232

IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

An Automated Feedback System for Computer
Organization Projects

Peter M. Chen, Senior Member, IEEE

Abstract—This paper describes a system, built and refined over
the past five years, that automatically analyzes student programs
assigned in a computer organization course. The system tests
a student’s program, then e-mails immediate feedback to the
student to assist and encourage the student to continue testing,
debugging, and optimizing his or her program. The automated
feedback system improves the students’ learning experience
by allowing and encouraging them to improve their program
iteratively until it is correct. The system has also made it possible
to add challenging parts to each project, such as optimization
and testing, and it has enabled students to meet these challenges.
Finally, the system has reduced the grading load of University of
Michigan’s large classes significantly and helped the instructors
handle the rapidly increasing enrollments of the 1990s. Initial
experience with the feedback system showed that students de-
pended too heavily on the feedback system as a substitute for their
own testing. This problem was addressed by requiring students
to submit a comprehensive test suite along with their program
and by applying automated feedback techniques to help students
learn how to write good test suites. Quantitative iterative feedback
has proven to be extremely helpful in teaching students specific
concepts about computer organization and general concepts on
computer programming and testing.

Index Terms—Architectural simulator, automated grading, soft-
ware testing.

1. INTRODUCTION

OMPUTERS open many avenues for assisting teachers
C as they educate students. Computers can handle some ex-
isting tasks, such as grading, much more efficiently and accu-
rately than humans can. They can also provide new capabilities,
such as distance learning, to enhance the learning experience
for students. The use of computers to improve education is es-
pecially appropriate when teaching computer science and ed-
ucation courses, because students in these courses are already
accustomed to using computers and because much of the work
being done is already online.

At the University of Michigan, Ann Arbor, the author began
in 1995 experimenting with providing immediate automated
feedback to students who were turning in programming projects
for a class on computer organization (EECS 370). Since then,
automated feedback systems have been developed and used
for each of the four programming projects in this course, and

Manuscript received August 27, 2001; revised April 3, 2003. This work was
supported by the Dell Strategic Technology and Research Program and by NSF
CAREER under Award MIP-9624869.

The author is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, M1 48109-2122 USA (e-mail: pm-
chen@umich.edu).

Digital Object Identifier 10.1109/TE.2004.825220

over 2000 students have used the system. Instructors at the
University of Michigan have since developed and used similar
automated feedback systems in other courses in the mainstream
curriculum for computer science and engineering majors (e.g.,
Introduction to Programming, Data Structures, and Operating
Systems).

Providing automated feedback on student projects has re-
sulted in many benefits to both the students and the teachers.
Students submitted their program and received feedback within
a few minutes. After receiving this feedback (which included
the grade they would receive if this were their final submission),
students were free to fix and resubmit their program. This
iterative process encouraged them to find and work through
their bugs, which resulted in a higher fraction of students with
correct projects. While the feedback deliberately did not pin-
point the exact problem, it often helped point students in the
right direction. The automated feedback system also replaced
the need for human grading of project correctness, and this
automation enabled course enrollments to scale to more than
200 students per semester. Using the automated system for
grading was also more thorough, accurate, and consistent than
using human graders. Finally, the automated feedback system
made it possible to add some challenging parts to the project
that would have been impractical without the system.

As professors at the University of Michigan gained expe-
rience with using the automated feedback system, they also
encountered some inherent weaknesses of such systems. The
most serious drawback was a seemingly irresistible urge by
students to rely on the system to test their project (instead of
testing their project themselves, as good programmers ought).
This drawback ended up being a “blessing in disguise” because
it forced the instructors to confront directly the students’ need
to learn and practice effective testing. This need was addressed
by requiring students to submit test cases along with their
program and by applying automated feedback techniques to
help them learn how to write a good test suite. Thus, while
automated feedback highlighted and worsened the problem
of students’ poor testing habits, it also provided the means to
address the problem. A second drawback experienced was the
heavy workload involved in building a robust feedback system
that was clearly specified and that accepted all correct projects
and rejected incorrect projects, especially for projects with
some design freedom.

This paper describes the automated feedback system and the
lessons learned over the past five years of using and refining
the system. While the system is set in the context of computer
organization projects, many of the lessons learned apply to any
programming project.

0018-9359/04$20.00 © 2004 IEEE

CHEN: AN AUTOMATED FEEDBACK SYSTEM FOR COMPUTER ORGANIZATION PROJECTS 233

II. COMPUTER ORGANIZATION PROJECTS

The automated feedback system was developed for a junior-
level course on computer organization. This course teaches
students about the internal organization of a computer system,
with particular emphasis on the central processing unit (CPU)
and cache memory system. Students learn a simple instruction
set architecture (named LC for “Little Computer”), including
how to program in this instruction set, and several styles of
implementing the architecture. The heart of the course is four
substantial programming projects in which the students build an
assembler and multiple simulators for the LC architecture. While
writing these programs, students learn and express the detailed
operation of several implementations of the LC architecture.
Students often comment that most of their learning in the
course comes from doing the projects.

This section describes the four course projects and the ini-
tial method used to generate automated feedback. The overall
strategy is to evaluate a student’s program by running it on a
suite of test cases designed by the instructor (Fig. 1), and to
e-mail a summary of the evaluation to the student. The auto-
mated feedback system uses black-box testing [1], which eval-
uates a program solely on its behavior rather than examining
the internal code. The summary included a score for each test
case and often contained some sketchy hint about the error. Stu-
dents are not given access to the instructor’s test cases because
writing test cases in this course is considered an essential part of
learning both computer organization and general programming.

A. Project 1: Assembler, Behavioral Simulator,
Assembly-Language Program

For the first project, students write three programs (two pro-
grams in C or C++ and one program in the LC assembly lan-
guage). The first program is an assembler; it takes as input an
LC assembly-language program and produces as output the cor-
responding machine-language program. The LC assembly lan-
guage uses eight instructions (add, nand, load from memory,
store to memory, branch, jump and link, halt, and the null opera-
tion) and one assembler directive (fill with data). Some of these
instructions specify register numbers as their operands; others
specify memory locations. Memory locations can be specified
by either a numeric value or a symbolic label. The assembler
uses a two-pass strategy for resolving symbolic labels. In the
first pass, it finds all symbolic labels and associates them with
instruction addresses. In the second pass, it computes the ma-
chine-language program by translating the instructions, register
operands, and memory references. The assembler must recog-
nize a few specific errors, such as undefined instructions, unde-
fined and duplicate labels, and out-of-bound memory addresses.
To evaluate a student’s assembler, the system runs it against a
suite of 17 assembly-language programs, four of which test the
assembler’s ability to detect erroneous assembly-language pro-
grams. For each test case, the system compares the machine
language generated by the student assembler against the ma-
chine-language generated by a solution assembler. For each test
case, students are told whether their program generated incor-
rect machine language, exited with an error, or failed to catch
an erroneous assembly-language program.

The second program of this project is a behavioral simulator
for the LC architecture. The simulator takes as input an LC
machine-language program (such as one generated by the
assembler above) and simulates the execution of that program
on the LC architecture. The simulator carries out the data
transformation specified by each instruction. For example, an
add instruction computes the sum of two registers and stores
the result in a third register, and a branch instruction changes
the value of the program counter. As the simulator runs, it
prints the architectural state after each instruction simulated.
This architectural state consists of the program counter, the
general-purpose registers, and the contents of memory. Students
are given a function to format the output of architectural state
to make the output easier to grade and therefore students can
concentrate on the substantive parts of the project. To evaluate
a student’s behavioral simulator, the system runs it on a suite of
eight LC machine-language programs. For each test case, the
system compares the instruction-by-instruction output of state
generated by the student simulator against the output generated
by a solution behavioral simulator. Students are told if their
output is incorrect and which variable of the architectural state
is incorrect.

For the third part of this project, students write a simple LC
assembly-language program that multiplies two numbers. This
program takes its input from two memory locations and places
the product in a specific register. To evaluate a student’s as-
sembly-language multiplier, the system assembles it using the
solution assembler, then simulates the resulting machine-lan-
guage using the solution behavioral simulator and checks the
answer in the register. The system runs four different sets of
input by modifying the values of the memory locations speci-
fied in the student program. Students are told if their program
generated the wrong result, had an assembly-language syntax
error, or did not conform to the specification in certain ways
(e.g., how it stores input values, the maximum number of in-
structions executed, and program length).

The following is a partial example of the feedback students
receive for Project 1’s simulator.

____O____

perfect!

____1____

master file and student file differ at
student file line 59

student line: pc 2

____2____

master file and student file differ at
student file line 305

student line: regl 4 1 0

____3____

master file and student file differ at
student file line 113

student line: mem[7] 12779527

B. Project 2: Recursive Assembly-Language Program,
Finite-State Machine

In the next project, students write a more complicated as-
sembly-language program and a more detailed simulator for the

234

solution assembler/simulator | g

instructor student program is
test case correct if results match
student assembler/simulator
(possibly buggy) >,
Testing a student assembler/simulator
Fig. 1. Experiments run by the initial automated feedback system. The box

labeled as solution assembler/simulator represents a correct program written by
the instructor. The lightly shaded box indicates a program that may have a bug.
The system tests a student’s assembler or simulator by running it on test cases
written by the instructor.

LC architecture. The assembly-language program computes (f)
(the number of » combinations that can be chosen from a set
of n elements), using the following recursive definition: (3) =
(") =1 (") = ("7") + (?~1). Writing this program gives stu-
dents experience with function-calling conventions, including
the management of stack-based activation records and callee-
save/caller-save registers. As with the assembly-language pro-
gram in Project 1, this part is evaluated on multiple (six) sets
of inputs using the solution assembler and behavioral simulator.
Students are told if their program generated the wrong result,
had an assembly-language syntax error, or did not conform to
the specification in certain ways (e.g., how it stores input values
or the maximum number of instructions executed).

For the second part of this project, students are given a data
path and are asked to design a control unit that implements the
LC architecture on this data path. The control unit is a finite-state
machine that specifies a sequence of data path operations for an
arbitrary sequence of LC instructions. Data path operations may
transfer data between micro-architectural registers or memory,
or they may perform an arithmetic computation on micro-
architectural registers. Each operation in the finite-state machine
is expressed as a C/C++ statement that manipulates a state
variable in the data path. The next-state function in the finite-state
machine is expressed as a “goto” statement. To make the
finite-state machine’s operation visible to the feedback system,
students call an instructor-supplied function (printState) to print
the current state of the data path. The following example shows
a simple state that uses the system bus to transfer the program
counter’s value to the memory address register, then goes to
a state that reads the memory at that address:

fetch:
printState(&state, “fetch”);
memoryAddress=programCounter;
goto readMemory.

The “state” variable in the above code is a C structure that
encapsulates all parts of the data path state, including the
architectural state (program counter, general-purpose regis-
ters, and memory contents) and the micro-architectural state
(memoryAddress, memoryData, instrReg, aluOperand, and
aluResult).

Conditional next-state functions are expressed as C/C++ “if”
statements with a “goto” in the body of the if statement; this
style of programming is equivalent to a Moore finite-state ma-
chine (i.e., the inputs to the state machine affect only the next-
state control signals). The following example shows a simple

IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

state whose next state depends on the instruction opcode (stored
in instrReg).

decode:
printState(&state, “decode”);
if ((instrReg>»22)==ADD) { goto add;

Students integrate this control unit into the Project 1 simulator
to form a lower level, more detailed simulator of the LC
architecture.

The feedback system runs the finite-state machine on ten test
machine-language programs. On each test program, the system
evaluates the finite-state machine according to several criteria.
First, each transition between states must be legal; that is, the
data path must be able to change between these states in a single
cycle. For example, it is legal in a single cycle 1) to read the
value of one of the general-purpose registers and transfer that
value to the aluOperand register, and 2) to read the memory lo-
cation specified in the memoryAddress register. However, it is
not legal in a single cycle to use the bus to transfer two dif-
ferent values, because the hardware does not support this com-
bination of operations in a single cycle. Checking the legality of
each state transition is accomplished by comparing the starting
and ending values of each data path variable and seeing if this
transition was possible given the starting state and the transi-
tions being made by other data path variables. If the system de-
tects an illegal state transition, it tells the student which starting
and ending state label was involved in the illegal transition.
Unfortunately, illegal operations that control the next state in
the sequence are difficult to detect solely by examining each
state transition. For example, a finite-state machine may resolve
a branch comparison before reading the registers being com-
pared, and this illegal resolution cannot be detected without un-
derstanding the structure of the finite-state machine. For these
cases, an illegal operation is detected if the student’s program
simulates a test machine-language program in fewer cycles than
the instructors believe to be possible.

Second, after running a test machine-language program to
completion, the feedback system checks to see that the final
architectural state is correct. One cannot check the architectural
state after each instruction because a clever finite-state machine
may overlap the execution of several instructions.

Finally, the feedback system evaluates how efficiently the stu-
dent’s finite-state machine executes each test machine-language
program. The system counts how many datapath cycles a stu-
dent’s finite-state machine takes to execute each machine-lan-
guage program and gives full credit only when the cycle count
matches the solution finite-state machine. The system tells stu-
dents how close their cycle count was to the optimal. Grading
students on efficiency results in several complications. Because
certain illegal state transitions are detected by seeing if a fi-
nite-state machine takes fewer cycles than possible, one cannot
simply require a finite-state machine to run in the same or fewer
cycles than the solution finite-state machine; students must be
required to achieve exactly the same cycle count as the solution.
Under this scheme, a student may be penalized unjustly if he or
she invents a more clever finite-state machine than the solution.

CHEN: AN AUTOMATED FEEDBACK SYSTEM FOR COMPUTER ORGANIZATION PROJECTS 235

This situation occurred several times over several semesters as
creative students went through the course. It was resolved as fol-
lows: in the semester, the new optimization was discovered, the
feedback system was modified to give full credit to solutions
with or without the optimization; in future semesters, the new
optimization was required, but students were given a very ex-
plicit hint to help students discover the optimization. Students
were given an explicit hint because it did not seem fair to require
students to invent (without help) an optimization tricky enough
to be overlooked by the instructors. In hindsight, a better solu-
tion may be to require finite-state machines to run in the same
or fewer cycles than a certain minimum and simply leave the
illegal next-state transitions undetected.

The following is a partial example of the feedback students
receive for Project 2’s simulator.

____O____

Finite-state machine ran for more than
5000 cycles. Your program probably
entered an infinite loop

____1____

perfect!

____2____

Wrong final answer

____3____

Illegal state transition from jalrl
14) to jalr2 (cycle 15)

____4____

Right final answer; no illegal state
transitions (that the auto-grader could
pinpoint); but your FSM executed 23 more
cycles than needed.

____5____

There was an illegal state transition
that the auto-grader couldn’t pinpoint.
Project 2 Tips on the course home page
has some suggestions on what the error
might be.

(cycle

C. Project 3: Pipeline Simulator

For the third project, students write a program that simulates
a pipeline implementation of the LC architecture. Students are
given the pipeline data path from [2, Ch. 6] and specific direc-
tions on how to resolve control and data hazards. Each stage of
the pipeline takes its input from the prior pipeline register, com-
putes the values for the next pipeline stage, and then stores the
results into the next pipeline register. The pipeline uses simple
branch prediction (assumes branches are not taken) to resolve
control hazards and uses a combination of data forwarding and
stalling to resolve data hazards. As the program runs, it prints
the architectural and micro-architectural state of the pipeline
data path. The micro-architectural state consists primarily of the
values in the pipeline registers.

To evaluate a student’s pipeline simulator, the feedback
system runs it on a suite of 25 LC machine-language programs.
The large number of test cases are needed to exercise the sim-
ulator on the wide variety of possible pipeline conditions. For
each test case, the system compares the cycle-by-cycle output

of architectural and micro-architectural state generated by the
student simulator against the output generated by the solution
pipeline simulator. Students are told if their output is incorrect,
which variable of the architectural or micro-architectural state
is incorrect, and in which cycle the error occurred.

The following is a partial example of the feedback students
receive for Project 3.

____O____

perfect!

____1____

solution file and student file differ in
print State before solution cycle 7
starts

error occurred in IDEX

suspect line: readRegA 0

____2____

solution file and student file differ
in printState before solution cycle 18
starts

error occurred outside a pipeline register

suspect line: dataMem[39] O.

D. Project 4: Caching Simulator

The final course project simulates the behavior of adding a
CPU cache to the Project 1 behavioral simulator. Students simu-
late a unified instruction/data cache that uses a write-back policy
on stores and an LRU (least-recently used) replacement policy.
Other cache parameters (e.g., cache size, line size, and set as-
sociativity) are given as arguments to the simulator. As the sim-
ulator executes an LC machine-language program, it services
memory loads and stores by looking for data in the cache and
issuing loads and stores to memory to transfer data to/from the
cache if needed. While the simulator runs, it prints output de-
scribing the movement of data between the memory, the cache,
and the processor. This output helps the student understand how
caches work, and it also exposes the behavior of the cache to the
feedback system. Earlier versions of this project had students
write a traditional cache simulator that took as input a trace of
memory references, but students seemed to learn more about
caching processors by actually simulating an LC program that
generated memory references as it ran.

To evaluate a student’s caching simulator, the feedback
system runs it on a suite of 11 test cases. Each test case
specifies an LC machine-language program and a cache config-
uration. For each test case, the system compares the movement
of data generated by the student simulator with the movement
of data generated by the solution caching simulator.

The following is a partial example of the feedback students
receive for Project 4.

____O____

master file and student file differ at
student file line 24

student line: @R@ transferring word [4-4]
from the cache to the processor

____1____

perfect!

236

III. EXPERIENCE

Students’ initial reaction with automated feedback was very
positive. They liked finding out their project grade right after
submitting, and they considered any additional feedback a
bonus. In addition, with the feedback system, nearly all students
were able to build programs that had no functional errors. In
contrast, before using the feedback system, only slightly more
than half the students were able to build programs that had no
functional errors. Providing automated feedback also enabled
more rigorous enforcement in what students were expected to
build. Without feedback, students can easily make trivial errors
that result in large grading penalties. These trivial errors result
in either inappropriate penalties or enormous expenditures in
human grading time (because the grader must fix these bugs
before regrading). With feedback, however, students find out
immediately if their program has a small bug that results in
a large penalty, and they can then fix the bug and resubmit.
The feedback system thus allows students to be held to a
higher standard and enables students to meet this standard.
The feedback system also cut down dramatically on the human
effort required to grade projects. This savings helped greatly
during the rapidly rising enrollments of the late 1990s.

However, in later semesters, as students gained experience
with the system, a few negative trends began to emerge. Stu-
dents began to view the automated feedback more like an en-
titlement than a bonus, and as this occurred, their expectations
of the system began to change and they began to depend on the
system in ways for which it was not intended. Specifically, they
tried (usually in vain) to use the feedback system as a replace-
ment for their own testing and debugging. The feedback system
was never intended to replace the need for student testing and
debugging. In fact, the task of testing and debugging is a valu-
able way of learning the material on computer architecture and
is a necessary part of any programming project (and indeed any
design project).

In hindsight, obviously some students could be expected
to try to abuse the system in this manner. However, one
is surprised at how many students abused the system and
how steadfastly they claimed to be justified in this usage. In
particular, students were outraged that the system would run
their programs against test cases, tell them that their programs
had errors, but not give them the test cases that exposed their
errors. This outrage resulted from students trying to use the
feedback system in lieu of their own debugging. One clearly has
considerable difficulty debugging a program without having
on hand a test case that generates the error. The author naively
expected that just as students knew they needed to construct
their own test cases without the feedback system, they would
see the need for constructing their own test cases even with
the feedback system. Unfortunately, despite many attempts
to change students’ perceptions of how to use the feedback
system, students continued to try, in vain, to use the system as
their main debugging tool and to complain vociferously when
this procedure proved impractical. In fact, they complained
so much about the system that the course instructors came
very close to turning off the automated feedback system and
using it only as a tool for grading. Fortunately, a better way

IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

than turning off the feedback system can address students’
perceptions of testing; the next section describes this solution.

IV. TEACHING STUDENTS THE IMPORTANCE AND
PRACTICE OF TESTING

The biggest drawback to using the automated feedback
system was the tendency of students to cease testing and
debugging their own programs. Without the automated feed-
back system, students were uncertain about what grade their
program would receive, and this uncertainty motivated them
to test their programs (though not thoroughly enough). With
the feedback system in place, students lost this motivation
and ceased constructing and using test cases to debug their
programs. They then complained about how impractical it was
to test their programs without any test cases.

The initial attempt to solve this problem was to limit the
number of times students could submit their programs. Before
limiting submissions, some students submitted programs as
often as once per minute, some of which did not even compile.
Several policies were tried, such as taking points off for each
submission and only allowing one submission per day. These
policies had mixed results. On one hand, they did have the
intended effect of forcing students to do some testing on their
own. On the other hand, these policies did not change their
overall viewpoint that testing and writing test cases was a
waste of their time and that it was cruel to force them to write
test cases when the system could have easily given them the
instructor’s test cases.

In the fall semester 2000, the author decided to address
head-on the problem of students viewing testing as a noninte-
gral activity. Others have also argued for emphasizing testing
as a first-class activity, both by integrating testing into existing
courses [3] and by teaching testing in a separate course [4].
The author’s approach was to integrate testing into this course
by requiring students to submit test cases as a graded part of
each project. The hope was that this requirement would have
the following benefits:

1) making test case construction a graded part of each
project would elevate their view of testing as a first-class
activity (although many students end up working on the
testing side of software projects rather than the designing
and building side, most computer science curricula
emphasize designing and building to the near exclusion
of testing);

2) writing a suite of test cases that comprehensively tested
the project functionality would help them learn the course
material;

3) writing a good suite of test cases would help them debug
their own programs;

4) the experience they gained from writing a good suite of
test cases for computer organization projects would im-
prove their general ability to test computer programs.

A good test suite systematically exercises all aspects of the
project specification. For example, to write a good test suite for
Project 3, a student should think through all the possible types
of pipeline hazards and construct test cases that exercise each
hazard. To write a good test suite for Project 4, a student should

CHEN: AN AUTOMATED FEEDBACK SYSTEM FOR COMPUTER ORGANIZATION PROJECTS 237

solution assembler/simulator

-
instructor student program is
test case correct if results match
student assembler/simulator
(possibly buggy) .
(a)
solution assembler/simulator |—m- Sitarit testiodse I
effective if results do not
student match, and test case does
test case not cause behavior that is
- leﬂ undeﬂned in the
project specification.
(b)
solution assembler/simulator | student test case
student exposes student
test case assembler/simulator
student assembler/simulator if results do not match
(possibly buggy) 3
(c)

Fig. 2. Experiments run by the revised automated feedback system. Lightly shaded boxes indicate programs that may have a bug; dark shaded boxes indicate
programs that definitely have a bug. (a) (The same as Fig. 1.) The system tests a student’s assembler or simulator by running it on test cases written by the instructor.
(b) The system evaluates the effectiveness of a student test case by using it as input to both a known-good program and a known-buggy program. (c) The system
helps the student by identifying which of their test cases exposes their own program as having a bug.

think of the possible states of a cache line (e.g., empty, clean,
or dirty), think about how different events in the system cause
the cache lines to change state, and write test cases that cause a
cache line to transition through systematic sequences of states.

Having decided to require testing as a first-class activity, the
next issue was how to help students learn to write a good suite
of test cases. Just as with writing programs, testing programs
is learned largely by doing. A key insight was that one could
apply automated feedback to the testing part of a project and that
the iterative feedback process could help students learn how to
write good test suites. [ronically, a problem that arose because of
automated feedback (that of students not testing their programs)
ended up being solved by the same mechanism.

The system was enhanced, as follows, to provide feedback
for student test suites [Fig. 2(b)]. The first step was to write a
number of buggy programs (e.g., several buggy simulators for
Project 1). Students would submit their own test suite (a set of
test cases) with their program. The system would grade a student
test suite based on how many of the instructor’s buggy programs
were exposed as incorrect by at least one of their test cases. To
expose a buggy program, a test case must cause the program
to execute incorrectly, i.e., differently from the behavior speci-
fied in the project assignment. As an example, consider a buggy
Project 1 simulator that performs a subtraction instead of addi-
tion for the add instruction. A successful test suite would include
at least one test case that exposed this program by adding two
numbers with the second operand being nonzero, so that sub-
traction and addition could be differentiated.

Providing automated feedback for a student test suite is es-
sentially the inverse problem of providing feedback for a stu-
dent program. To provide feedback for a student program, the
system runs the student program against the instructor’s suite of
test cases and grades them based on how many of the test cases
produce correct results on their program. To provide feedback

for a student test suite, the system runs a buggy set of instructor
programs against the student test suite and grades them based
on how many of the buggy programs produce incorrect results
on at least one of the student test cases. The infrastructure for
the automated feedback system was easily extended to handle
this inverse case.

As an added bonus for the students, the system also runs a
student’s test suite against the student’s own program and noti-
fies the student if any of the test suite exposes the program as
buggy [Fig. 2(c)]. Strictly speaking, this service should not be
needed; students can certainly run their own programs on their
own test suite. However, this feature often helps students who
misunderstand the project specification, thus failing to recog-
nize certain executions as being faulty. This feature helps alert
these students to their misunderstanding before they waste con-
siderable time looking for implementation errors in their pro-
grams. This feature also adds incentive to students to write good
test cases. After they are told which of their test cases exposes
their own program as buggy, students can focus on these test
cases and use them for productive debugging.

The following is an example of the feedback students receive
on their test suite.

---—grading student test case tcl0.as---
student test case tc0.as exposed the fol-
lowing instructor buggy simulators:
A DGL
————— grading student test case tcl.as---
student test case tcl.as exposed the fol-
lowing instructor buggy simulators:
A BDEHTI
————— grading student test case tc2.as---
student test case tc2.as executed too many
instructions

238

————— grading student test case tc3.as---

error: offset 32769 out of range

illegal assembly-language program

overall student test suite exposed 8 of
the 12 instructor buggy simulators

Hint: the following student test cases ex-
posed the student simulator as buggy:
tcl.as.

The experience of requiring students to submit test suites was
very positive. Students were forced (often for the first time) to
think through how to test systematically that a program met a
specification. Their attitude toward testing improved as well,
because they could see how useful a good suite of test cases
was when they were debugging their programs. Providing au-
tomated feedback for student test suites had similar benefits to
providing automated feedback for student programs; this feed-
back helped students learn what constituted a good suite by
giving them quantitative feedback, and it encouraged them to
persevere until their test suite received full credit.

Some students did struggle to understand what it meant
to expose a program with bugs in its error-handling code.
For example, the Project 1 assembler was required to handle
the following errors: undefined instructions, undefined and
duplicate labels, and out-of-bound memory addresses. If one of
the instructor’s buggy programs contained a bug that prevented
the program from recognizing a duplicate label, exposing this
bug would require a test case that contains a duplicate label.
Instead, many students mistakenly provided test cases that
contained errors for which the project assignment did not
specify correct behavior. For example, the project assignment
did not specify what the assembler should do if it encountered
an out-of-range register number. Because correct behavior is
undefined, to say that a program incorrectly handled a test
case with an out-of-range register number is meaningless.
Since such test cases cannot expose any buggy programs, the
automated feedback system was modified to detect them and
prevent them from exposing any programs.

V. OTHER LESSONS LEARNED

This section describes some of the lessons that were learned
from five years of providing automated feedback. The first
lesson was an awareness of how much work is needed to
design and build a robust correct feedback system. To build
a system that can handle all the mistakes and new solutions
generated by 200 creative students is difficult. This fact was
especially evident for the part of Project 2 that challenged
students to optimize the finite-state machine. Students invented
new optimizations that the instructors did not anticipate; in
fact, students kept inventing new optimizations even after the
system had been refined over several semesters of 200-student
classes. To make the workload of creating the feedback system
more manageable, projects from prior semesters were reused
heavily. This practice also improved the quality of the feedback
system and clarity of the projects because it takes several
semesters to create a system that works well. Unfortunately,
cheating is always an issue whenever one reuses projects from

IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

prior semesters, and this situation was the case at the University
of Michigan as well. Over the course of a semester, 5% of
the class were regularly caught turning in prior solutions as
their own work. The feedback system uses several automated
correlators to prioritize which programs to investigate by hand.
Unfortunately, a steady stream of cheaters have continued
to be caught every semester, despite very explicit warnings
about the number of students who have been caught before
(this experience differs from the one reported in [5]). Despite
the problems with cheating, instructors at the University of
Michigan have chosen to continue reusing projects and posting
solutions afterwards. This choice was made because the highest
priority was to create the best learning experience for honest
students, and this priority required reusing projects that had
been refined and validated over several semesters.

Other lessons were learned about how to write test cases to
evaluate student programs and how to write buggy programs to
evaluate student test suites. Because the instructors use the feed-
back as their actual grade, the grade needs to be roughly propor-
tional to the degree of correctness in their programs. Two steps
were required. First, the assignment requires little work to get
the trivial functionality correct. For example, instructors provide
the parser code for the Project 1 assembler, because writing a
parser has nothing to do with the concepts in the class. Instruc-
tors always provided code to print the required program output.
These provisions enabled students to comply easily with the re-
quirements on output format. Also the instructor was relieved
from writing a sophisticated output parser that ignored unimpor-
tant differences in formatting [6]. Second, the system uses test
cases constructed with a variety of difficulties. Some test cases
(and, hence, some points awarded) were very simple, such as
one-line assembly-language programs. Later test cases required
more functionality to be correct [6]. Writing good test cases took
a substantial amount of thought and care.

Examining statistics on how students used the automated
feedback system is interesting. In the Fall semester of 2002,
the average number of submissions across all students was
3.7 for Project 1’s simulator, 4.2 for Project 2’s simulator, 5.6
for Project 3’s simulator, and 4.6 for Project 4’s simulator.
As expected, the harder the project, the more times students
submitted before completing the project. Fig. 3 shows how
scores for Project 1 assemblers increased as students debug and
resubmit their program. The graphs for other projects showed
similar trends.

Other practical lessons were learned about how to build the
submission and grading infrastructure. The submission mecha-
nism uses e-mail to submit student projects. The feedback was,
likewise, carried back to the students via e-mail. Using e-mail
allowed asynchrony between the students and the feedback
system, and this asynchrony had some benefits and some
problems. The main benefit of the asynchrony of e-mail was
that it allowed students to submit their programs even if some
of the networks and computers (name servers, routers, and mail
servers) that needed to communicate to the grading system were
temporarily broken (which happened fairly often). E-mails
are dated by college-administered computers, which allows
instructors to grade projects fairly that were submitted on time
but received later. E-mail responses normally reached students

CHEN: AN AUTOMATED FEEDBACK SYSTEM FOR COMPUTER ORGANIZATION PROJECTS

239

100 . ,
90|
8ol
70}
60|
50|

Score

40}
30k
20
10}

|
10 15

Submission #

Fig. 3.
submission patterns for other projects are similar.

in a few seconds; however, overloaded or malfunctioning
mail servers or networks occasionally delayed the feedback
for several hours (which naturally worried students). Overall,
using e-mail as our means of communication has worked well.
It is ubiquitous, and it tolerates computer/network faults well.
An alternate approach is to establish a direct, synchronous
connection between the student’s computer and the grading
computer [7], but this approach disallows submissions when
the network or grading machine is down.

A small lesson learned was to make the submission process as
easy as possible for students to use correctly. An early system
had them simply execute “mail < program.c”. This command
led to disastrous consequences when students mistakenly used
“mail > program.c” which overwrites the program rather than
submitting it.

Finally, experience taught lessons about how to make the
feedback system robust in the presence of student programs that
are incorrect or malicious. These programs can cause problems
because the system executes unaudited code. This concern was
addressed by running student programs on an unprivileged user
account, by limiting the processing and memory resources avail-
able (using the Unix setrlimit call), and by saving a copy of each
submission on a different computer to allow analysis should
it be malicious. More stringent mechanisms exist to sandbox
student programs, such as disallowing certain system calls [8].
However, to date, no real problems with malicious students have
occurred.

VI. RELATED WORK

Prior literature contains several descriptions of systems that
analyze student programs automatically [5]. Examples include
the TRY system [6], ASSYST [9], and PSGE [10]. Some sys-
tems provide immediate feedback to the students [6], [11]. Many
of the mechanisms used in the present paper for improving se-
curity and robustness have been used before. The TRY system
runs student programs in a low-privileged user ID, and Arnow’s
homework checker enforces run-time resource limits.

Progression of scores as students submit programs. This graph shows how student scores increase as they fix and resubmit their Project 1 assembler. The

The system described in this paper differs from prior work
in several ways. The most significant difference is the present
system’s emphasis on testing as a first-class activity. Some
prior systems provide the student with the test cases used by
the system; the author believes that constructing good test
cases helps students learn about computer organization and
about computer programming in general. The present system
addresses head-on what the author considers the primary
danger of automated feedback systems, which is the tendency
of students to depend on the system as a replacement for
their own debugging and testing. ASSYST [9] is the only
automated program analyzer known to the author that also
requires students to submit test cases. ASSYST evaluates a
student test case based on how many lines of the student’s
program are executed by running the test case. This approach
(white-box testing) measures how effective the test case is
on the specific student’s program; in contrast, the approach
used by the present system (black-box testing) measures how
effective the test suite is on evaluating any program written to
implement the project specification. While both approaches
are useful, students will find valuable thinking through how to
exercise a specification thoroughly and systematically, in part,
because they are forced to think through the specification (and
thus the course concepts) in a new way. ASSYST also differs
from the present system because it serves only as an aid to the
graders; it does not provide immediate feedback to the students.

A second difference from prior systems is that the present
automated feedback system takes place in the context of a com-
puter organization course and uses domain-specific knowledge
when evaluating student programs. For example, the Project
2 finite-state machine has an infinite number of correct (but
not necessarily optimally efficient) solutions, and the feedback
system requires knowledge about hardware constraints to dis-
tinguish between correct and incorrect solutions.

VII. CONCLUSION

The author experimented for five years with a system to
analyze student programs automatically and provide limited

240

feedback to the students. The system provided many benefits.
It improved students’ learning experience by allowing and
encouraging them to improve their program iteratively until
it was correct. It enabled the addition of challenging parts to
each project, such as optimization and testing, and enabled
students to meet these challenges. It significantly reduced the
grading load of large class sizes and helped instructors handle
the rapidly increasing enrollments of the 1990s.

Initial experience of the feedback system exposed an inherent
difficulty in automated feedback systems, which is that students
depend inappropriately on the feedback system as a substitute
for their own testing. This problem was addressed head-on by
requiring students to submit a comprehensive test suite along
with their program, then applying automated feedback tech-
niques to help students learn how to write good test suites. Quan-
titative iterative feedback was found to be extremely helpful
in teaching students specific concepts about computer organ-
ization and general concepts on computer programming and
testing.

ACKNOWLEDGMENT

The author would like to thank M. Brehob, M. Pa-
paefthymiou, and G. Tyson, who have used the automated
feedback system while teaching the computer organization
course at the University of Michigan helped refine the projects,
the automated feedback system, and this paper. The first two
course projects were derived from projects designed by Y. Patt.

REFERENCES
[1]1 G.J. Myers, The Art of Software Testing. New York: Wiley, 1979.

IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

[2] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface. San Mateo, CA: Morgan
Kaufmann, 1994.

[3] E. L. Jones, “Integrating testing into the curriculum—Arsenic in small
doses,” in Proc. 2001 SIGCSE Tech. Symp. Computer Science Educa-
tion, Feb. 2001, pp. 337-341.

[4] D. Carrington, “Teaching software testing,” in Pro. 1996 Australasian
Conf. Computer Science Education, July 1996, pp. 59-64.

[5] D. G. Kay, T. Scott, P. Isaacson, and K. A. Reek, “Automated grading
assistance for student programs (panel presentation),” in Proc. 1994
SIGCSE Symp. Computer Science Education, 1994, pp. 381-382.

[6] K. A. Reek, “The TRY system -or- how to avoid testing student pro-
grams,” in Proc. 1989 SIGCSE Tech. Symp. Computer Science Educa-
tion, 1989, pp. 112-116.

[71 (1999, Aug.) Enhanced Automated Grading System: Student Guide.
Dept. Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, VA. [Online] Available: http://ei.cs.vt.edu/
eags/EAGS.html

[8] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure envi-
ronment for untrusted helper applications,” in Proc. 1996 USENIX Se-
curity Symp., July 1996, pp. 1-13.

[9] D. Jackson and M. Usher, “Grading student programs using ASSYST,”
in Proc. 1997 SIGCSE Tech. Symp. Computer Science Education, 1997,
pp. 335-339.

[10] E.L. Jones, “Grading student programs—A software testing approach,”
Proc. 14th Annu. Consortium on Small Colleges Southeastern Conf., pp.
185-192, 2000.

[11] D. Arnow, “When you grade that: Using e-mail and the network in
programming courses,” in Proc. 1995 ACM Symp. Applied Computing,
1995, pp. 10-13.

Peter M. Chen (M’94-SM’00) received the B.S. degree in electrical engi-
neering from Pennsylvania State University, University Park, in 1987 and the
M.S. and Ph.D. degrees in computer science from the University of California,
Berkeley, in 1989 and 1992, respectively.

He is currently an Associate Professor in the Department of Electrical Engi-
neering and Computer Science at the University of Michigan, Ann Arbor. His
research interests include operating systems, fault-tolerant computing, computer
security, and distributed systems.

