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CHAPTER I

Introduction

Securing today’s computers is an urgent and difficult problem. Over the last

thirty years, Moore’s law has been a great boon to the computer industry, doubling

the size and complexity of code available to developers every eighteen months. At the

same time, the increasing availability of computers, along with the rise of networking

and the Internet has lead to global connectivity, which in turn has brought about a

global culture of discussion, information sharing, and commerce.

Unfortunately, the increasing complexity of modern software is exceeding both

the developer’s ability to write correct, bug-free code, and the administrator’s ability

to configure a correct, secure system. The rate of increase, along with the economic

reality of the marketplace, favors software that gets to the market soonest with

the highest number of bugs tolerable, and businesses that spend the least tolerable

amount of money on security and administration. These factors guarantee that

exploitable bugs and insecure system configurations will exist; the global connectivity

and ubiquitous availability of computers guarantees that someone will exploit them.

For the foreseeable future, dealing with intrusions will be an inevitable part of every

system administrator’s job.

The infeasibility of preventing computer compromises makes it vital to analyze
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intrusions after they occur. Post-intrusion analysis is used to understand the attack,

fix the vulnerability that allowed the compromise, repair any damage caused by the

intruder, and determine what privileged information the intruder may have stolen.

The administrator typically has at his disposal a disk image and system logs, and

ideally firewall and network logs [6]. A typical Unix installation logs login attempts,

mail processing events, TCP connection requests, filesystem mount requests, and

commands issued by the superuser. Windows 2000 systems can log logon and logoff

events, file accesses, power start and exit events, security policy changes, and restart

and shutdown events.

These logs are used both for detecting an intruder and analyzing what he did.

Unfortunately, current logging systems fall short for intrusion analysis because they

fail to provide enough information to recreate or understand all attacks. Typical

loggers only save a few types of system events, and these events are often insufficient

to determine with certainty how the break-in occurred or what damage was inflicted.

Instead, the administrator is left to guess what might have happened, and this is

a painful and uncertain task. The intrusion analysis published by the Honeynet

project typifies this uncertainty by containing numerous phrases such as “may in-

dicate the method”, “it seems reasonable to assume”, “appears to”, “likely edited”,

“presumably to”, and “not clear what service was used” [1].

More secure installations may log all inputs to the system, such as network activ-

ity and keyboard input. However, even such extensive logging does not enable the

administrator to re-create intrusions that involve non-deterministic effects. Many at-

tacks exploit the unintended consequences of non-determinism (e.g., time-of-check to

time-of-use race conditions [11])—recent advisories have described non-deterministic

exploits in the Linux kernel, Microsoft Java VM, FreeBSD, NetBSD, kerberos, ssh,
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Tripwire, KDE, and Windows Media Services. Furthermore, the effects of non-

deterministic events tend to propagate, so it becomes impossible to re-create or

analyze a large class of events without replaying all earlier events deterministically.

Encryption is a good example of this: encryption algorithms use non-deterministic

events to generate entropy when choosing cryptographic keys, and all future com-

munication depends on the value of these keys. Without logging non-deterministic

events, encrypted communication can be decrypted only if the intruder neglects to

delete the key.

In summary, current loggers are not complete. Although the stated goal of

post-mortem analysis is to reconstruct the past, current loggers leave large gaps in

knowledge of the past.

1.1 Execution replay for intrusion analysis

We propose filling the knowledge gap left by current loggers using a technique

called execution replay. Rather than logging events that happen at a system level,

execution replay systems log events that affect the execution of a system, with the

goal of reconstructing the execution. The original execution is called the record run

or the logging run; subsequent runs are called replay runs. During the logging

run, the execution replay system logs non-deterministic events that affect the flow

of execution. These events are then replayed during the replay run, to make the

execution of the replay run identical to that of the logging run.

Replaying the execution takes the system through the exact states that it went

through before, during, and after the intrusion. During replay we can stop at ar-

bitrary places to inspect the state and gather more information. Because the en-

tire system is being re-executed, instruction by instruction, we have access to every
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event on the system and the state at any point; and because we can re-execute the

system multiple times, we can refine the level of detail at which we collect informa-

tion. Execution replay allows access to more information than system-level logs, and

counter-intuitively, can also result in a smaller log size.

1.2 Thesis and overview

We intend to show that execution replay is a practical way to add completeness

to forensic logging.

Execution replay is not a new technique; many systems have been developed

for debugging and fault tolerance. Chapter II makes a survey of prior execution

replay systems, their uses, and techniques. In Chapter III we describe the design of

a replay system for forensic analysis. We discuss requirements that security places

on execution replay systems, contrasting them with those of debugging and fault

tolerance, and also the implications for security regarding where the reply layer

resides.

Chapter IV describes ReVirt, a system we have built that will log and replay a

uniprocessor paravirtualized virtual machine running on a Linux operating system.

We make no assumptions about the programs running within the VM. Our worst-case

benchmark will log for 18 days1 before filling a 100GB dedicated log disk, and during

logging adds 0-11% run-time over the cost of running within a virtual machine.

With hyperthreaded and multiple-core architectures becoming more common-

place, we need to know how well ReVirt will run on multiprocessor machines. Chap-

ter V discusses methods of combining multiprocessor systems with logging, and de-

scribes how we extended ReVirt to detect and replay data sharing between multiple

1There are indications that this can be increased to over a month.
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processors using pagetable hardware available on all modern processors. To our

knowledge, our system is the first to deterministically replay a multiprocessor kernel

outside of a simulation.

And finally, Chapter VI contains a summary of the dissertation and the conclu-

sion.



CHAPTER II

Related Work

ReVirt is the first execution replay system targeted at forensic analysis. But

execution replay has been used by two other fields: fault tolerance and debugging.

This chapter discusses the goals of these different fields, and how they use execution

replay to aid them in accomplishing those goals.

2.1 Execution replay for fault tolerance

The goal of fault tolerance is to minimize the effects of systems failures. These

types of techniques are used primarily in two types of systems: primary-backup

systems and distributed computations.

Primary-backup techniques are targeted at systems that require a very high avail-

ability. The goal is to add redundancy to the system so that if the primary suffers

any kind of hardware or software failure, a backup can take its place as seamlessly

and quickly as possible.

Distributed fault-tolerant techniques are targeted at distributed computations,

where the operating system may crash, lose connectivity, or lose power. Models

generally assume that when a processor crashes, it will lose all state in volatile

storage, such as memory, but will retain all stable storage, such as disk, and be

6
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available for computation at some point in the future. The computation depends

upon all nodes running to completion, and the failure of a single node will cause the

entire computation to be lost; thus the probability of failure of the entire computation

is more than the probability of failure of each of the individual nodes. The goal of

fault tolerance in this scenario is to minimize the lost work due to transitory failure

of one or more of the nodes.

The primary solution to failure is checkpointing, where the state of the process

is copied to a place that will be unaffected by the failure. In the primary-backup

approach, this is generally another processor that is ready to step in immediately

when the primary fails. In distributed fault tolerance, this is generally a disk or other

stable storage, which is read after the node has been restored to recover the state of

the process.

However, checkpointing alone is not an ideal solution. Frequent checkpoints can

be expensive, slowing down the system. In order to make failure transparent to

the outside world, the system must checkpoint before every output (called output

commit), so that an external observer cannot tell that a failure has occurred; a full

checkpoint before every output causes a perception of lag in the system.

Furthermore, in a distributed computation, simply restoring a process to a pre-

vious checkpoint may move the entire system to a state which is not consistent: if

process P0 sends a message to process P1, and then fails and rolls back to a point

before sending the message in question, then P1 has received a process that P0 does

not remember sending. Consistency may require P1 to be rolled back to a previous

checkpoint as well. But this roll-back may subsequently cause a series of cascading

roll-backs, possibly rolling all processes in the system back to their initial state,

losing any advantage that checkpointing would have gained.
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Coordinated checkpointing is a class of solutions to the cascading roll-backs

problem in which processes coordinate to take checkpoints at times which guarantee

that the most recent checkpoint of all processes is in a consistent state. Under

these protocols the most any process has to roll back is to the previous checkpoint.

This solves the cascading roll-back problem and guarantees that there are no useless

checkpoints[25], but does not solve the output commit problem, and can result in an

even greater slow-down due to the costs of coordinating a group checkpoint.

Execution replay can be used in conjunction with checkpointing to mitigate these

problems. In the fault tolerant computing field, systems which use execution replay

are called message-logging systems, because the first systems to use it generally

modeled all process input and output as a series of messages[13]. This model assumes

that if a computation starts in the same state, and is delivered the same messages

in the same order, the process will go through the same set of states.

More generally, a process under these systems is assumed to be piecewise de-

terministic(PWD). That is, all non-deterministic events that a process executes

can be identified and that the information necessary to replay each event during

recovery can be logged in the event’s determinant [4, 5, 25]. Logging and replaying

the non-deterministic events in their exact original order can recreate a process’s

pre-failure state even if that state has not been checkpointed[25]. There are two

important parts to the determinant: the content of the message, and the order in

which the message was received.

The primary-backup approach implements message-logging by delivering the same

messages to the primary as to the backup; the result should be that both processes

are in the same state. In the distributed computation approach, after a failure a

process starts at its most recent checkpoint and replays messages until the global
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system is in a consistent state.

For distributed computation, forms of message logging differ in where the logs are

stored and when they make it to stable storage. In the most basic form, receiver-

based logging, each message is stored in a log on the receiver before it is delivered

to a process. In sender-based logging [32], the process that sends the message

keeps it, along with information about the order in which it was received, in volatile

memory until it knows the receiver has checkpointed. If the receiver fails, the sender

re-sends the message, along with ordering information, to the failed process. In

causal logging [5], a process piggybacks any determinants not yet saved to stable

storage onto messages that it sends to other processes. If that process then fails,

processes that received messages from it can help it recover to the state just after

sending the message.

Most implementations of primary-backup systems require either special-purpose

hardware or software designed with fault-tolerance in mind. This is extra com-

plication is expensive to add to systems. To solve this, Bressoud [14] inserted a

hypervisor (also called a virtual machine monitor) between the hardware and

the operating system, using it to implement a primary-backup system. The hyper-

visor intercepted all hardware events that went to the primary, and sent them to the

hypervisor on the backup machines. Thus the execution on the primary was replayed

on the backup machines so that they were exact replicas of the original. Running

inside of a virtual machine allows the fault-tolerance capability to be added to un-

modified hardware and software. Napper [40] recently developed a similar system

using a Java virtual machine.

For further reading on message-logging systems for fault tolerance, the reader is

referred to [25].
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2.2 Execution replay for debugging

The goal of debugging is to discover why a program is not functioning the way it

was intended to function. One of the classic methods of debugging is called cyclic

debugging, in which a programmer iteratively runs a program exhibiting a bug,

centering in on the cause of the bug by inspecting state, setting breakpoints, single-

stepping through execution, etc. For this purpose, the programmer needs to see the

state of the program, and the execution as it affects and is affected by that state.

The basic tool for debugging, therefore, is re-execution, and the most ubiquitous

form is what might be called “hopeful re-execution”: re-execute the program with

similar starting conditions, and hope that the resulting execution will be similar

enough to some previous execution to be able to track down the bug. Checkpointing

can be used to speed up this process [27].

While this works for deterministic bugs, it does not work well for non-deterministic

bugs, which only occur probabilistically; or for heisenbugs1, which disappear once

debugging tools are enabled.

The most common source of non-deterministic bugs has been in tightly-coupled

shared-memory multiprocessors. For this reason the earliest work on execution replay

for debugging was in the parallel computing community, because race conditions,

which depend on the exact interleaving of shared memory reads and writes, can be

very difficult to debug.

Early loosely-coupled parallel computation systems were based on message

passing architectures, and thus used protocols similar to the message-logging proto-

1Heisenbugs are named for Heisenberg’s Uncertainty Principle, which in quantum mechanics
describes fundamental limits on the precision at which a quantum particle’s velocity and position
can be measured. Metaphorically it refers to any situation where the act of observing something
changes what is observed.
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cols of distributed fault tolerance [22, 37, 50]. Pan, et al.[42] attempted to do the

same for tightly-coupled systems by instrumenting every shared read and logging

the value read. However, this turned out to be prohibitively expensive [20].

Because logging the data value of shared-memory reads was too expensive, the

parallel computing field went quickly to an order-based approach. The observation

was that if the order of shared-memory operations was preserved, then the reads

would result in the same values. Instant Replay [38] started the field in this area. In-

stant Replay surrounded all accesses to shared objects with per-object locks, logging

the order in which processes acquired locks and replaying it in subsequent executions.

Subsequent research using this technique reduced redundant constraints[41, 48] and

further optimized logging by using Lamport clocks per objects[7, 43]. JaRec[29]

implemented a replaying of locking order within a JVM.

Instant replay and subsequent systems which replay locking order rely on all

accesses to shared memory to be protected consistently by locks. They can tolerate

synchronization races, which occur when locks are incorrectly applied, but they

cannot tolerate data races, where locks are absent or inconsistently applied.

A quantum leap for all execution replay systems came with the implementation

of a hardware instruction counter in the HP-RISC architecture, and the description

of an efficient software instruction counter in [39]. Previous debugging and replay

execution systems could handle synchronous events in a system, but could not

handle asynchronous events, such as interrupts or task-switches, that can happen

at arbitrary points in the instruction stream. Instruction counters can be used to

identify precise points in an instruction stream in the presence of loops and re-

cursion, so that interrupts can be re-delivered at the same point. In the absence of

hardware support, code can be instrumented to count every backwards branch with
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a reasonable amount of overhead[39, 48, 49]. These event counters are especially

useful for debugging to identify a particular instruction in an instruction stream,

rather than a particular instruction in the program [12].

Bacon et. al[8] explored supporting multiprocessor replay in hardware by snoop-

ing the cache-coherence protocol. Their simulated system uses a hardware instruc-

tion counter piggy-backed to cache-coherence messages to identify races. Flight Data

Recorder (FDR)[55] is a modern version of the same idea. FDR uses specialized hard-

ware to be able to log and replay the last 1 second of execution. In further work,

Xu et al. developed regulated transitive reduction[56], a way of modifying con-

straints which preserves the necessary ordering properties while reducing the number

of constraints and making constraints more easily compressed.

Russinovich et al introduced the repeatable scheduling algorithm (RSA)[45,

46], which extends the idea of asynchronous events in [39] to include schedule pre-

emptions, and discusses what operating system support is necessary to replay dis-

cusses extending the idea of an them.

Execution replay is also discussed by Elnozahy in [26] for debugging, along with

trace generation, but no further work seems to have been done on the project.

There are a number of more recent projects for uniprocessor replay that have cov-

ered various aspects of data collection and methods of dealing with scheduling. The

DejaVu project [18] implements a modified Java Virtual Machine (JVM). Input meth-

ods are instrumented to log the input to a program, and scheduling is constrained to

happen at pre-defined yield points; other Java-based solutions include jRapture[51],

which did only data replay (no asynchronous events). Other systems that do only

data-replay include a system described in [12] to implement reverse debugging com-

mands (reverse single-step, reverse breakpoint, etc), and TORNADO[21]. Both of
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these instrument system calls, logging the results and replaying them.



CHAPTER III

Design Requirements

The target use of a system should guide its design. Execution replay systems have

existed for years, but to date none have targeted security. Security places unique

design requirements on an execution replay system. The previous chapter discussed

related work for execution replay in the fields of debugging and fault tolerance. This

chapter contrasts the requirements for debugging and fault tolerance with the use of

execution replay for security.

3.1 Security Demands

3.1.1 Function for arbitrary code

Debuggers are used by programmers, who presumably have access to the code

being debugged, and frequently are able to chose, or at least influence, the program-

ming platform and discipline. Because of this, execution replay systems targeted at

debugging frequently require modifications that only a developer would be able to

make: most require the system to be written in a particular language, instrumented

with a particular compiler, or linked with a specific library. Similarly, fault tolerant

systems are generally written with some kind of fault tolerance in mind1.

1The exception being Bressoud [14].

14
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The system administrators who have to deal with intrusions are rarely involved in

the development of software running on the systems they administer. They may have

input into which of several available programs are run, but they are not in a position

to dictate what language, library, discipline, or compiler is used in those programs,

and they are rarely able to re-compile a program with any kind of instrumentation.

Furthermore, a successful attacker can usually introduce arbitrary (uninstrumented)

machine code.

Therefore, a replay execution system must be able to log and replay arbitrary

machine code, independent of language, library, or compiler.

3.1.2 Consideration of corner cases

Execution replay for security is considerably different from replay for debugging

purposes. Where security is an issue, all corner cases must be considered because any

possible weakness can be exploited by an attacker. For ordinary debugging corner

cases that are unlikely to happen can be ignored.

Replay debuggers are typically targeted for specific functionalities that are limited

by the use for which the program is being written. The programmer using execution

replay for debugging has the goal of making the program work. The only enemy

in debugging is the programmer himself. Programmer mistakes occur, but they are

generally very limited in scope. This enables the designers to only log a subset of

possible events—those which are expected to be significant to the execution of the

target system. Early systems, for instance, targeted scientific parallel computations,

which only needed to read static input and communicate with one another; external

network, or even process IDs of the running processes were not considered important

to be replayed. More recent systems targeted at debugging general uniprocessor
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applications log more information, but still only enough to be useful to a large

enough segment of programs. Convoluted corner cases of questionable use can be

safely “legislated away” — simply documented (if that) and left to the programmer

to avoid.

For instance, we have an example we encountered from a version of ReVirt for

normal host processes. Suppose that two processes are sharing memory. In order to

replay their execution, under normal conditions, it suffices to replay their scheduling

order [46]. But suppose that one process calls the read system call, with the target

buffer in memory shared between the process, and that the read is interrupted by a

page fault, allowing the other process to execute. To replay correctly, the schedule

interrupting a system call in the middle must also be replayed.

The previous scenario is difficult to deal with but not impossible. But how

many programs make read system calls into explicitly shared memory? One can

easily write this behavior off as “not supported” and still debug a large number of

applications. These types of scenarios are not even discussed in other host-based

replay execution systems.

Many replay execution systems are only targeted at surviving a very limited

subset of bugs. Most software-based parallel execution replay systems, for example,

surprisingly assume the absence of data races, and will not execute correctly in

their presence. They rely instead on using dynamic race detection algorithms during

replay, which will stop the program once a race is detected so that it can be removed.

This is tolerable because the goal is to find bugs. This method finds the first bug,

though any buggy executions past the first race in the execution are lost. (Benign

data races such as spin locks cannot be tolerated by these systems.)

Finally, programmer mistakes are limited in scope. For instance, a programmer
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may call the htonl() function instead of the ntohl() function, but he will not

accidentally call functions internal to the replay system (assuming an appropriate

naming convention). Even wild writes can be modeled as random, and unlikely to

affect the replay system even if it shares the same memory space. The chance of the

programmer accidentally calling a system call directly to change the protections on

the code of the replay library, and then modify it a meaningful way, is slim indeed.

Fault-tolerance systems attempt to deal with faulty hardware or non-deterministic

bugs in the program or the operating system. Frequently failures are modeled as fail-

stop: that is, they assume that on a failure, the process or processor will simply stop

executing. After a time-out, a recovery system will activate and attempt to restore

the failed system. The chances that a program bug or a hardware failure will subvert

the recovery system are considered extremely low, and therefore not considered.

In security, the situation is far different. The execution replay system must be

able to tolerate an active adversary. This adversary must be assumed to have the

binary code, if not the source code, for every program on the system. An adversary

will engineer the system to a state where unlikely corner cases can be exploited.

Therefore, an execution replay system targeted at intrusion analysis must be

bulletproof: any execution possible during logging must be able to be replayed.

Corner cases, such as the one discussed above, must be either handled correctly or

eliminated.

3.1.3 Logging for sufficient time periods

Few of the debugging papers we surveyed described how long they intended the

logging phase of their replay execution system to be run, or (related but not the same)

how far back in time they are able to go. Although it is feasible for a filesystem or
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database bug to go unnoticed for days or weeks, many bugs are fail-stop and cause an

application crash within a short time of being triggered. In fact, a recent hardware-

based multiprocessor replay execution design had the explicit goal of being able to

replay only the last 1 to 1.3 seconds of execution[55].

The main factor limiting the logging phase is the amount of storage necessary for

the logs. This varies widely from system to system, depending on the technique used

and the type of benchmarks run, though numbers tend to be bimodal: less than 1

KB/sec for some systems, more than 1 MB/sec for others. One megabyte per second

translates to 84 GB/day; under such a system, a dedicated 100GB log disk would

fill up in less than two days.

Distributed fault-tolerant systems keep only enough data replay from the last

checkpoint. Several checkpoints per day is not an unreasonable assumption.

In the primary-backup replay execution system, data from the primary is only

stored long enough to deliver it to the backups. Once the backups consume the data,

it is discarded. This means that from a log size perspective, they need only make

sure that the data captured at the primary fits in the “pipeline” to the backups.

An intrusion is rarely discovered less than a few hours after the initial break-in,

and frequently is not discovered until days or weeks afterward. A replay execution

system targeting intrusion analysis needs to deal with these long intervals in two

ways: first, it needs to be able to log for extended periods of time in an efficient

manner; and second, during replay it needs to travel efficiently to different points in

the log.
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3.1.4 Practicality for production use

A security “feature” must not render a system unusable. In order to be useful

for security, an execution replay system must not have an unreasonable deployment

cost. There are two general costs to consider. The first cost is overhead while logging.

We believe that a 2-times slowdown is a reasonable slowdown for sites interested in

security; but the lower the overhead the better.

The second is the cost of moving to a new system, either software or hardware.

Moving to a new OS, new incompatible hardware, or rewriting all software means

throwing away a large amount of work that has gone into making existing applications

secure. An execution replay system for security should minimize the number of

changes required to use the system.

3.2 Interface and security

Computing systems are generally composed into layers: applications call libraries,

libraries make system calls into the kernel, kernels access devices, etc. Between layers,

there is an interface that defines how the two layers interact. The execution replay

system resides in the layer below the system being replayed. It replays the interface

to the layer above it, logging and replaying non-deterministic inputs that cross the

interface.

There are two ways that an attacker could subvert a system, and the interface

affects both. First, the attacker could try to break through the interface itself, into

the layer providing the interface. This is called a layer-below attack. Accordingly,

the layer providing the interface needs to be free of exploitable bugs. The more

wide, rich, and complex this interface, the more complex the code providing it and

the harder it is to keep free of bugs. A smaller, simpler interface will result in smaller,
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less complex code, which is easier to code accurately.

Secondly, even if the attacker can not break through the interface, there may be

corner cases the interface provides which the execution replay system can not handle

correctly2. If an attacker can engineer the system into one of these corner cases, he

can break replay, rendering the remaining log useless, and preventing anyone from

observing his actions. The simpler and smaller the interface, the more likely the

replay system is going to be able to replay all cases.

For security purposes, a smaller interface is better. Unfortunately, with a smaller

interface there is trade-off between security and functionality. For example, consider

replaying the entire interface provided by the Linux kernel. The interface is very

rich and functional, but as a result, less secure, because there is a higher chance that

we will make an error imlementing it. We could increase security by limiting the

interface. However, limiting the interface reduces functionality, thereby reducing the

range of native applications we can log and replay.

One way to eliminate this trade-off is to use a virtual machine. A virtual

machine eliminates the trade-off between security and functionality by adding a layer

of indirection: a guest kernel runs on the small interface provided by a virtual

machine monitor (VMM), and provides a rich, full-kernel interface to applications

above it. Placing the execution replay system in the VMM gives the advantage of a

small interface while retaining the rich functionality provided by a kernel, but at the

cost of virtualization. Chapter IV discusses virtual machines in more detail.

2This applies to any security service. Garfinkel [28] discusses some of the potential pitfalls of
trying to observe the UNIX interface.
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3.3 Summary

To be practical for intrusion analysis, an execution replay system must work for

arbitrary code, under all corner cases; it must be able to keep several weeks worth

of logs; it must not add more than 2x overhead. It should also minimize both the

changes required of a user, and should have as narrow an interface as possible.



CHAPTER IV

Execution Replay for Virtual Machines

This chapter describes our work on execution replay for virtual machines. We

begin by describing virtual machines and why they are useful to our work. We then

describe User-Mode Linux (UML), the virtual machine on which we implemented

the second version of ReVirt1. Then we discuss the implementation of the replay

execution system for UML. Finally, we describe the results of our experiments, and

our experience using ReVirt to enable forensic analysis.

4.1 Virtual machines

A virtual-machine monitor (VMM) is a layer of software that faithfully emu-

lates the hardware of a complete computer system[30]. The abstraction created by

the virtual machine monitor is called a virtual machine. The hardware emulated by

the VMM is very similar (often identical) to the hardware on which the VMM is

running, so the same operating systems and applications that run on the physical

machine can also run on the virtual machine. The host platform that the VMM

runs on can be another operating system (the host operating system) or the bare

hardware. The operating system running in the virtual machine is called the guest

1The original ReVirt system was built on a modified version of UMLinux [16, 24], from the
University of Erlangen-Nurnberg.

22
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operating system to distinguish it from the host operating system, which is running

on the bare hardware. The applications running on top of the guest operating system

are called guest applications, to distinguish them from applications running on the

host operating system (of which the VMM is one). The VMM runs in a separate

domain from the guest operating system and applications; for example, the VMM

may run in a supervisor mode and the guest software may run in unprivileged mode.

Our research project, CoVirt, is interested in enhancing security by running the

target operating system and all target services inside a virtual machine, (making

them guest operating system and applications), then adding security services in the

VMM or host platform [17].

Of course, even the VMM may be subject to security breaches. Fortunately, the

VMM makes a much better trusted computing base than the guest operating system,

due to its narrow interface and small size. The interface provided by the VMM is

similar or identical to the physical hardware (CPU, memory, disks, network card,

monitor, keyboard, mouse), whereas the interface provided by a typical operating

system is much richer (processes, virtual memory, files sockets, GUIs). The narrow

VMM interface restricts the actions of an attacker. In addition, the simpler abstrac-

tions provided by a VMM lead to a code size that is several orders of magnitude

smaller than a typical operating system, and this smaller code size makes it easier to

verify the VMM. As we discussed in Chapter III, the narrow interface of the VMM

also makes it easier to log and replay.

Virtual machines can be classified by how similar they are to host hardware. At

one extreme, traditional virtual machines such as IBM’s VM/370 [30] and VMware

[53] export an interface that is backward compatible with the host hardware (the

interface is either identical or sightly extended). Operating systems and applications
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that were intended to run on the host platform can run on these VMMs without

change. At the other extreme, language-level virtual machines like the Java VM

export an interface that is completely different from the host hardware. These VMMs

can run only in operating systems and applications written specifically for them.

Other virtual machines such as the VAX VMM security kernel [34] fall some-

where in the middle—they export an interface that is similar to but not identical to

the host hardware [10]. These types of VMMs typically deviate from the host hard-

ware interface when interacting with peripherals. Virtualizing the register interface

to peripherals controllers is difficult and time consuming, so many virtual machines

provide higher-level methods to invoke privileged instructions and I/O. This tech-

nique is called paravirtualization. A guest operating system must be ported to

run on these VMMs. Specifically, the device drivers in the guest kernel must use the

higher-level methods in the VMM; for example, a disk device driver might use host

system calls read and write to access the virtual disk. The work required to port

a guest operating system to these types of VMMs is similar to that done by device

manufacturers who write drivers for their devices.

4.2 User-Mode Linux

The version of ReVirt discussed in this chapter uses a virtual machine called User-

Mode Linux, or UML [23]. UML is a paravirtualized virtual machine—the VMM in

UML exports an interface that is similar but not identical to host hardware.
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4.2.1 UML structure and operation

The virtual machine in UML runs as two user processes on the host2. The guest

operating system runs in one host process, and all guest applications run inside the

other host process. The guest operating system in UML runs on top of the host

operating system and uses host services (such as system calls and signals) as the

interface to peripheral devices ). We call this virtualization strategy OS-on-OS,

and we call the normal structure where target applications run directly on the host

operating system direct-on-host. The guest operating system used in this paper is

Linux 2.4.18, and the host operating system is also Linux 2.4.183.

The VMM in our version of UML is a combination of the POSIX PTRACE

interface, and some extensions implemented as a loadable module in the host Linux

kernel. The PTRACE system allows our guest kernel process to interpose whenever

a guest user process makes a system call or receives a signal (such as a SEGV), while

the kernel module allows us to flexibly add other features to the VMM.

Most instructions executed within the virtual machine execute directly on the

host CPU. Memory accesses are translated by the host’s MMU. Memory spaces for

guest processes are set up through an extension to the Linux /proc filesystem. A

special file is made, named /proc/mm, which allows the guest kernel to allocate and

manipulate address spaces for guest processes. When the guest kernel creates a new

guest process, it allocates an address space by opening /proc/mm. To context switch

from one guest process to another, it switches the active address space via the (new)

2The mode we run UML in is called SKAS mode, or single-kernel address space mode. This
requires an extension to the host kernel to allow UML to maintain different address spaces. UML
can be run in another mode, called tracing-thread or TT mode, in which no host kernel modification
is necessary.

3The guest and host operating systems can also be different. We use the same operating system
for guest and host to enable more direct comparison between running applications on the UML
guest and running applications directly on the host.
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Host component or event Emulation mechanism in UML

hard disk host raw partition
CD-ROM host /dev/cdrom
floppy disk host /dev/floppy

network card TUN/TAP virtual Ethernet device
console stdout

video card none (display to remote X server)
current privilege level guest kernel or guest user process executable

system calls ptrace notification
timer interrupt timer + SIGALRM signal

I/O device interrupts SIGIO signal
memory exception SIGSEGV signal

enable/disable interrupts mask signals

Table 4.1: Mapping between host components and UMLinux equivalents

switch mm() system call.

Because the guest kernel is in a separate address space from the guest process,

the guest processes have the same memory range available to them as they would if

they were running on the host. This is useful in forensic testing, because many of the

exploits are very sensitive to stack, heap, and text segment placement in memory.

UML provides a software analog to each peripheral device in a normal computer

system. Table 4.2.1 shows the mapping from each host component or event to its

software analog in the virtual machine. UML uses a host file or raw device to em-

ulate the hard disk, CD-ROM, and floppy. Our version of UML uses the TUN/TAP

virtual Ethernet device in Linux to emulate the network card. UML uses standard

input/output (stdin/stdout) on the host to display console output and read key-

board input. UML also uses no video card; instead it displays graphical output to a

remote X server (which would typically be the host’s X server).

UML has two processes, one for the guest kernel and another for guest processes,

only one of which is running at any given time4 This is the analog for the virtual

4The unmodified PTRACE interface allows a minor race where both processes are schedulable



27

mode bit. When the guest user-mode process is running, any system calls it makes

are redirected to the guest kernel process, which executes the system call on behalf

of the process, and may context-switch the user-mode process to a different guest

process. When the guest kernel process is running, it can make host system calls,

handle its own segmentation faults, access all of the virtual memory, and modify the

guest’s memory map.

SIGALRM, SIGIO, and SIGSEGV signals are used to emulate the hardware timer,

I/O device interrupts, and memory exceptions. If the guest user process receives a

SIGSEGV, the host kernel redirects it to the guest kernel. The guest kernel process

delivers these signals to the registered signal handler in the guest kernel. These

signal handlers are the equivalent of the timer-interrupt, I/O-interrupt, and memory

exception handlers in a normal operating system.

UML emulates the enabling and disabling of interrupts by masking signals (using

the sigprocmask system call).

4.3 Logging and replaying UML

4.3.1 Overview

Logging is widely used for recovering state. The basic concept is straightforward:

start from a checkpoint of a prior state, then roll forward using the log to reach the

desired state. The type of system being recovered determines the type of information

that needs to be logged: database logs contain transaction records, file system logs

contain file system data. Replaying a process requires logging the non-deterministic

events that affect the process’s computation. These log records guide the process as

it re-executes (rolls forward) from a checkpoint. Most events are deterministic (e.g.

for a short time. We modified the PTRACE interface to take out this race to help reduce the size
of the log.
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arithmetic, memory, branch instructions) and do not need to be logged; the process

will re-execute these events in the same way during replay as it did during logging.

Non-deterministic events fall into two categories: time and external input. Time

refers to the exact point in the execution stream at which an event takes place. For

example, to replay an interrupt, we must log the instruction at which the interrupt

occurred. External input refers to data received from a non-logged entity, such as a

human user or another computer. External input enters the processor via a peripheral

device, such as a keyboard, mouse, or network card.

Note that output to peripherals does not affect the replaying process and hence

need not be logged (in fact, output to peripherals will be reconstructed during replay).

Non-determinism in the micro-architectural state (e.g. cache misses, speculative ex-

ecution) also need not be logged, unless it affects the architectural state. Replaying

a shared-memory multiprocessor requires logging the interleaving of memory opera-

tions. Chapter V discusses execution replay for a shared memory multiprocessor.

4.3.2 ReVirt

This section describes how we apply the general concepts of logging to enable

replay of UML running on x86 processors. ReVirt is implemented as a set of modi-

fications to the host kernel.

Replay must start at the same point as logging did, so we need to restore the

state. Logically, we do this by checkpointing the state of the virtual disk before

starting, and then taking checkpoints periodically to avoid replaying from the very

beginning of the run.

Log records are added and saved to disk in a manner similar to that used by

the Linux syslogd daemon. The VMM kernel module and the kernel hooks add
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log records to a circular buffer in host kernel memory, and a host process(rlogd)

consumes the buffer and writes the data to a log file on the host.

ReVirt must log all non-deterministic events that can affect the execution of the

virtual-machine process. Note that many non-deterministic host events do not need

to be logged, because they do not affect the execution of the virtual machine. For

example, host hardware interrupts do not affect the virtual-machine process unless

they cause the host kernel to deliver a signal to the virtual-machine process. Likewise,

the scheduling order of the other host processes does not affect the virtual-machine

process because there is no inter-process communication between the virtual-machine

process and other host processes (no shared files, memory, or messages).

ReVirt does have to log asynchronous virtual interrupts (synchronous exceptions

like SIGSEGV are deterministic and do not need to be logged) and non-deterministic

scheduling events. Before delivering a SIGALRM or SIGIO host signal (representing

virtual timer and I/O interrupts) to the virtual-machine process, ReVirt logs suffi-

cient information to re-deliver the signal at the same point during replay. To uniquely

identify the interrupted instruction, ReVirt logs the program counter and the number

of branches executed since the last interrupt [15, 39]. Because the x86 architecture

allows a block memory instruction (repeat string) to be interrupted in the middle of

its execution, we must also log the register (ecx) that stores the number of iterations

remaining at the time of the interrupts.

x86 processors provide a hardware performance counter that can be configured

to compute the number of branches that have executed since the last interrupt[2].

The retired branch type configuration of this performance counter on the Intel P4

processor counts branches. We configure the retired branch type counter to count

only user-mode branches. This makes it easier to count the number of branches
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precisely, because it keeps the count independent of the code executed in the kernel

interrupt handlers.

In addition to logging asynchronous virtual interrupts, ReVirt must also log all

input from external entities. These include most virtual devices: keyboard, mouse,

network interface card, real-time clock, CD-ROM, and floppy. Note that input from

the virtual hard disk is deterministic, because the data on the virtual hard disk will

be reconstructed and re-read during replay. One can imagine requiring the user to

insert the same floppy disk or CD-ROM during replay, in which case reads from the

CD-ROM and floppy would also be deterministic and would not need to be logged.

However, we do not expect data from these sources to be a significant portion of the

log, because these data sources are limited in speed by the user’s ability to switch

media5.

The UML guest kernel reads these types of input data by issuing host system

calls recv, read, and gettimeofday. The VMM kernel module logs the input data

by intercepting these system calls. In general, ReVirt must log any host system call

that can yield non-deterministic results.

The x86 architecture includes a few instructions that can return non-deterministic

results, but that do not normally trap when running in user mode. Specifically,

the x86 rdtsc (read timestamp counter) and rdpmc (read performance monitoring

counter) instructions are difficult to log. To make the virtual-machine process com-

pletely deterministic during replay, we set the processor control register (cr4) to trap

when these instructions are executed. We emulate the rdtsc instruction, executing

and logging the result during the logging run, and replaying the result from the log

during replay. We disallow the rdpmc in the guest kernel and guest applications.

5If the CD-ROM is switched by an automated jukebox, then the jukebox can participate in
replay and CD-ROM reads can be considered deterministic
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During replay, ReVirt prevents new asynchronous virtual interrupts from per-

turbing the replaying virtual-machine process. ReVirt plays back the original asyn-

chronous virtual interrupts using the same combination of hardware counters and

host kernel hooks that were used during logging. ReVirt goes through two phases

to find the right instruction at which to deliver the original asynchronous virtual

interrupt. In the first phase, ReVirt configures the retired branch type perfor-

mance counter to generate an interrupt after most (all but 128) of the branches in

that scheduling interval. In the second phase, ReVirt uses breakpoints to stop each

time it executes the target instruction. At each breakpoint, ReVirt compares the

current number of branches with the desired amount. The first phase executes at

the same speed as the original run and is thus faster than the second phase, which

triggers a breakpoint each time the target instruction is executed. The second phase

is needed to stop at exactly the right instruction, because the interrupt generated

by the retired branch type counter does not stop execution instantaneously and may

execute past the target number of branches.

Replay can be conducted on any host with the same processor type and step-

ping as the original host6. Replaying on a different host allows an administrator to

minimize downtime for the original host.

4.3.3 Using ReVirt to analyze attacks

ReVirt enables an administrator to replay the complete execution for a computer

before, during, and after the attack. Two types of tools can be built from this

foundation to assist the administrator to understand the attack.

The first type of tool runs outside of the virtual machine. Examples might include

6The main limiting factor on x86 to how similar two processors must be is the cpuid instruction,
which is non-privileged and cannot be trapped, but exposes detailed information about the processor
type, including its “stepping” number.
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debuggers, disk analyzers, or other tools that analyze the state of the virtual machine

(address space, registers, disk data). The advantage of these off-line tools is that they

do not depend on guest kernel or guest applications. For example, an off-line tool

can inspect the contents of a directory even if the attacker has replaced the command

that normally lists the directory.

A good example of this tool is Backtracker[35]. Backtracker is a tool that records

information about system calls so that, given a detection point (such as a modified

binary like /bin/ls) you can track backwards to the original break-in.

IntroVirt[33] can use this method as well. IntroVirt assumes that when a vul-

nerability is discovered, the software authors will write a predicate that can detect

when a vulnerability is triggered. If deployed on a running system after a vulner-

ability is discovered, it can detect when a given vulnerability is triggered, allowing

system administrators extra leeway when applying patches to their system. But the

real power comes when used in conjunction with ReVirt, because it can then answer

the question, ”Was this vulnerability ever exploited?” It allows the administrator to

retroactively determine if the vulnerability was exploited before the vulnerability was

known to the security community. If an intrusion is discovered, ReVirt will enable

the administrator to gather detailed information about the attack and subsequent

illicit activity.

The second type of tool runs inside the virtual machine. ReVirt supports the

ability to continue live (i.e., non-replaying) execution at any point in the replay. An

administrator can use this ability to run new guest commands to probe the virtual

machine state. For example, the administrator can stop the replay after a suspicious

point and use normal guest commands to edit the current files, list the processes,

and debug processes. Furthermore, an external tool trying to analyze the state has



33

to duplicate much of the guest kernel functionality: cached data may not have made

it to disk, guest virtual pages may have been swapped out to disk, and so on.

IntroVirt uses this method as well. When necessary, IntroVirt can probe the

virtual machine by executing live requests inside the virtual machine. The virtual

machine cannot switch back to replaying after being perturbed in this manner, be-

cause the instruction counts will not apply to the revised state. To continue the

replay beyond the perturbed point, the process is checkpointed before perturbing it,

restoring after the perturbation is done.

The real power of ReVirt is the ability to repeat the break-in to gather more

information. This power was demonstrated during the development of Backtracker.

The first step was to put up a honeypot with a known vulnerability running ReVirt

and “collect” attacks. ReVirt allowed us to use these same number of attacks re-

peatedly to develop and hone the Backtracker tool. Without ReVirt, Backtracker

could have been developed, but each new iteration the developers would have had to

set up and wait for more attacks.

4.4 Experiments

This section validates correctness and quantifies virtualization and logging over-

head for our modified UML and ReVirt logging and replay system. All experiments

in this chapter are run on a computer with an Intel P4 processor, 256MiB of memory.

The guest kernel is Linux 2.4.18 ported to UML, running in SKAS mode, and the

host kernel is Linux 2.4.18 with the UML host SKAS patch and the ReVirt patch.

The virtual machine is configured to use 192MB of “physical” memory. The virtual

hard disk is stored on a raw disk partition on the host to avoid double buffering the

virtual disk data in the guest and host file caches, and to prevent the virtual machine
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Workload UML runtime (normalized to direct-on-host)

POV-Ray 1.00
SPECweb99 1.15
kernel build 1.76
daily use ≈1

Table 4.2: Virtualization overhead. This table shows the overhead of running ap-
plications in UML. Runtime is normalized to the runtime when running
directly on the host.

from benefiting unfairly from the host’s file cache.

We evaluate our system on five workloads. All workloads start with a warm

guest file cache. POV-Ray is a CPU-intensive ray-tracing program. We render

the benchmark image from the POV-ray distribution at quality 8. Kernel-build

compiles the complete Linux 2.4.18 kernel (make clean, make dep, make bzImage).

SPECweb99 is a benchmark that measures web server performance; we use the 2.0.36

Apache web server. We configured SpecWeb99 with 15 simultaneous connections

spread over two clients connected to a 100 Mb/s Ethernet switch. Both workloads

exercise the virtual machine intensively by making many system calls. They are

similar to the I/O-intensive and kernel-intensive workloads used to evaluate Cellular

Disco [31]. We also used ReVirt and UML as the author’s desktop machine for 24

hours to get an idea of the virtualization and logging overhead for day-to-day use.

Each result represents the average of three runs (except for the daily-use test,

which represents a single 24-hour period). Variance across runs is less than 3%.

4.4.1 Virtualization overhead

Our first concern is the time overhead that arises from running all applications

in the UML virtual machine. We compare running all application within UML with

running them directly on a host Linux 2.4.18 kernel. The host and guest file systems

have the same versions of all software exercised in the tests (based on Redhat 9).
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Table 4.2 shows the results. UML with our host optimizations adds very little

overhead for compute-intensive applications such as POV-Ray. We also perceive no

overhead when using UML for interactive jobs such as e-mail, editing, word process-

ing, and web browsing.

The overheads for SPECweb99, kernel-build, and postmark are higher because

they issue more guest kernel calls, each of which must be trapped by the VMM kernel

module and reflected back to the guest kernel by sending a signal. In addition, kernel-

build causes a large number of guest processes to be created, each of which maps

its executable pages on demand. Each demand-mapped page causes a signal to be

delivered to the guest kernel, which must then ask the host kernel to map the new

page.

We believe the overheads for using UML are low enough to be unnoticeable for

normal desktop use. While overheads are higher for workloads that use the guest

kernel intensively, we believe that even an overhead of 76% (normalized runtime of

1.76) is not prohibitive for sites that value security.

For reference, VMWare Workstation 3.1 has a normalized runtime of approxi-

mately 1.25 for kernel-build. Xen[9] is a paravirtual VMM designed specifically for

virtualization, and the kernel-build numbers are much lower, at about 1.03. Chapter

V discusses our implementation of ReVirt on Xen.

4.4.2 Validating ReVirt correctness

Our next goal was to verify that the ReVirt system faithfully replays the exact

execution of the original run. For these runs, we add extensive error checking to

alert us if the replaying run deviated from the original. At every system call and

virtual interrupt, we log all register values and the branch count, and verify that
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these values are the same during replay.

In addition, ReVirt’s mechanism for replaying interrupts verifies correctness. The

eip,branch count tuple “space” is very sparse, so if the program takes a different

execution path during replay than it did during logging, it is very likely that the

eip,branch count tuple will simply not exist in the replaying run; even if it does,

the chances that all subsequent tuples will add up is extremely unlikely. ReVirt is

configured to halt and give an error if it can not find the instruction during the replay

run. We found that this detected errors effectively while we were developing ReVirt.

We first ran two micro-benchmarks in the virtual machine to verify that virtual

interrupts were being replayed at the same point at which they occurred during

logging. The first micro-benchmark ran two guest processes that share an mmap’ed

memory region. Each guest process increments a shared variable 10,000,000 times,

prints the resulting value, then repeats. Because the two guest processes share this

variable, the output of process A depends on how many iterations process B executed

by the time process A prints the value. The second micro-benchmark ran a single

process that increments a variable in an infinite loop. The process prints the current

value when it receives a signal. This test verifies that the guest kernel re-delivers the

signal at the same point as logging.

We ran each micro-benchmark 5 times, and each time the output during replay

matched the original output, and all error checks passed.

We next ran a macro-benchmark to verify that ReVirt faithfully played back in-

put from external systems and to exercise the system as a whole for longer periods.

During the macro-benchmark, we booted the virtual machine, started the GNOME

window manager (displaying to a remote X server), opened several interactive termi-

nal windows, and concurrently built two applications (freeciv and mup) on a remote
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Workload Runtime with logging Log growth rate Replay runtime

POV-Ray 1.00 0.34 GB/day 1.01
kernel-build 1.10 0.59 GB/day 1.01
SPECweb99 1.11 7.01 GB/day 1.18

daily use ≈1 0.2 GB/day 0.03

Table 4.3: Time and space overhead of logging and replay. Logging slowdown shows
the overhead caused by logging, relative to running UML without logging.
Log growth rate shows the average rate of growth of the log during the
workload. Replay runtime is normalized to the runtime of UML with
logging. Replay runtime values less than 1 indicate that replay ran faster
than logging, due to replay’s ability to skip over idle time.

NFS server. The logging run of this benchmark generated 15,000,000 system calls

and 55,000 virtual interrupts. At each of the 15 million system calls, the system

call order, all registers, and the branch count were the same; and each of the 55,000

virtual interrupts, the eip and branch count tuple existed in the replay instruction

stream. We are confident that during replay, the virtual machine took the same

execution path as during logging.

For the other tests used in this paper, we disabled the extra error checking men-

tioned above. However, ReVirt always checks the branch count at the interrupted

instruction and matches the branch count seen at that instruction during logging.

This “checking” mechanism is intrinsic to ReVirt’s algorithm and is “on” all the time

during replay.

4.4.3 Logging and replay overhead

Next we seek to quantify the space and time overhead of logging. We do not

include the time and space overhead to checkpoint the system, since we expect a

checkpoint to be amortized over a long period of time (e.g. a few days). Table

4.3 shows time and space overhead for logging on the POV-Ray, kernel-build, and

SPECweb99 workloads. Logs are stored in a compressed format using gzip.



38

Table 4.3 shows that the time overhead of logging is small (at most 11%). The

space overhead of logging is small enough to save the logs over a long period of

time at low cost. Workloads with little non-determinism (e.g. POV-Ray, kernel-

build) generate very little log traffic. Note that the log data needed to replay local

compilations takes much less space than the disk data generated in compilation.

The log growth rate for SPECweb99 is higher because of the need to log incoming

network packets. However, it is still not prohibitive. For example, a 128 GB disk

can store the volume of log traffic generated by SPECweb for over two weeks7

We also used ReVirt for UML as the first author’s desktop machine for 24 hours

to get an idea of the virtualization and logging overhead for day-to-day use8. We

experienced no perceptible time overhead relative to running directly on the host,

and the log occupied 0.2 GB after one day.

Table 3 shows that workloads typically replay at the same speed as they ran

during logging. It is possible to replay a workload faster (sometimes much faster)

than it ran during logging because replay skips over periods of idle time, such as those

encountered while the user was thinking or reading during the daily use workload.

We call this effect idle-time compression.

4.5 Related work

We discuss related work in general in chapter II; in this section, we discuss work

related specifically to our work in ReVirt for virtual machines.

Bressoud and Schneider’s work on hypervisor-based fault tolerance (generally

7Recent analysis of the logs reveals that less than 18% of the log content is actually network
data; the rest is data due to system calls related to network data, many of which are very inefficient.
Optimizing the logging of these system calls should improve the logging space overhead by at least
50%.

8This test was run using Linux 2.2.20 as the guest operating system, and an older version of
ReVirt which used UMLinux as the virtual machine. We expect numbers to be similar
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called “Hypervisor” for convenience)[15] shares several techniques with ReVirt. Bres-

soud and Schneider use a virtual machine for the PA-RISC architecture to interpose

a software layer between the hardware and an unchanged operating system, and they

log non-determinism to reconstruct state changes from a primary computer onto its

backup.

While ReVirt shares several mechanisms with Hypervisor, ReVirt uses them to

achieve a different and new goal. Hypervisor is intended to help tolerate faults by

mirroring the state of a primary computer onto a backup. ReVirt takes some of

the techniques developed for fault tolerance and applies them to provide a novel

security tool. Specifically, ReVirt is intended to replay the complete, long-term

execution of a computer. To illustrate the difference between these goals, compare

the usefulness of checkpoints for each goal. Recovering a backup to a prior point in

time can be accomplished either by checkpointing the primary’s state periodically

or by logging the primary’s operations. However, checkpoints are not sufficient for

intrusion analysis because they do not show how the system transitioned between

checkpoints; checkpoints can only be used to initialize the replay procedure.

Besides a difference in goals, Hypervisor and ReVirt also differ in several design

choices. Because Hypervisor only seeks to restore the backup to the last saved state

of the primary, it discards log records after each synchronization point. In contrast,

ReVirt enables replay over long periods (e.g. months) of the computer’s execution,

so that it must save all log records since the last checkpoint. Another difference

is that Hypervisor defers the delivery of interrupts until the end of a fixed number

of instructions (called an epoch), while ReVirt delivers interrupts as soon as they

occur (or when the guest kernel re-enables interrupts). Hypervisor also logs more

information than ReVirt (e.g. Hypervisor logs disk reads).
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There are several virtual machines similar to UML. FAUMachine [16] (originally

called UMLinux) shares many of the same goals as UML. We had originally used

UMLinux for our early work, in fact, because UML had, at that time, two host

processes for each guest process. FAUMachine’s main goal is source-code compati-

bility, however, at the expense of speed and security. SimOS’s direct-execution mode

is also similar to these systems but is targeted at an architecture that is easier to

virtualize than the x86 [44]. The Xen VMM [9] is also a paravirtualized hypervisor

that requires the guest operating system to be ported to run on it; but by choosing

the virtualization interface carefully, were able to get overheads as low as 3% for the

kernel-build test on the Xen VMM.

ReVirt shares a similar philosophy of security logging with S4 [52]. Both ReVirt

and S4 add logging below the target operating system to protect the logging func-

tionality and data from compromised applications and operating systems. ReVirt

adds logging to a virtual machine, while S4 adds it to disk drives. The logging in

ReVirt captures different information than the logging in S4. ReVirt enables replay

of the entire computer’s execution, while S4 logs and replays disk activity. ReVirt

and S4 save different data to the log (ReVirt saves non-deterministic events, S4 saves

disk data), so a comparison of log volume generated will depend on workload.

4.6 Conclusions

ReVirt applies virtual-machine and fault-tolerant techniques to enable a system

administrator to replay the long-term, instruction-by-instruction execution of a com-

puter system. Because a target operating system and target applications run within

a virtual machine, ReVirt can replay the execution before, during, and after the in-

truder compromises the system. This capability is especially useful for determining



41

and fixing the damage the intruder inflicted after compromising the system. Because

ReVirt logs all non-deterministic events, it can replay non-deterministic attacks and

executions, such as those that trigger race conditions. Because ReVirt can replay

instruction-by-instruction sequences, it can provide arbitrarily detailed observations

about what transpired on the system.

ReVirt has been successfully used by several subsequent projects to aid in post-

mortem analysis. ReVirt adds reasonable time and space overhead. The overhead of

virtualization ranges from imperceptible for interactive and CPU-bound applications

to 13-76% overhead for kernel-intensive applications. The time overhead of logging

ranges from 0-11%, and logging traffic for our workloads can be stored on a single

disk for several months.



CHAPTER V

ReVirt on Multiprocessors

The previous chapter describes execution replay for single-processor virtual ma-

chines. However, multiprocessor systems are becoming more commonplace. Multi-

processor systems previously required specialized motherboards and interconnects,

but new hyper-threaded and multi-core CPUs make multiprocessor systems much

cheaper, and are likely to become more widely used. In order for ReVirt to be

practical, we need to determine how best to use multiple processors on a logging

system.

5.1 Methods of using multiprocessors

When running virtual machines on a multiprocessor, we can give the virtual

machines the number of processors we want. There are two primary methods of

using a multi-processor host. We can choose a single multi-processor guest, where

the number of virtual processors in the guest is equal to the number of physical

processors on the host. Alternately, we can partition the host into several guests. For

this discussion, we will consider multiple single-processor guests, where the number

of domains is equal to the number of virtual processors (see Figure 5.1).

Logging a series of single-processor virtual machine on a multiprocessor system is

42
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(a) (b)

Figure 5.1: Different ways of partitioning a multiple-cpu machine

simple from a technical standpoint—it is no different than logging a single-processor

virtual machine on a single-processor system. However, administration becomes more

difficult. The operator must install multiple operating systems and keep them up-

to-date, and deal with multiple logs and multiple IP addresses. The administration,

in fact, looks very similar to administering a group of networked single-processor

machines. Each virtual machine needs its own disk image and its own memory image

of the kernel and the various programs to be run. The duplication of resources is

another overhead.

The similarity to a group of networked single-processor machines extends to run-

ning parallel workloads. In order for a single workload to take advantage of the

multiple processors, it must be set up to run over the internal virtual network of the

machine. Rather than being able to share data directly from memory, data must be

marshaled into messages and copied through the network stacks of multiple oper-

ating systems. This adds extra complication to the programming and management

of applications and workloads. It also makes sharing more expensive than a single

multiprocessor virtual machine, both in terms of time and memory.
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A single, multiprocessor virtual machine is much easier to administer and use.

Unfortunately, it is technically more difficult to log and replay. While running parallel

workloads over groups of networked machines has been well-studied, logging and

replaying an entire shared memory multiprocessor system has not been done, to our

knowledge, outside of simulation.

5.2 General multiprocessor replay

The general problem to be solved when replaying shared-memory systems is that

reads from memory by one process are affected by writes of another process, which

may happen in any arbitrary interleaving. In order to replay a multiprocessor shared

memory system correctly, an execution replay system must replay the order of mem-

ory accesses 1. The observation is that if the order of memory accesses is preserved,

then the results of the reads will be the same. More specifically, two instructions

must be ordered if both of the following are true:

• They both access the same memory.

• One of them is a write.

We indicate that instruction a is ordered before instruction b by a → b. This is

read, “ahappens − beforeb”. In order to enforce an order between two processes,

constraints must be introduced between them. Constraints are of the form a⇒ b,

and indicate that the replay system will ensure that b does not execute until a has

executed.

Two points on the instruction stream may be ordered even if there is no direct

constraint from one to the other. Within a single process, there is an implicit or-

1Early systems [42] attempted to log the results of all reads from shared memory, but this proved
to be both too slow and to result in too much log data.
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(a) (b) (c) (d)

Figure 5.2: Constraints sufficient to guarantee the order a→ d

dering, based on the order the instructions were executed. Furthermore, ordering is

transitive: a→ b and b→ c implies a→ c.

Consider Figure 5.2. Suppose that a and d are writes to the same memory, but

that b and c are unrelated—only a → d is necessary. One constraint sufficient to

guarantee the ordering is a ⇒ d. But any of the following constraints would imply

the order a→ b as well:

• b⇒ d (because a→ b by program order)

• a⇒ c (because c→ d by program order)

• b⇒ c (because a→ b and c→ d by program order)

If b and c are unrelated, we say that the constraints above are over-constrained,

because they cause the replay system to run more strictly than necessary: either P2

must wait until P1 reaches b (although the data was ready at a), or P2 stops and

waits at c (although it is not necessary to stop and wait until d), or both. Over-

constraining reduces the potential parallelism during a replay run, but can be taken

advantage of to reduce the number of constraints or simplify logging.
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Suppose instead that a and d are writes to one area of memory, and b and c were

writes to a second area of memory. In this case, b ⇒ c would be a necessary con-

straint. However, the constraint a ⇒ d would be redundant, because the ordering

a → d it is implied by the constraint b ⇒ c. Removing redundant constraints can

decrease the log size.

A logging system for a shared memory system must generate a set of constraints

that will preserve ordering between writes and other accesses, but is free to chose

any set of constraints that will meet that ordering.

5.3 Detecting sharing with the CREW protocol

In order to log constraints necessary for multiprocessor replay, we implement a

concurrent-read, exclusive-write (CREW) protocol between virtual cpus in a

multiprocessor virtual machine. This technique for detecting constraints was first

introduced by [38]. The CREW protocol stipulates that each page may be in one of

the following two states:

• concurrent-read: All cpus may read the page, but none may write to it.

• exclusive-write: One cpu (called the owner) may read and write to the page;

all other virtual cpus have no access.

The CREW protocol has the following property: if two memory instructions on

different processors access the same page, and one of them is a write, there will be

a CREW event between the instructions on each processor. We can take advantage

of this property to generate constraints sufficient to replay the order of accesses for

a given execution.
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5.3.1 Implementing CREW with page protections

In order to enforce the access restrictions required by the CREW protocol, we use

the hardware page protections available on all modern desktop processors to share

memory on a page granularity. Page protections generally allow a page to be in

one of three modes: read-write, read-only, and no-access2. If an instruction access

exceeds its permission, it causes a hardware page fault and traps into the hypervisor.

If the page fault handler determines that this fault was due to the CREW protocol,

it will call the CREW subsystem. The CREW system in the hypervisor will then

obtain more permission for the page on behalf of the virtual cpu, and then return,

allowing the faulting instruction to execute.

If the page is in concurrent-read mode and a virtual cpu attempts to write to the

page, the CREW system will remove read permission from all other virtual cpus and

give write permission to the virtual cpu in question before continuing. Similarly, if a

page is in exclusive-write mode, and a virtual cpu other than the owner tries to read

the page, the CREW protocol will remove write permissions from the owner, put the

page in concurrent-read mode, and give read permission to the faulting virtual cpu.

If a page is in exclusive-write mode, and a virtual cpu other than the owner tries to

write to the page, the faulting cpu is given ownership. All read and write permission

is taken away from the previous owner and given to the new owner.

Using page protections allows us to interpose on reads and writes without modi-

fying software running in the guest.

Figure 5.3 shows an example of this protocol. In (a), we have a particular run,

accessing two shared pages, A and B. Time progresses downward, and the results of

reads and writes follow the time-line (i.e., read instructions read the value of the last

2For simplicity, we do not consider execute bits, or the potential for write-only protection.
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write).

Figure 5.3 (b) shows the same run with the CREW protocol. The shaded bars

between the two process execution lines indicate the CREW permissions of each

virtual cpu to each page. A circle on the execution line indicates a CREW fault at

that event, and subsequent privilege increase; an ’X’ indicates a loss of permissions.

5.3.2 Replaying constraints

Constraints between two virtual processors A and B must be defined between

individual instructions, am and bn. (For the convenience of the following discussion,

when we have a constraint bn → am, we will call am the front-end of the constraint,

and bn the back-end.) When virtual processor A reaches the front-end instruction

am, it cannot proceed until processor B reaches the back-end instruction bn. If

there are more than two processors in the system, there may be several constraints

associated with an. We consolidate these by defining the constraint as a vector:

< bn, cp, do, ... >→ am.

To specify which instruction, we use the instruction count at the instruction

in question3. The instruction count is a register on the physical cpu; other cpus

do not have direct access to read it. The constraint replay system keeps a vector

of instruction counts per virtual cpu. In order for the cpu at the front-end of the

constraint to know that it can continue, each other cpu must update its instruction

count in the global vector when it reaches the back-end instruction.

Each virtual cpu will have its own log of events. Out of this log will be played all of

the normal ReVirt logs—interrupts, rdtsc values, and so on. In order to implement

constraints efficiently, we define two types of log events: constraint events, and

3Here we discuss an abstract notion instruction count, as a unique label for a given instruction,
not necessarily one individual counter.
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back-end events.

Constraint events are the front-end of the constraint. They contain the instruc-

tion count of the instruction that needs to wait, and a vector of the instruction

count that must be passed by the other processors before the front-end instruction

can continue. When a constraint event is delivered during replay, the replay system

will compare the vector in the log with the current global vector. If all elements of

the global vector are greater than or equal to the corresponding elements in the log

vector, the system allows execution to continue. If any of the counts in the global

vector is less than the corresponding count in the log, it records the vector that it is

waiting for and pauses.

When a back-end event is delivered during replay, the replay system will update

the global vector with the processor’s instruction count. It will also check to see if

any cpus are waiting that need to be woken up.

5.3.3 Instrumenting CREW

The simplest approach to generate the constraint logs is as follows. We keep a

global instruction count vector, as during replay. When we reduce a virtual cpu’s

privileges, we copy its instruction count into the global vector and insert a back-end

event into its log. When a cpu gains privileges, we generate a constraint event using

the global instruction count vector as the constraint vector. This is correct because

the CREW protocol always reduces privileges before granting more privileges. Figure

5.3 (c) shows the constraints generated by this technique.

Note, however, the redundant constraints x and y. Netzer developed an algorithm

that will guarantee the minimum number of constraints required for correctness.[41].

Briefly, the algorithm keeps a last-accessed vector containing the last instruction
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that each virtual cpu accessed the object. Each cpu also keeps a last-constraint vec-

tor, containing the instruction count of the back-end instruction of the last effective

constraint with each other cpu. When a processor A gains privileges for an object,

before adding a constraint to a processor B, the system checks the instruction count

of last time B accessed the object. If the B’s last access to the page was before A’s

constraint to B, then this constraint will be redundant. Furthermore, if processor

A does add a constraint to B, it scans B’s last-constraint vector for more recent

constraints of other cpus. Thus, suppose processor A’s last constraint to processor C

was at c1. Then it adds a constraint to processor B. If processor B’s last constraint

to C was at c5, processor A is now effectively constrained, by transitivity, to c5 as

well. So processor A can put c5 in its last-constraint vector for processor C, to prune

out unnecessary constraints.

This algorithm will provably report the minimum number of constraints. How-

ever, it requires knowing the last time that a given page was accessed. Because the

CREW protocol is not involved on every read or write, it does not have access to this

information. To see why this is so, consider Figure 5.3(c). Constraints x and y are

unnecessary because pages A and B were not accessed after constraint w. Constraint

z is necessary, because page A was accessed after constraint y. The CREW protocol

cannot distinguish z from x and y because it does not know the last access time.

5.3.4 Replaying with CREW enabled

We have described how to log and replay with abstract constraints and with

CREW disabled during replay. Another possibility is to use the CREW protocol

during replay instead of replaying constraints, replaying the timing of permission-

reduction messages instead. The observation is that if the privilege reduction events
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are made to occur the same way during the replay run as during the logging run, the

CREW faults to request an increase privilege will occur in the same way as well.

In this scenario, the system logs a privilege reduction event on a virtual cpu

as an asynchronous event, storing the timestamp, the page for which privilege was

reduced, and the virtual cpu that requested it. Privilege increase is not logged.

During replay these privilege reduction events are replayed at the same point in a

virtual cpu’s execution. The system replays a privilege reduction event to a virtual

cpu, it reduces privileges on that cpu and sends a message to the virtual cpu that

requested the privileges during logging. During replay, that processor will fault on

the same instruction during replay as it did during logging. When it does, instead of

sending a privilege-reduction request, it waits for the message sent after the request

is replayed from the log to the other processors. If the message from the replayed

privilege reduction event is sent before the processor is waiting, it is put into a

message queue to be delivered when it is required.

This method has some interesting properties. For one, the system does not log

both sides of a constraint; it only logs the “privilege reduction” or back-end. On

average, we would expect this to cause about half as many log entries as the constraint

method described above. However, using this method adds to replay the complexity

and overhead of maintaining the CREW protocol, along with replaying the virtual

interrupts, device inputs, etc. Furthermore, it requires that the CREW protocol be

replayed exactly; no rearrangements are possible. This would preclude the possibility

of performing any kind of constraint optimizations. For these reasons, we chose to

implement abstract constraints.
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5.3.5 Direct Memory Access

Modern hardware systems allow physical devices to write directly to main mem-

ory, without involving the processor. This is called direct memory access (DMA).

DMA eliminates the overhead of the processor copying data from the device to mem-

ory.

Replaying DMA presents some difficulties. In DMA, a device acts as another

processor with respect to memory transactions. A single-processor system with

DMA-enabled devices is effectively a multiprocessor system from replay’s perspec-

tive. However, unlike peer processors in an SMP system, the devices do not have

page protections that we can use to interpose on accesses4. How are we to involve

devices in the CREW protocol?

The key observation is that DMA devices are not generally self-motivated peers.

They only write to memory in response to a request from a cpu. Requests typically

follow a transaction model, where a cpu will specify an operation and an area of

memory. The device will write to the memory during the operation, and inform the

cpu when the operation is completed. After the transaction is finished, the device

will not write to the memory again. While this transaction is taking place, it is

generally not correct for the cpu to access the memory assigned to the device to do

DMA.

If the device follows this type of transaction model , where the cpu does not

access memory to the device until a transaction is completed, and if the hypervisor

can interpose and understand the commands from the guest to the device and the

4Some new systems include an IO-MMU, for controlling DMA access to memory. However,
these systems are designed to prevent buggy drivers and devices from corrupting system state, and
do not necessarily provide ways to continue an interrupted operation after a fault. Re-executing a
faulting operation is one of the fundamental techniques we use.
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device’s responses, we can model the device as a non-preemptible actor in the

CREW protocol. A non-preemptible actor does explicit grab and release of pages

before and after a transaction, rather than grabbing them on demand and having

them preempted, as preemptible actors such as virtual cpus do. When a cpu issues

a DMA command to the device, the hypervisor informs the CREW protocol, which

acquires the appropriate privileges on behalf of the device (either concurrent-read

or exclusive-write, depending on the transaction). When the device informs the cpu

that the transaction is done, the hypervisor informs the CREW protocol, which will

release access on behalf of the device. If any cpu tries to access a page in a way that

is incompatible with the CREW privileges of some device on a system, it must block

until the device has finished the transaction associated with that page.

Non-preemptible actors cannot be interrupted at an instruction granularity. So

instead of an instruction count, we represent points for front- and back-ends of con-

straints with a crew event count. This count is incremented at the beginning

and end of each transaction. The beginning of the transaction corresponds to the

constraint, and the end corresponds to a loss of privilege.

During replay, the constraint replay system must ensure that the DMA is replayed

at the proper time with respect to the other processors. If we do not use the device

during replay, we must log the data from the DMA during logging in order to replay

it from the log during replay; otherwise, we must ensure that the device does the

DMA properly.
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5.4 Design discussion

5.4.1 Alternate ways to detect sharing

Any technique that can be used to implement a distributed shared memory

could be used to detect sharing and implement multiprocessor execution replay.

LeBlanc[38] instrumented reads and writes to shared memory to implement a CREW

protocol over shared objects. Techniques such as compiler instrumentation or binary

rewriting[47] could also be used.

Detecting sharing with software instrumentation has some advantages over de-

tecting with page protections. The main advantage is that data can be shared at an

object level granularity, or smaller. Shasta[47] could flexibly share on several levels

of granularity. This would reduce the amount of false sharing in the system.

One possible disadvantage is that the checks are done explicitly in software, rater

than in hardware. Overheads include extra instructions before each access, and the

resulting less effectively available code and data cache space, even in cases where

there is no sharing. Using hardware page protections avoids the extra overhead of

software checks when a cpu has access.

The other disadvantage of software checks is the security aspect. An attacker

can introduce arbitrary code, so we cannot use anything which requires compiler

instrumentation or a particular programming disciplines. Dynamic binary rewriting

could probably be made to work. However, then we would need to work correctly for

self-modifying and self-inspecting code. There is also the extra complexity of making

the instrumentation SMP-friendly.
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5.4.2 Cache consistency models

Cache-coherent multiprocessors can have different consistency models. The most

basic is sequential consistency, where the reads and writes are guaranteed to have

a global ordering. The x86 processors we used for ReVirt have a processor consis-

tency: each process’ stores are observed in program order, but the observed inter-

leaving of two processors might not be the same on other processors. Other possible

consistency models include various forms of release consistency, in which there are

no guarantees without explicit synchronization operations such as memory barriers.

See [3] for a summary on consistency models.

The CREW protocol actually enforces a sequential memory consistency, even on

processes with a weaker underlying consistency. On systems whose underlying cache

coherence is a weaker consistency model such as release consistency, the CREW

protocol would need to do a memory barrier along with a TLB flush when taking

away write permission in order to ensure that all writes were seen by future readers

and owners of the page.

5.5 The Xen Hypervisor

Similar to User-Mode Linux (UML) from the previous chapter, the Xen hyper-

visor requires paravirtualized guests: that is, the guest kernel is modified to use

the interface provided by the hypervisor for privileged instructions, rather than the

hypervisor emulating the interface of native hardware5. Unlike UML, which is con-

strained to using the interface provided by the Linux kernel, the Xen paravirtualized

interface was designed from the ground up with speed of paravirtualization in mind.

5Modern versions of Xen are able to take advantage of hardware virtualization technologies, such
as Intel’s VMX and AMD’s AMD-V, to run unmodified guests as well. This hardware was publicly
unavailable the time our research was conducted. The basic principles still apply.
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This allows Xen to run kernel-intensive benchmarks (usually worst case for virtual

machines) at speeds near native[9].

5.5.1 Xen “hardware” interface

Xen guests use hypercalls to perform privileged operations. These operations

include memory operations, setting trap tables and interrupt gates, accessing debug-

ging hardware, switching stack pointers and segment registers, and so on.

Xen uses a shared page for passing certain kinds of information between the

guest and Xen; this is called the shared info page. Some of this is information that

requires privileges to access directly from the hardware, and may be read often by

the guest: for instance, the speed of the CPU, what kinds of memory and hardware

functionality are available, and the system time. Because domains have direct access

to the rdtsc instruction, there is also a “timestamp counter offset” value, which is

updated when a domain is scheduled in or out to help the domain compensate for

scheduling when using the timestamp counter. There is also a per-virtual-cpu area

of the shared info structure that contains information related to each virtual cpu.

Virtual interrupts in Xen are called events. Each domain has 1024 event chan-

nels. Each event channel is assigned to a specific virtual cpu. Events are always

sent through the hypervisor, either from hardware-based virtual devices (such as a

virtual timer interrupt) or from virtual devices in other domains.

An event channel is marked as pending in a bit array in the shared info page.

There is also a bit array for masking event channels, and a per-virtual-cpu event

pending and event mask flag. These are used to implement once-only virtual inter-

rupt delivery, as well as interrupt disabling.

One of the common techniques of Xen is to make the interface to the hypervisor
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the same as the interface to the hardware. This both minimizes the changes neces-

sary to paravirtualize an operating system and allows Xen to use the hardware to

implement its interface as much as possible.

One example of this technique is Xen’s interrupt and trap frame stacks. When

an event is delivered, the frame put on the stack is very similar to that used by

a hardware interrupt. This allows Xen to re-use interrupt handling code inside of

guest operating systems. It also allows Xen to let some traps go directly to the guest

kernel without involving the hypervisor. The system call trap (int 0x80 on x86) is

set in the hardware to go directly to the guest system call handler. When a guest

process makes a system call, it goes directly to the guest kernel without involving

the hypervisor at all.

Another example of this technique is Xen’s pagetable interface. Xen gives guest

domains direct access to the hardware pagetables. This allows guests to walk the

pagetables and do other memory operations without keeping two copies of the pageta-

bles, and gives them direct access to hardware information, like the dirty and accessed

bits[9].

5.5.2 Domains, drivers, and the shared ring idiom

Xen calls a single running instance of a guest virtual machine a domain. The

most important of the domains is the privileged domain, also known as domain 0.

Domain 0 is automatically started when Xen boots. It contains the drivers to all

of the devices on the system6, and runs the software that manages other domains,

which allows the Xen hypervisor to remain a thin layer of code between the guests

and the hardware, rather than becoming a large and complex piece of machinery like

6There are plans in Xen to create driver domains, which will allow certain drivers to run in
their own domains for better fault isolation. This functionality has not yet been implemented for
production use.
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Figure 5.4: Front-end and back-end communicating over shared rings

a full kernel.

Unprivileged domains do not have direct access to hardware devices. Instead,

they use virtual devices provided by domain 0. These paravirtualized devices are

broken down into two halves: a front end, which resides in the unprivileged domain,

and a back end, which resides in domain 0. The front end marshals requests to the

virtual device from the unprivileged domain and sends them to the back end. The

back end then satisfies these requests through domain 0’s kernel and its access to

physical devices.

The two halves communicate over a pair of shared rings(see Figure 5.4). Shared

rings are two circular buffers on a single physical page, one for requests from the front

end to the back end, and one from requests from the back end to the front end. The

actual memory is shared between the two drivers, to reduce copying overhead and

maximize batching and interleaving.

There are three general types of paravirtualized drivers which concern us: the

control ring, block drivers (i.e. hard disks), and network drivers.

The control ring is implicit to every paravirtualized guest, and is started on boot.

This ring implements the virtual console device. It also serves as the interface to

bring up all other virtual devices, and any of the other domain management features
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implemented in the domain 0 management software.

The paravirtualized block device acts much like a simple, idealized disk device.

The front end can request information about the block device, and make asyn-

chronous read and write requests to memory.

The paravirtualized network device is more subtle. The physical network device

has no way of knowing for which domain an incoming packet is destined. Rather than

copying incoming packets, the paravirtualized network drivers use a page-flipping

technique. When a domain wants to receive packets, it gives up a certain number

of physical page frames to the back-end driver. These frames are added into a pool

of pages into which the hardware network device writes packets as they come in.

The back-end driver then looks at the frame containing the packet and and gives

the frame to the appropriate domain. The frame the domain receives back may

or may not be one of the frames that it gave up. Domains can never receive back

more frames than they have given up. If a packet comes for a domain which has no

outstanding donated frames, the frame containing the packet is merely put back into

the pool (and the packet effectively dropped). In this way, a single network device

can be safely multiplexed over several virtual network devices without the overhead

of copying.

5.6 Replaying Xen

The hardware interface of Xen has few surprises, in regards to non-determinism.

The results of hypercalls are deterministic; these results do not need to be logged

and replayed. The results of rdtsc instructions must be logged and restored, and

the timing of virtual interrupt deliveries must be logged as an asynchronous event.

Updates to the shared info page are visible to the guest as well. These must be
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logged and replayed as asynchronous events.

5.6.1 Shadow pagetables

As we mentioned in section 5.5.1, Xen gives a guest direct access to the pagetables.

This exposes the underlying machine frames to the guest. Unfortunately, these

underlying machine frames change every time a guest is run7.

Furthermore, for guests with multiple virtual cpus, the dirty and accessed bits

are written directly to the physical frame by the hardware when a virtual address

that they map accessed. Because this write does not go through the pagetables, it

is not possible to detect when it changes in order to detect and enforce an ordering

between this write and subsequent reads of those bits by other processors.

And finally, during logging on an SMP, each virtual cpu needs a different set

of hardware page protections to implement the CREW protocol. But this cannot

be done if SMP guests share pagetables across virtual cpus. Furthermore, these

protections will be different during logging than during replay.

For these reasons, we use a feature of Xen called shadow pagetables for re-

playing guests8. The guest’s pagetables are virtualized and not used directly by the

MMU. Instead, the hypervisor creates copies, or shadows, of the guest’s pageta-

bles, which are used by the actual hardware. By introducing this level of indirection

we lose some performance, but we gain an abstraction that makes it much easier to

work with. The guest will now see the same frame list each time; these frames will be

translated into the actual underlying machine frames by the hypervisor. Dirty and

accessed bits must be emulated, so that we can be certain that the writes to them

7In fact the frames are purposely made as random as possible to ensure that coders do not
accidentally make assumptions about them.

8As noted before, during normal operation, the hardware pagetables are exposed directly to the
guest. There are times when a shadow pagetables are turned on however, for features such as live
migration. See [19] for more information on live migration.
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Figure 5.5: Using a replay driver to interpose on shared rings

are ordered properly in the CREW protocol. Each virtual cpu on a multi-virtual-cpu

guest domain can have its own shadow of a shared pagetable, and the reduction in

protections due to the CREW protocol is not visible to the guest.

5.6.2 Paravirtualized devices and CREW

The difficulty in replaying Xen domains comes with the paravirtualized devices.

Devices share memory directly with other domains which are not being logged or

replayed. This is, in fact, the Xen analog of DMA.

This turned out to be an advantage during the development of the CREW pro-

tocol. We model the back-end drivers as non-preemptible actors and integrate them

into the CREW protocol. Because the interactions between back-end drivers and a

single-virtual-cpu domain are limited in scope, it allowed us to develop and test the

basic CREW protocol functionality without having to address many of the sticky

issues that we faced when dealing with CREW between two virtual cpus.

In an attempt to minimize the modifications to the system, we developed the

concept of a replay driver (see Figure 5.5). A replay driver is a process that sits

between the front-end and back-end. The idea is that the replay driver knows about

the CREW protocol, and how to log and replay, as well as the requirements of the

disk driver. It has two sets of shared rings—one set with the front-end driver, and one
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with the back-end driver. It reads requests and responses from both rings, interprets

them, and if appropriate passes them to the other ring (possibly after taking some

action).

Before reading or writing requests from the ring with the front-end, the replay

driver grabs non-preemptible write permission permission9 on the page. It also grabs

and releases other guest pages, based on its knowledge of the protocol.

Because the replay driver itself and the rest of the virtual devices in domain 0 are

not being replayed precisely, the only concept of “time” is with respect to crew events

relative to the guest. The only thing being replayed is the data, and the CREW

protocol detects when timing is important. Because of this, logs are stored with

crew vectors, rather than timestamps. The replay drivers are as active in the CREW

protocol during replay as during logging: they not only wait until certain vectors

have been reached before doing certain actions, they also inform the constraint replay

system when they have reached certain CREW event counts, so that other CREW

actors can safely proceed.

There are three different ways to treat devices during replay. Some devices, such

as the network, are not necessary during replay; only the results of the device from

the log need to be replayed. Other devices, such as the console, are not strictly

necessary to use during replay, but it is useful to be able to see the console output

and have the normal integration with the tools. And still other devices, such as the

virtual hard disk, we want to use during replay, because it is too expensive to log

and replay the data.

The networking driver has not been implemented yet, but we predict that it

would be sufficient to log timing of reads from the ring, as well as data and timing

9Reading a request from the ring involves updating ring indexes within the page.
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for writes to the ring. Xen enforces that a guest must remove all references to a page

before passing it to the back end, so we need do nothing when giving up a page.

When a packet comes in, we can simply log the packet, and the timing of when the

page is flipped back to the guest. During replay, we can simply copy packet data

from the log at the appropriate time.

For the console driver, it is sufficient to log the timing of reading requests from

the front end, and both the timing and the value of responses written to the front

end. During replay, requests from the front end are read at the CREW event vector

that they were during logging, and forwarded on to the back end. Responses and

requests from the back end generating during replay are dropped; instead, responses

and requests are read from a log and delivered after the CREW vector logged.

When logging the block device, we do not log the data read from the disk; instead,

we restore the disk to its original state, and re-execute both read and write requests

during replay. As described in section 5.3.5 the replay driver needs to co-ordinate

the back-end’s accesses to guest memory with the replay, to ensure that both reads

and writes happen appropriately. During logging, each request to the back-end is

associated with a constraint. During replay, a request is not passed to the back-end

until the constraint has been met. The replay driver then waits for the transaction

to be completed before increasing its CREW event count.

Most disk controllers (including Xen’s paravirtualized back-end) can re-order out-

standing reads, so that they finish in a different order than requested. Because we

use the disk device during replay, we have the possibility that the order that reads

are completed during replay may differ than the order they are completed during

logging. The replay driver must therefore re-order these requests during replay to

match the order seen by the guest during logging. This may involve delaying request-
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completion messages being forwarded to the guest until other requests are completed.

The CREW protocol will guarantee that this re-ordering will not be seen by the guest.

5.6.3 Multiprocessor CREW on Xen

Implementing the basic CREW protocol for Xen is straightforward. There are a

finite number of actors. Each virtual cpu is a preemptible actor, and each device is

a non-preemptible actor. (See section 5.3.5.) For each actor, we keep the following

information:

• A CREW event count. This replaces the instruction count in the constraint

vector for preemptible actors.

• If it is waiting, and what it is waiting for (either a guest page during logging,

or a crew constraint vector during replay).

For each guest page, we keep the following information:

• The current owner (if in exclusive-write mode) or nobody (if in read-only mode)

• A count of the non-preemptible actors that have read access to this page

During logging, when an actor requests more permission than it has for a guest

page (either due to a virtual cpu faulting or a replay driver grabbing permission),

the CREW protocol will look at the state. If the request can be fulfilled by removing

permissions from virtual cpus this permission is removed (increasing CREW event

counts and logging if appropriate), the owners updated (if appropriate), and a con-

straint for the requesting actor logged (if necessary). If the request cannot be fulfilled

because some non-preemptible actors are holding permissions needed, then the actor

must wait for the page.
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When a non-preemptible actor releases permissions for a page, any waiting actors

are woken up. They then contend for the page normally.

Removing permissions and adding to the log of a virtual cpu running on another

processor requires some care. The log must be taken on the other processor, because

certain information (such as the registers and hardware performance counters) are

only directly available on that physical cpu while it is running. Furthermore, the

TLB must be flushed there as well, to make sure that modifications made to the

pagetables are actually reflected in the TLB of the processor.

The most simple option is to send an inter-processor interrupt (IPI) to the

other processor, and have the other processor do everything: remove permissions,

flush the TLB, and take the log. However, removing permissions can be a long

process. While this is happening, the processor which is being preempted is busy

removing permissions, and the one trying to gain permissions is waiting for it to be

done.

However, we can improve this process with a clever trick. The shadow pagetables

in Xen are protected by one lock per domain, called the shadow lock. This lock

is called at the beginning of handling a shadow page fault (which is a super-set of

CREW fault handling), and held until the fault is done. We also grab the shadow

lock whenever we are doing any CREW action. This enables us to have the one

processor which is requesting more permissions do the removal of permission from

the pagetables, sending the IPI only to make the log and do the TLB flush. This

allows the other processor to continue running while the brute-force search is going

on, as long as it doesn’t access the page being removed. If it does access the page,

it will spin waiting for the shadow lock until the entire operation is completed. In

either case, the point the log is taken is after the last access could possibly have
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happened.

5.6.4 Hypervisor accesses to guest state

The page protections arbitrate accesses by the guest virtual cpus, and replay

drivers integrate the devices into the CREW protocol, but the hypervisor accesses

guest state as well. This access is deterministic and generally synchronous with

respect to a single virtual cpu; but must be considered when dealing with multiple

virtual cpus.

The hypervisor reads and writes guest-visible memory in the following places:

• Hypercalls

• The shadow code, reading guest page table entries and writing dirty and ac-

cessed bits.

• Setting an event channel “pending”. This is a series of reads and writes to the

shared info page.

• Event check. Event delivery code first reads the shared info page to see if an

event is pending for a virtual cpu, and also if interrupts are blocked.

• Event delivery. If the event check determines that an event needs to be deliv-

ered, the hypervisor writes the interrupt frame on to the guest stack.

• Updates to TSC offset, domain time, etc. write to the shared info page.

The first task is to integrate all of these accesses with the CREW protocol.

Hypercalls account for the vast majority of unique references to guest state from

the hypervisor. Fortunately, the hypercalls were designed to be able to handle access

to guest state through the guest’s page tables. Because of this, the normal CREW
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faults will happen, and are handled in the appropriate way, without any modifications

to the hypercalls themselves.

For other accesses, we instrument the code to grab the page required before access.

In order to be certain that there is not a race between the grab of the page and the

access within the hypervisor, we require that the shadow lock be held continuously

from the time the page is grabbed until the access to the page is complete. Since the

shadow lock must be acquired to gain permission, this guarantees that no other cpu

can remove the code’s permission before its operation is complete.

The second task is to deal with potential races within the hypervisor, and between

hypervisor access and guest access. Consider the following potential races:

• A hypercall on one virtual cpu accesses page A, then page B; a hypercall on

another cpu, executing concurrently, accesses page B then page A.

• A hypercall writes to page A and B. Between the two writes, the other virtual

cpu, in guest mode, reads the modified page A, and the unmodified page B.

• A hypercall writes to a guest pagetable. Concurrently, the shadow code of

another virtual cpu is reading the guest pagetable to generate a new shadow

entry, which is about to be used.

Unfortunately, it is difficult to log and replay asynchronous events (including

constraints) within the hypervisor. The main reason is that although ReVirt guar-

antees that execution in guest rings 1-3 are identical during logging and replay, the

execution in the hypervisor is, by definition, different between logging and replay.

This causes several difficulties. First, the hardware counters we use to replay asyn-

chronous events are configured to count only events in rings 1-3. If we were to try

to use them in ring 0, the counters would be changing as we tried to read and act
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based on them. Secondly, although the results of the hypercalls are deterministic,

the exact path taken is not guaranteed to be deterministic. Determining where to

deliver the interrupt using instruction counters becomes impossible in this case.

If all accesses to guest memory by hypercalls happen through routines such as

copy to user() and copy from user(), and all accesses happen in exactly the same

order during logging and replay, we could replay the order that these reads and writes

happen. This is feasible, but results in extra complication in the logging and replay

system.

Another reason it is difficult to replay constraints in a hypervisor is that, unlike

the Linux kernel, the hypervisor has no per-vcpu stack; if it calls schedule(), it loses

all its context. So the only acceptable form of blocking while waiting for a constraint

to be satisfied is to spin, an action which could lead to deadlocks. Consider a

hypercall, holding a lock, which is spinning waiting for another processor to reach a

certain point in its execution. Suppose that between where it is now and that point,

that other processor needs to acquire and release the lock that the hypercall is now

holding. Here we have a classic hold-and-wait deadlock scenario. If the acquisition of

locks is the same during logging and replay (a condition which may not be true), we

could solve this problem by logging and replaying the locking order. In our example,

the hypercall would not be allowed to grab the lock until the other hypercall had

finished using it; this would guarantee that holding and waiting would not cause a

deadlock as we have described.

All of these techniques are possible, but add a lot of complication to an already

complicated system, with the only gain being more parallelism between hypercalls.

What we would like is to avoid hypervisor races entirely, treating all hypervisor op-

erations as atomic operations, so that if a hypervisor operation (such as a hypercall)
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accesses the same memory as an instruction or another hypervisor operation (and

one of them is a write), the one will happen either entirely before or entirely after

the other.

In order to implement atomicity, we use a global lock (called the “hypervisor

lock”) that allows only one virtual cpu in a given domain inside a hypercall or fault

handler at a time. When entering a hypercall or shadow fault handler, the hypervisor

tries to grab the domain lock on behalf of the virtual cpu. If it successful, it continues;

if not, it waits until the lock is available before continuing. While a virtual cpu is in

a hypercall or hypervisor fault handler, we also delay interrupt-driven changes like

interrupt pending and TSC offset updates.

The hypervisor lock allows us to treat a hypercall as an atomic unit for ordering

purposes. Any constraints generated during the hypercall are pushed logically to

the beginning of the hypercall. Any CREW events will be pushed until after the

end of the hypercall. (These modifications are consistent with the rules for over-

constraining, discussed in section 5.2.)

The hypervisor lock solves both hypercall-hypercall races and hypercall-guest

races. Consider the hypercall-guest race mentioned in the list above. Before the

virtual cpu can read the modified version of page A, it must get read access; but to

get read access, it has to complete a shadow fault. The fault cannot execute until

after the hypercall has completed. So any virtual cpu reading A or B will either see

the state before the hypercall or the state after, but not in the middle.

The hypervisor lock reduces the potential parallelism if two hypercalls happen

at the same time. This is an unusual case. Furthermore, in the subsequent runs,

the vast majority of the time spent waiting for the hypervisor lock is actually done

by the shadow fault handler. The Xen shadow fault handler already grabs another
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per-domain lock, the shadow lock. So in our code, the hypervisor lock replaces

most of the shadow lock contention.

As we shall see, lock contention due to the page fault handler is a major source

of overhead, especially as we increase the number of virtual cpus. The only way

to reduce it, other than reducing the number of CREW faults overall, is to enable

finer-grained locking. This involves a lot more subtle thinking, and would require a

major revision of the Xen shadow pagetable code.

5.7 Evaluation of multiprocessor ReVirt

5.7.1 Workloads

To evaluate how well traditional SMP workloads run under ReVirt, we ran the

SPLASH2 benchmark suite from Stanford University[54]. This is a well-studied suite

of computationally intensive parallel applications designed to evaluate the design of

parallel processors. Most of the tests have parameters or input values that can be

set. The test comes with a set of default parameters and input; however, it was

tuned to state-of-the-art processors of over ten years ago. Using those parameters on

modern processor, most applications finished in a small fraction of a second. This is

not enough time to distinguish the actual workload from start-up effects. We chose

input parameters such that the tests ran for around 60 seconds. The tests we ran

were FMM, LU, ocean, radiosity, radix, and water-spatial10.

We also ran two more server-oriented workloads. They are as follows:

• kernel-build: parallel build of the Linux kernel. This is a make of the stock

Linux kernel with the default configuration. We use gcc version 3.4.5, and

Linux kernel version 2.6.17. In order to make this a parallel workload we used

10We were unable to find input for some workloads to run longer than “perceptibly instantaneous”.
We do not present results for those tests here.
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the -j option of make, which tells make how many outstanding child processes

to try to keep at one time (maintaining build dependencies). Our experience

indicates that -j 3 produces the optimum throughput on a domain with two

virtual cpus. Two concurrent processes do not fill up the cpus, and using more

than three does not give any benefit.

• dbench: a filesystem benchmark for Linux that’s meant to emulate a workload

that a Linux Samba server might generate under the NetBench Windows file

server benchmark. As one might expect, the workload is almost entirely in the

kernel.

5.7.2 Predicted results

Based on our knowledge of the workloads, we should be able to predict aspects

of their results. The execution of these workloads can be divided into two levels:

process-level and kernel-level. For most of the tests, the kernel plays only a sup-

porting role. The exception is dbench, where the kernel is being tested, and the

process-level workload is only intended to generate the kernel-level workload.

To understand what to expect from a workload, it is important to understand the

properties of both levels: first, what are the sharing characteristics of the processes;

and secondly, how much does the workload involves the kernel and what are the

sharing characteristics of the kernel.

Most of the SPLASH2 benchmarks have very little kernel interaction. Because

their sharing properties have been studied in detail, we should be able to understand

how SMP-ReVirt affects each of them.

Woo et al. [54] did a comprehensive study of the SPLASH2 benchmarks on

idealized hardware to learn how different parameters affected their runtime. These
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parameters include concurrency, working set size, communication to computation

ratio, and spatial locality. We do not change the hardware parameters (cache size,

bandwidth, and so on). We do change two parameters. The first is the granularity

of sharing, which goes from a 16-byte cacheline to the 4096-byte page size 11. The

second is the increased latency from a miss. Our early tests indicated that a re-

mote cacheline miss on our hardware was around 400 cycles; the average time for a

CREW fault is over 40,000 cycles. Therefore we can expect that workloads that are

prone to false sharing for large cacheline sizes will have unnaturally high amounts of

communication, causing performance to suffer. We also expect that workloads with

a naturally high communication rate regardless of cacheline size will suffer from the

increased latency.

Woo et al listed ocean and LU as tests that have very regular access patterns,

and are not generally subject to false sharing at higher cachelines. FMM and water-

spatial are listed as workloads which can be prone to false sharing, depending on how

well data structures fit in cache lines. Radix and radiosity are listed as workloads that

have very random aspects of data accesses, and can be very prone to false sharing

for larger cacheline sizes.

The Linux kernel is a parallel application, and has been finely tuned to the

architectural parameters of the x86. If the kernel is sensitive to high latency and

large-granularity sharing, any workload that involves the kernel will suffer. Kernel-

build contains a mix of unshared process-level computation and kernel interaction.

Dbench is almost entirely a kernel workload. If kernel sharing is expensive, we expect

11There are two effects of increasing cacheline size. The first effect is an increase in false sharing.
The second is that in data that has a high spatial locality, increased cacheline size can reduce cache
misses by “pre-fetching” data. SMP-ReVirt is subject to the first effect, because we increase the
granularity of sharing, but is not subject to the second effect, because each cacheline must still be
fetched by the processor individually.
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Figure 5.6: Overhead of ReVirt for a single-processor Xen guest

Workload Logging rate, compressed Time to fill a 300GB disk

FMM .234 GB/day 1280 days
LU .238 GB/day 1261 days

ocean .232 GB/day 1295 days
radix .292 GB/day 1025 days

water-spatial .231 GB/day 1296 days
kernel-build .562 GB/day 534 days

radiosity .232 GB/day 1295 days
dbench .557 GB/day 1280 days

Table 5.1: Space overhead of logging a single-processor guest.

the performance of kernel-build to suffer somewhat, and dbench to suffer greatly.

5.7.3 Results and analysis

Figure 5.6 shows the normalized runtime for ReVirt for uniprocessor workloads

in Xen. All workloads are run with only one thread. The results are similar to those

under UML. Kernel build has approximately 12% overhead. Some of the workloads

of the SPLASH2 suite have approximately 5% overhead, and most have negligible

overhead. Table 5.1 shows the space overhead. As with uniprocessor ReVirt, we

show the log size in compressed gigabytes per day, and the time to fill a dedicated

300GB logging disk.

Figure 5.7 shows the normalized runtime of ReVirt for a two processor system,

compared to the same test running on unmodified one- and two-processor systems.
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(a)

(b)

Figure 5.7: Overhead of Revirt for a two-processor Xen guest

Workload Logging rate, compressed Time to fill a 300GB disk

FMM 34.5 GB/day 8.7 days
LU 3.23 GB/day 92 days

ocean 4.34 GB/day 69 days
radix 39.9 GB/day 7.5 days

water-spatial 36.3 GB/day 8.3 days
kernel-build 43.3 GB/day 6.9 days

radiosity 88.4 GB/day 3.4 days
dbench 77.0 GB/day 3.9 days

Table 5.2: Space overhead of logging a two-processor guest.
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Workloads on 2-cpu guests are run with two processes, with the exception of kernel-

build, which uses three; all workloads on one-vcpu guests are run with one process.

Table 5.2 shows the space overhead.

For LU and ocean, the time overhead is negligible. FMM and water-spatial are

significantly slower than an unmodified two-vcpu system, but significantly faster than

a one-processor system. Radix is only slightly faster than a one-processor system.

Kernel build is slower than the one-processor system. Radiosity and dbench perform

extremely poorly: Radiosity runs 8.7 times slower than an unmodified domain with

2 virtual cpus, and dbench runs 7.2 times slower.

All systems have significant log size requirements, but even our worst case appli-

cations can run for several days before filling up a 300GB disk.

To determine the source of the overhead, we instrumented different sections of

the code that we expected to be major contributors to the overhead. Figure 5.8

gives the results. The bar at the bottom shows the runtime of the unmodified Xen

guest. Next up from the bottom are the measured times of different code paths.

Note that shadow fault contains CREW fault, and that CREW fault contains the

time waiting for the remote TLB flush. The “delayed log” is time spent actually

logging constraints and events, just before the hypervisor lock is released.

Because each of the codepaths is executed often, there is a measurable overhead

to adding the tracing. We calculated this overhead by subtracting the time of the

tracing run to the time of the logging run without tracing.

There is still some unaccounted overhead. This is to be expected. There are

many sources of hardware overhead that the CREW protocol will cause. These

sources include hardware and software context switch time for the page faults (i.e.,

the time between the faulting instruction beginning to execute and the time control
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Figure 5.10: Kernel- and process-level sharing rates, in faults per second, for a 2-
processor guest

reaches the shadow fault handler, and vice versa), TLB misses due to the extra

flushes, and cache misses from all the code and data touched on the shadow and

CREW codepaths. Also unmeasured is the overhead of running the domain 0 tools,

including the process taking the log from the hypervisor and writing it to disk, and

the replay drivers.

Note that the hypervisor lock reduces the contention for the shadow lock. Even

if we could eliminate the hypervisor lock and allow concurrent hypercalls, much of

the time waiting for the hypervisor lock would be replaced with time waiting for the

shadow lock.

The majority of the overhead is traceable directly to sharing, measured in the

number of faults. Figure 5.10 presents the sharing rate for the 2-processor guest,

broken down by kernel- and process-level, in faults per second. We calculate the



80
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Figure 5.11: Normalized run time plotted against faults per second. A regression
analysis gives a slope of 1/100000.
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Figure 5.12: Overhead of Revirt for a four-processor Xen guest. The 2-processor
CREW Logging was run on different hardware, but has been normalized
to the 1-processor CREW logging case.

sharing rate by dividing the total number of faults in the logging run by the time of

the unmodified Xen guest run12.

We can see from Figure 5.10 that LU and ocean have very little sharing; the

little sharing that occurs is in the kernel. This is consistent with what we expected

from our knowledge of the workload. Water-spatial and FMM have a large amount

of processes-level sharing. Because FMM and water-spatial have minimal kernel

sharing, their total sharing is low enough to beat a one-processor system. Radiosity

has large amount of process-level sharing, and an even larger amount of kernel-level

sharing. Nearly all of the sharing in dbench and kernel-build comes from the kernel.

Figure 5.11 plots the normalized run time against the sharing rate. The result is

highly linear, with a slope of around 1/100, 000.

Figure 5.12 shows the overhead on a 4-cpu system. The system was a system with

two dual-core Xeons (four cores in all). The graph shows the unmodified domain,

as well as 4-cpu and 1-cpu logging runs on the system. The graph also includes

12It may seem more natural to divide the logging fault count by the logging runtime. However,
dividing by logging runtime gives misleading results. Large fault counts are made to look less severe
by the very overhead they produce. Dividing by the unmodified guest runtime treats the fault rate
as a property of the workload.
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Workload Logging rate, compressed Time to fill a 300GB disk

FMM 83.6 GB/day 3.6 days
LU 11.7 GB/day 25.7 days

ocean 28.1 GB/day 10.7 days
radix 88.7 GB/day 3.4 days

water-spatial 58.5 GB/day 5.1 days
kernel-build 90.0 GB/day 3.3 days

Table 5.3: Space overhead of logging a four-processor guest.

Figure 5.13: Kernel- and process-level sharing rates, in faults per second, for a 4-
processor guest

2-cpu runtimes from the other hardware, normalized to the 1-cpu logging run on this

machine. We did not run radiosity and dbench. Table 5.3 summarizes the space

overhead.

Interestingly, Kernel-build ran much slower on the 4 vcpu system than on the 2

vcpu system. Radix and FMM ran slower, and FMM ran proportionally slower than

radix. LU and ocean still run close to unmodified, although ocean begins to show

some more overhead. Water-spatial runs surprisingly well.

Figure 5.13 shows the sharing rate, broken down by kernel- and process-levels. We

can compare the results to Figure 5.10, but because they are on different systems, we

cannot make conclusions without more data. FMM has considerably more sharing on

the 4-processor guest; about six times as much for process-level and fourteen times

for kernel-level. Radix’s process-level sharing is comparable to the 2 vcpu system,
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Figure 5.14: Normalized run time plotted against faults per second for 2- and 4-
processor guests.

but its kernel-level sharing is a more than four times longer. Water-spatial’s process-

level sharing is about the same for 2 and 4vcpus, and although there is twice as much

kernel-level sharing, its overall effect is still small.

Figure 5.9 shows the overhead breakdown. Note that waiting for the hypervisor

lock makes up a much larger percentage of the overhead—over half of the overhead

attributable directly to the sharing.

Figure 5.14 shows the plot of normalized runtime versus fault count. The results

begin to look non-linear. Further investigation is required to understand the curve.

5.8 Discussion

For the current system, what is the best way to make use of a multi-processor

host? We will point out benefits and costs to running a workload in different config-

urations. The user must decide whether the benefits are worth the cost.

Recall that we have basically three options of how to run the workload on an
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multiprocessor system: on one single-processor guest (leaving the other processors

for other workloads), one multiple single-processor guests (a virtual network of com-

puters), and on one multiprocessor guest. For the multiprocessor guest case, we

have the option of choosing the number of processors to be equal to or less than the

number of processors on the system.

We have evaluated how each of the workloads runs on one single-processor guest

and one multiprocessor guest for different numbers of processors. For a network of

single-processor guests, we expect sharing to be more expensive than on a multi-

processor guest, both in terms of time and space. However, only the process level of

the workload is shared. By switching to a network of single-processor guests from a

single multiprocessor guest, we eliminate the kernel sharing. So although we expect

workloads with a large amount of process-level sharing to run slower on a network

of single-processor guests, we expect workloads with little process-level sharing but

a large amount of kernel-level sharing to run faster over a network, because we

eliminate the need for kernel sharing.

We can estimate the potential cost and benefits in terms of time from Figure 5.10.

In one class are applications like LU and ocean. These have low sharing rates overall,

and so should run well either in a single multiprocessor guest or a network of single-

processor guests. We expect that the ease of administering a single multiprocessor

guest will make this the best option.

Another class includes applications like FMM and water-spatial, which have sig-

nificant process-level sharing and little kernel sharing. These applications have some

benefit to running on a 2-processor guest, but a significant cost in terms of time and

log space. We expect there to be little benefit to running on a network of single-

processor guests, because of the extra cost of sharing. Water-spatial does well on a
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4-cpu guest, but because of FMM’s extra sharing, it should only be run on a 2- or

1-processor guest.

Yet another class includes applications like kernel-build, which have little process-

level sharing but a large amount of kernel sharing. There is no benefit to running

kernel-build on a multiprocessor guest, but we expect there to be significant benefit

to running it in a network of single-processor guests. Again, whether the extra

administration cost is worth the benefit is a decision only the user can make.

The radix workload has a moderate amount of process-level sharing, and a lot of

kernel-level sharing. There is some benefit to running under a 2-processor guest, but

a significant cost in terms of log space. There may be more benefit to running it on

a network of single-processor guests, especially in the case of a 4-cpu host.

Finally, we have workloads such as radiosity and dbench. Dbench is a kernel

filesystem workload. As such, it cannot be easily distributed over multiple kernels13.

Since running on a multiprocessor kernel has no benefit, the best option is to run

such a filesystem workload in one single-processor guest.

The best option for radiosity is similar. It has significant kernel-level sharing,

but also has significant process-level sharing; enough that we expect it to run poorly

on a network of single-processor guests. For this workload, the best option is also to

run on a single-processor guest.

5.9 Future work

We have evaluated SMP-ReVirt under the current system, but there are many

opportunities for improvement. The workloads are very sensitive to the cost per

fault; adding individual instructions in the critical path adds measurable overhead

13We could conceivably divide the target filesystem into two filesystems on two servers, but that
would be a different workload.
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to workloads like kernel-build and radix. We have done some initial work at profiling

and engineering this, but we expect that with considerable work it could be made

even faster. Certain aspects such as the hypervisor lock and the global shadow lock

do not scale well and cause significant overhead by themselves. Engineering the

CREW and shadow faults would benefit any workload running on the system.

Another option to explore is architecture-style optimizations. For instance, if

we frequently see an access to page B following an access to page A, then when a

virtual processor accesses page A, we can pre-fault page B in as well. Other potential

techniques include page pre-fetching, eip profiling, switching to emulation for sub-

page sharing, and so on. These may be able to reduce the number of faults and

constraints without changing the workload.

Optimizing the kernel will also have a wide impact on a wide variety of workloads.

The Linux kernel has been tuned to run on hardware that has significantly different

parameters than our CREW system provides.

One promising avenue is to investigate is Linux’s support for non-uniform

memory access (NUMA) architectures, also called cc-NUMA architectures (for

cache-coherent NUMA). While processors in symmetric multiprocessor systems have

equal access to main memory, in NUMA machines each node has memory that is

local to it. It can access all memory in the system, but it is more expensive to access

memory from other nodes than its own. If we divide up memory between virtual

cpus, it should induce the kernel to reduce unnecessary sharing between them.

Making the kernel CREW-aware will significantly reduce the sharing in the kernel,

so that workloads like kernel-build, and possibly even a workload like dbench, will

run well.



CHAPTER VI

Conclusions

The intrusion logging and analysis systems are incomplete—they lack enough

information to consistently understand and recover from an intrusion. We have

proposed execution replay as a practical way to add completeness to forensic logging.

Execution replay can fill the gaps in current logging systems because it can recreate

the entire state of the system at any point in time.

To demonstrate our thesis, we have described ReVirt, an execution replay system

for virtual machines. ReVirt satisfies all the requirements listed in Chapter III for

an execution replay system targeted at security. It functions for arbitrary code and

handles all corner cases. It can run all current Linux application software without

modification, and requires no modifications to the kernel other than what the virtual

machine requires. It can run a variety of workloads at a reasonable time and space

overhead. The narrow virtual machine interface that ReVirt replays is reasonably

secure from layer-below attacks. ReVirt has been used by several subsequent security

research systems, including Backtracker[35] and IntroVirt[33], as well as the TTVM

debugging system[36].

Execution replay in multiprocessor environments introduces some additional com-

plexity, but we have shown that there are good ways to use execution replay on a

87
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multiprocessor. SMP-ReVirt can log and replay multiprocessor guests on commod-

ity hardware. To our knowledge, this is the first system that can log and replay

unmodified, multi-processor kernels and software without specialized hardware. Us-

ing SMP-ReVirt, many workloads can take advantage of multiple processors to gain

speed without the complexity of dividing the workload over several single-processor

guests. Making the guest kernel aware of SMP-ReVirt should allow even more work-

loads to take advantage of multi-processor guests.

We therefore conclude the execution replay is indeed a practical way to add

completeness to forensic logging.
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APPENDIX A

Execution replay: The Dirty Details

This appendix is a summary of our experience with implementing execution replay

on x86 hardware.

A.1 Precise event replay

In order to replay an event at the same point in the instruction stream, we need a

way to identify individual instructions in an instruction stream. In the text, we call

this an abstract instruction count. In practice, this might be an actual count of

instructions, but could also be some other number or tuple of numbers. In order to

label uninstrumented code, we need the assistance of the hardware. Most modern

x86 processors define a number of performance counters, which count various

events on the system. We can use these in our abstract instruction count.

A count or tuple must have three properties to be usable for precise event replay.

The first property is monotonicity. This is inherent to any counter, but it is

important if we are to be able to re-deliver events efficiently. The second property

is repeatability. We must be able to generate the exact same count every time

the same code is run. If there are any non-deterministic effects, we must be able to

compensate for them. Finally, we need uniqueness. That is, each instruction must
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have a different label, so that we can distinguish between them1.

The tuple that we use is < branchcount, eip >2. The observation is that if two

different instructions in an instruction stream have the same instruction pointer, a

branch of some kind must have occurred between them. The branch count must

include any event which can modify an instruction count, including interrupts or

other exceptions, as well as normal conditional branches.

A.1.1 Hardware counters

The Intel Pentium 4 (P4) has two branch counters. The one we use in our

system is called retired branch type. It counts only branches, not interrupts and

exceptions. Unfortunately, it does not count FAR calls: if two instructions with

the same eip occur in an instruction stream with only FAR calls between them,

our system will not be able to distinguish between the two. We have verified this

problem by writing code to exercise this scenario and observing the break in replay.

We have not seen this failure in the normal course of our runs, but it is a security

problem, as an attacker could easily introduce and run code which will trigger this

bug as soon as he broke in, breaking replay of anything past that point.

The second counter is called branch retired. Unfortunately, along with normal

branches, it counts rti (return from interrupt) and rsm (return from SMM3 ) instruc-

tions that end in ring 3. The hypervisor can infer rti instructions, since it handles

all interrupts; but SMM interrupts are by design transparent to the hypervisor and

operating system, so we cannot easily compensate for these without instrumenting

1Note that accuracy of the counter (whether it accurately counts exactly what it is designed to
count) is not one of the requirements.

2When comparing two tuples for ordering purposes, we begin by comparing the first element of
each tuple; if they match, compare the second element, and so on.

3SMM stands for “system-management mode”. It is designed for motherboard manufacturers
to add functionality or fixes transparent to the operating system.
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the BIOS.

The AMD Athlon has a “Retired Branch” event. It counts interrupts and ex-

ceptions that happen in ring 3, so these must be subtracted by the hypervisor or

operating system. We have not encountered any problems with SMM on the Athlon

with this counter.

The counters for both P4 and Athlon are contained model-specific registers (MSR).

The MSRs themselves are 64-bits, but the counters are only 40 bits on the P4 and

48 bits on the Athlon, so they must be sign-extended when read. Care must also be

taken that the counters do not overflow as well. A 3 GHz processor could overflow a

40-bit counter in a few minutes.

A.1.2 Repeat-string instructions

The x86 instruction set include a series of instructions called repeat-string in-

structions. These repeat a specific operation (for instance, a memory-to-memory

copy) a large number of times, without changing the eip or branching. These in-

structions can be interrupted in the middle and resumed. This is possible because

the instruction uses the ecx register as a counter. At each iteration of the instruc-

tion, ecx is decremented. Depending on the nature of the instruction, execution ends

either when ecx reaches 0, or when some condition of the target data is met.

In order to repeat interruptions of repeat-string instructions, we must add the

ecx register to our tuple. Thus our final tuple is < branchcount, eip, ecx >. When

determining a match or an order, we first compare the branch count, then the eip,

then the ecx register.
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A.1.3 Delivering asynchronous events

Logging asynchronous events is straightforward: we enable the appropriate branch

counter, and compensate for any non-deterministic effects (such as subtracting in-

terrupts from the Athlon branch count). When we deliver an asynchronous event

during logging, we record the branch count, eip, and ecx at that point. We will

refer to this as log.bc, log.eip, and log.ecx for the remainder of this section.

Replaying is more subtle. We begin by setting up the branch counter as before,

and by setting up the performance counter overflow interrupt. This interrupt

will trigger whenever the counter overflows (i.e., goes from negative to positive).

Then, to re-deliver the interrupt, we use the following is the idealized algorithm:

• Set the performance counter to -log.bc. Let it run until the performance

counter overflows. Now, current.bc==log.bc.

• Set the breakpoint for log.eip, and let it run until you get a breakpoint

exception. Now current.eip==log.eip.

• Single-step until current.ecx==log.ecx.

There are several things which complicate this simple algorithm. The first com-

plication is that the performance counter overflow interrupt is not precise; many

cycles may pass between the time the counter overflows and the time the processor

is interrupted. Our solution is to add a “slack” value to the overflow. We have found

128 to be a good number on our hardware. So we set the performance counter to

-(log.bc-128). We then need to breakpoint until current.bc==log.bc.

The second complication is that if you are already at log.eip but not yet at

log.bc, you need to step over it before setting the breakpoint again. One option
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would be to use the resume flag in the eflags register. Unfortunately, we have had

problems with this option, and use alternatives instead.

For normal instructions, you can single-step once to get to the next instruction,

then set the breakpoint. However, repeat string instructions (discussed above) will

only step partway through the instruction. The best solution is to decode the in-

struction length, set a breakpoint at the next instruction, then set a breakpoint at

the target instruction again.

When single-stepping to step over an instruction, the instruction might cause

a fault to be delivered to the guest (for instance, a page fault). Because the initial

instruction did not finish, no single-step trap is generated by the hardware4. The first

instruction of the guest fault handler will then execute without the replay system

being involved.

What we want is to single-step into the fault. Hypervisor fault delivery handlers

must be instrumented to detect that the replay system is single-stepping, and to

return control to the replay engine after a fault is delivered if so.

Another complication concerns single-stepping to the middle of a repeat-string

instruction. The Pentium 4 has a feature we call “fast repeat string” instructions;

if the ecx value is more than 128, it will do 128 iterations for a single-step, rather

than just one. For example, suppose that current.ecx==256 and log.ecx==250. If

you single-step, then when you return current.ecx will be 128, far past past where

you wanted to break.

To solve this problem, we take advantage of the fact that the value of ecx has

no effect on the string instruction other than when to finish the instruction. So one

could set the ecx to some arbitrary value (say, 2), and single-step. Because 2 is less

4The x86 defines a trap as an exception that happens after an instruction executes.
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than 128, the ecx will only be decremented by 1. We can continue setting the ecx

each time we single-step. In this case, we need to keep “shadow” values of the ecx,

so that we know when to deliver the interrupt and restore the proper value of ecx.

Single-stepping a repeat-string instruction until the ecx matches can take a long

time. Another option is to use “fast repeat-string replay”. This technique allows

the repeat string instruction to execute at full speed. We do this by setting the ecx

to current.ecx-log.ecx, and breakpointing on the next instruction. When the

number of repeat string iterations have happened that we need, ecx will be zero, the

instruction will finish, and the next instruction will hit the breakpoint. When we hit

the breakpoint, we set the eip back to log.eip, and ecx back to log.ecx.

The final complication is with the resume flag (RF) in the eflags register. The

RF flag was designed specifically for the case above, where you are at an eip and

you want to break the next time this eip is executed. If the flag is set, and the

breakpoint would normally have triggered on this instruction, it does not. In any

case, the flag is cleared after one instruction executes.

Unfortunately, the flag is now used for another purpose not directly relating to

breakpoints. Under certain conditions, the RF flag must be set on the return from

an exception to prevent a double exception from happening. Rather than force the

operating system to do this, the hardware will set the RF flag automatically when

certain exceptions happen. A side effect is that if there’s a fault, and the breakpoint

is set on the return address of the fault, the breakpoint exception won’t trigger.

As a further impediment, the iret instruction, which can set the RF flag, is not

a privileged instruction, and cannot be trapped. The iret instruction is commonly

called by the guest kernel to return to guest user-space, and in our experience fre-

quently sets the RF flag. Furthermore, any attacker could use the iret program to
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set the RF flag; at some point, an interrupt would be delivered when the RF flag

was set.

For this reason, in Xen-ReVirt, we do not use the hardware breakpoints; we only

use the performance counter overflow and the single-step mechanism. User-Mode

Linux is subject to this security vulnerability, but has not yet been updated to avoid

use of the hardware breakpoints.

Instead of using the hardware breakpoints, we could instead use the int3 in-

struction. The int3 instruction is a single-byte instruction that can be written in

the place of the instruction that we want to break on. The original value is stored,

and replaced when we want to execute the instruction again.

There are two primary difficulties with using the int3 instruction. The first is

that the address space may change between the time we “set” the breakpoint and

the time the target breakpoint actually happens. With the hardware breakpoint,

this did not matter, since the virtual address is compared on each instruction. With

a software instruction breakpoint, every time the mapping of the virtual address in

question changes, we must restore the old value before the change, and restore the

breakpoint after the change.

The second difficulty is that of self-inspecting or self-modifying code. Whenever

we modify guest pages, we need to be careful that the data is not read and propagated

elsewhere; for instance, read and copied, or written out to disk. An attacker could

easily write self-inspecting code in a tight loop purposely, to detect when the system

is replaying and do something different than during logging. It may be impossible to

defend against this type of attack, as it would involve making a page with execute

permissions but no read permissions.
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A.1.4 Counters in a multi-process or multi-domain environment

The performance counters, when configured properly, will be active any time

the processor is executing in rings 1-3. If the execution replay system has multiple

processes or multiple domains, the counters will increment when other domains are

executing. This means that some accounting must be done on context switches.

The general idea is to save and restore the performance counters in the per-process

(or per-domain) structure on every context switch. Unfortunately, reading and writ-

ing performance counters can be expensive; it added a measurable overhead to some

benchmarks run on our early system. Saving and restoring the exact performance

counter causes a read of the old value and a write of the new value on every context

switch. We use instead an algorithm that requires only one read per context switch.

When a process is scheduled in, we read the value of the performance counter and

save it in the process structure. When the process is scheduled out, we read the

value, subtract the new value form the one stored at the beginning, and add the

count to a per-process “accumulator”. If we are switching from one performance-

counted process to another, the same read can be applied to the end of the domain

being scheduled out and the beginning of the domain scheduled in.

The final issue to point out regarding performance counters in a multi-process

or multi-domain environment is that sometimes the performance counter overflow

takes many cycles to actually be delivered. It is possible for the overflow to happen

in one process just before schedule is called, and for the interrupt to be delivered in

another process, just after the schedule completes. So it is important, when handling

interrupts, to be aware that the overflow may have triggered in a different context.
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A.2 The Floating Point Unit

Normally, a process initializes its own floating point unit (FPU) before using it;

it should make no assumptions about what is in it. Our experience with ReVirt

indicates that the initial state of the FPU is as important as the initial state of the

process. The initial state can make its way (via floating-point store instructions)

into main memory, which can affect the execution of the system later. The FPU for

a process should be set to a known state before beginning.

In the original x86 design, the entire FPU was affected by the FPU save, restore,

and initialize instructions. However, in certain situations, certain parts of the FPU

state are unimportant from an operating system or program point of view. In or-

der to speed up these instructions, Intel introduced an optimization in the P4 that

would only save these under certain conditions. Unfortunately, we found that this

optimization can lead to non-determinism in the FPU state, which can then leak

into memory. In order to prevent this, we turn off the optimization by enabling the

Fopcode compatibility submode.

A.3 Xen shadow synchronization

We described shadow pagetables briefly in chapter V. One of the major challenges

with shadow pagetables is keeping the shadows in sync with the guest pagetables.

Traditionally, this has been done by removing write permission to any guest page

that is being used as a pagetable. Writes are trapped and emulated, allowing the

hypervisor to update the shadow pagetable as the guest pagetable is updated. This

results in somewhat poor performance when batches of updates to a single pagetable

are made, as frequently happens in Linux when doing a fork().

Xen 2.0 introduced a new technique to deal with this synchronization, where
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shadow pages are allowed to be out of sync with guest pages for periods of time, and

brought into sync later. This shadow-sync technique gave performance improve-

ment to certain operations in Linux guests running in shadow mode, namely the fork

system call. However, it resulted in a considerable amount of extra complication in

the shadow code, especially for multiprocessor guests.

The shadow-sync algorithm was taken out of Xen as of version 3.0.3, which was

released after this thesis was defended in late September, 2006. The shadow code

was entirely re-written with a new target: Microsoft WindowsTMrunning under Xen

using hardware virtualization such as Intel’s VMX or AMD-V. Since Windows does

not use the Unix fork model to create new processes, the shadow synchronization

technique was deemed an unnecessary complication. All writes to guest pagetables

are now emulated, so that guest and shadow pages are updated at the same time.

The technique may be re-introduced at a later time if situations are found for which

it is a significant performance improvement, but it will be limited in scope to very

specific instances.

Because this shadow-sync technique is an interesting and reasonable way to imple-

ment shadow pagetable updates, we describe it here, along with our multiprocessor

extensions, and how we integrated it into SMP-ReVirt.

The observation behind the shadow-sync technique is that real processors gen-

erally have a cache of pagetable entries, called a TLB, which must be kept in sync

with the actual hardware pagetables. On the x86, this “cache” is filled automati-

cally when it does not contain an entry, but must be explicitly flushed when memory

pagetable entries are modified. Because of this, most operating systems which run

on this hardware must both be aware of the difference between what’s in the memory

pagetable and in the TLB (flushing it when appropriate), and must also be able to
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deal with spurious page faults due to differences between the TLB and the in-memory

pagetables.

Xen 2.0 takes advantage of this fact, treating the shadow pages as a very large

TLB. Guest pages are marked as in-sync or out-of-sync, depending on whether

the shadow accurately reflects the guest pagetable or not. An in-sync pagetable is

read-only. When an in-sync guest pagetable is written to, the processor faults. The

hypervisor will then take a snapshot of the guest page, mark a page out-of-sync, and

give the guest write permission to it. The guest can then write to the page as it will.

Out-of-sync pages are brought back in sync when either when a page fault happens

or when the guest kernel does a TLB flush. This mirrors what might happen with

a large TLB. If a kernel writes a new pagetable and then accesses the corresponding

virtual memory, the TLB misses and the new pagetable entry is read into the TLB.

Similarly, if the guest kernel writes a new guest pagetable entry pagetable and then

accesses corresponding virtual memory, there will be a page fault, and the shadow

pagetables will be updated to reflect the new guest pagetable entry.

If, on the other hand, the kernel modifies an old pagetable entry, the old pagetable

entry may still be in the TLB, and may be used until the TLB is flushed. Similarly,

if the guest kernel writes a new guest pagetable entry, the old entry will still be in

the shadow pagetables until the guest does a TLB flush. The TLB flush will cause

the shadow pagetables to be updated to reflect the new pagetable entry.

When pagetables are synchronized, the new guest pagetable is compared to the

snapshot taken when the page was marked out-of-sync. The entries that have

changed are updated in the shadow pagetable. The snapshot is then discarded,

write permission removed from the page, and the page marked in-sync again.

This shadow-sync technique resulted in a performance increase for certain op-
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erations in Linux when running in shadow mode. However, it caused problems for

execution replay.

The first problem with the shadow-sync technique is that the synchronization

state has an effect on both the execution of the system and, through the dirty and

accessed bits, on the memory state of the system. This means that if shadow syncs

happen at different times during logging than during replay, then the execution and

state may diverge, breaking replay.

Suppose a pagetable entry is in sync, and has the dirty bit set. The shadow

pagetable will have write permission. Then suppose that the operating system clears

the dirty bit, and shortly thereafter the page in question is written to again.

When the operating system writes to the pagetable to clear the dirty bit the

pagetable will be marked out-of-sync. If a shadow sync happens between the time

the dirty bit is cleared and the next write to the page, the page will have read-

only permissions. This will cause a fault, which will allow the hypervisor to update

the dirty bit in the guest pagetable. If, on the other hand, there is no shadow

sync between the time the dirty bit is cleared and the next write to the page, the

old shadow pagetable entry with write permission will still be in effect. No fault

will happen, and the hypervisor will not set the dirty bit, even though a write has

happened.

To eliminate this problem, we must synchronize during replay at the same points

as during logging. This is complicated for single-processor systems, but is even more

more complicated in multi-processor systems. In multiprocessor systems, defining

what in-sync and out-of-sync means presents some challenges. If a guest pagetable

is in-sync on all processors, and one processor writes to it, it must be made out-of-

sync on all processors. However, if one processor does a shadow sync, what should
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happen? Should we synchronize all processors? Synchronize the one processor, but

leave the others out of sync? Synchronize the one processor, update its snapshot,

and mark the others out of sync again? What happens if, while the other processors

are still out-of-sync, the page is written to again? Which snapshot is used to bring

a page back into sync? And how are we to make the syncing deterministic, so that

it can be made the same for each processor during replay as it was during logging?

We converged on the following design. Each guest pagetable page can be in-sync

or out-of-sync on a per-vcpu basis. When a page is promoted to a guest pagetable

(i.e., when it first becomes shadowed), write permission is removed from all other

CPUs and the page is marked in-sync. When a virtual processor writes to an in-sync

pagetable, the page is marked out-of-sync on all processors. A single shared snapshot

per domain is taken of the guest pagetable. The snapshot contains a list of the vcpus

for which this snapshot is still effective; this is set to the list of currently in-sync

virtual cpus. When a vcpu does a shadow sync, the snapshot list is walked. For each

entry which has the corresponding vcpu’s bits set, the shadow code syncs the shadow

page, comparing the current guest page with the snapshot to detect changes. The

bit for that page is then cleared, and the page is made read-only on all processors.

When the last bit of a snapshot is cleared, it is removed from the list.

Note that there can be several outstanding snapshot pages for a given page; if one

vcpu does a sync, then writes to a shadow page, it will have a new snapshot, while

the other vcpus which had not synced at that point would have the old snapshot.

But for each vcpu, there will only be one active snapshot at a time.

Shadow syncs happen only at well-defined times, so that they will be the same

during logging as during replay.

In order to make sure that syncs happen the same with respect to each other, we
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introduced a pseudo-CREW object, called the “out-of-sync” object, that corresponds

to the per-domain out-of-sync vector. Grabbing read and write permission will cause

constraints to be generated the same way a they would for a physical page. Read

permission for this object is grabbed before reading the out-of-sync vector, and write

permission is grabbed before setting or clearing the vector. This will ensure that

shadow syncs and marking pages out-of-sync will be ordered with respect to one

another; given this ordering, the syncing is deterministic.

Whenever a page is read by the shadow code (such as on syncing or on promotion),

it is also grabbed via the CREW protocol. This guarantees that the reads which

generate the shadow pages will get the same values during logging and replay.

The final issue we encountered deals with hypercalls that act on another vcpu’s

shadow pagetables. These operations include shadow sync (which can be passed a

vcpu mask), and pagetable updates (which are guaranteed by the API to be reflected

in the shadows of all vcpus on return from the hypercall). The general technique is

to do operations which are strictly reducing in privilege while holding the shadow

lock. When we are done, we do a single TLB flush. All of the updates will seem to

happen at the point of the TLB flush. During replay, we want this action to happen

at exactly that point. So we introduce two constraints: the vcpu doing the shadow

operations must wait until that point before acting on the other vcpu’s shadow tables;

and the other vcpu must wait until the vcpu doing the operations is complete until

it can continue.

A.4 Software assists

We use the term assist to describe an action the hypervisor does after an in-

struction faults to allow the instruction to execute successfully. For example, shadow
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faults emulating the dirty and accessed bits would classify as an assist. If the dirty

bit for a page is clear in its pagetable entry, the shadow pagetable entry will be write-

protected. When the guest writes to the page, it will cause a page fault. The shadow

code will set the dirty bit, give write permission, and let the original instruction

finish executing.

The subtlety with an assist is that the same instruction occurs twice in the

instruction stream with no branches between the first and second instances; but

typically there is a state difference before and after the assist.

Consider our dirty bit emulation assist. Suppose that during logging, the system

delivers an interrupt just after the emulation assist, but before the original instruction

can execute again. The page is marked dirty, but the original instruction has not

executed, so the tuple will be the same as it was before the assist. During replay, the

system will deliver the interrupt before the assist (because the tuple matches); the

fault and the assist will not happen, and the page will not be marked dirty. Thus

the memory state will be different during logging and replay, and the next time the

processor reads that pagetable entry and acts on the dirty bit, the execution will

diverge.

To solve this, any assist which changes guest state or hypervisor state which af-

fects the guest (for instance, marking a page out-of-sync) must increment the branch

counter so that the replay system can differentiate interrupts that are delivered before

an assist and those that are delivered after.
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ABSTRACT

Execution replay for intrusion analysis
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Computer intrusions are inevitable. When an intrusion happens, forensic analysis

is critical to understanding the attack. An administrator needs to determine how the

attacker broke in, what he changed, and what privileged information he may have

seen. Unfortunately, current security logging systems are incomplete, leaving large

gaps in the knowledge of what happened.

Execution replay is a practical way to add completeness to forensic logging. To

show this, we describe ReVirt, a virtual machine execution replay system capable of

security-grade logging. ReVirt can reconstruct the entire past state of the system

at any point in time, including memory and disk, and can re-execute . This enables

security tools that use ReVirt to gather arbitrarily detailed information about the

system before, during, and after an attack. ReVirt adds 0-12% runtime overhead

during logging. A single 100 GB disk can log continuously from weeks to years.



We also describe SMP-ReVirt, an execution replay system that can log and replay

multiprocessor virtual machines. Races between the processors are detected using

a concurrent-read, exclusive-write (CREW) protocol enforced with hardware page

protections transparently to the virtual machine. This is the first execution replay

system to log and replay a multiprocessor kernel outside of simulation. Performance

depends heavily on the sharing rate of the workload. Some parallel applications run

with overhead around 1%, while some run an order of magnitude slower with the

logging enabled. Logging rates depend upon sharing rates. A 300GB disk can log

workloads with low sharing rates for several years, and can even log workloads with

very high sharing rates for several days.


