so eliminates the need to main-
tain separate on-disk and in-memory copies of persistent
data, and eliminates the overhead of traversing the file sys-
tem each time persistent data is read or written.

Ensuring that persistent data is consistent despite power
failures and crashes is difficult, especially when manipu-
lating complex data structures with fine-grained accesses.
One way to ease this difficulty is to access persistent data
through atomic, durable transactions, which make groups of
updates appear as one atomic unit with respect to failure.
Transactions also provide mechanisms for controlling con-
currency; in this paper, we assume that transactions use locks
in volatile memory for concurrency control. Because of the
power and convenience of transactions, many prior works
propose providing them on top of NVRAM [8, 22, 33, 34].
We focus our analysis on static transactions (transactions for
which lock sets are known a priori), as detailed in Section 3.

Implementing transactions on NVRAM requires the abil-
ity to order writes to the NVRAM.1 For example, in write-
ahead logging [24], the commit record for a transaction may
only be written to NVRAM after all log records for that
transaction have been written; otherwise a failure may cause
the system to recover to a state in which only some of the
updates are present. We call writes to NVRAM persists, and
we call constraints on the order of NVRAM writes persist
dependencies.

Whereas specifying and honoring persist dependencies
is essential for correctness, minimizing persist dependencies
is likely to be essential for performance. Future NVRAM
technologies are likely to be slower than DRAM [19], and
will only be able to keep up with CPU speeds through tech-
niques such as parallelism, batching, and re-ordering [35],
all of which are possible only in the absence of ordering con-
straints. Pelley and co-authors show that minimizing persist
dependencies can make as much as a 30× difference in per-
formance [27].

This paper considers how to implement NVRAM transac-
tions in a way that minimizes persist dependencies. We show
that a simple transaction system design enforces many un-
necessary persist dependencies and that these dependencies
greatly slow down common transaction workloads, that most
of the unnecessary dependencies arise as a consequence of
performing the commit step of the transaction while locks
are held, and how to remove these dependencies by defer-
ring this commit until after locks are released.

Deferring commits leads to the new challenge of correctly
ordering the deferred commit operations across all outstand-
ing transactions. To ensure transaction serializability, com-
mit order must match the order in which locks were origi-
nally acquired during transaction execution. We show how
to minimize persist dependencies through a combination of
techniques, including distributed logs [32], deferred com-
mit [10, 16], Lamport/vector clocks to serialize transactions
[18], a subtle epoch-based mechanism to recycle log storage,
and relaxed persistency models [27].

We implement a transaction system for NVRAM that de-
fers commits, and we measure its performance on simulated
NVRAM with a range of device speeds. For two transaction-
processing workloads, we find that performance improves
by up to 50% under relaxed persistency models [27] and
by up to 150% under Intel’s recent x86 ISA extensions for
NVRAM [14].

We first introduce a brief formalism to enable reason-
ing about persist dependencies (Section 2). We then derive
the minimal persist ordering requirements to implement cor-
rect transactions under an idealized programming interface
that can specify arbitrary ordering constraints to hardware
(Section 3). Such a programming interface is unrealistic; we
summarize practical interfaces proposed in the literature and

1 Ensuring recoverability without transactions also requires the ability to
order writes.

in recent extensions to the x86 ISA (Section 4). We then
analyze a straightforward transaction implementation, syn-
chronous commit transactions (SCT), demonstrating how
it overconstrains persist ordering (Section 5). Instead, we
propose deferred commit transactions (DCT), which can
achieve minimal ordering constraints under sufficiently ex-
pressive interfaces (Section 6). We evaluate our transaction
implementations using the TPCC and TATP transaction pro-
cessing workloads (Section 7) and end with a survey of re-
lated work (Section 8).

2. Ordering constraints
The ability to order writes is critical to all software that uses
persistent storage. Constraining the order that writes persist
is essential to ensure consistent recovery, and minimizing
these constraints is key to enabling high performance.

Formally, we express an ordering relation over memory
events loads and stores, which we collectively refer to as ac-
cesses. The term persist refers to the act of durably writing
a store to persistent memory. We assume persists are per-
formed atomically (with respect to failures) at 8-byte gran-
ularity. By “thread”, we refer to execution contexts—cores
or hardware threads. We use the following notation (adopted
from [17]):

• Li
a: A load from thread i to address a

• Si
a: A store from thread i to address a

• M i
a: A load or store by thread i to address a

We reason about two ordering relations over memory
events, volatile memory order and persist memory order.
Volatile memory order (VMO) is an ordering relation over
all memory events (loads and stores) as prescribed by the
memory consistency model for multiprocessors [1]. Persist
memory order (PMO) deals with the same events but may
have different ordering constraints than VMO. [27] uses the
term persistency model to describe the types of constraints
that hardware allows software to express on the persist mem-
ory order.

We denote these ordering relations as:

• A ≤v B: A occurs no later than B in VMO
• A ≤p B: A occurs no later than B in PMO

An ordering relation between stores in PMO implies the
corresponding persist actions are ordered; that is,
A ≤p B → B may not persist before A.

3. Transactions under Idealized Ordering
It is not easy for software to express persist dependencies.
Simply ordering the instructions that store data to NVRAM
is not sufficient: writes to memory (including NVRAM)
are cached and may not be written from the CPU cache to
NVRAM in the same order the corresponding instructions
were executed [2].

In this section, we suppose that software has the ability
to specify precisely the persist dependencies for all writes to
NVRAM. While this is unrealistically expressive, it provides
a useful baseline upon which to build an idealized trans-
action system that minimizes persist dependencies. In later
sections, we implement transactions built on more realistic
interfaces and show how a naive implementation of trans-
actions on these interfaces introduces unnecessary ordering
constraints.

The most precise way to specify persist dependencies is
as a partial order over all persists. This partial order can be
expressed as a directed acyclic graph (DAG), where a node
in the graph represents a persist, and an edge exists from
node A to node B iff the persist represented by node A must
occur no later than the persist represented by node B (note
that this condition can be satisfied by performing the two
persists atomically). In a system with idealized ordering, the
software can express a constraint between any two persists,
including persists that occur on separate threads.

We next describe how to build a simple transaction sys-
tem, given the ability to express general partial orders over
all NVRAM writes.

3.1 Transaction design
There are many ways to implement transactions [12], with
one basic design choice being which version to log of the
data being modified in a transaction: the data before the
modification (undo logging [8, 11, 21]), the data after the
modification (redo logging [33]), or both (e.g., ARIES [24]).
In this paper, we implement transactions with undo logging.
We believe this design fits well with storing data directly in
NVRAM: both committed and uncommitted data are stored
in place, so software can always read the most recent data di-
rectly from the in-place data structure (assuming appropriate
locks are held). In contrast, if transactions are implemented
with a redo log, reads of uncommitted data must be inter-
cepted and redirected to the redo log.

We further implement several common optimizations re-
quired to achieve high transaction concurrency. We imple-
ment per-thread, distributed logs [32, 33], to avoid the scal-
ability constraints of a centralized log. Our undo log records
a copy of data (physical undo records) before it is mutated
rather than a “synchronous log-and-update” approach (like
PMFS [11]), as the latter requires more persist ordering
constraints. We leverage checksum-based log entry valida-
tion [28] so that non-atomic writes to a log entry can pro-
ceed in parallel, but recovery software can deduce whether
a log record was fully written without requiring a separate
“valid” bit. This optimization eliminates one persist order-
ing constraint and is similar to the torn-bit optimization in
Mnemosyne [33] and eager commit [22]. We assume concur-
rency control via arbitrarily fine-grain locking—a transac-
tion must hold all required locks before executing (i.e. static
transactions). Requiring a transaction to hold all locks be-
fore executing implies that all the data that can possibly be

NprepareLogEntry (P) 1

lockDS (L)

Persist Volatile

P1

M1

C1

P2

M2

C2

P1

M1

C1

P2

M2

C2

ConflictingNon-conflicting

(a)

NmutateDS (M) 1

commitTransaction (C)

unlockDS (U)

P3

M3

C3
(b)

Figure 1. (a) Steps in an undo transaction. (b) Persist de-
pendencies in a transaction sequence.

modified by the transaction is known a priori. If such knowl-
edge is not available, a program must execute a read phase
to identify all regions it might touch and acquire all locks,
and then begin execution (similar to the approach used to
implement deterministic transactions [29]).

Figure 1(a) depicts the high-level steps of an undo-
logging transaction. Steps outlined in a dotted box modify
only volatile memory locations; those outlined in a solid box
write to persistent memory. We briefly describe each step:

• lockDS (L): Acquire all locks to ensure mutual exclusion
of the transaction. Locks are held in volatile memory.

• prepareLogEntry (P): Allocate log space and copy the
prior state of all data that will be mutated to the log.

• mutateDS (M): Modify the data structure in place.
• commitTransaction (C): Commit the transaction by

marking the undo log entry invalid; the transaction will
no longer be undone during recovery.

• unlockDS (U): Release all locks acquired by lockDS.

We represent transactions with three persist nodes, corre-
sponding to the three steps that perform durable writes,
prepareLogEntry (P), mutateDS (M) and
commitTransaction (C).

3.2 Minimal Persist Dependencies
We next analyze the minimal persist dependencies required
for correct recovery of an undo-logging transaction. We con-
sider two transactions, Tm and Tn, which acquire lock sets
Locksm and Locksn, respectively. The transactions con-
flict if their lock sets intersect (i.e., they mutate overlapping
data). We require order across conflicting transactions (the
order in which they acquire locks); the subscripts indicate
this order—in our example, m < n. transactionStepm
indicates completion of a particular step in the transaction
Tm (and all its associated persists). Recovery correctness re-
quires the following order relationships:

prepareLogEntrym ≤p mutateDSm

mutateDSm ≤p commitTransactionm

(1)

(2)

∀(m,n) :
(unlockDSm ≤v lockDSn) ∧ (Locksm ∩ Locksn 6= φ)

prepareLogEntrym ≤p prepareLogEntryn

mutateDSm ≤p mutateDSn

commitTransactionm ≤p commitTransactionn

(3)

(4)

(5)

• Within one transaction, the log entry must be complete
before data structure mutation (Eq. 1), and mutation
must be complete before the transaction commits (Eq. 2).
These dependencies ensure that any incomplete transac-
tion can be rolled-back during recovery.

• Between conflicting transactions, preparing the log, mu-
tating data, and commit must be ordered (Eqs. 3, 4, 5).
These dependencies ensure that: (1) Mutations from
conflicting transactions persist in lock-acquisition order
(Eq. 4). (2) During recovery, active log entries from con-
flicting transactions can be undone in the appropriate
order (Eqs. 3, and 5). Note that no dependencies exist
between non-conflicting transactions.

3.3 Persist critical path analysis
In later sections, we evaluate alternative transaction imple-
mentations by comparing their persist dependency critical
path to the ideal persist dependency DAG. Conflicting trans-
actions incur additional dependencies that are absent among
non-conflicting transactions. Hence, we characterize the crit-
ical path under two extreme scenarios, one where all trans-
actions are non-conflicting, and one where all transactions
conflict. Figure 1(b) depicts the ideal DAG for conflicting
and non-conflicting transaction sequences. Nodes in this fig-
ure correspond to the (concurrent) sets of persist operations
performed in each transaction step (we omit steps that mod-
ify only volatile state). Edges indicate persist dependency
between nodes (more precisely, pairwise persist dependen-
cies between all persists represented by each node).

Under each scenario, we assume x transactions are per-
formed, and t threads concurrently execute those transac-
tions. In the non-conflicting scenario, the x transactions all
acquire disjoint locks and modify disjoint data. Therefore,
there are no persist order dependencies across threads; the
critical path is determined solely by persist ordering con-
straints that arise on a single thread. In this scenario, the
ideal persist critical path length is 3—the intra-transaction
ordering constraints—independent of x or t.

In the conflicting scenario, we assume all x transactions
mutually conflict (they all require a lock in common). There-
fore, the persist critical path follows the total order of these
x transactions, as established by the order the locks are
acquired. In this case, the persist critical path propagates
through the commit node of each transaction, resulting in
a critical path length of x + 2 persist operations. Again, the
critical path is independent of the number of threads t.

While persist critical paths for an ideal DAG are quite
short, achieving this ideal is difficult with currently proposed
programing interfaces, which we summarize next.

4. Memory persistency models
Section 3 supposes that software is able to specify arbitrary
ordering relationships among all persists, for example, in the
form of a DAG. With this ability, a transaction implementa-
tion can minimize the number of persist dependencies and
maximize NVRAM performance.

However, it is impractical to expect hardware to allow
software to specify arbitrary persist dependencies, as this
would require the hardware to track and honor an arbitrary
DAG among persists. Instead, hardware will likely provide
persist ordering mechanisms similar to those for ordering
memory accesses in shared-memory multiprocessors. Indus-
try has already begun following this course [14].

In currently shipping processor architectures, persist de-
pendencies must be enforced either by using a write-through
cache or by explicitly flushing individual cache lines (e.g.,
using the clflush instruction on x86). Moreover, these flush
operations must be carefully annotated with fences to pre-
vent hardware and compiler reorderings (details appear in
[2]). These mechanisms are quite slow because they give up
much of the performance benefits of CPU caches. Because
cache flushes are so slow, Intel has recently announced ex-
tensions to its x86 ISA to optimize cache line flushing [14].
However, these mechanisms tie the ordering required be-
tween writes to NVRAM to the ordering required between
a write to NVRAM and subsequent CPU instructions (Chi-
dambaram, et al. describe this as the distinction between or-
dering and durability [6]).

Researchers have proposed other means to express per-
sist dependencies. Condit and co-authors propose an epoch
barrier, which ensures writes before the barrier are ordered
before writes after the barrier [9]. Pelley and co-authors liken
the problem of ordering persists to the problem of ordering
memory accesses in a multiprocessor [27]. Just as there is a
design space for multiprocessor memory consistency mod-
els, Pelley lays out a design space for NVRAM memory per-
sistency models. We use Total Store Order as the underlying
consistency model in this paper. We briefly summarize four
persistency models, on which we build our transaction im-
plementations.

4.1 Strict persistency
Under strict persistency, PMO is identical to VMO. So,
for any two stores ordered by the consistency model, the
corresponding persists are also ordered. Formally,

M i
a ≤v M

j
b ↔M i

a ≤p M
j
b (6)

Whereas strict persistency is the most intuitive persistency
model, it is not the best performing. By ordering persists
per VMO, strict persistency enforces orderings typically not

required for recovery correctness [27]. Thus, researchers
have proposed more relaxed persistency models, in which
PMO may have fewer ordering constraints than VMO.

4.2 Epoch persistency
The epoch persistency model introduces a new memory
event, the “persist barrier” (different from memory consis-
tency barriers). We denote persist barriers issued by thread i
as PBi. Under epoch persistency, any two memory accesses
on the same thread that are separated by a persist barrier in
VMO are ordered in PMO.

M i
a ≤v PB

i ≤v M
i
b →M i

a ≤p M
i
b (7)

Persist barriers separate a thread’s execution into ordered
epochs (persists within an epoch are concurrent). While per-
sist barriers order persists from one thread, epoch persis-
tency relies on another property, strong persist atomicity, to
order persists from different threads.

Strong persist atomicity: Memory consistency models
often guarantee that stores to the same address by differ-
ent processors are serialized (this is called store atomicity).
Pelley argues persistency models should similarly provide
strong persist atomicity (SPA), to preclude non-intuitive be-
havior, such as recovering to states unreachable under fault-
free execution [27]. SPA requires that conflicting accesses
(accesses to the same address, at least one being a store)
must persist in the order they executed.

Si
a ≤v M

j
a → Si

a ≤p M
j
a

M i
a ≤v S

j
a →M i

a ≤p S
j
a

(8)

4.3 Strand persistency
Strand persistency divides program execution into strands.
Strands are logically independent segments of execution that
happen to execute in the same thread. Strands are separated
by the new strand (NS) memory event. New strand events
from thread i are denoted as NSi. The new strand event
clears all prior PMO constraints from prior instructions, ef-
fectively making each strand behave as if it were a sepa-
rate thread (with respect to persistency). Memory accesses
within a strand are ordered using persist barriers (Eq. 7).
Under strand persistency, two memory accesses on the same
thread separated by a persist barrier are ordered in PMO only
if there is no intervening strand barrier. Memory accesses
across strands continue to be ordered via SPA (Eq. 8).

(M i
a ≤v PB

i ≤v M
i
b) ∧ (6 ∃NSi :M i

a ≤v NS
i ≤v M

i
b)

→M i
a ≤p M

i
b (9)

4.4 Eager sync
In addition to the persistency models proposed by Pelley, we
also consider eager sync, our attempt to formalize the per-
sistency model implied by Intel’s recent x86 ISA extensions
to optimize NVRAM performance [14]. We briefly describe
these new instructions:

• CLWB: Requests write back of modified cache line to
memory; the cache line may be retained in a clean state.

• PCOMMIT : Ensures that stores that have been ac-
cepted to memory are persistent.

Using these two instructions, stores on one thread to ad-
dresses A and B can be guaranteed to persist in the order
Si
A ≤p S

i
B , using the following pseudo-code:

st A; CLWB A; SFENCE; PCOMMIT; SFENCE; st B;

We use the term “sync barrier” to refer to the code
sequence SFENCE;PCOMMIT ;SFENCE. A sync
barrier issued by thread i will be denoted as SBi. The
first SFENCE orders the PCOMMIT with the earlier
stores and CLWBs, while the second orders the younger
stores with the PCOMMIT . A sync barrier differs from
a persist barrier under epoch and strand persistency in two
ways: (1) The second SFENCE ensures that a younger
store will not be globally visible until all stores older than
the PCOMMIT become persistent. In contrast, a persist
barrier does not affect the global visibility of subsequent
stores, it only orders the corresponding persists. (2) The
PCOMMIT persists only those stores that have been ac-
cepted to memory (e.g., using CLWB); a persist barrier
orders the persists in PMO for all stores that precede the
persist barrier in VMO.

Sync barriers affect the visibility of subsequent stores,
with two important implications:

• Delaying store visibility until prior stores become per-
sistent will likely add stalls to thread execution, espe-
cially because NVRAM persists may take 100s of nano-
seconds [19] and a PCOMMIT must persist all stores
that have been accepted to memory.

• Since global visibility of a store can be delayed until prior
stores have become persistent, the visibility of a store
can act as a signal that all earlier stores are persistent.
Astonishingly, such stalling of volatile events for persist
events, can, in some cases, lead to fewer persist depen-
dencies and better performance than epoch persistency
(as we show in Section 6).

5. Synchronous commit transactions (SCT)
Section 3 showed how to implement transactions under an
idealized programming model allowing arbitrary persist de-
pendencies. We next examine how to implement transactions
using more realistic mechanisms.

We first discuss an intuitive transaction implementation,
which we call synchronous commit transactions (SCT).
However, as we will show, SCT enforces unnecessary persist
dependencies and overconstrains the persist critical path. Be-
low, we describe and analyze SCT under epoch, eager sync,
and strand persistency (we omit analysis under strict persis-
tency to save space; all our designs will work under strict
persistency).

N

N

PersistVolatile Persist barrier Sync barrier

prepareLogEntry(P) 1

lockDS()

mutateDS(M) 1

commitTransaction(C)

unlockDS()

SB1

SB3

SB2

P1

M1

C1

Non-conflicting Conflicting

Thread 3

Thread 1

⋱
(b) SCT under eager sync (d) Persist critical path (epoch persistency)

NprepareLogEntry(P) 1

lockDS()

NmutateDS(M) 1

commitTransaction(C)

unlockDS()

PB1

PB2

PB4

(c) SCT under strand persistency

NS1

PB3
P2

M2

C2

P3

P1

M1

C1

P2

M2

C2

P3

⋱

Thread 1

Thread 2

NS2

N

NprepareLogEntry(P) 1

lockDS()

mutateDS(M) 1

commitTransaction(C)

unlockDS()

PB1

PB2

PB4

PB3

(a) SCT under epoch persistency

New strand

Figure 2. Synchronous-commit transactions under epoch persistency, eager sync and strand persistency. The red arrows in (d)
represent the unnecessary dependencies enforced when compared to the minimal dependencies shown in Figure 1b.

5.1 SCT under Epoch Persistency
Epoch persistency enforces intra-thread persist dependen-
cies via persist barriers, and inter-thread dependencies (for
conflicting transactions) via persist barriers and SPA (Eq. 8).
Figure 2(a) depicts a synchronous-commit transaction anno-
tated with the four persist barriers required for correctness.

Intra-transaction dependencies: PB2 and PB3 ensure
proper intra-transaction ordering of prepareLogEntry,
mutateDS, and commitTransaction (Eqs. 1 and 2).

Inter-transaction dependencies: Conflicting transac-
tions (Tm and Tn) are synchronized through the common
locks in their lock sets and hence through unlockDSm and
lockDSn. Since Tm happens in VMO before Tn, from SPA
(Eq. 8), we have:

unlockDSm ≤v lockDSn → unlockDSm ≤p lockDSn

The VMO of prepareLogEntry, PB2 (or PB3 or PB4),
and unlockDS in Tm imply:

prepareLogEntrym ≤p unlockDSm

The VMO of lockDS, PB1, and prepareLogEntry in Tn
imply:

lockDSn ≤p prepareLogEntryn

Applying transitivity to the above three equations, we ob-
serve that conflicting transactions prepare their log entries in
order, satisfying Eq. 3. It is important to note that PB1 is
critical to ensuring the correct order. Similarly, the VMO of
lockDS, PB1 (or PB2), mutateDS, PB3 (or PB4), and
unlockDS ensures that conflicting transactions mutate the
data structure in order, satisfying Eq. 4. VMO of lockDS,
PB1 (or PB2 or PB3), commitTransaction, PB4, and
unlockDS ensure that conflicting transactions commit in or-
der, satisfying Eq. 5.

Thus, the four persist barriers in Figure 2(a) are neces-
sary and sufficient to ensure transactional persist ordering

requirements. Unfortunately, these four persist barriers cre-
ate a persist critical path longer than the path that would be
possible had the software been able to specify the precise
dependencies between all persists (Section 3).

From the VMO of commitTransaction, PB4, and
unlockDS in Tm and Eq. 7, we have:

commitTransactionm ≤p unlockDSm

Similarly, VMO of lockDS, PB1, and prepareLogEntry
in Tn implies:

lockDSn ≤p prepareLogEntryn

We have already shown:

unlockDSm ≤p lockDSn

Applying transitivity to the above three equations, we have:

commitTransactionm ≤p prepareLogEntryn

So, under epoch persistency, conflicting transactions are se-
rialized. Moreover, transactions on the same thread are al-
ways serialized, even if they do not conflict. Figure 2(d)
shows the persist critical path under epoch persistency: 3x
for conflicting transactions and 3(x/t) for non-conflicting
transactions. Both are longer than the minimal critical path
(Figure 1(b)). Whereas SCT under epoch persistency is sim-
ple and intuitive, performing all steps of a transaction while
holding locks overconstrains the persist dependency graph
and lengthens the persist critical path.

5.2 SCT under Eager Sync
Eager sync enforces both intra-thread and inter-thread (for
conflicting transactions) persist dependencies via sync bar-
riers. Figure 2(b) depicts a synchronous-commit transaction
annotated with the three sync barriers required for correct-
ness. We also assume that all the CLWBs required to be

issued before the sync barriers are issued along with the
stores in the functions prepareLogEntry, mutateDS and
commitTransaction.

Intra-transaction dependencies: SB1 and SB2 ensure
correct intra-transaction ordering of prepareLogEntry,
mutateDS, and commitTransaction, satisfying Eqs. 1,2.

Inter-transaction dependencies: We again consider
conflicting transactions Tm and Tn. SB3 ensures unlockDSm

is not globally visible until commitTransactionm per-
sists to NVRAM. prepareLogEntryn cannot be executed
until Tn acquires its locks (lockDSn), which happens af-
ter unlockDSm becomes globally visible. By stalling the
global visibility of unlockDSm until commitTransactionm
persists (because of SB3), we ensure that:

commitTransactionm ≤p prepareLogEntryn

It is important to note that a sync barrier between LockDS
and prepareLogEntry is not required to achieve the above
dependency. The above dependency is the same (over-
constraining) dependency incurred under epoch persistency,
which serializes all conflicting transactions. SB3 also en-
forces that non-conflicting transactions within the same
thread are serialized (as under epoch persistency). SCT un-
der eager sync enforces the same ordering constraints as
SCT under epoch persistency, resulting in the same persist
critical path (Figure 2(d)).

5.3 SCT under Strand Persistency
Strand persistency makes it possible to remove unneces-
sary persist dependencies between transactions on the same
thread (left graph of Figure 2(d)) by placing the transactions
on different strands. Our implementation of SCT is shown
in Figure 2(c). We start and end every transaction on a new
strand (NS1, NS2 in Figure 2(c)). As a result, each trans-
action behaves as if on its own logical thread (from the per-
spective of the persistent memory, from Eq. 9). Such a design
removes the dependence between successive non-conflicting
transactions on the same thread. Conflicting transactions
continue to be ordered due to the dependencies caused by
the lock/unlock operations (as under epoch persistency).

It is important to note that in the SCT design for strand
persistency (Figure 2(c)), NS1 ensures that each transaction
starts on a new strand, andNS2 ensures that memory events
executed after the transaction (but prior to the next trans-
action), don’t end up serializing transactions on the same
thread. For example, transaction systems may perform some
book-keeping (say, update transaction count) at the end of
every transaction. Without NS2, such bookkeeping could
end up causing conflicts between otherwise non-conflicting
transactions.

To achieve high concurrency, our SCT implementation
uses per-thread (distributed) logs. In practice, log space is
limited, and must ultimately be recycled. As a consequence,
transactions that share no locks may nonetheless conflict if

NprepareLogEntry(P) 1

recordPrevConflicts

lockDS

NmutateDS(P) 1

unlockDS

spinOnConflicts

commitTransaction(C)

PersistVolatile Persist barrier

PB1

PB2

PBx

(Deferred commit)

{More transactions

P1

M1

C1

P2

M2

C2

P3

M3

C3

Non-conflicting Conflicting

Thread 1

P1

M1

C1

P2

M2

C2

P3

M3

C3

Thread 1

(a) DCT under epoch persistency

Thread 2

Thread 3

(b) Persist critical path

Figure 3. Deferred commit transactions under epoch persis-
tency and the resulting persist ordering constraints.

they reuse the same log space. We enforce the necessary or-
dering by adding a lock for the log entry to the transaction’s
lock sets.

Under ideal implementations of strand persistency, the
achievable persist concurrency is limited only by the avail-
able log space. In practice, we expect future systems to limit
strand concurrency. In a system with t threads and s strands,
the maximum concurrency under strand persistency is sim-
ilar to a system with s × t threads under epoch persistency.
Under strand persistency, the SCT persist critical path for
non-conflicting transactions improves to 3(x/st) (the per-
sist critical path for conflicting transactions remains 3x).
Whereas strand persistency improves the SCT persist crit-
ical path, it remains longer than the theoretical minimum.

6. Deferred commit transactions (DCT)
SCT generates longer critical paths than needed when imple-
mented on realistic persistency models. In this section, we
describe deferred commit transactions (DCT), which gener-
ate shorter critical paths than SCT.

The key idea in DCT is for a transaction to release locks
after mutating the data structure and to defer commit un-
til later. This idea has been explored as a mechanism for
managing lock contention for transaction systems with a
centralized log [16]. We use this idea to break the per-
sist order dependence between commitTransaction and
prepareLogEntry of consecutive conflicting transactions.
However, performing the commit after the lock release im-
plies that the persists from commitTransaction are no
longer synchronized by the respective locks and could result
in conflicting transactions committing out of order. 2 To en-
sure that conflicting transactions commit in order (Eq. 5) we
modify transactions to explicitly track (in volatile memory)

2 This is not a problem with a centralized log, as they are serialized by the
lock for the log.

their predecessor conflicting transactions and commit after
all predecessors have committed. Next, we describe DCT
implementations under the three persistency models.

6.1 DCT under Epoch Persistency
Figure 3(a) shows the implementation of DCT and the asso-
ciated “deferred-commit” block.

Intra-transaction dependencies: Persist barrier PB2
helps satisfy Eq. 1 by guaranteeing that prepareLogEntry
is ordered before mutateDS. The commit-after-mutate rule
(Eq. 2) is ensured by PBx (a barrier from a subsequent
transaction).

Inter-transaction dependencies: For conflicting trans-
actions Tm and Tn, the persist barriers PB1 and PB2, along
with the SPA guarantees of unlockDSm and locksDSn,
ensure that the log entries are prepared in order, satisfying
Eq. 3. SPA (Eq. 8) of the conflicting regions of the data struc-
ture ensure that Eq. 4 is satisfied. DCTs need to explicitly
track prior conflicting transactions to ensure the commit-in-
order rule (Eq. 5). We achieve this order by having the trans-
action spinOnConflict (conflicts are recorded in the log
entry) after the lock release and then commitTransaction
following a persist barrier PBx. It is important to note that,
instead of having a designated barrier to order the commit,
we rely on a barrier from a subsequent transaction. As a re-
sult, the commitTransaction step may occur concurrently
with persists from a subsequent transaction and does not add
to the persist critical path. Next, we describe the challenges
that arise from deferring commits and the bookkeeping re-
quired to address them.

6.1.1 Inferring undo order during recovery
By allowing transaction commits to be deferred, we can
arrive at a state where multiple conflicting uncommitted
transactions must apply undo log entries at recovery. The
recovery protocol must infer the order of these log en-
tries and perform the undo operations in reverse order. As
we use distributed logs, deducing this order is non-trivial.
Mnemosyne [33] uses a single global atomic counter to as-
sign each new transaction an incrementing global timestamp
(log entries can be undone in the decreasing order of times-
tamps). However, such an approach implies that all transac-
tions conflict (they all update the global counter), and results
in an artificially conflated persist critical path. One might
consider recording a timestamp in each log entry, but reli-
ably ordering nearly concurrent events via wall-clock times-
tamps is challenging, especially if execution is distributed
over multiple cores/chips.

Since we only need to order log entries for conflicting
transactions, we extend all locks to contain logical time
stamps (i.e., Lamport clocks [18]). When a transaction ac-
quires a lock, it records and increments the current lock
timestamp, ensuring subsequent conflicting transactions will
see a higher timestamp. Timestamps are logged in the new
recordPrevConflicts function, shown in Figure 3(a). If a

transaction acquires multiple locks, all of their timestamps
must be recorded. Recovery uses these timestamps to deduce
the correct undo order.

6.1.2 Enforcing correct commit order
To ensure correct recovery, conflicting transactions must
commit in order. DCT requires an explicit software mech-
anism to track and enforce this order. We extend each lock
with a pointer to the log entry of the last transaction to ac-
quire that lock. When a transaction acquires all of the locks
in its lock set, it records the pointers to previous conflict-
ing transactions (one per lock) in volatile memory, shown
as recordPrevConflicts in Figure 3(a). Then, it records a
pointer to its own log entry in each lock.

At commit, a transaction must verify that preceding con-
flicting transactions have committed. Using the recorded
pointers, it examines each preceding log entry for a com-
mit marker, spinning until all are set (spinOnConflicts in
Figure 3(a)). However, if a log entry is recycled, its com-
mit marker is now stale. Along with the commit marker,
recordPrevConflicts records a log generation number as-
sociated with every log entry. The log generation number is
incremented if the log entry is recycled. The combination of
the commit marker and the log generation number is used to
deduce whether an earlier transaction has committed.

Once all of the conflicting log entries are committed,
the transaction may commit (commitTransaction in Fig-
ure 3(a)). (Note that, rather than simply spinning, an intelli-
gent transaction manager could instead further defer commit
and execute additional transactions on this thread). The spin
loop prior to commit orders conflicting transactions in VMO.
A persist barrier is required between spinOnConflicts
and commitTransaction (PBx) to ensure the conflicting
transaction commits are also ordered in PMO.

6.1.3 Persist critical path analysis
Figure 3(b) shows the persist critical path for DCT under
epoch persistency. DCT succeeds in matching the critical
path length of the ideal dependence DAG for conflicting
transactions as derived in Section 3. For transactions on a
single thread, it reduces the critical path by allowing commit
operations to be batched.

For non-conflicting transactions on the same thread, the
prepareLogEntry and mutateDS steps remain (unneces-
sarily) serialized. The commitTransaction step overlaps
with the prepareLogEntry step of the subsequent transac-
tion. Hence, the non-conflicting persist critical path length is
(2(x/t)+1). For conflicting transactions, the persist critical
path traverses the commitTransaction step of each trans-
action, and its path length is x+ 2.

6.2 DCT under Eager Sync
The implementation of DCT under the eager sync persis-
tency model is shown in Figure 4(a). While similar to the
DCT implementation under epoch persistency, we require

NprepareLogEntry(P) 1

recordPrevConflicts

lockDS

NmutateDS(P) 1

unlockDS

spinOnConflicts

commitTransaction(C)

PersistVolatile Sync Barrier

SB1

SBx

(Deferred commit)

{More transactions

P1

M1

C1

P2

M2

C2

P3

M3

C3

Non-conflicting Conflicting

Thread 1

P1

M1

C1

P2

M2

C2

P3

M3

C3

Thread 1

(a) DCT under eager sync

Thread 2

Thread 3

(b) Persist critical path

{More transactions
SBy

commitPersisted

Figure 4. Deferred commit transactions under eager sync
and the resulting persist ordering constraints.

some subtle changes to account for the differences between
a persist barrier and a sync barrier detailed in Section 4.2.
It is important to note that we require only one sync barrier
within the transaction, rather than the two persist barriers re-
quired for DCT under epoch persistency.

Intra-transaction dependencies: The sync barrier SB1,
ensures order between prepareLogEntry and mutateDS,
satisfying Eq. 1. The sync barrier Sbx (which belongs
to a subsequent transaction) ensures that mutateDS and
commitTransaction are ordered correctly, satisfying Eq. 2.

Inter-transaction dependencies: We discuss inter-trans-
action dependencies using two conflicting transactions Tm
and Tn. Within Tm, SB1, ensures that unlockDSm doesn’t
become globally visible until prepareLogEntrym becomes
persistent. In transaction Tn, prepareLogEntryn cannot
be executed before the locks are acquired using lockDSn.
However, lockDSn cannot be completed until unlockDSm

becomes globally visible. Transitively, SB1, ensures that
log entries are prepared in order, satisfying Eq. 3. Cache
coherence ensures that at any given time, only the latest
values of any conflicting regions of the data structure persist,
satisfying Eq. 4.

Since SPA (Eq. 8) is not provided under eager sync,
we cannot use the same coding pattern as used in the
epoch persistency DCT implementation to ensure con-
flicting transactions commit in order. Instead, we have
a commitPersisted bit associated with every log entry,
which is set after commitTransactionm is guaranteed
to be have persisted (ensured by SBy in Figure 4(a)).
We modify the spinOnConflict function to spin on the
commitPersisted bits of conflicting transactions, rather
than the log entries. Once a transaction observes that the
commitPersisted bit of earlier conflicting transactions

NprepareLogEntry(P) 1

recordPrevConflicts

lockDS + lockLog

NmutateDS(P) 1

unlockDS

spinOnConflicts

commitTransaction(C)

PersistVolatile Persist Barrier

PB1

PB2

PB3
(Deferred commit)

{More transactions

P1

M1

C1

P2

M2

C2

P3

M3

C3

Non-conflicting Conflicting

Thread 1

P1

M1

C1
P2

M2

C2
P3

Thread1

(a) DCT under strand persistency

Thread 2

Thread 3

(b) Persist critical path

⋱

NS1

New Strand

NS2
unlockLog

PB4

Figure 5. Deferred commit transactions under strand per-
sistency and the resulting persist ordering constraints.

have been set, it can be committed and be certain that the
correct commit order has been followed.

It is important to note that we do not need dedicated
sync barriers, SBx and SBy, for every transaction. We in-
stead rely on sync barriers from a subsequent transaction,
implying that both mutateDS and commitTransaction
are persisted concurrently with later transactions. So, only
the persists belonging to prepareLogEntry fall on the
persist critical path on a single thread, as depicted in Fig-
ure 4(b). For non-conflicting transactions, the persist criti-
cal path traverses all the prepareLogEntry steps of each
transaction executed on one thread and is x/t + 2. For
the conflicting case, the persist critical path traverses the
commitTransaction step of all the transactions and is
x + 2. Note that DCT under eager sync incurs a shorter
persist critical path than under epoch persistency for non-
conflicting transactions, whereas they exhibit the same per-
sist critical path for conflicting transactions.

Discussion: DCT under eager sync and Mnemosyne
(asynchronous mode) [33] are similar in that each trans-
action may add at most one persist epoch delay to the
execution critical path. Whereas DCT amortizes the cost
of mutateDS and commitTransaction over subsequent
transactions on the same thread, Mnemosyne offloads log
truncation to a separate helper thread.

6.3 DCT under Strand persistency
Figure 5(a) shows our implementation of DCT under strand
persistency. As with the SCT implementation under strand
persistency, we expose additional persist concurrency by
placing each transaction on a new strand, removing the
dependencies between non-conflicting transactions on the
same thread. Similar to SCT, we introduce a log entry
lock to a transaction’s lock set, so that transactions which

Non-conflicting Conflicting
Persistency Model SCT DCT SCT DCT

Epoch 3x/t 2x/t+ 1 3x x+ 2
Eager sync 3x/t x/t+ 2 3x x+ 2

Strand 3x/st 3x/st 3x x+ 2
Notation: x- total transactions, t-threads, s-strands/thread

Table 1. Summary of persist critical path lengths.

conflict on a log entry are serialized. The log entry lock
is acquired along with all the other locks in a transac-
tion’s lock set. However, the log entry is only released af-
ter commitTransaction, serializing transactions that share
log space. Figure 5(b) shows the persist critical paths for
the conflicting and non-conflicting scenarios. In the con-
flicting case, as under epoch persistency, the persist critical
path passes through the commitTransaction step of each
transaction, leading to the ideal persist critical path length of
x + 2 edges. In the non-conflicting case, the persist depen-
dency critical path improves, but may still fall short of the
ideal DAG if the number of strands supported in hardware
is limited. The persist critical path for non-conflicting trans-
actions goes through transactions which share log space and
is 3x/st where t is the number of threads and s the number
of strands per thread (similar to SCT under strand). With
support for at least two strands per thread, DCT under strand
persistency outperforms DCT under epoch persistency.

Table 1 summarizes the critical paths for SCT and DCT
under various persistency models and workloads.

7. Evaluation
We evaluate transactional systems implementing both SCT
and DCT to examine their performance trade-off as a func-
tion of persist latency for two transaction processing work-
loads. In general, we expect DCT to have slower volatile
execution performance, due to the bookkeeping overheads
required to order commits. However, as persist latency in-
creases, it rapidly becomes the performance bottleneck, and
DCT overtakes SCT. As the NVRAM programming inter-
face remains unclear, we also compare the performance
achieved under different persistency models for both SCT
and DCT. Strict persistency performs much worse than all
other persistency models, so we omit it from the discussion.

7.1 Methodology
We implement our transactional systems as a C++ library
providing a simple API comprising only three entry points:
beginTransaction(), prepareLogEntry(), and
endTransaction(). The system manages bookkeeping,
log serialization, commit ordering, and inserting the nec-
essary barriers to enforce persist dependencies.

Because memory-bus-attached NVRAM devices are not
yet available, we use a region of DRAM as a proxy. We
execute our workloads writing persistent data to DRAM

to establish their volatile execution performance. We then
re-execute the workloads with lightweight pin instrumenta-
tion [23] to record all persist operations and barriers. From
these traces, we construct the persist critical path (taking into
account ordering within and across threads). We assume 8-
byte atomic persists.

Under epoch and strand persistency, overall throughput is
limited by the slower of volatile execution and the latency to
drain all persists. However, in the case of eager sync, overall
throughput is limited by volatile execution, which includes
the stalls associated with executing the sync barriers. The
overhead of a sync barrier only includes the latency to make
the stores persistent and does not include the costs associated
with issuing and executing the corresponding CLWBs.

As the hardware characteristics, raw device latency, and
scheduling limitations of a practical persistent memory sys-
tem are as yet unknown, we vary our assumption for persist
performance and report the resulting throughput. Cumula-
tive persist latency is determined by how fast, on average,
an epoch of persists can drain subject to queueing, schedul-
ing, device-level concurrency, and coalescing effects. We ab-
stract these effects as a single average latency per persist
epoch (i.e., latency per dependency edge in the critical path).
As we expect persist throughput to be the performance bot-
tleneck when transactions are short, load on the persistent
memory system will be high and queueing delays substan-
tial. Hence, the average persist epoch latency is likely a small
integer multiple of the NVRAM device latency, we study the
the range of 0-4µs.

We perform experiments on an Intel Xeon E5645 pro-
cessor (2.4GHz). We analyze throughput for transactions se-
lected from two widely studied transaction processing work-
loads. We study the New Order transaction from TPCC [30],
which is its most frequent write transaction. A New Or-
der transaction simulates a customer buying different items
from a local warehouse. The transaction is write-intensive
and requires atomic updates to several tables. We also study
the Update Location transaction from TATP [26], a bench-
mark that models a mobile carrier database. Update Loca-
tion records the hand-off of a user from one cell tower to
another. In contrast to New Order, Update Location transac-
tions are much shorter, updating a small record in a single
table. We execute workloads for 10M transactions running
on four threads. We assume four strands per thread under
strand persistency.

7.2 Performance analysis
Figure 6 contrasts SCT and DCT performance across work-
loads, persistency models, and average persist epoch laten-
cies depicting throughput (millions of transactions per sec
(MTPS)) versus persist epoch latency (micro seconds).

Each performance result with epoch and strand persis-
tency (Figure 6) comprises a flat region, followed by a curve
where throughput rapidly falls off. In the flat regions, where
average persist epoch latency is low, overall throughput is

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. persist epoch latency (us)

0

1

2

3

4

5

T
hr

ou
gh

pu
t(

M
T

P
S

)

Eager sync
Epoch
Strand

(a) Update Location (SCT)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. persist epoch latency (us)

0

1

2

3

4

5

T
hr

ou
gh

pu
t(

M
T

P
S

)

Eager sync
Epoch
Strand

(b) Update Location (DCT)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. persist epoch latency (us)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr

ou
gh

pu
t(

M
T

P
S

)

Eager sync
Epoch
Strand

(c) New Order (SCT)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. persist epoch latency (us)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr

ou
gh

pu
t(

M
T

P
S

)

Eager sync
Epoch
Strand

(d) New Order (DCT)

Figure 6. SCT and DCT performance for Update Location and New Order under various persistency models.

limited by volatile execution. At the knee, which we call the
“break-even” latency, volatile execution and the persist crit-
ical path are equal. Higher break-even latency implies tol-
erance for slower NVRAM technologies. Performance then
drops off rapidly as average persist epoch latency increases
and asymptotically reaches zero. In contrast, for eager sync,
since sync barriers cause stalls in volatile execution, perfor-
mance begins to drop-off at the first non-zero average persist
epoch latency.

Volatile execution performance of SCT exceeds DCT.
As expected, the additional bookkeeping required to imple-
ment DCT penalizes volatile execution speed—SCT trans-
actions are faster than DCT transactions (if persist epoch la-
tency is neglected) by 20%, 25% for Update Location and
New Order respectively.

SCT performance across persistency models: Fig-
ures 6(a) and 6(c) show the performance of SCT, for Update
Location and New Order, for different persistency models.
SCT under eager sync always performs worse than under
epoch persistency. This behavior is to be expected as SCT
exhibits similar persist critical paths under epoch persistency
and eager sync. With similar persist critical paths, the perfor-
mance under epoch persistency is always better than under
eager sync. Under epoch persistency, performance is deter-
mined by the slower of volatile execution and time taken
to drain the persists. However, in the case of eager sync,
the time taken to drain persists (stalls due to sync barriers),
slows volatile execution.

Also, as expected, SCT performs better under strand per-
sistency than under epoch persistency, due to a shorter per-
sist critical path. Hence, SCT performs best under strand per-
sistency and the worst under eager sync.

DCT performance across persistency models: The per-
formance trade-offs for DCT are more complex. Figure 6(b)
shows that the performance of DCT under epoch persistency
is worse than under eager sync above 1µs persist latency.
DCT incurs a longer persist critical path under epoch persis-
tency than under eager sync, especially for workloads where
transactions rarely conflict, like Update Location. Hence, be-
yond the break-even latency, the performance under epoch
persistency declines faster than under eager sync.

Update Location New order
Epoch persistency 0.5 2

Eager sync 0.5 1
Strand persistency 1.5 2.5

Table 2. The average persist epoch latency (in µs), at which
DCT breaks even with SCT.

For New Order (Figure 6(d)), we see that DCT performs
better under epoch persistency than under eager sync. This
behavior is caused by multiple factors: (1) The break-even
latency for epoch persistency is 2.5µs, so epoch persistency
performance degrades only for persist latencies above 2.5µs.
(2) New Order has more conflicting transactions than Update
Location, so the difference in persist critical path between
epoch and eager sync is smaller. (3) The crossover point at
which eager sync begins outperforming epoch persistency
lies beyond 4µs, which is not shown in the graphs. It is not
clear that a memory technology that incurs more than 4µs
average persist epoch latency is viable as a main memory.

As expected, DCT under strand persistency performs best
for both workloads (Figures 6(b) and 6(d)) as the persist
critical path under strand persistency is the shortest.

SCT vs. DCT across persistency models: The perfor-
mance trade-off (for all persistency models) between SCT
and DCT depends upon two competing factors: (1) the bet-
ter volatile performance of SCT, and (2) the shorter persist
critical paths of DCT. As a result, for lower average per-
sist epoch latencies, SCT performs better, but as latency in-
creases, DCT outperforms SCT by up to 50% under epoch
and strand persistency and 150% under eager sync.

In Table 2, we summarize the average persist epoch la-
tency, where SCT and DCT provide the same performance,
under each persistency model. Table 2 indicates: (1) DCT
breaks-even with SCT at higher latencies for New Order than
Update Location. New Order is a larger transaction, hiding
longer persist delays under volatile execution. (2) Strand per-
sistency exhibits the highest SCT-DCT break-even latencies,
as it incurs the smallest difference in persist critical path be-
tween DCT and SCT.

8. Related work
The emergence of new persistent memory technologies has
spurred research in many areas of computer science, includ-
ing file systems [4, 9, 11], databases [5, 7, 13, 21, 32], persis-
tent data structures [8, 33], and concurrent programming [3].

Several systems share our goal of providing a transac-
tion interface to persistent memory. NV-Heaps [8] provides
a persistent object system with transactional semantics that
prevents persistence-related pointer and memory allocation
errors. Mnemosyne [33] allows programmers to declare or
allocate persistent data and write this data through special in-
structions or via transactions. Rio Vista [21] provides trans-
actions on top of flat memory regions.

Prior systems have generally not sought to optimize con-
currency of writes to persistent memory. For example, Rio
Vista assumes persistent memory is fast enough to not re-
quire concurrent accesses [21]. NV-Heaps uses epoch barri-
ers to order persistent writes and assumes that memory ac-
cesses execute serially [8]. Mnemosyne uses cache-flush op-
erations to order updates to persistent memory [33].

Unlike these systems, our paper focuses on maximizing
the concurrency of writes to persistent memory by reducing
ordering constraints between persistent memory accesses.
We believe that freeing the underlying persistent memory
system to reorder, parallelize, and combine writes will be es-
sential to supporting high-performance, transaction-oriented
workloads. To our knowledge, our work is the first to ex-
plore the implications of various recently proposed persis-
tency models on transaction software.

Recent work by Lu and co-authors shares our goal of
reducing ordering constraints among persistent writes [22].
Their system distributes the commit status of a transaction
among the data blocks to eliminate an ordering constraint
within a transaction (similar to the torn bit in Mnemosyne [33]),
and uses hardware support (multi-versioned CPU cache and
transaction IDs) to enable conflicting transactions to per-
sist out of order. Their techniques are complementary to
the ones we propose for reducing ordering constraints. In
addition, their system assumes that flushing is required to
guarantee ordering (as in eager sync), whereas we explore
other memory persistency models.

Our work builds on prior proposals to allow software to
communicate ordering dependencies among writes to per-
sistent memory. In shipping systems, order can be enforced
by flushing persistent writes from the CPU cache to memory
(e.g., via write-through caches or clflush instructions) and
then issuing a memory barrier (e.g., mfence) [31]. However,
flushing data to persistent storage is not necessarily the best
way to ensure the order in which data is made durable [6]. To
relax ordering requirements, Condit and co-authors propose
using epoch barriers to ensure an ordering between writes
before and after the barrier [9]. Pelley and co-authors expand
this into a design space for memory persistency models [27].

Others propose hardware support to increase the appar-
ent speed of persistent memory by adding a nonvolatile CPU
cache [34] or by assuming sufficient residual power to com-
plete all pending writes [25]. Reducing persist latency makes
it less important to allow concurrent writes to persistent
memory. Our work makes the more conservative assumption
that data must be written to the main persistent memory to
be considered durable. Transactions can also be accelerated
via other hardware support for persistent memory, such as
editable atomic writes [7].

9. Conclusions
New non-volatile memory technologies make it possible to
store persistent data directly in memory. Achieving the full
performance benefits of doing so requires minimizing the
constraints on the order of writes to NVRAM. In this paper,
we show how to design transaction systems that specify
and communicate these constraints to hardware in a way
that reduces the dependencies between NVRAM writes. Our
DCT transaction design reduces the persist critical path and
improves performance by up to 50% under epoch and strand
persistency and up to 150% under eager sync.

Acknowledgments
We would like to thank the anonymous reviewers for their
valuble feedback. This work was supported by the National
Science Foundation under the award NSF-CCF-1525372.

References
[1] Sarita V. Adve and Kourosh Gharachorloo. “Shared Memory

Consistency Models: A Tutorial.” In IEEE Computer, Vol. 29
No. 12, December 1996.

[2] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm.
“Implications of CPU Caching on Byte-addressable Non-
Volatile Memory Programming.” Technical Report HPL-2012-
236, Hewlett-Packard, 2012.

[3] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhan-
dari. “Atlas: Leveraging Locks for Non-volatile Memory Con-
sistency.” In Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2014.

[4] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra,
Christopher M. Aycock, Gurushankar Rajamani, and David
E. Lowell. “The Rio File Cache: Surviving Operating System
Crashes.” In International Conference on Architectural Support
for Programming Languages and Operating Systems, 1996.

[5] Shimin Chen, Phillip B. Gibbons, and Suman Nath. “Re-
thinking Database Algorithms for Phase Change Memory.” In
Conference on Innovative Data Systems Research, 2011.

[6] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
“Optimistic Crash Consistency.” In Symposium on Operating
Systems Principles, 2013.

[7] Joel Coburn, Trevor Bunker, Meir Shwarz, Rajesh K. Gupta,
and Steven Swanson. “From ARIES to MARS:Transaction

Support for Next-Generation Solid-State Drives.” In Symposium
on Operating System Principles, 2013.

[8] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M.
Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.
“NV-Heaps: Making Persistent Objects Fast and Safe with Next-
Generation, Non-Volatile Memories.” In International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, 2011.

[9] Jeremy Condit, Edmund B. Nightingale, Christopher Frost,
Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee.
“Better I/O Through Byte-Addressable, Persistent Memory.” In
Symposium on Operating Systems Principles, 2009.

[10] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard
D. Shapiro, Michael R. Stonebraker, and David A. Wood.
“Implementation Techniques for Main Memory Database
Systems.” In International Conference on Management of Data,
1984.

[11] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy,
Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson.
“System Software for Persistent Memory.” In European
Conference on Computer Systems, 2014.

[12] Jim Gray and Andreas Reuter. “Transaction Processing:
Concepts and Techniques.” Morgan Kaufmann Publishers, Inc.,
1993.

[13] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi.
“NVRAM-aware Logging in Transaction Systems.” In Proceed-
ings of the VLDB Endowment, 2014.

[14] Intel. “Intel Architecture Instruction Set Extensions Pro-
gramming Reference (319433-023).” https://software.

intel.com/sites/default/files/managed/0d/53/

319433-023.pdf, 2014.

[15] Intel and Micron. “Intel and Micron Produce Break-
through Memory Technology.” http://newsroom.intel.

com/community/intel_newsroom/blog/2015/07/28/

intel-and-micron-produce-breakthrough-memory-\

technology, 2015.

[16] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos
Athanassoulis, and Anastasia Ailamaki. “Aether: A Scalable
Approach to Logging.” In Proceedings of the VLDB Endowment,
2010.

[17] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen,
and Thomas F. Wenisch. “Persistency Programming 101.” In
Non-Volatile Memories Workshop, 2015.

[18] Leslie Lamport. “Time, Clocks, and the Ordering of Events
in a Distributed System.” In Communications of the ACM, Vol.
21, July 1978.

[19] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug
Burger. “Architecting Phase Change Memory as a Scalable
Dram Alternative.” In International Symposium on Computer
Architecture, 2009.

[20] Eunji Lee, Hyokyung Bahn, and Sam H. Noh. “Unioning
of the Buffer Cache and Journaling Layers with Non-volatile
Memory.” In Conference on File and Storage Technologies,
2013.

[21] David E. Lowell and Peter M. Chen. “Free Transactions with
Rio Vista.”. In Symposium on Operating Systems Principles,

1997.

[22] Y. Lu, J. Shu, L. Sun, and O. Mutlu. “Loose-Ordering Con-
sistency for Persistent Memory.” In International Conference on
Computer Design, 2014.

[23] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Ar-
tur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. “Pin: Building Customized Program Anal-
ysis Tools with Dynamic Instrumentation.” In Conference on
Programming Language Design and Implementation, 2005.

[24] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh,
and Peter Schwarz. “ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging.” In ACM Transactions on
Database Systems, Vol. 17 No. 1, 1992.

[25] Dushyanth Narayanan and Orion Hodson. “Whole-System
Persistence.” In International Conference on Architectural
Support for Programming Languages and Operating Systems,
2012.

[26] Simo Neuvonen, Antoni Wolski, Markku Manner, and
Vilho Raatikka. “Telecom Application Transaction Processing
Benchmark.” http://tatpbenchmark.sourceforge.net/.

[27] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. “Mem-
ory Persistency.” In International Symposium on Computer
Architecture, 2014.

[28] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin
Agrawal, Haryadi S. Gunawi, Andreas C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. “IRON File Systems.” In Symposium
on Operating Systems Principles, 2005.

[29] Alexander Thomson and Daniel J. Abadi. “The Case for
Determinism in Database Systems.” In Proceedings of the
VLDB Endowment, 2010.

[30] Transaction Processing Performance Council (TPC). “TPC
Benchmark B.” http://www.tpc.org/tpc_documents_

current_versions/pdf/tpc-c_v5-11.pdf.

[31] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. “Consistent and Durable
Data Structures for Non-Volatile Byte-Addressable Memory.”
In Conference on File and Storage Technologies, 2011.

[32] Tianzheng Wang and Ryan Johnson. “Scalable Logging
through Emerging Non-Volatile Memory.” In Proceedings of the
VLDB Endowment, 2014.

[33] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
“Mnemosyne: Lightweight Persistent Memory.” In Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[34] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and
Norman P. Jouppi. “Kiln: Closing the Performance Gap
Between Systems With and Without Persistence Support.” In
International Symposium on Microarchitecure, 2013.

[35] Jishen Zhao, Onur Mutlu, and Yuan Xie. “FIRM: Fair
and High-performance Memory Control for Peristent Memory
Systems.” In International Symposium on Microarchitecure,
2014.

https://software.intel.com/sites/default/files/managed/0d/53/319433-023.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-023.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-023.pdf
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-\technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-\technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-\technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-\technology
http://tatpbenchmark.sourceforge.net/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf

	Introduction
	Ordering constraints
	Transactions under Idealized Ordering
	Transaction design
	Minimal Persist Dependencies
	Persist critical path analysis

	Memory persistency models
	Strict persistency
	Epoch persistency
	Strand persistency
	Eager sync

	Synchronous commit transactions (SCT)
	SCT under Epoch Persistency
	SCT under Eager Sync
	SCT under Strand Persistency

	Deferred commit transactions (DCT)
	DCT under Epoch Persistency
	Inferring undo order during recovery
	Enforcing correct commit order
	Persist critical path analysis

	DCT under Eager Sync
	DCT under Strand persistency

	Evaluation
	Methodology
	Performance analysis

	Related work
	Conclusions

