
1993 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems.

A New Approach to I/O Performance Evaluation—
Self-Scaling I/O Benchmarks, Predicted I/O Performance

Peter M. Chen David A. Patterson

Computer Science Division, University of California at Berkeley
pmchen@cs.Berkeley.EDU, pattrsn@cs.Berkeley.EDU

Abstract. Current I/O benchmarks suffer from several chronic
problems: they quickly become obsolete, they do not stress the I/O
system, and they do not help in understanding I/O system perfor-
mance. We propose a new approach to I/O performance analysis.
First, we propose a self-scaling benchmark that dynamically
adjusts aspects of its workload according to the performance
characteristic of the system being measured. By doing so, the
benchmark automatically scales across current and future sys-
tems. The evaluation aids in understanding system performance
by reporting how performance varies according to each of five
workload parameters. Second, we propose predicted perfor-
mance, a technique for using the results from the self-scaling
evaluation to quickly estimate the performance for workloads that
have not been measured. We show that this technique yields rea-
sonably accurate performance estimates and argue that this
method gives a far more accurate comparative performance
evaluation than traditional single point benchmarks. We apply
our new evaluation technique by measuring a SPARCstation 1+
with one SCSI disk, an HP 730 with one SCSI-II disk, a Sprite
LFS DECstation 5000/200 with a three-disk disk array, a Convex
C240 minisupercomputer with a four-disk disk array, and a Sol-
bourne 5E/905 fileserver with a two-disk disk array.

1. Introduction
As processors continue to improve their performance faster

than I/O devices [Patterson88], I/O will increasingly become the
system bottleneck. There is therefore an increased need to under-
stand and compare the performance of I/O systems, hence the
need for I/O-intensive benchmarks. The benefits of good bench-
marks are well understood—when benchmarks are representative
of users’ applications, they channel vendor optimization and
research efforts into improvements that benefit users. Good
benchmarks also assist users in purchasing machines by allowing
fair, relevant comparisons.

Recent efforts to standardize benchmarks, such as SPEC
[Scott90] and Perfect Club [Berry89], have increased our under-
standing of computing performance and helped create a fair play-
ing field on which companies can compete. These standardization
efforts have focused on CPU-intensive applications [Scott90],
however, and intentionally avoided I/O intensive applications
[Berry89].

In this paper, we develop criteria for ideal I/O benchmarks
and show how current I/O benchmarks fall short of these. We
then describe a new approach to I/O benchmarks—a self-scaling
benchmark, which dynamically adjusts its workload to the system
being measured, and predicted performance, which estimates the
performance for unmeasured workloads based on the performance
from a small set of measured workloads. The self-scaling bench-
mark reports how performance varies with each of five workload
parameters. This helps evaluators to understand systems and
helps users to choose systems that perform well for their work-
load. Predicted performance allows performance evaluators to

accurately estimate the performance one could expect on a work-
load different than the exact ones measured in standard bench-
marks.

2. The Ideal I/O Benchmark
In this paper, an I/O benchmark measures the data I/O per-

formance seen by an end user issuing reads and writes.
Specifically, we are not trying to measure the performance of file
system commands, such as deleting files, making directories, or
opening and closing files. This definition dictates that we issue
user I/O requests, which in UNIX typically go through the file or
buffer cache.

The ideal I/O benchmark will have several characteristics.
First, a benchmark should help system designers and users under-
stand why the system performs as it does. Computer architects
and operating system programmers need benchmarks to evaluate
design changes and isolate reasons for poor performance. Users
should be able to use benchmarks as well to understand optimal
ways to use the machine. For instance, if a user wanted to avoid
thrashing the file cache, the ideal I/O benchmark should be able to
provide information on the file cache size for any machine. This
criteria may require reporting results for several different work-
loads, enabling the user to compare these results. These multiple
workloads should require little human interaction to run.

Second, to maintain the focus of measuring and under-
standing I/O systems, an I/O benchmark should be I/O limited.
By our definition of an I/O benchmark, this implies that most of
the time should be spent doing data I/O. In systems that mask
response time with read prefetching or write-behind, I/O limited
implies that taking out all the reads and writes should decrease
running time more than taking out all non-I/O components.

Third, the ideal I/O benchmark should scale gracefully
over a wide range of current and future machines. Without a
well-planned scaling strategy, I/O benchmarks quickly become
obsolete as machines evolve. For instance, IOStone tries to exer-
cise the memory hierarchy but touches only 1 MB of user data.
Perhaps at the time IOStone was written 1 MB was a lot of data
but no longer. One recent example of how I/O systems are evolv-
ing is disk arrays [Patterson88, Gibson91, Chen90, Salem86].
Disk arrays allow multiple I/Os to be in progress simultaneously.
Most current I/O benchmark do not scale the number of processes
issuing I/O, and hence are unable to properly stress disk arrays.
Unfortunately, it is difficult to find widespread agreement on a
scaling strategy, especially for benchmarks intended for a wide
range of audiences.

Fourth, a good I/O benchmark should allow fair comparis-
ons across machines. This comparison has two aspects. First, a
fair comparison across machines should be able to be made for
I/O workloads identical to the benchmark. However, users rarely
have the same workload as a standard benchmark. Thus, it should
also be possible to use the results from a benchmark to make
meaningful comparisons for workloads that differ from the



benchmark.
Fifth, the ideal I/O benchmark would be relevant to a wide

range of applications. It is certainly easier to target a benchmark
to a specific audience, but it would be better for a benchmark to be
usable by many audiences.

Finally, for results to be meaningful, benchmarks must be
tightly specified. Results should be reproducible; optimizations
that are allowed and disallowed must be explicitly stated; the
machine environment on which the benchmarking takes place
must be well-defined and reported, and so on. In this paper, we
leave this aspect of benchmarking to standardization organizations
such as SPEC [Scott90] and the Transaction Processing Perfor-
mance Council [TPCA89, TPCB90].

In summary, the six characteristics of the ideal I/O bench-
mark are as follows: it should help in understanding system per-
formance; it should be I/O limited; it should scale gracefully over
a wide range of current and future machines; it should allow fair
comparisons across machines; it should be relevant to a wide
range of applications; and it should be tightly specified.

3. Current I/O Benchmarks
In this section, we examine current benchmarks used to

evaluate I/O systems. The benchmarks we consider are Andrew
[Howard88], TPC-B [Anon85, TPCA89, TPCB90], Sdet
[Gaede81, Gaede82, SPEC91b, SPEC91a], Bonnie [Bray90],
and IOStone [Park90]1. Of these, only Bonnie and IOStone

63%

applicable

generally

comparison

fair

strategy

scaling

system

understand

helps

TPCBAndrew Sdet (5) IOStoneBonnie

Current State of I/O Benchmarks

good

poor

I/O limited

(% time in I/O

MB touched)

5%

4.5 MB

81%

163 MB

15%-97%

100 MB 1 MB

26%10%

8 MB

LADDIS

Figure 1: Current State of I/O Benchmarks. In this figure, we show a
qualitative evaluation of benchmarks used today to evaluate I/O systems.
We see that several are not I/O bound and that most do not provide under-
standing of the system, lack a well-defined scaling strategy, and are not
generally applicable. The percent time spent in I/O was measured on the
DECstation 5000/200 of Figure 2. LADDIS was not available for execu-
tion at this time, but a pre-release beta version spends 63% of its execution
time doing reads and write; the rest of the time is spent in other NFS
operations, such as lookup (17%) and getattr (6%).

�����������������������������������������������������������������������

1LADDIS, a new benchmark being developed under SPEC, is not
yet available for public performance disclosure. We include it in our qual-
itative critique of benchmarks, however (Figure 1). The only other I/O
benchmark known to the authors is the AIM III Suite, whose code was not
available. The AIM III suite is similar to Sdet in that it scales the number

specifically focus on measuring I/O performance. Andrew is
meant as a convenient yardstick for measuring file system perfor-
mance; TPC-B is a transaction processing benchmark; Sdet, part
of the SPEC System Development Multiuser (SDM) Suite, is
designed to measure system throughput in a multi-tasking
software development environment. Although some of these
benchmarks are not focused solely on measuring I/O performance,
they are nonetheless used today in I/O performance evaluation. In
applying our list of benchmark goals from the previous section to
current I/O benchmarks, we see that there is much room for
improvement. We show a qualitative evaluation of today’s I/O
benchmarks in Figure 1 and make the following observations:
� Many I/O benchmarks are not I/O limited. On a DECstation

5000/200 running the Sprite Operating System [Ousterhout88],
Andrew, Sdet2, and IOStone spend 25% or less of their time
doing I/O. Further, many of the benchmarks touch very little
data. IOStone touches only 1 MB of user data; Andrew
touches only 4.5 MB.

� Today’s I/O benchmarks do not help in understanding system
performance. Andrew and IOStone give only a single
bottom-line performance result. TPCB and Sdet fare some-
what better by showing the user system performance under
various loads. Bonnie begins to help the user understand per-
formance by running six different workloads. These work-
loads show the performance differences between reads versus
writes and block versus character I/O, but do not vary other
aspects of the workload, such as the number of I/O’s occurring
in parallel.

� Most of today’s I/O benchmarks have no general scaling stra-
tegy. Several make no provision for adjusting the workload to
stress machines with larger file caches, for example. Without a
well-defined scaling strategy, I/O benchmarks quickly grow
obsolete. Several exceptions are notable. TPC-B has an
extremely well-defined scaling strategy, made possible by
TPC-B’s narrow focus on debit-credit style transaction pro-
cessing and the widespread agreement on how databases
change with increasing database throughput. Sdet also has a
superior scaling strategy, varying the number of simultane-
ously active scripts until the peak performance is achieved.
This idea of scaling aspects of the workload automatically is a
major improvement over single workload benchmarks. How-
ever, Sdet does not scale any other aspects of the benchmark,
such as request size or read/write ratio. LADDIS, when for-
mally defined, will likely have a scaling strategy similar to
Sdet. It will probably scale a few workload parameters, such
as disk space or number of clients, but will leave other parame-
ters fixed.

� Today’s I/O benchmarks make fair system comparisons for
workloads identical to the benchmark but do not help in draw-
ing conclusions about the relative performance of machines
for other workloads. It would be ideal if results from the
benchmark could be applied to a wider range of workloads.

� Today’s I/O benchmarks focus on a narrow application range.
For example, TPC-B is intended solely for benchmarking
debit-credit transaction processing systems.

�����������������������������������������������������������������������

of scripts running in parallel but no other workload parameter. Each
simultaneously running script uses 3.5 MB.

2 This refers to Sdet running at the peak throughput concurrency
level of 5.



� �������������������������������������������������������������������������������������������������������������������������������������
System Name SPARCstation 1+ DECstation 5000/200 HP 730� �������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������
Year Released 1989 1990 1991

CPU SPARC MIPS R3000 PA-RISC
SPECmarks 8.3 19.9 76.8
Disk System CDC Wren IV 3 Wrens (RAID 0) HP 1350SX

I/O Bus SCSI-I SCSI-I Fast SCSI-II
Mem. Peak Speed 80 MB/s 100 MB/s 264 MB/s

Memory Size 28 MB 32 MB 32 MB
Operating System SunOS 4.1 Sprite LFS HP/UX 8.07� �������������������������������������������������������������������������������������������������������������������������������������

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�������������������������������������������������������������������������������������������������������������������������������������
System Name Convex C240 Solbourne 5E/905��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Year Released 1988 1991

CPU C2 (4 processors) SPARC (5 processors)
Speed 220 MIPS 22.8 SPECint

Disk System 4 DKD-502 RAID 5 2 Seagate IPI
I/O Bus IPI-2 IPI-2

Mem. Peak Speed 200 MB/s 128 MB/s
Memory Size 1024 MB 384 MB

Operating System ConvexOS 10.1 (BSD derived) SunOS 4.1A.2 (revised)�������������������������������������������������������������������������������������������������������������������������������������
��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

Figure 2: System Platforms. This table shows the five systems on which
we run benchmarks. The DECstation [DECstation90] uses a three disk
RAID disk array [Patterson88] with a 16 KB striping unit [Chen90] and is
configured without redundancy. The SPECmark rating is a measure of the
processor speed; ratings are relative to the speed of a VAX 11/780. The
full name of the HP 730 is the HP Series 700 Model 730 [HP730].

4. A New Approach for I/O Benchmarks—An Overview
We propose two new ideas in I/O benchmarks. First, we

propose a benchmark that automatically scales its workload to the
system being measured. During evaluation, the benchmark
automatically explores the workload space, searching for a
relevant workload on which to base performance graphs.

Because the base workload resulting from self-scaling
evaluation depends on the characteristics of each system, we lose
the ability to directly compare performance results for multiple
systems. We propose using predicted performance to restore this
ability. Predicted performance uses the results of the self-scaling
benchmark to estimate performance for unmeasured workloads.
The ability to accurately estimate performance for arbitrary work-
loads has several advantages. First, it allows fairer comparisons
to be drawn between machines for their intended use—today,
users are forced to apply the relative performance from bench-
marks that may be quite different from their actual workload.
Second, the results can be applied to a much wider range of appli-
cations than today’s benchmarks. Of course, the accuracy of the
prediction determines how effectively prediction can be used to
compare systems. We explore the method and accuracy of predic-
tion in Section 9.

5. Workload Model
The workload that the self-scaling evaluation uses is

characterized by five parameters. These parameters lead to the
first-order performance effects in I/O systems. See Figure 5 for
examples of each parameter.
� uniqueBytes—the number of unique data bytes read or written

in a workload; essentially the total size of the data.
� sizeMean—the average size of an I/O request. We choose

sizes from a normal distribution3 with a coefficient of variation
equal to 1.

�����������������������������������������������������������������������
3This distribution of sizes can be particularly useful in representing

multiple applications running simultaneously.

� readFrac—the fraction of reads; the fraction of writes is
1−readFrac .

� seqFrac—the fraction of requests that sequentially follow the
prior request. For workloads with multiple processes, each
process is given its own thread of addresses.

� processNum—the concurrency in the workload, that is, the
number of processes simultaneously issuing I/O.

In this paper, a workload refers to a user-level program
with parameter values for each of the above five parameters. This
program spawns and controls several processes if necessary.

The most important question in developing a synthetic
workload is the question of representativeness [Ferrari84]. A syn-
thetic workload should have enough parameters such that its per-
formance is close to that of an application with the same set of
parameter values.4 To show that our workload captures the impor-
tant features of an I/O workload, Figure 3 compares the perfor-
mance of two I/O-bound applications to the performance of the
synthetic workload with those two applications’ parameter values.
We see that both Sort and TPC-B can be modeled quite accu-
rately. Throughput and response time are both accurate within a
few percent. This accuracy increases our confidence that the
parameters of the synthetic workload capture the first-order per-
formance effects of an I/O workload.

���	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�
Application Throughput Response Time���	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	����	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

Sort 0.20 MB/s 11.7 ms
Workload Model 0.20 MB/s 11.0 ms���	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	����	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

TPC-B 0.13 MB/s 14.0 ms
Workload Model 0.13 MB/s 12.3 ms���	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�





















































Figure 3: Representativeness of Workload. This table shows how accu-
rately our synthetic workload mimics the performance of two I/O-bound
applications, Sort and TPC-B. All runs were done on a DECstation 5000
running Sprite. The input to sort was four files totaling 48 MB.

processNum

sizeMean

readFrac

focal point

Figure 4: Workloads Reported by a Set of Single Parameter Graphs.
This figure illustrates the range of workloads reported by a set of single
parameter graphs for a workload of three parameters.

�����������������������������������������������������������������������
4Of course, given the uncertain path of future computer develop-

ment, it is impossible to determine a priori all the possible parameters
necessary to ensure representativeness. Even for current systems, it is pos-
sible to imagine I/O workloads that interact with the system in such a way
that no synthetic workload (short of a full trace) could duplicate that I/O
workload’s performance.



uniqueBytes (MB)

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

uniqueBytes (MB)

3.0

2.0

1.0

0.0
50403020100

sizeMean (KB)

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

sizeMean (KB)

3.0

2.0

1.0

0.0
1000100101

readFrac

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

readFrac

3.0

2.0

1.0

0.0
1.00.50.0

(a) (b) (c)

processNum

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

processNum

3.0

2.0

1.0

0.0
10987654321

seqFrac

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

seqFrac

3.0

2.0

1.0

0.0
1.00.50.0

(d) (e)
Figure 5: Results from a Self-Scaling Benchmark That Scales All Parameters. In this figure, we show results from an self-scaling benchmark of a
SPARCstation 1 with 28 MB of memory and a single SCSI disk. The benchmark reports the range of workloads, shown as the shaded region, which perform
well on this system. For example, this SPARCstation performs well if the total number of unique bytes touched is less than 20 MB. It also shows how per-
formance varies with each workload parameter. Each graph varies exactly one parameter, keeping all other parameters fixed at their focal point. For these
graphs, the focal point is the point at which all parameters are simultaneously at their 75% performance point. The 75% performance point for each parame-
ter is defined to be the least restrictive workload value that yields at least 75% of the maximum performance. The range of workloads which perform well
(shaded), is defined as the range of values that yields at least 75% of the maximum performance. The 75% performance point found by the benchmark for
each parameter is uniqueBytes = 21 MB, sizeMean = 10 KB, readFrac = 0, processNum = 1, seqFrac = 0.
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

6. Single Parameter Graphs
Most current benchmarks report the performance for only a

single workload. The better benchmarks report performance for
multiple workloads, usually in the form of a graph. TPC-B and
Sdet, for example, report how performance varies with load. But
even these better benchmarks do not show in general how perfor-
mance depends on parameters such as request size or the mix of
reads and writes.

The main output of our self-scaling benchmark is a set of
performance graphs, one for each parameter (uniqueBytes, size-
Mean, readFrac, processNum, and seqFrac) as in Figure 5. While
graphing one parameter, all other parameters remain fixed. The
value at which a parameter is fixed while graphing other

parameters is called the focal point for that parameter. The vector
of all focal points is called the focal vector. In Figure 5, for exam-
ple, the focal vector is {uniqueBytes = 21 MB, sizeMean = 10
KB, readFrac = 0, processNum = 1, seqFrac = 0}. Hence, in Fig-
ure 5a, uniqueBytes is varied while the sizeMean = 10 KB, read-
Frac = 0, processNum = 1, and seqFrac = 0.

Figure 4 illustrates the workloads reported by one set of
such graphs for a three parameter workload space. Although
these graphs show much more of the entire workload space than
current benchmarks, they still show only single parameter perfor-
mance variations; they do not display dependencies between
parameters. Unfortunately, completely exploring the entire five
dimensional workload space requires far too much time. For



example, an orthogonal sampling of six points per dimension
requires 65, almost 8000, points. On the Sprite DECstation, each
workload takes approximately 10 minutes to measure, thus 8000
points would take almost 2 months to gather! In contrast, measur-
ing six points for each graph of the five parameters requires only
30 points and 5 hours. The usefulness of these single parameter
graphs depends entirely on how accurately they characterize the
performance of the entire workload space. In the section on
predicted performance we shall see that, for a wide range of I/O
systems, the shapes of these performance curves are relatively
independent of the specific values of the other parameters.

7. First Try—Self-Scaling All Workload Parameters
A self-scaling benchmark is one that adjusts the workloads

that it runs and reports based on the capabilities of the system
being measured. Sdet and TPC-B both do this for one aspect of
the workload, that is, load (processNum) [SPEC91a, TPCB90].
Sdet reports the maximum throughput, which occurs at different
loads for different systems. TPC-B reports maximum throughput
subject to a response time constraint; this also occurs at different
loads for different systems. This section describes our first
attempt to create a self-scaling benchmark by generalizing this
type of scaling to all workload parameters.

The basic idea behind TPC-B and Sdet’s attempts to avoid
obsolescence is to scale one aspect of the workload, load, based
on what performs well on a system. Similarly, as we vary any one
of our five workload parameters (uniqueBytes, sizeMean, read-
Frac, processNum, and seqFrac), we can search for a parameter
value that performs well on the system. Of course, the parameter
value must be practically achievable (this rules out infinitely large
request sizes and extremely small values for uniqueBytes). One
way to choose this value is to look for a point in a parameter’s
performance curve that gives good, but not maximum, perfor-
mance. In this section, we set this performance point at 75% of
the maximum performance.

Using a simple iterative approach, it is possible to find a
focal vector for which each workload parameter is simultaneously
at its 75% performance point [Chen92]. Figure 5 shows results
from a benchmark that self-scales all parameters. The system
being measured is the one disk SPARCstation of Figure 2. In Fig-
ure 5 the shaded region on each graph is the range of workloads
that perform well for this system, that is, the workload values that
yield at least 75% of the maximum performance. When a parame-
ter is varied, the other parameters are fixed at their focal point
chosen by the benchmark (uniqueBytes = 21 MB, sizeMean = 10
KB, readFrac = 0, processNum = 1, seqFrac = 0). These are the
least restrictive5 values in the range of workloads that perform
well. Conclusions that these results help us reach about this sys-
tem are as follows:
� The effective file cache size is 21 MB. Applications that have

a working set larger than 21 MB will go to disk frequently.
� I/O workloads with larger average sizes yield higher

throughput. To get reasonable throughput, request sizes
should be at least 10 KB but no larger than 200 KB. This
information may help operating system programmers choose
the best block size.

�����������������������������������������������������������������������

5Least restrictive refers to workloads that are either easier for pro-
grammers to generate or easily transformable from more restrictive work-
loads. For instance, programmers can always break down a large request
into several, smaller requests; thus smaller sizes are less restrictive than
larger sizes.

� Workloads with almost all reads perform slightly better than
workloads with more writes, but there is not much difference.

� Increasing concurrency does not improve performance. As
expected, without parallelism in the disk system, workload
parallelism is of little value.

� Sequentiality does not affect performance at the global 75%
performance point.

Self-scaling all parameters gives interesting results and
helps us understand a system. There are, however, several prob-
lems with self-scaling all workload parameters. First, the iterative
process of finding the global 75% performance point may be slow.

Second, there are really two criteria in choosing the focal
vector point for a parameter. Take readFrac as an example. The
first criterion is what has been mentioned above—scaling read-
Frac to the value that performs well on this system. But, there is
also a second criterion: the performance curves while readFrac is
at its focal point should apply to workloads where readFrac
differs from its focal point. In other words, the shape of the per-
formance curves at the focal point of readFrac should be represen-
tative of the shape of the performance curves at other values of
readFrac. This can preclude choosing an extreme value. To illus-
trate, if reads were 100 times faster than writes, self-scaling all
parameters might pick readFrac = 1.0 as the focal point. But,
readFrac’s focal point of 1.0 may yield performance graphs for
the other parameters that do not apply to workloads with some
writes. It would be better to pick an intermediary value as the
focal point than the 75% performance point. In fact, as we shall
see in the section on predicted performance, general applicability
is a more important criterion than scaling to what performs well,
because, if the shape of the performance curve is generally appli-
cable, we can use it to estimate performance for any workload.

The third problem is that the uniqueBytes parameter often
has distinct performance regions. These regions correspond to the
various storage hierarchies in the system. In Figure 5a, unique-
Bytes smaller than 21 MB primarily uses the file cache, while uni-
queBytes larger than 21 MB primarily uses the disk. When uni-
queBytes is on the border between the file cache and disk region,
performance is often unstable—small changes in the value of

average

)
c
e
s
/
1
(

e
p
o
l
s

uniqueBytes (MB)

0.0

-0.1

-0.2

-0.3

-0.4

-0.5
403020100

slope

Figure 6: Slope of UniqueBytes Curve for SPARCstation 1+. This
figure plots the slope of the uniqueBytes curve (Figure 7). The one area of
the graph with slope below the average slope (0.06 per second) is near 20
MB. The self-scaling benchmark uses this information in a heuristic algo-
rithm to delineate performance regions.



sizeMean (KB)

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

sizeMean (KB)

3.0

2.0

1.0

0.0
1000100101

readFrac

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

readFrac

3.0

2.0

1.0

0.0
1.00.50.0

processNum

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

processNum

3.0

2.0

1.0

0.0
2.01.51.0

(a) (b) (c)

seqFrac

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

seqFrac

3.0

2.0

1.0

0.0
1.00.50.0

uniqueBytes (MB)

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

uniqueBytes (MB)

3.0

2.0

1.0

0.0
6050403020100

sizeMean (KB)

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

sizeMean (KB)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1000100101

(d) (e) (f)

readFrac

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

readFrac

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.00.50.0

processNum

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

processNum

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
2.01.51.0

seqFrac

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

seqFrac

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.00.50.0

(g) (h) (i)
Figure 7: Results from a Better Self-Scaling Benchmark of a SPARCstation 1+. This figure shows results from the revised self-scaling benchmark of a
SPARCstation 1+. The focal point for uniqueBytes is 12 MB in graphs a-d and 42 MB in graphs f-i. For all graphs, the focal points for the other parameters
is sizeMean = 20 KB, readFrac = 0.5, processNum = 1, seqFrac = 0.5. Increasing sizes improve performance, more so for disk accesses than file cache
accesses (Figures a and f). Reads are faster than writes, even when data is in the file cache. This is because inodes must still go to disk. Sequentiality in-
creases performance only for the disk region (Figure i).
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

uniqueBytes can lead to large changes in performance. The 75%
performance point is usually on the border between the storage
hierarchy regions, so choosing the focal point for uniqueBytes to
be that point makes it likely that performance will be unstable.
Graphing in the middle of a hierarchy level’s performance region
should be more stable than graphing on the border between per-
formance regions. Another problem that arises from the storage
hierarchy regions is that each level of the storage hierarchy may
give different performance shapes. Figures 8 shows how, depend-
ing on the storage hierarchy region, reads may be faster than

writes (uniqueBytes 15 MB), slower than writes (uniqueBytes 36
MB), or about the same speed as writes (uniqueBytes 2 MB).

8. A Better Self-Scaling Benchmark
There are a variety of solutions to the problems listed

above. For the distinct performance regions uncovered by unique-
Bytes, we measure and report multiple families of graphs, one
family for each performance region (Figure 5 reported a single
family of graphs). For instance, the first family of graphs is
shown in Figure 7a-d and has uniqueBytes = 12 MB. The second



family of graphs, shown in Figure 7f-i, has a separate focal point
with uniqueBytes = 42 MB. The self-scaling benchmark del-
ineates performance by measuring the slope of the uniqueBytes
curve (Figure 6).

To improve general applicability of the graphs, we choose
the focal point of each parameter to be more in the ‘‘middle’’ of
its range. For parameters such as readFrac and seqFrac, the range
is easily defined (0 to 1), hence a midpoint of 0.5 is the chosen
focal point. The remaining parameters are uniqueBytes, size-
Mean, and processNum. For each performance region, the focal
point for uniqueBytes is set at the middle of that region. For the
last two parameters, sizeMean and processNum, the focal point is
set at the value that yields performance half-way between the
minimum and maximum.

After these solutions and modifications the revised pro-
gram is called simply the self-scaling benchmark.

8.1. Examples
This section contains results from running the self-scaling

benchmark on the five systems described in Figure 2.

8.1.1. SPARCstation 1+
Figure 7 shows results from the self-scaling benchmark on

the SPARCstation 1+. The uniqueBytes values that characterized
the two performance regions are 12 MB and 42 MB. Graphs a-d
show the file cache performance region, measured with unique-
Bytes = 12 MB. Graphs f-i show the disk performance region,
measured with uniqueBytes = 42 MB. In addition to what we
learned from our first self-scaling benchmark, we see the follow-
ing:
� Larger request sizes yield higher performance. This effect is

more pronounced in the disk region.
� Reads are faster than writes, even when all the data fits in the

file cache (Figure 7b). Although the data fits in the file cache,
writes still cause i-node changes to be written to disk periodi-
cally for reliability in case of a system crash. This additional
overhead for writing causes writes to be slower than reads.

� Sequentiality offers no benefit in the file cache region (Figure
7b) but offers substantial benefit in the disk region (Figure 7a).

8.1.2. DECstation 5000/200
Figure 8 shows self-scaling benchmark results for the

DECstation 5000/200. The uniqueBytes graph (Figure 8a) shows
three performance plateaus, uniqueBytes = 0 to 5 MB, unique-
Bytes = 5 to 20 MB, and uniqueBytes > 20 MB. Thus, the self-
scaling benchmark gathers three sets of measurements: at unique-
Bytes 2 MB, 15 MB, and 36 MB. The most interesting
phenomenon involves readFrac (Figure 8b).

In the first performance level (uniqueBytes = 2 MB), reads
and writes are the same speed. At the next performance level
(uniqueBytes = 15 MB), reads are much faster than writes. This is
due to the effective write cache of Sprite’s LFS being much
smaller than the read cache, so reads are cached in this perfor-
mance region while writes are not. The write cache of LFS is
smaller because LFS limits the number of dirty cache blocks to
avoid deadlock during cleaning. The effective file cache size for
writes is only 5-8 MB, while for reads it is 20 MB [Rosen-
blum92].6 In contrast, when uniqueBytes is large enough to
�����������������������������������������������������������������������

6The default limit was tuned for a machine with 128 MB of
memory; in production use, this limit would be changed for the 32 MB
system being tested.

uniqueBytes (MB)

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

uniqueBytes (MB)

9

8

7

6

5

4

3

2

1

0
50403020100

(a)

2 MB

15 MB

36 MB

0.0 0.5 1.0
0

1

2

3

4

5

6

7

8

9

readFrac

(a)
Figure 8: Selected Results from Self-Scaling Benchmark of DECsta-
tion 5000/200. In this figure, we show selected results from the revised
self-scaling benchmark of the DECstation 5000/200. Graph a shows three
plateaus in uniqueBytes, due to the different effective file cache sizes for
reads and writes. The focal points chosen for uniqueBytes are 2 MB, 15
MB, and 36 MB. The focal points for the other parameters is sizeMean =
40 KB, readFrac = 0.5, processNum = 1, seqFrac = 0.5. Note in graph b
how reads are much faster than writes at uniqueBytes 15 MB, slightly
slower than writes at uniqueBytes 36 MB, and approximately the same
speed at uniqueBytes 2 MB. These results helped us understand that, due
to the default limit on the number of dirty file cache blocks allowed, the ef-
fective file cache size for writes was much smaller than the file cache size
for reads.
� �����������������������������������������������������������������������������������������������������������������������

exercise the disk for both reads and writes, writes are faster than
reads. This phenomenon is due to Sprite’s LFS, which improves
write performance by grouping multiple small writes into fewer
large writes.

8.1.3. HP 730, Convex C240, Solbourne 5E/905
Figures 9 and 10 give selected graphs from self-scaling

benchmark runs on an HP 730, Convex C240, and Solbourne
5E/905 (complete results can be found in [Chen92]. In this sec-
tion, we highlight some insights gained from these benchmark
results.

Figure 10 shows that the HP 730’s file cache, though
extremely fast, is quite small (3 MB). The HP/UX operating



sizeMean (KB)

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

sizeMean (KB)

9

8

7

6

5

4

3

2

1

0
100001000100101

(a) Convex C240

readFrac

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

readFrac

10

5

0
1.00.50.0

(b) Solbourne 5E/905

readFrac

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

readFrac

30.0

25.0

20.0

15.0

10.0

5.0

0.0
1.00.50.0

(c) Unannounced System (beta release)

Figure 9: Selected Results from Convex, Solbourne and an Unan-
nounced System. This figure gives selected results from running the
self-scaling benchmark on a Convex C240, a Solbourne 5E/905, and an
unannounced system. Figure a shows how the performance on the Convex
continues to improve with larger sizes, even to average sizes of 1 MB.
Figures b and c show how writes in the these systems’ file caches are
much slower than reads, possibly due to a write-through file cache. For all
these systems, the focal point chosen by the benchmark was readFrac 0.5,
seqFrac 0.5, processNum 1. The focal points for size were 120 KB for the
Convex, 45 KB for the Solbourne, and 40 KB for the unannounced sys-
tem.

uniqueBytes (KB)

)
s
/
B
M
(

t
u
p
h
g
u
o
r
h
t

uniqueBytes (MB)

30

25

20

15

10

5

0
100001000100101

Solbourne

ConvexC240

HP730

DECstation

SPARCstation

Figure 10: Summary of Performance of All Systems. This figure com-
pares performance for each of our five experimental platforms plotted
against uniqueBytes. Remember that the self-scaling evaluation chooses
different workload for each machine; each system in this figure is graphed
at different values of sizeMean. Note that the X axis is graphed in log
scale. The HP 730 has the best file cache performance but the smallest file
cache; the Convex C240 has the best disk performance.
� ���������������������������������������������������������������������������������������������������������

system severely limits the memory available to the file cache.
SunOS maps files into virtual memory, which allows the file
cache to fill the entire physical memory. HP/UX, on the other
hand, reserves a fixed amount of space, usually 10%, as the file
cache. Since this system has 32 MB of main memory, the file
cache is approximately 3 MB. The self-scaling benchmark thus
uses two focal points, uniqueBytes = 2 MB and uniqueBytes = 8
MB. Note the high throughput of the HP 730 when accessing the
file cache, peaking at almost 30 MB/s for large accesses. This
high performance is due to the fast memory system of the HP 730
(peak memory bandwidth is 264 MB/s) and to the use of a VLSI
memory controller to accelerate cache-memory write backs
[Horning91].

Figures 9a and 10 shows results from the self-scaling
benchmark of a Convex C240. The curves are similar to the
SPARCstation 1+, with three main differences:
� Absolute performance is very high. File cache performance

reaches 25 MB/s (see [Chen92]); disk performance reaches
almost 10 MB/s (Figure 10) This high performance is due to
Convex’s 200 MB/s memory system and performance-focused
(as opposed to cost-performance) implementation.

� The effective file cache for the Convex is 800 MB. This is due
to the 1 GB of main memory resident on the computer and an
operating system that gives the file cache use of the entire
main memory.

� Disk performance continues to improve with increasing
request size until requests are 1 MB (Figure 9a), while most
other computers reach their peak performance with sizes of a
few hundred kilobytes.

Figures 9b and 10 shows self-scaling benchmark results for
the Solbourne 5E/905. We see two differences from the other



TH(Pf,S)

TH(Pf,S1)

TH(Pf,Sf)

S1 Sf sizeMean

TH(P,S1) = ?

TH(P,Sf)

Pf processNum

Throughput

Figure 11: Predicting Performance of Unmeasured Workloads. In this figure, we show how to predict performance with a workload of two parameters,
processNum and sizeMean. The solid lines represent workloads that have been measured; the dashed line represent workloads that are being predicted. The
left graph shows throughput graphed against processNum with sizeMean fixed at sizeMeanf . The right graph shows throughput versus sizeMean with pro-
cessNum fixed at processNumf . We predict the throughput curve versus processNum with sizeMean fixed at sizeMean 1 by assuming that

Throughput (processNum ,sizeMean 1)

Throughput (processNum ,sizeMeanf )
� ������������������������������������������������������������� is constant (independent of processNum) and fixed at

Throughput (processNumf ,sizeMean 1)

Throughput (processNumf ,sizeMeanf )
��������������������������������������������������������������� .

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

graphs.
� The file cache is quite large, about 300 MB (Figure 10b). This

matches our expectations, since the main memory for this sys-
tem is 384 MB.

� When accessing the file cache, writes are much slower than
reads (Figure 9b). It appears that the Solbourne file cache uses
a writing policy, possibly write-through, that causes writes to
the file cache to perform at disk speeds. Because writes have
essentially no benefit from the file cache, performance when
varying uniqueBytes changes more gradually slower than for
the other systems. This effect is even more pronounced in an
unannounced system running a beta release operating system
(Figure 9c). We notified the operating system developers of
this performance problem, and they expect to fix it in forth-
coming versions.

Figure 10 compares performance for each of our five
experimental platforms plotted against uniqueBytes. Remember
that the self-scaling evaluation chooses different workload for
each machine; each system in Figure 10 is graphed at different
values of sizeMean. The HP 730 has the best file cache perfor-
mance but the smallest file cache; the Convex C240 has the best
disk performance.

9. Predicted Performance
The self-scaling benchmark increases our understanding of

a system and scales the workload to remain relevant. However, it
complicates the task of comparing results from two systems. The
problem is the benchmark may choose different workloads on
which to measure each system. Also, though the output graphs
from a self-scaling evaluation apply to a wider range of applica-
tions than today’s I/O benchmarks, they stop short of applying to
all workloads. In this section, we show how predicted perfor-
mance solves these problems by enabling us to accurately esti-
mate the I/O performance for arbitrary workloads based on the
performance of a small set of measured workloads (that is, those
measured by the self-scaling evaluation).

A straightforward approach for estimating performance for
all possible workloads is to measure a comprehensive set of work-
loads. However, measuring all possible workloads is not feasible
within reasonable time constraints. A more attractive approach is
to use the graphs output by the self-scaling evaluation (such as
Figure 7) to estimate performance for unmeasured workloads.
This is similar in concept to work done by Saavedra-Barrera, who

predicts CPU performance by measuring the performance for a
small set of FORTRAN operations [Saavedra-Barrera89].

We estimate performance for unmeasured workloads by
assuming the shape of a performance curve for one parameter is
independent of the values of the other parameters. This assump-
tion leads to an overall performance equation of
Throughput (X ,Y ,Z... ) = f X (X ) × f Y (Y ) × f Z (Z ) . . . , where X,
Y, Z, ... are the parameters. Pictorially, our approach to estimat-
ing performance for unmeasured workloads is shown for a two
parameter workload in Figure 11. In the self-scaling evaluation,
we measure workloads with all but one parameter fixed at the
focal point. In Figure 11, these are shown as the solid line
throughput curves Throughput (processNum ,sizeMean f ) and
Throughput (processNum f ,sizeMean ), where processNum f is
processNum’s focal point and sizeMean f is sizeMean’s focal
point. Using these measured workloads, we estimate performance
for unmeasured workloads Throughput (processNum ,sizeMean 1)
by assuming a constant ratio between
Throughput (processNum ,sizeMean f ) and
Throughput (processNum ,sizeMean 1). This ratio is known at
processNum =processNum f to be

Throughput (processNum f ,sizeMean 1)

Throughput (processNum f ,sizeMean f )
��������������������������������������������������������������� . To measure how accu-

rately this approximates actual performance, we measured 100
workloads, randomly selected over the entire workload space (the
range of each parameter is shown in Figure 7).

Figure 12a shows the prediction accuracy of this simple
product-of-single-variable-functions approach. We see that, over
a wide range of performance (0.2 MB/s to 3.0 MB/s), the
predicted performance values match extremely well to the meas-
ured results. 50% of all workloads have a prediction error of 10%
or less; 75% of all workloads had a prediction error of 15% or
less. Figure 12b shows the cumulative error distribution of the
prediction. In contrast, any single point I/O benchmark would
predict all workloads to yield the same performance. For exam-
ple, Andrew’s workload and IOStone’s workload both yield per-
formance of 1.25 MB/s, leading to a median prediction error of
50%. Bonnie’s sequential block write yields a performance of .32
MB/s, for a median prediction error of 65%. These are shown by
the dashed lines in Figure 12a.

Where do the points of high error occur? Is there a correla-
tion between certain parameters and regions of high error? Figure



Andrew
IOStone

bonnie

Sdet

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

measured (MB/s)

p
r
e
d
i
c
t
e
d

(
M
B
/
s
)

Prediction Accuracy

(a)

Cumulative Error

r
o
r
r
e

e
v
i
t
a
l
u
m
u
c

% error

100

90

80

70

60

50

40

30

20

10

0
100806040200

(b)
Figure 12: Evaluation of Prediction Accuracy for SPARCstation 1+
with 1 Disk. This figure graphs the predicted performance against the ac-
tual (measured) performance for the SPARCstation in Figure 7. Each
point represents a single workload, with each parameter value randomly
chosen from its entire range shown in Figure 7. The closer the points lie to
the solid line, the better the prediction accuracy. Median error is 10%.
Performance for each workload ranges from 0.2 MB/s to 3.0 MB/s. For
comparison, we show the single performance point predicted by Andrew,
IOStone, and Bonnie (sequential block write), and Sdet as horizontal
dashed lines. Clearly these single point benchmarks do not predict the per-
formance of many workloads.

uniqueBytes (MB)

)
%
(

r
o
r
r
e

n
a
i
d
e
m

uniqueBytes (MB)

40

35

30

25

20

15

10

5

0
6050403020100

Figure 13: What Parameters Cause Error? This figure shows the corre-
lation between parameter values and prediction error for the SPARCstation
1+. Error is most closely correlated to the value of uniqueBytes (the
analogous graphs of error versus sizeMean, readFrac, processNum and
seqFrac are flat [Chen92]). Prediction is particularly poor near the border
between performance regions. As expected, sharp drops in performance
lead to unstable throughput and poor prediction.

� ���������������������������������������������������������������������������������������������������������
Median Enhanced RepeatabilitySystem
Error Error Error� ���������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������

SPARCstation 1+ 10% 7% 2%� ���������������������������������������������������������������������������������������������������������
DECstation 5000/200 12% 10% 3%� ���������������������������������������������������������������������������������������������������������

HP 730 13% 8% 3%� ���������������������������������������������������������������������������������������������������������
Convex C240 14% 8% 5%� ���������������������������������������������������������������������������������������������������������

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

Figure 14: Summary of Median Prediction Errors. This table sum-
marizes the prediction errors on all systems. ‘‘Enhanced Error’’ on all
machines but the Convex refers to the prediction error on the sample of
workloads not in the thrashing region between the file cache and disk lo-
cality regions. For the Convex, prediction error was most closely correlat-
ed with sizeMean, so enhanced error refers to points with sizes smaller
than 300 KB. The last column in the table lists the inherent measurement
error, which was measured by running the same set of random workloads
twice and using one run to ‘‘predict’’ performance of the other run.

13 shows how median error varies with each parameter. Error is
most closely correlated to the value of uniqueBytes (see [Chen92]
for a full set of graphs). Prediction is particularly poor near the
border between performance regions. As expected, sharp drops in
performance lead to unstable throughput and poor prediction.
This confirms our use of two distinct uniqueBytes regions for
prediction versus a single focal point. Other than uniqueBytes,
prediction accuracy is fairly independent of the parameter values.

Figure 14 shows prediction accuracy for the other systems.
Median error is low for all systems: 12% for the DECstation
5000/200, 13% for the HP 730, and 14% for the Convex C240.
Not including the points of highest error, which in most systems is
the border region between the file cache and disk, median error
drops to 7-10%.

Performance evaluators sometimes want to measure more
than absolute performance. Their end goal is often to compare
two systems head-to-head, generally as the ratio of performances.
Once the self-scaling benchmark is run on two systems, predicted
performance can be used to estimate ratios for arbitrary workloads



DECstation faster

HP faster

PredictedMeasured

Ratio of HP 730 to DECstation 5000

o
i
t
a
R

e
c
n
a
m
r
o
f
r
e
P

4

3

2

1

0
databasescientific_readscientific_writelarge_utilityworkstation

Andrew

Figure 15: Measured Versus Predicted Ratio. This figures shows how
accurately systems can be compared using performance prediction. For
comparison, the performance ratio given by Andrew is shown as a dashed
line. Predicting performance using the output of the self-scaling bench-
mark captures this variability in the ratio of two systems’ performance in a
way that no single-point benchmark can.
� �����������������������������������������������������������������������������������������������������������������������

without further measurement. Figure 15 shows the accuracy of
estimating the ratio of performance between the HP 730 and the
Sprite DECstation 5000/200 over a variety of workstation,
scientific, and database I/O workloads. Depending on the work-
load, the HP can be three times faster to five times slower than the
DECstation. Predicted performance gives accurate estimates over
this wide range of ratios.

10. Conclusions
We have proposed a new approach to I/O benchmarking—

self-scaling evaluation and predicted performance. Self-scaling
evaluation scales automatically to all current and future machines
by scaling the workload to the system under test. It also gives
insight on a machine’s performance characteristic by revealing its
performance dependencies for each of five workload parameters.

Predicted performance restores the ability to compare two
machines on the same workload lost in the self-scaling evaluation.
Further, it extends this ability to workloads that have not been
measured by estimating performance based on the graphs from the
self-scaling evaluation. We have shown that this prediction is far
more accurate over a wide range of workloads than any single
point benchmark.

We believe self-scaling evaluation and predicted perfor-
mance could fundamentally affect how manufacturers and users
view I/O evaluation. First, it condenses the performance over a
wide range of workloads into a few graphs. If manufacturers were
to publish such graphs over a range of I/O options, users could use
predicted performance to estimate, without further measurements,
the I/O performance of their specific workloads.

Second, by taking advantage of the self-scaling
evaluation’s ease of use, manufacturers could easily evaluate
many I/O configurations. Instead of merely reporting perfor-
mance for each I/O configuration on a few workloads, the evalua-
tion would report both the performance for many workloads and
the I/O workloads that perform well under this configuration.
Hence, manufacturers could better identify each product’s target
application area. As the price of each configuration is easily cal-
culated, the price/performance of systems that match the users

needs are also easily calculated. This can help buyers make
choices such as many small disks versus a few large large disks,
more memory and a larger file cache versus faster disks, and so
on.

Third, system developers could benefit by using the self-
scaling evaluation to understand the effects of any hardware and
software changes. Unlike traditional benchmarks, these effects
would be shown in both the performance and the workload selec-
tion from the self-scaling evaluation.

Future work for this research includes findings ways to
shorten the running time, feeding back information from predicted
performance into which focal points the self-scaling benchmark
chooses, and, of course, running the benchmark on more systems,
particularly network file servers and mainframes.

We look forward to having others try this evaluation tool
on a variety of systems, as Mobil Corporation did for the Sol-
bourne 5E/905. To get a copy, please send e-mail to the authors.

11. Acknowledgements
This research was supported in part by NASA/DARPA

grant NAG 2-591 and NSF grant MIP 8715235. We thank Garth
Gibson, John Hartman, Randy Katz, Edward Lee, Mendel Rosen-
blum, Rafael Saavedra-Barrera, John Wilkes, and the anonymous
referees for their insights and suggestions.

12. References
[Anon85] Anon and et al., ‘‘A Measure of Transaction
Processing Power’’, Datamation, 31, 7 (April 1985), 112-118.

[Baker91] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.
Shirriff and J. K. Ousterhout, ‘‘Measurements of a Distributed
File System’’, Proceedings of the 13th ACM Symposium on
Operating Systems Principles, October 1991.

[Bechtolsheim90] A. V. Bechtolsheim and E. H. Frank, ‘‘Sun’s
SPARCstation 1: A Workstation for the 1990s’’, Procedures of
the IEEE Computer Society International Conference
(COMPCON), Spring 1990, 184-188.

[Berry89] M. Berry and et al., ‘‘The Perfect Club Benchmarks:
Effective Performance Evaluation of Supercomputers’’,
International Journal of Supercomputing Applications, Fall 1989.

[Bray90] T. Bray, Bonnie source code, netnews posting, 1990.

[Chen90] P. M. Chen and D. A. Patterson, ‘‘Maximizing
Performance in a Striped Disk Array’’, Proceedings of the 1990
International Symposium on Computer Architecture, Seattle WA,
May 1990, 322-331.

[Chen92] P. M. Chen, ‘‘Input-Output Performance Evaluation:
Self-Scaling Benchmarks, Predicted Performance’’,
UCB/Computer Science Dpt. 92/714, University of California,
November 1992. Ph.D. dissertation.

[DECstation90] DECstation 5000 Model 200 Technical Overview,
Digital Equipment Corporation, 1990.

[Ferrari84] D. Ferrari, ‘‘On the Foundations of Artificial
Workload Design’’, Proceedings of the 1984 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems,
1984, 8-14.

[Gaede81] S. Gaede, ‘‘Tools for Research in Computer Workload
Characterization’’, Experimental Computer Performance and
Evaluation, 1981. D. Ferrari, M. Spadoni, eds..



[Gaede82] S. Gaede, ‘‘A Scaling Technique for Comparing
Interactive System Capacities’’, 13th International Conference on
Management and Performance Evaluation of Computer Systems,
1982, 62-67. CMG 1982.

[Gibson91] G. A. Gibson, ‘‘Redundant Disk Arrays: Reliable,
Parallel Secondary Storage’’, UCB/Computer Science Dpt.
91/613, University of California at Berkeley, December 1991.
also available from MIT Press, 1992.

[HP730] HP Apollo Series 700 Model 730 PA-RISC Workstation,
Hewlett-Packard, 1992.

[Horning91] R. Horning, L. Johnson, L. Thayer, D. Li, V. Meier,
C. Dowdell and D. Roberts, ‘‘System Design for a Low Cost PA-
RISC Desktop Workstation’’, Procedures of the IEEE Computer
Society International Conference (COMPCON), Spring 1991,
208-213.

[Howard88] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham and M. J. West,
‘‘Scale and Performance in a Distributed File System’’, ACM
Transactions on Computer Systems 6, 1 (February 1988), 51-81.

[Nielsen91] M. J. K. Nielsen, ‘‘DECstation 5000 Model 200’’,
Procedures of the IEEE Computer Society International
Conference (COMPCON), Spring 1991, 220-225.

[Ousterhout88] J. K. Ousterhout, A. Cherenson, F. Douglis and
M. Nelson, ‘‘The Sprite Network Operating System’’, IEEE
Computer 21, 2 (February 1988), 23-36.

[Ousterhout89] J. K. Ousterhout and F. Douglis, ‘‘Beating the I/O
Bottleneck: A Case for Log-Structured File Systems’’, SIGOPS
23, 1 (January 1989), 11-28.

[Park90] A. Park and J. C. Becker, ‘‘IOStone: A synthetic file
system benchmark’’, Computer Architecture News 18, 2 (June
1990), 45-52.

[Patterson88] D. A. Patterson, G. Gibson and R. H. Katz, ‘‘A
Case for Redundant Arrays of Inexpensive Disks (RAID)’’,
International Conference on Management of Data (SIGMOD),
June 1988, 109-116.

[Rosenblum91] M. Rosenblum and J. K. Ousterhout, ‘‘The
Design and Implementation of a Log-Structured File System’’,
Proceedings of the 13th ACM Symposium on Operating Systems
Principles, October 1991.

[Rosenblum92] M. Rosenblum, Sprite LFS Write Cache Size,
personal communication, July 1992.

[SPEC91a] SPEC SDM Release 1.0 Manual, System Performance
Evaluation Cooperative, 1991.

[SPEC91b] SPEC SDM Release 1.0 Technical Fact Sheet,
Franson and Haggerty Associates, 1991.

[Saavedra-Barrera89] R. H. Saavedra-Barrera, A. J. Smith and E.
Miya, ‘‘Machine Characterization Based on an Abstract High-
Level Language Machine’’, IEEE Transactions on Computers 38,
12 (December 1989), 1659-1679.

[Salem86] K. Salem and H. Garcia-Molina, ‘‘Disk Striping’’,
Proceedings of the Second International Conference on Data
Engineering, 1986, 336-342.

[Scott90] V. Scott, ‘‘Is Standardization of Benchmarks
Feasible?’’, Proceedings of the BUSCON Conference, Long
Beach, CA, February 1990, 139-147.

[TPCA89] TPC Benchmark A Standard Specification, Transaction
Processing Performance Council, November 1989.

[TPCB90] TPC Benchmark B Standard Specification, Transaction
Processing Performance Council, August 1990.


