
The Rio File Cache: Surviving Operating System Crashes 1

The Rio File Cache: Surviving Operating System Crashes
Peter M. Chen, Wee Teck Ng, Gurushankar Rajamani, Christopher M. Aycock

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

University of Michigan
{pmchen,weeteck,gurur,caycock}@eecs.umich.edu

Abstract: One of the fundamental limits to high-performance, high-reliability file systems is memory’s
vulnerability to system crashes. Because memory is viewed as unsafe, systems periodically write data back
to disk. The extra disk traffic lowers performance, and the delay period before data is safe lowers reliabil-
ity. The goal of the Rio (RAM I/O) file cache is to make ordinary main memory safe for persistent storage
by enabling memory to survive operating system crashes. Reliable memory enables a system to achieve the
best of both worlds: reliability equivalent to a write-through file cache, where every write is instantly safe,
and performance equivalent to a pure write-back cache, with no reliability-induced writes to disk. To
achieve reliability, we protect memory during a crash and restore it during a reboot (a “warm” reboot).
Extensive crash tests show that even without protection, warm reboot enables memory to achieve reliabil-
ity close to that of a write-through file system while performing 20 times faster. Rio makes all writes
immediately permanent, yet performs faster than systems that lose 30 seconds of data on a crash: 35%
faster than a standard delayed-write file system and 8% faster than a system that delays both data and meta-
data. For applications that demand even higher levels of reliability, Rio’s optional protection mechanism
makes memory even safer than a write-through file system while while lowering performance 20% com-
pared to a pure write-back system.

1 Introduction
A modern storage hierarchy combines random-access memory, magnetic disk, and possibly optical

disk or magnetic tape to try to keep pace with rapid advances in processor performance. I/O devices such
as disks and tapes are considered reliable places to store long-term data such as files. However, random-
access memory is viewed as an unreliable place to store permanent data (files) because it is vulnerable to
power outages and operating system crashes [Tanenbaum95, page 146].

Memory’s vulnerability to power outages is easy to understand and fix. A $119 uninterruptible power
supply can keep a system running long enough to dump memory to disk in the event of a power outage
[APC96], or one can use non-volatile memory such as Flash RAM [Wu94]. We do not consider power out-
ages further in this paper.

Memory’s vulnerability to OS crashes is more challenging. Most people would feel nervous if their
system crashed while the sole copy of important data was in memory, even if the power stayed on [DEC95,
Tanenbaum95 page 146, Silberschatz94 page 200]. Consequently, file systems periodically write data to
disk, and transaction processing applications view transactions as committed only when data is written to
disk. The focus of this paper is enabling memory to survive operating system crashes without writing data
to disk.

Memory’s perceived unreliability forces a tradeoff between performance and reliability:
• Applications requiring high reliability, such as transaction processing, write data through to disk, but

this limits throughput to that of disk. While optimizations such as logging and group commit can
increase effective disk throughput [Rosenblum92, Chutani92, DeWitt84], disk throughput is still far
slower than memory throughput.

• Unix file systems mitigate the performance lost in reliability-induced disk writes by waiting 30 seconds
before writing data, but this ensures the loss of data written within 30 seconds of a crash
[Ousterhout85]. In addition, 1/3 to 2/3 of newly written data lives longer than 30 seconds [Baker91,
Hartman93], so a large fraction of writes must eventually be written through to disk under this policy. A
longer delay decreases disk traffic due to writes but risks losing even more data. Applications that desire
maximum performance use a pure write-back scheme where data is written to disk only when the mem-
ory is full. This is an option only for applications where reliability is not an issue, such as compiler-gen-
erated temporary files.

Existing choices for reliable memory are attached via an I/O or backplane bus rather than the memory
bus. These special-purpose devices include solid-state disks, non-volatile disk controllers, and write-buff-
ers such as Prestoserve [Moran90]. While these can improve performance over disks, their performance is
limited by the low bandwidth and high overhead of the I/O bus and device interface. Being able to use ordi-

The Rio File Cache: Surviving Operating System Crashes 2

nary main memory to store files reliably would be much better: systems already have a relatively large
amount of main memory and can access it very quickly. Further, main memory is random-access, unlike
special-purpose devices.

The goal of the Rio (RAM I/O) file cache is to achieve the performance of main memorywith the reli-
ability of disk:write-back performance with write-through reliability. We achieve memory performance by
eliminating all reliability-induced writes to disk [McKusick90, Ohta90]. We achieve reliability by protect-
ing memory during a crash and restoring it during a reboot (a “warm” reboot). Extensive crash tests show
that even without protection, warm reboot enables memory to achieve reliability close to that of a write-
through file system while performing 20 times faster. Rio makes all writes immediately permanent, yet
performs faster than systems that lose 30 seconds of data on a crash: 35% faster than a standard delayed-
write file system and 8% faster than a system that delays both data and metadata. For applications that
demand even higher levels of reliability, Rio’s optional protection mechanism makes memory even safer
than a write-through file system while while lowering performance 20% compared to a pure write-back
system.

2 Design and Implementation of a Reliable File Cache
This section describes how we modify an existing operating system to enable the files in memory (the

file cache) to survive crashes.
We use DEC Alpha workstations (DEC 3000/600) running Digital Unix V3.0 (OSF/1), a monolithic

kernel based on Mach 2.5. Digital Unix stores file data in two distinct buffers in memory. Directories, sym-
bolic links, inodes, and superblocks are stored in the traditional Unix buffer cache [Leffler89], while regu-
lar files are stored in the Unified Buffer Cache (UBC). The buffer cache is stored in wired virtual memory
and is usually only a few megabytes. To conserve TLB slots, the UBC is not mapped into the kernel’s vir-
tual address space; instead it is accessed using physical addresses. The virtual memory system and UBC
dynamically trade off pages depending on system workload. For the I/O-intensive workloads we use in this
paper, the UBC uses 80 MB of the 128 MB on each computer.

2.1 Protection
The first step in enabling the file cache to survive a crash is to ensure that the system does not acciden-

tally overwrite the file cache while it is crashing.1 The reason most people view battery-backed memory as
vulnerable during a crash yet view disk as protected is theinterface used to access the two storage media.
The interface used to access disks is explicit and complex. Writing to disk uses device drivers that form I/O
control blocks and write to I/O registers. Calls to the the device driver are checked for errors, and proce-
dures that do not use the device driver are unlikely to accidentally mimic the complex actions performed
by the device driver. In contrast, the interface used to access memory is simple—any store instruction by
any kernel procedure can easily change any data in memory simply by using the wrong address. It is hence
relatively easy for many simple software errors (such as de-referencing an uninitialized pointer) to acci-
dentally corrupt the contents of memory [Baker92a].

The main issue in protection is how to control accesses to the file cache. We want to make it unlikely
that non-file-cache procedures will accidentally corrupt the file cache, essentially making the file cache a
protected module within the monolithic kernel. To accomplish this, we use ideas from existing protection
techniques such as virtual memory and sandboxing [Wahbe93].

At first glance, the virtual memory protection of a system seems ideally suited to protect the file cache
from unauthorized stores [Copeland89]. By turning off the write-permission bits in the page table for file
cache pages, the system will cause most unauthorized stores to encounter a protection violation. File cache
procedures must enable the write-permission bit in the page table before writing a page and disable writes
afterwards. The only time a file cache page is vulnerable to an unauthorized store is while it is being writ-
ten, and disks have the same vulnerability, because a disk sector being written during a system crash can be
corrupted. File cache procedures can check for corruption during this window by verifying the data after
the write. Or the file cache procedures can create a shadow copy and implement atomic writes.

Unfortunately, many systems allow certain kernel accesses to bypass the virtual memory protection
mechanism and directly access physical memory [Kane92, Sites92]. For example, addresses in the DEC

1. We will see in Section 3.3 that even without protection, most crashes do not corrupt files in memory. Hence we
recommend that protection be turned off for most systems. We describe Rio’s optional protection mechanism first
because most people (including the authors) assume it is needed.

The Rio File Cache: Surviving Operating System Crashes 3

Alpha processor with the two most significant bits equal to10 bypass the TLB. Rio uses two different
methods to protect against these physical addresses.

Our current method, calledcode patching, is to modify the kernel object code by inserting a check
before every kernel store [Wahbe93]. If the address is a physical address, the inserted code checks to make
sure the address is not in the file cache, or that the file cache has explicitly registered the address as writ-
able. The idea of inserting code before every store instruction sounds prohibitively slow, but several opti-
mizations make the actual overhead only 20% (Section 4).
• The checking code is very efficient: 6 instructions for a virtual address (the normal case), 28 instruc-

tions for a physical address. We gain efficiency over more general tools such as ATOM [Srivastava94]
by inlining the check for virtual addresses and by increasing each procedure’s stack rather than creating
a temporary stack frame for each check.

• Modifications to the stack pointer occur much less frequently than stores to memory that use the stack
pointer. In addition, the stack pointer is almost always modified in small increments, and these small
increments cannot change a virtual address to a physical address. We can hence replace the checks on
local, stack variables with a few checks on the stack pointer [Wahbe93].

• We replace individual checks in commonly used loops with a few higher-level checks. For example,
procedures such as bcopy modify sequential blocks of data; these blocks can be checked once rather
than checking every individual store.

• Further optimizations are possible, such as recognizing loop invariants and eliminating redundant
checks within a basic block. Trends toward moving functionality out of the kernel and relatively faster
CPUs will further lower the overhead of code patching.

A second method to protect against physical addresses is specific to the Alpha processor. The Alpha
CPU can be set to trap to a special handler if a physical addresses is issued. This handler can then validate
the address and issue or deny the request. This method gains efficiency over code patching by avoiding the
check on virtual addresses. However, the handler must be invoked on both reads and writes to physical
addresses. Which method will be faster depends on the mix of physical and virtual addresses and on the
mix of reads and writes. We believe the second method could lower the overhead to a mere 1-2%.

Kernels that use memory-mapping to cache files must be modified to map the file read-only. Proce-
dures that write to the memory-mapped file must be modified as above to first enable writes to memory.
The Digital Unix kernel does not use memory-mapping in the kernel. User memory-mapped files, which
are supported by Digital Unix, require no changes to the kernel, because we protect memory solely from
kernel crashes; users are responsible for their own errors.

2.2 Warm Reboot
The second step in enabling the file cache to survive a crash is to do awarm reboot. When the system

is rebooted, it must read the file cache contents that were present in physical memory before the crash and
update the file system with this data. Because system crashes are infrequent, our first priority in designing
the warm reboot is ease of implementation, rather than reboot speed.

Two issues arise when doing a warm reboot: 1) what additional data the system maintains during nor-
mal operation, and 2) when in the reboot process the system restores the file cache contents.

Maintaining additional data during normal operation makes it easier to find, identify, and restore the
file cache contents in memory during the warm reboot. Without additional data, the system would need to
analyze a series of data structures, such as internal file cache lists and page tables, and all these intermedi-
ate data structures would need to be protected. Instead of understanding and protecting all intermediate
data structures, we keep and protect a separate area of memory, which we call theregistry, that contains all
information needed to find, identify, and restore files in memory. For each buffer in the file cache, the reg-
istry contains the physical memory address, file id (device number and inode number), file offset, and size.
Registry information changes relatively infrequently during normal operation, so the overhead of maintain-
ing it is low. It is also quite small; only 40 bytes of information are needed for each 8 KB file cache page.

The second issue is when to restore the dirty file cache contents during reboot. To minimize the
changes needed to the VM and file system initialization procedures, we perform the warm reboot in two
steps. Before the VM and file system initialization procedures are run, we dump all of physical memory to
the swap partition. This saves the contents of the file cache and registry from before the crash2. We also
restore the metadata to disk during this step, using the disk address stored in the registry, so that the file
system is intact before fsck runs. After the system is completely booted, a user-level process analyzes the
memory dump and restores the UBC using normal system calls such as open and write.

The Rio File Cache: Surviving Operating System Crashes 4

2.3 Effects on File System Design
The presence of a reliable file cache changes some aspects of the file system. First, reliability-induced

writes to disk are no longer needed, because files in memory are as permanent and safe as files on disk.
Digital Unix includes tunable parameters to turn off reliable writes for the UBC. We disable buffer cache
writes as in [Ohta90] by turning most bwrite and bawrite calls to bdwrite; we modify sync and fsync calls
to return immediately3; and we modify the panic procedure to avoid writing dirty data back to disk before
a crash. With these changes, writes to disk occur only when the UBC or buffer cache overflow, so dirty
blocks can remain in memory indefinitely. One could also take a less extreme approach, such as writing to
disk during idle periods.

Second, metadata updates in the buffer cache must be as carefully ordered as those to disk, because
buffer cache data is now permanent. Third, memory’s high throughput makes it feasible to guarantee atom-
icity when updating critical metadata information. When the system wants to write to metadata in the
buffer cache, it first copies the contents to a shadow page and changes the registry entry to point to the
shadow. When it finishes writing, it atomically points the registry entry back to the original buffer.

3 Reliability
The key to Rio is reliability: can files in memory truly be made as safe from system crashes as files on

disk? To answer this, we measure how often crashes corrupt data on disk and in memory. For each run, we
inject faults to crash a running system, reboot, then examine the file data and measure the amount of cor-
ruption.

3.1 Fault Models
This section describes the types of faults we inject. Our primary goal in designing these faults is to

generate awide variety of system crashes. The faults we inject range from low-level hardware faults such
as flipping bits in memory to high-level software faults such as memory allocation errors. We classify the
faults we inject into three categories: bit flips, low-level software faults, and high-level software faults.
Unless otherwise stated, we inject 20 faults for each run to increase the chances that a fault will be trig-
gered. Most crashes occurred within 15 seconds after the fault was injected. If a fault does not crash the
machine after ten minutes, we discard the run and reboot the system.4

The first category of faults flips random bits in the kernel’s address space [Barton90, Kanawati95]. We
target three areas of the kernel’s address space: thekernel text, heap, andstack. These faults are easy to
inject, and they cause a variety of different crashes. They are the least realistic of our bugs, however. It is
difficult to relate a bit flip with a specific error in programming, and most hardware bit flips would be
caught by parity on the data or address bus.

The second category of fault changes individual instructions in the kernel text. These faults are
intended to approximate the assembly-level manifestation of real C-level programming errors [Kao93]. We
corrupt assignment statements by changing thesource or destination register. We corrupt conditional con-
structs by deletingbranches. We also deleterandom instructions (both branch and non-branch).

The last and most extensive category of faults imitate specific programming errors in the kernel
[Sullivan91]. These are more targeted at specific programming errors than the previous fault category. We
inject aninitialization fault by deleting instructions responsible for initializing a variable at the start of a
procedure [Kao93, Lee93a]. We injectpointer corruption by 1) finding a register that is used as a base reg-
ister of a load or store and 2) deleting the most recent instruction before the load/store that modifies that
register [Sullivan91, Lee93a]. We do not corrupt the stack pointer register, as this is used to access local
variables instead of as a pointer variable. We inject anallocation management fault by modifying the ker-
nel malloc procedure to occasionally start a thread that sleeps 0-256 ms, then prematurely frees the newly
allocated block of memory. Malloc is set to inject this error every 1000-4000 times it is called; this occurs
approximately every 15 seconds. We inject acopy overrun fault by modifying the kernel’s bcopy proce-
dure to occasionally increase the number of bytes it copies. The length of the overrun was distributed as

2. This is similar to performing a crash dump as the system is going down. While a standard crash dump often fails,
however, this dump is performed on a healthy, booting system and will always work.
3. We do provide a way for a system administrator to easily enable and disable reliability disk writes for machine
maintenance or extended power outages.
4. These long-latency faults will propagate data to disk and hence not change the relative reliability between memory
and disk.

The Rio File Cache: Surviving Operating System Crashes 5

follows: 50% corrupt one byte; 44% corrupt 2-1024 bytes; 6% corrupt 2-4 KB. This distribution was cho-
sen by starting with the data gathered in [Sullivan91] and modifying it somewhat according to our specific
platform and experience. bcopy is set to inject this error every 1000-4000 times it is called; this occurs
approximately every 15 seconds. We injectoff-by-one errors by changing conditions such as > to >=, and <
to <=, and so on. We mimic commonsynchronization errors by randomly causing the procedures that
acquire/free a lock to return without acquiring/freeing the lock.

Fault injection cannot mimic the exact behavior of all real-world operating system crashes. However,
the wide variety of faults we inject (13 types), the large number of ways the system crashed in our experi-
ments (e.g. 74 unique error messages, including 59 different kernel consistency error messages), and the
sheer number of crashes we performed (1950) give us confidence that our experiments cover a wide range
of real-world crashes.

3.2 Detecting Corruption
File corruption can occur in two ways. Indirect corruption, a series of events eventually causes a pro-

cedure (usually a non-I/O procedure) to accidentally write to file data. Memory is more vulnerable than
disks to direct corruption, because it is nearly impossible for a non-disk procedure to directly overwrite the
disk drive. However, direct memory corruption can affect disk data if the system stays up long enough to
propagate the bad memory data to disk. Inindirect corruption, a series of events eventually causes a proce-
dure to call an I/O procedure with the wrong parameters. The I/O procedure obediently carries out the
request and corrupts the file cache. Disks and memory are both vulnerable to indirect corruption.

We are interested primarily in protecting memory from direct corruption, because this is the weak
point of random-access memories. Note that the mechanisms described in Section 2.1 protect only against
direct corruption; indirect corruption will circumvent our protection mechanism.

We use two strategies to detect file corruption: checksums detect direct corruption, and a synthetic
workload calledmemTest detects direct and indirect corruption.

The first method to detect corruption maintains a checksum of each memory block in the file cache
[Baker92b]. We update the checksum in all procedures that write the file cache; unintentional changes to
file cache buffers result in an inconsistent checksum. We identify blocks that were being modified while
the crash occurred by marking a block aschanging before writing to the block; these blocks cannot be
identified as corrupt or intact by the checksum mechanism. Files mapped into a user’s address space for
writing are also marked changing as long as they are in memory, though this does not occur on the work-
loads we use.

Catching indirect corruption requires an application-level check, so we create a special workload
calledmemTest whose actions and data are repeatable and can be checked after a system crash. Checksums
andmemTest complement each other. The checksum mechanism provides a means for detecting direct cor-
ruption for any arbitrary workload;memTest provides a higher-level check on certain data by knowing its
correct value at every instant.

memTest generates a repeatable stream of file and directory creations, deletions, reads, and writes,
reaching a maximum file set size of 100 MB. Actions and data inmemTest are controlled by a pseudo-ran-
dom number generator. After each step,memTest records its progress in a status file across the network.
After the system crashes, we reboot the system and runmemTest until it reaches the point when the system
crashed. This reconstructs the correct contents of the test directory at the time of the crash, and we then
compare the reconstructed contents with the file cache image in memory (restored during the warm
reboot).

As a final check for corruption, we keep two copies of all files that are not modified by our workload
and check that the two copies are equal. These files were not corrupted in our tests.

In addition tomemTest, we run four copies of the Andrew benchmark [Howard88, Ousterhout90], a
general-purpose file-system workload. Andrew creates and copies a source hierarchy; examines the hierar-
chy using find, ls, du, grep, and wc; and compiles the source hierarchy.

3.3 Reliability Results
Table 1 presents reliability measurements for three systems: a disk-based (write-through) file cache,

Rio without protection (just warm reboot), and Rio with protection. We conducted 50 tests for each fault
category for each of the three systems (disk, Rio without protection, Rio with protection); this represents 6
machine-months of testing.

The Rio File Cache: Surviving Operating System Crashes 6

Rio’s goal is to match the reliability of disk, so we start by measuring the reliability of a write-through
file cache. We use the functionality and setup of the default Digital Unix kernel. That is, we do not use
warm reboot or protection, nor do we turn off reliability-induced disk writes. To achieve write-through
semantics,memTest calls fsync after every write—without this, many runs would lose data written within
30 seconds of the crash. Our only tool for detecting corruption on disk ismemTest, because our checksum
method cannot detect disk corruption5. Table 1 shows that corruption is quite rare, which agrees with our
intuition that disks are usually safe from operating system crashes. Of 650 crashes, only seven (1.1%) cor-
rupted any file data, and each of those runs corrupted only a few (1-4) files/directories.6

The middle section of Table 1 shows the reliability of the Rio file cachewithout the protection mech-
anisms described in Section 2.1. We turn off all reliability-related disk writes (Section 2.3) and use warm
reboot (Section 2.2) to recover the files in memory after a crash. These runs thus measure how often files in
memory are corrupted during an operating system crash if no provisions are made to protect them. We
experienced ten corruptions out of 650 crashes (1.5%). As with the disk tests, each corruption affected a
small number of files/directories, usually just a small portion of one file.memTest detected all ten corrup-
tions, and checksums detected five of the ten. Interestingly, the corrupted data in the other five corruptions
resided on disk rather than the file cache. This implies that the system remained running long enough to
propagate the corruption to disk. Copy overruns have a relatively high chance of corrupting the file cache

5. Checksumming the disk data would be done immediately before writing to disk. Data on disk is not subject to
direct corruption, so the checksum is guaranteed to be correct.
6. We plan to trace how faults propagate to corrupt files and crash the system instead of treating the system as a black
box. This is extremely challenging, however, and is beyond the scope of this paper [Kao93].

Table 1: Comparing Disk and Memory Reliability. This table shows how often each type of error corrupted
data for three systems. The disk-based system uses fsync after every write, achieving write-through reliability.
The two Rio systems test memory reliability by turning off reliability writes to disk and using warm reboot to
recover the in-memory data after a crash. Blank entries had no corruptions. We calculate the normalized
corruption rate by first calculating the % corruption for each category, then averaging across all categories. This
weights each fault category equally, independent of the number of runs in the category. Even without
protection, Rio’s reliability is nearly the same as a write-through system, and this is the system we recommend.
With protection, Rio achieves the same or higher reliability as a write-through system.

Fault Type

Disk-Based Rio without Protection Rio with Protection

crashes
corrup-

tions
crashes

corrup-
tions

crashes
corrup-

tions

kernel text 50 2 50 1 50

kernel heap 50 50 50

kernel stack 50 50 1 50 1

destination reg. 50 50 50

source reg. 50 2 50 50 1

delete branch 50 1 50 1 50

delete random inst. 50 1 50 50

initialization 50 50 50

pointer 50 50 1 50

allocation 50 50 50

copy overrun 50 50 4 50

off-by-one 50 1 50 2 50 1

synchronization 50 50 50

Total 650 7 (1.1%) 650 10 (1.5%) 650 3 (0.5%)

The Rio File Cache: Surviving Operating System Crashes 7

because the injected fault directly overwrites a portion of memory, and this portion of memory has a rea-
sonable chance of overlapping with a file cache buffer.

While slightly less reliable than disks, Rio without protection ismuch more reliable than we had
expected and is reliable enough for most systems. To illustrate, consider a system that crashes once every
two months (a somewhat pessimistic estimate for production-quality operating systems). If these crashes
were the sole cause of data corruption, the MTTF (mean time to failure) of a disk-based system would be
15 years, and the MTTF of Rio without protection would be 11 years. That is, if your system crashes once
every two months, you can expect to lose a few file blocks about once a decade with Rio, even with no pro-
tection! Even though the faults we inject probably do not perfectly represent real-world crashes, the quali-
tative conclusion is clear:warm reboot enables a file cache to be about as reliable as disk, even with no
protection.

These results stand in sharp contrast to the general feeling among computer scientists that operating
system crashes often corrupt files in memory. We believe the results are due to the multitude of consistency
checks present in a production operating system, which stop the system very soon after a fault is injected
and thereby limit the amount of damage. In addition to the standard sanity checks written by programmers,
the virtual memory system implicitly checks each load/store address to make sure it is a valid address. Par-
ticularly on a 64-bit machine, most errors are first detected by issuing an illegal address [Kao93, Lee93a].

Thus, even without protection, Rio stores files about as reliably as a write-through file system, and
this is the configuration we recommend for most systems. However, some applications will require even
higher levels of safety. The rightmost section of Table 1 shows the reliability of the Rio file cache with pro-
tection turned on. Out of 650 crashes, we measured only three corruptions (0.5%). Thus Rio with protec-
tion provides reliability even higher than a write-through file cache while issuing no reliability-induced
writes to disk! We recorded six crashes where the Rio protection mechanism was invoked to prevent an
illegal write to the file cache (three for copy overruns, three for pointer); these indicate cases where the file
cache would have been corrupted if the protection mechanism had been off. We believe that Rio’s protec-
tion mechanism provides higher reliability than a write-through file cache because it halts the system when
it detects an attempted illegal access. Write-through file caches, in contrast, may continue to run and thus
propagate corrupted memory data to disk.

4 Performance
We consider the main benefit of Rio to be reliability: all writes to the file cache are immediately as

permanent and safe as files on disk. Rio also improves performance by eliminating all reliability-induced
writes to disk. Table 2 compares the performance (on the Andrew file system benchmark) of Rio with sev-
eral variations on the Unix file system, each providing different guarantees on when data is made perma-
nent [Howard88, Ousterhout90]. Rio without protection performs 3-20 times faster than systems with
comparable reliability guarantees (write-through on write, write-through on close). Rio also performs 35%
faster than the standard Unix file system. Much of this advantage is due to UFS’s synchronous (write-

Table 2: Performance Comparison. This table compares the performance (on the Andrew file system
benchmark) of Rio with several variations on the Unix file system, each providing different guarantees on when
data is made permanent. Rio without protection makes data permanent after each write, yet has performance
35% better than the standard Unix file system and 8% better than a system where metadata updates are delayed
by 30 seconds before being written to disk [Ganger94]. Adding protection slows Rio performance down by
20%, but some applications may require the extra margin of safety this provides. Other file systems that
guarantee data permanence after each file write or close perform 3-20 times slower than Rio. MFS, which is
completely memory-resident and does no disk I/O, is shown for comparison.

Data Permanent Running Time

Memory File System never 12.3 seconds

UFS with delayed metadata updates after 30 seconds 15.4 seconds

UFS after 30 seconds 21.8 seconds

UFS with write-through after each close after close 49.0 seconds

UFS with write-through after each write after write 305.4 seconds

Rio without protection after write 14.2 seconds

Rio with protection after write 17.0 seconds

The Rio File Cache: Surviving Operating System Crashes 8

through) metadata updates, so we also measure UFS after delaying all metadata updates by 30 seconds (the
optimal “no-order” system in [Ganger94]). Rio still performs 8% faster than this system due to the sync
every 30 seconds. Yet while these systems lose 30 seconds of recently written data on a crash, Rio loses
none. MFS, which is completely memory-resident and does no disk I/O, is shown to illustrate optimal per-
formance [McKusick90]. Though suitable only for temporary files, MFS achieves superior performance
because of its simplicity—its code is 1/10 the size of UFS’s! Adding protection slows Rio performance
down by 20%, but some applications may require the extra margin of safety this provides.

5 Architectural Support for Reliable File Caches
The conclusion that memory can be considered a safe place for permanent data has several implica-

tions for architects. A small amount of hardware support at the memory level would make protection eas-
ier. An ideal memory controller would enable file system procedures to prevent writes to certain physical
pages [Banatre91]. One simple way to implement this is for the controller to store a write-permission bit
for each memory page and map the write-permission bits into the processor’s address space. The system
could then use these write-permission bits to provide fine-grained protection at the physical page level,
replacing the virtual memory and code-patching schemes described in Section 2.1.

There are several engineering implications as well if memory contains permanent data. A system
should be able to be reset without erasing memory; and CPU caches, because they contain memory data,
should also preserve their contents on a normal reset. DEC Alphas allow a reset and boot without erasing
memory or the CPU caches [DEC94]; the PCs we have tested do not. To make data accessible during a
hardware failure, it should be possible to move a memory board to a different machine without losing
power (just as disks can be moved without losing data) [Moran90, Baker92a].

6 Related Work
We divide the research related to this paper into two areas: field studies/fault injection and protection

schemes.

6.1 Field Studies and Fault Injection
Studies have shown that software is the dominant cause of system outages [Gray90], and several stud-

ies have investigated system software errors. Sullivan and Chillarege classify software faults in the MVS
operating system; in particular, they analyze faults that corrupt program memory (overlays) [Sullivan91].
Lee and Iyer study and classify software failures in Tandem’s Guardian operating system [Lee93a]. These
studies provide valuable information about failures in production environments; in fact, many of the fault
types in Section 3.1 were inspired by the major error categories from [Sullivan91] and [Lee93a]. However,
these studies do not provide data on how often system crashes corrupt the file cache, which may have dif-
ferent failure characteristics than randomly accessed data structures [Sullivan95].

Software fault injection is a popular technique for evaluating the behavior of prototype systems in the
presence of hardware and software faults. See [Iyer95] for an excellent introduction to the overall area and
a summary of much of the past work on fault injection, such as FINE [Kao93], FIAT [Barton90], and FER-
RARI [Kanawati95]. As with field studies of system crashes, these papers on fault injection inspired many
of the fault categories used in this paper. However, we know of no paper on fault injection that has specifi-
cally measured the effects of faults on permanent data in memory.

6.2 Protecting Memory
Several researchers have proposed ways to protect memory from software failures [Copeland89],

though to our knowledge none have evaluated how effectively memory withstood these failures.
The only file system we are aware of that attempts to make all permanent files reliable while in mem-

ory is Phoenix [Gait90]. Phoenix keeps two versions of an in-memory file system. One of these versions is
kept write-protected; the other version is unprotected and evolves from the write-protected one via copy-
on-write. At periodic checkpoints, the system write-protects the unprotected version and deletes obsolete
pages in the original version. Our proposed mechanism in Section 2.1 differs from Phoenix in two major
ways: 1) Phoenix does not ensure the reliability of every write; instead, writes are only made permanent at
periodic checkpoints; 2) Phoenix keeps multiple copies of modified pages, while we keep only one copy.

Harp protects a log of recent modifications byreplicating it in volatile, battery-backed memory across
several server nodes [Liskov91]. The Recovery Box keeps special system state in a region of memory
accessed only through a rigid interface [Baker92b]. No attempt is made to prevent other procedures from
accidentally modifying the recovery box, although the system detects corruption by maintaining check-
sums. Banatre, et. al. implement stable transactional memory, which protects memory contents with dual

The Rio File Cache: Surviving Operating System Crashes 9

memory banks, a special memory controller, and explicit calls to allow write access to specified memory
blocks [Banatre91]. Our work seeks to make all files in memory reliable without special-purpose hardware
or replication.

General mechanisms may be used to help protect memory from software faults. [Needham83] sug-
gests changing a machine’s microcode to check certain conditions when writing a memory word. This is
similar to modifying the memory controller to enforce protection, as are Johnson’s and Wahbe’s sugges-
tions for various hardware mechanisms to trap the updates of certain memory locations [Johnson82,
Wahbe92]. Hive uses the Flash firewall to protect memory against wild writes by other processors in a mul-
tiprocessor [Chapin95]. Hive preemptively discards pages that are writable by failed processors, an option
not available when storing permanent data in memory. Object code modification has been suggested as a
way to provide data breakpoints [Kessler90, Wahbe92] and fault isolation between software modules
[Wahbe93].

Other projects seek to improve the reliability of memory against hardware faults such as power out-
ages and board failures. eNVy implements a memory board based on non-volatile, flash RAM [Wu94].
eNVy uses copy-on-write, page remapping, and a small, battery-backed, SRAM buffer to hide flash
RAM’s slow writes and bulk erases. The Durable Memory RS/6000 uses batteries, replicated processors,
memory ECC, and alternate paths to tolerate a wide variety of hardware failures [Abbott94].

Finally, several papers have examined the performance advantages and management of reliable mem-
ory [Copeland89, Baker92a, Biswas93, Akyurek95], and countless papers have sought to improve disk
performance via data placement, logging, scheduling, and so forth.

7 Conclusions
We have made a case for reliable file caches: main memory that can survive operating system crashes

and be as safe and permanent as disk. Our reliability experiments show that even without extra protection,
warm reboot makes files in memory about as safe as files written through to disk while performing 20
times faster than write-through file systems. Rio makes all writes immediately permanent, yet performs
faster than systems that lose 30 seconds of data on a crash: 35% faster than a standard delayed-write file
system and 8% faster than a system that delays both data and metadata. We recommend Rio without pro-
tection for most situations. For applications that demand even higher levels of reliability, Rio’s optional
protection mechanism makes memory even safer than a write-through file system while while lowering
performance 20% compared to a pure write-back system.

Reliable file caches have striking implications for future system designers:
• Write-backs to disk are no longer needed except when the file cache fills up, changing the assumptions

about write traffic behind some file system research such as LFS [Rosenblum92, Baker91].
• Delaying writes to disk until the file cache fills up enables the largest possible number of files to die in

memory and enables remaining files to be written out efficiently in arbitrarily large units. Thus Rio
improves performance moderately over delayed-write systems.

• Applications requiring instant permanence need no longer write synchronously to disk; this vastly
improves performance over write-through systems.

• Applications need no longer lose 30 seconds of data on a crash, because all updates are permanent as
soon as they reach the file cache. Thus Rio improves reliability significantly over delayed-write sys-
tems. For systems without battery backup, warm reboot can be used to eliminate the 30 seconds of data
often lost when systems crash.

To further test and prove our ideas, we have installed a departmental file server using the Rio file
cache without protection and with reliability-induced writes to disk turned off. Among other things, this
file server stores the active copy of this paper and the sole copy of the authors’ mail. We plan to redo this
study on a different operating system and to perform a similar fault-injection experiment on a database sys-
tem. We believe these will show that our conclusions about memory’s resistance to software crashes apply
to other large software systems.

The Rio file cache provides a new storage component for system design: one that is as fast, large,
common, and cheap as main memory, yet as reliable and stable as disk. We look forward to seeing how
system designers use this new storage component.

8 References
[Abbott94] M. Abbott, D. Har, L. Herger, M. Kauffmann, K. Mak, J. Murdock, C. Schulz, T. B. Smith,

B. Tremaine, D. Yeh, and L. Wong. Durable Memory RS/6000 System Design. InProceedings of the

The Rio File Cache: Surviving Operating System Crashes 10

1994 International Symposium on Fault-Tolerant Computing, pages 414–423, 1994.

[Akyurek95] Sedat Akyurek and Kenneth Salem. Management of partially safe buffers.IEEE Transactions on
Computers, 44(3):394–407, March 1995.

[APC96] The Power Protection Handbook. American Power Conversion, 1996.

[Baker91] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K. Ousterhout. Mea-
surements of a Distributed File System. InProceedings of the 13th ACM Symposium on Operating
Systems Principles, pages 198–212, October 1991.

[Baker92a] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer. Non-Volatile Mem-
ory for Fast Reliable File Systems. InFifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-V), pages 10–22, October 1992.

[Baker92b] Mary Baker and Mark Sullivan. The Recovery Box: Using Fast Recovery to Provide High Availability
in the UNIX Environment. InProceedings USENIX Summer Conference, June 1992.

[Banatre91] Michel Banatre, Gilles Muller, Bruno Rochat, and Patrick Sanchez. Design decisions for the FTM: a
general purpose fault tolerant machine. InProceedings of the 1991 International Symposium on Fault-
Tolerant Computing, pages 71–78, June 1991.

[Barton90] James H. Barton, Edward W. Czeck, Zary Z. Segall, and Daniel P. Siewiorek. Fault injection experi-
ments using FIAT.IEEE Transactions on Computers, 39(4):575–582, April 1990.

[Biswas93] Prabuddha Biswas, K. K. Ramakrishnan, Don Towsley, and C. M. Krishna. Performance Analysis of
Distributed File Systems with Non-Volatile Caches. InProceedings of the 1993 International Sympo-
sium on High Performance Distributed Computing (HPDC-2), pages 252–262, July 1993.

[Chapin95] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan Teodosiu, and Anoop Gupta.
Hive: Fault Containment for Shared-Memory Multiprocessors. InProceedings of the 1995 Sympo-
sium on Operating Systems Principles, December 1995.

[Chutani92] Sailesh Chutani, Owen T. Anderson, Michael L. Kazar, Bruce W. Leverett, W. Anthony Mason, and
Robert N. Sidebotham. The Episode File System. InProceedings of the 1992 Summer USENIX Con-
ference, pages 43–60, January 1992.

[Copeland89] George Copeland, Tom Keller, Ravi Krishnamurthy, and Marc Smith. The Case for Safe RAM. In
Proceedings of the Fifteenth International Conference on Very Large Data Bases, pages 327–335,
August 1989.

[DEC94] DEC 3000 300/400/500/600/700/800/900 AXP Models System Programmer’s Manual. Technical re-
port, Digital Equipment Corporation, July 1994.

[DEC95] August 1995. Digital Unix development team, Personal Communication.

[DeWitt84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. Wood. Implementation
Techniques for Main Memory Database Systems. InProceedings of the 1984 ACM SIGMOD Inter-
national Conference on Management of Data, pages 1–8, June 1984.

[Gait90] Jason Gait. Phoenix: A Safe In-Memory File System.Communications of the ACM, 33(1):81–86, Jan-
uary 1990.

[Ganger94] Gregory R. Ganger and Yale N. Patt. Metadata Update Performance in File Systems.1994 Operating
Systems Design and Implementation (OSDI), November 1994.

[Gray90] Jim Gray. A Census of Tandem System Availability between 1985 and 1990.IEEE Transactions on
Reliability, 39(4), October 1990.

[Hartman93] John H. Hartman and John K. Ousterhout. Letter to the Editor.Operating Systems Review, 27(1):7–9,
January 1993.

[Howard88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and Performance in a Distributed File System.
ACM Transactions on Computer Systems, 6(1):51–81, February 1988.

[Iyer95] Ravishankar K. Iyer. Experimental Evaluation. InProceedings of the 1995 International Symposium
on Fault-Tolerant Computing, pages 115–132, July 1995.

[Johnson82] Mark Scott Johnson. Some Requirements for Architectural Support of Software Debugging. InPro-
ceedings of the 1982 International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 140–148, April 1982.

[Kanawati95] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. FERRARI: A Flexible Software-
Based Fault and Error Injection System.IEEE Transactions on Computers, 44(2):248–260, February

The Rio File Cache: Surviving Operating System Crashes 11

1995.

[Kane92] Gerry Kane and Joe Heinrich.MIPS RISC Architecture. Prentice Hall, 1992.

[Kao93] Wei-Lun Kao, Ravishankar K. Iyer, and Dong Tang. FINE: A Fault Injection and Monitoring Envi-
ronment for Tracing the UNIX System Behavior under Faults.IEEE Transactions on Software Engi-
neering, 19(11):1105–1118, November 1993.

[Kessler90] Peter B. Kessler. Fast breakpoints: Design and implementation. InProceedings of the 1990 Confer-
ence on Programming Language Design and Implementation (PLDI), pages 78–84, June 1990.

[Lee93] Inhwan Lee and Ravishankar K. Iyer. Faults, Symptoms, and Software Fault Tolerance in the Tandem
GUARDIAN Operating System. InInternational Symposium on Fault-Tolerant Computing (FTCS),
pages 20–29, 1993.

[Leffler89] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman.The Design
and Implementation of the 4.3BSD Unix Operating System. Addison-Wesley Publishing Company,
1989.

[Liskov91] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, and Michael Will-
iams. Replication in the Harp File System. InProceedings of the 1991 Symposium on Operating Sys-
tem Principles, pages 226–238, October 1991.

[McKusick90] Marshall Kirk McKusick, Michael J. Karels, and Keith Bostic. A Pageable Memory Based Filesys-
tem. InProceedings USENIX Summer Conference, June 1990.

[Moran90] J. Moran, Russel Sandberg, D. Coleman, J. Kepecs, and Bob Lyon. Breaking Through the NFS Per-
formance Barrier. InProceedings of EUUG Spring 1990, April 1990.

[Needham83] R. M. Needham, A. J. Herbert, and J. G. Mitchell. How to Connect Stable Memory to a Computer.
Operating System Review, 17(1):16, January 1983.

[Ohta90] Masataka Ohta and Hiroshi Tezuka. A Fast /tmp File System by Delay Mount Option. InProceedings
USENIX Summer Conference, pages 145–150, June 1990.

[Ousterhout85] John K. Ousterhout, Herve Da Costa, et al. A Trace-Driven Analysis of the UNIX 4.2 BSD File Sys-
tem. InProceedings of the 1985 Symposium on Operating System Principles, pages 15–24, December
1985.

[Ousterhout90] John K. Ousterhout. Why aren’t operating systems getting faster as fast as hardware? InProceedings
USENIX Summer Conference, pages 247–256, June 1990.

[Rosenblum92] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a Log-Structured File
System.ACM Transactions on Computer Systems, 10(1):26–52, February 1992.

[Silberschatz94] Abraham Silberschatz and Peter B. Galvin.Operating System Concepts. Addison-Wesley, 1994.

[Sites92] Richard L. Sites, editor.Alpha Architecture Reference Manual. Digital Press, 1992.

[Srivastava94] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building Customized Program Analysis
Tools. InProceedings of the 1994 Conference on Programming Language Design and Implementa-
tion (PLDI), pages 196–205, June 1994.

[Sullivan91] Mark Sullivan and R. Chillarege. Software Defects and Their Impact on System Availability–A Study
of Field Failures in Operating Systems. InProceedings of the 1991 International Symposium on Fault-
Tolerant Computing, June 1991.

[Sullivan95] Mark Sullivan, December 1995. personal communication.

[Tanenbaum95] Andrew S. Tanenbaum.Distributed Operating Systems. Prentice-Hall, 1995.

[Wahbe92] Robert Wahbe. Efficient Data Breakpoints. InProceedings of the 1992 International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), October 1992.

[Wahbe93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient Software-Based
Fault Isolation. InProceedings of the 14th ACM Symposium on Operating Systems Principles, pages
203–216, December 1993.

[Wu94] Michael Wu and Willy Zwaenepoel. eNVy: A Non-Volatile, Main Memory Storage System. InPro-
ceedings of the 1994 International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), October 1994.

