Proceedings of the 2000 International Conference on Dependable Systems and Networks /
Symposium on Fault-Tolerant Computing (FTCS)

Whither Generic Recovery from Application Faults?
A Fault Study using Open-Sour ce Software

Subhachandra Chandra and Peter M. Chen
Computer Science and EngineeringiBion
Department of Electrical Engineering and Computer Science
University of Michican
{schandra,pmchen}@eecs.umich.edu
http://www.eecs.umich.edu/Rio

Abstract

This paperteststhe hypothesishat genericrecovery
techniques sud as processpairs, can survivemostappli-
cation faults without using application-specifiadnforma-
tion. We examinein detail the faults that occur in three
large, open-souce applications: the Apade web server
the GNOME desktopervironment,and the MySQL data-
base Using informationcontainedin the bug reportsand
source code we classifyfaults basedon howthey depend
on the opemting ervironment\We find that 72-87%of the
faults are independenbf the opemating ervironmentand
are hencedeterministic(non-transient).Recwering from
the failures causedby thesefaults requires the use of
application-specificknowledg. Half of the remaining
faults dependon a conditionin the operating ervironment
thatis likely to persiston retry, andthe failurescausedby
thesefaults are also likely to require application-specific
recovery. Unfortunately only 5-14% of the faults were
triggered by transientconditions,sud astiming and syn-
chronization thatnaturally fix themselveduringrecovery.
Our results indicate that classical application-generic
recoverytedhniques sud asprocessairs, will notbesuf-
ficient to enable applications to survive most failures
caused by application faults.

1. Introduction

As computersbecomean integral part of today’s soci-
ety, making them dependable becomes increasingly
important.Field studiedGray91]andeverydayexperience
male it clearthat the dominantcauseof failurestodayis
softwarefaults,bothin the applicationandsystemlayers.
Reducingthe numberof softwarefaultsandsurviving the
onesthat remainis thereforean importantchallengefor

the fault-tolerance community

Onekey componenbf this questto avoid and survive
softwarefaultsis understandingvhattypesof faultsoccur
in releasedapplications.This understandingcan help us
develop recovery techniquedor surviving software faults
and develop new languagesand tools for avoiding soft-
ware faultsin the future. Unfortunately most production
softwarein the pastwas proprietaryandthereforehardto
analyze.In particulay most companieswvere understand-
ably reluctantto releasenformationon the exact failings
of their softvare.

However, therecenttrendtoward open-sourcesoftware
may male this information available. There are now
widely used,open-sourc@rogramsof all types,including
operatingsystemsgdatabasesyeb seners,web browsers,
word processorsspreadsheetanda hostof others.Open-
sourceprogramssharea numberof importantcharacteris-
tics. First, they arewidely usedandhenceform arelevant
baseof softwareto study For example,the Apacheweb
sener is usedby 54% of all web sites[Netcraft99]. Sec-
ond, their developmentprocessis open. Open develop-
ment allows othersto perusethe history of bugs and
softwarerevisions,informationwhichis normallynot pub-
lic. Last,while thereis little harddatacomparingthe qual-
ity of open-sourcewith proprietary software, the rapid
increasein the useof opensourcesoftware like Apache
and Linux indicatesthat the quality of open-sourcesoft-
ware is good enoughfor mainstreamuse. Both open-
sourceand proprietarysoftware are releasedjuickly and
with plentiful bugs,perhapsasaresultof the currentpace
of innovation in the computerindustry We believe this
trend toward open-source,open-deelopment software
presentsa treasure-tree of information for researchin
software reliability

In this paper we useinformation in bug reportsand
sourcecodeto understanandclassifyfaultsthatoccurin

threewidely used,open-sourc@rograms.The goal of this

paperis to provide informationto guide researcton how

to survive applicationfaults.In particular we wish to test
the hypothesisthat generic(i.e. not application-specific)
recovery techniguessuchas processpairs, cansurvive a

majority of application faults. Our methodologydiffers

from that of prior studies[Lee93]. We reasonfrom bug

reportsand sourcecode as to whethera purely generic
recovery systemwould have recoveredfrom application
faults, while past studiesexamine the field behaior of

implementedmostly genericrecorery systemsThis com-

parisonis valuablebecausef our focuson purely generic
recovery and becausethere is no data available on the

effectivenessof recovery on widely used,open-softvare

systemsFor this software,we find thatonly a smallfrac-

tion (5-14%)of faultsaretriggeredby transientconditions
(so-calledHeisenlgs)which canbe survivedwith generic
recovery techniques such as rollback and retry

2. Recovery from Softwar e Faults

Faults may be classifiedinto two cateyories: opera-
tional and design[Gray91]. Operationafaultsare caused
by conditionssuchas wearout and can be handledwith
simplereplication.Faultscausedy designbugsaremuch
more difficult to handle, becausesimply replicating a
buggy designoften resultsin dependentailuresin which
all the replicasfail. Softwarefaultsaredifficult to survive
because theare all caused by designds.

Faultsmay occurin applicationor systemsoftware.In
this paper applicationsoftwarerefersto ary softwarethat
runs on top of the recovery system,that is, software for
which the recovery systemis responsiblefor recovering.
Systemsoftware refersto software that runs belov the
recovery systemthatis, softwarethatrecoversitself. The
scopeof this paperis limited to faultsthat occurin appli-
cation software and how often a recovery systemcan
recover from thesedults.

We cateyorizetechniquedor recovering from software
faults as either application-specifiaecovery or applica-
tion-generic recovery. Both styles of recovery involve
redundang. In application-specificecovery, a non-fault-
tolerantdesignis madefault-tolerantby addingcodethat
is specific to the application. This includes techniques
where the programmermales calls to fault-tolerance
libraries or reconstructgart of the programstateduring
recovery. An extreme example of application-specific
recovery is N-version programming,which usesN inde-
pendent implementations of the same program
[Avizienis85]. Recwery blocks also use multiple imple-
mentationsof a block of code,but usea passie-replica-
tion style with errorchecking and rollback to avoid

running multiple versionsat the sametime [Randell75].
Application-specificrecorery canbe very effective, but is
often prohibitvely expensve to implement.

Becauseof the costof implementingapplication-spe-
cific recovery for eachapplication,researcherbave sug-
gested various application-generic ways to survive
software faults. Thesetechniquesdo not add redundant,
specific code for eachapplication (we do not consider
errorcheckingcodeasredundantthoughtechnicallymost
error checksareapplication-specifiandredundant)As a
result,application-generitechniquesieedno information
aboutthe application,nor do they requireary assistance
from the application programmerin the form of extra
code.Instead application-genericecorery typically relies
on time redundang. For example,procesgairs[Gray86]
are similar to recovery blocks, but insteadof retrying the
operationon a differentimplementatiorof the codeblock,
procesgairsretry the operationon the samecode(possi-
bly on a differentcomputer).Procesgairs,androllback-
recovery protocolsin general [Elnozaly99, Huang93],
survive a specific class of software faults known as
“Heisenlugs” [Gray86]. Heisenlngs are transient,non-
deterministicfaults that disappeamwhen the operationis
retried,evenif the samecodeis used.Thetransienthature
of thefault arisesbecausesomefactorexternalto the pro-
gram has changed;for example, a different interleaving
orderof threadsnayoccurduringretry andsoavoid arace
condition. Note that a truly genericrecorery mechanism
mustpresere all applicationstate(e.g. by checkpointing
or logging), becausehereis no application-specificode
to reconstructnissingstate. Henceonly a changeexternal
to the applicationcanallow the applicationto succeedn
retry.

It hasbeenhypothesizedhat mostfaultsthat occurin
releasedhpplicationsaretransieniGray86]. The intuition
for this hypothesids thattransientffaultssuchasracecon-
ditions are more difficult to reproduceand hencedelug
thannon-transienfaults(so-calledBohrhugs),sotransient
faultsaremorelikely to remainin releasedoftware. This
is animportanthypothesisfor guiding researchin how to
recover from software faults,becauseat encouragesvork
on application-genericecovery. The primary goal of this
paperis to testthis hypothesisby analyzingbug reports
and bug fixes of several large, widely used,open-source
programs.

3. Categorizing Softwar e Faults

We classify software faults basedon how they depend
on the operatingervironment.By operatingervironment,
we meanstatesor eventsthatoccuroutsideof the applica-
tion being studied. The operatingernvironmentincludes

bothsoftwareandhardware.Softwareexamplesof operat-
ing ernvironmentincludeotherprogramssuchasthe DNS

name sener and userlevel applications,or the kernel,

suchasthe numberof availableslotsin the kernels pro-

cesstable.Hardware examplesincludetransienthardware

conditionssuch as disk ECC errors and events such as

clock interruptsto the thread scheduler The operating
environment also includes the timing of the workload

requeststo the program (e.g. the users typing speed).
However, we considerthe sequencef workload requests
madeto the programaspartof the program ratherthanas

partof theoperatingernvironment,because¢he sequencef

requestss usuallyfixed for ary given programtask. That

is, we assumethe useris not willing to aid recovery by

avoiding certain input sequences.

It isimportantto notethatgiven a fixed operatingervi-
ronment,a setof concurrentsequentiaprocessess com-
pletely deterministic [Dijkstra72]. Non-deterministic
executionis alwaysdueto a changen the operatingervi-
ronment.For example,araceconditionis non-determinis-
tic becauseof the different times a clock interrupt is
deliveredto thethreadschedulerThis connectiorbetween
changing operating ervironment and non-deterministic
executionis why we classify faultsbasedon their depen-
dence on the operating\@monment.

We classify software faults into two main cateyories:
environment-independent andwérmnment-dependent.

Environment-independerfaults occur independenpf
theoperatingenvironment.Givenaspecificworkload(e.g.
requesteaperationdrom the user),an ervironment-inde-
pendentfault will always occur As an example, one
releaseof Apachehad an environment-independerfault
thatcausedt to fail whenever a browsersubmitteda long
URL (Section 5.1). Because ernvironment-independent
faults do not dependon the operatingervironment, they
arecompletelydeterministic(non-transient)Henceappli-
cation-generiaecovery techniqueswill not survive these
faults.

Environment-dependeiaults dependon the operating
ervironment. For thesefaults, the operatingervironment
plays somerole in triggering the designbug in the pro-
gram. For example,the programmay not deal gracefully
with a slow network, a full disk, or an operatingsystem
thathasrun out of file descriptorsBecauseernvironment-
dependentaultsdependn the operatingervironment,the
programmay behae differently whenthe requestedper-
ationis retried.Hence,application-genericecovery tech-
niguesmaysurvive thesefaultsif theervironmentchanges
enough to eoid the ault when the operation is retried.

Environment-dependerfaults canbe further classified
into transientand non-transientdependingon how likely
it is for the operatingervironmentto be fixed in the

absenceof application-specifigecovery. In ervironment-
dependent-nonansientfaults,the environmentis unlikely
to be changedenoughto avoid the bug during retry. For
example,the programmay fail if thediskis full. We con-
sider this an ervironment-dependent-nontransiebtig
becausemost current systemsdo not fix this condition
automatically Of course,some systemsmay provide a
way to automaticallyincreasehe disk capacityandhence
avoid the bug during retry. If this becomescommon,we
would re-classifythis as an environment-dependent-tran-
sient ault.

Like ervironment-dependent-nontransidfatlts, ervi-
ronment-dependentansientfaultsdependntheerviron-
ment. Unlike ervironment-dependent-nontransidiatults,
however, the ervironmentaldependeng is suchthat sim-
ply retryingthe operationis likely to encounter different
ervironmentandhencesucceedFor example,aracecon-
dition will typically betriggeredby a specificinterleaving
of threadsby the thread scheduler If the operationis
retried,theervironmentalcondition(the specificinterlear-
ing of threads)is likely to be different,andthe operation
may succeed.As anotherexample of an ervironment-
dependent-transiefi&ult, a programmay createchild pro-
cessesout not kill them. Theseprogramstypically fail
whentheoperatingsystenrunsout of processedA typical
genericrecovery systemwouldkill all processeselatedto
the application (therebychangingthe operatingerviron-
ment), recwer the program, and successfully continue.

4. Software and Faults Targeted

Every pieceof softwaregoesthrougha hugenumberof
bugsoverits lifetime of developmentanduse.In this study
we look at a subsef the faultsthatwere detectedy the
usersof releasedsersionsof the software. Fault-recawery
techniquesare generallydirectedat this subsetof faults.
Amongthis subsebf faultswe concentrat@n high-impact
faults,i.e. thosethat causethe softwareto crash returnan
error condition,causesecurityproblems,or stoprespond-
ing. Thereare mary othertypesof faultsthat we do not
examine, such as those encounteredduring compilation
andinstallation. Thesefaultsdo not causecritical outages
becausedhey occurbeforethe softwareis beingusedin a
productionsetting.We assumehatuserstestnew versions
of software beforeincorporatingthem into their produc-
tion ervironment.

Our primary sourceof datafor analyzingfaultsis the
on-line bug reportsthat are maintainedfor open-source
software. These bug reports contain information about
eachreportedfault, including the symptomsaccompan-
ing the fault, theresultsof thefault, the operatingerviron-
ment and workload that inducesthe fault, and, in most

caseshow theunderlyingbug wasfixed. A key field in all
thebug reportswe studyis the“How To Repeat’field. We
usethe information suppliedin this field along with the
commentsenteredby the developersof the software to
decidewhich fault classthe fault belongedto. The devel-
opersalso provide informationon how the bug wasfixed
andwhetherthey couldrepeathefailure ontheir develop-
ment machines.

We analyze three large, open-sourceapplications:
Apache,GNOME, and MySQL. Apacheis a robust and
commercially used open-sourceimplementationof an
HTTP (web) sener. As of November1998, Apachewas
beingusedby 36% of the 53,265Internetdomainsowned
by U.S businessesvith annualrevenueof $10 million or
more [SiteMetrics98],and as of October 1999, Apache
wasbeingusedasa web sener by 54% of over 8 million
sites polled in a suney [Netcraft99]. The Apache bug
reportsare available at http://bugs.apache.gr Of all the
bugsreportedwe considetbugson productionversionsof
the software that were cateyorized as severe or critical.
The site hasa total of 5220bug reportslisted, andin our
studywe narrov theseto 50 uniquebug reportsmeeting
these criteria.

GNOME (GNU Network ObjectModel Environment)
is an open-sourcedesktopervironment for usersand a
powerful applicationframevork for software developers.
GNOME, along with KDE, is included in most of the
Linux distributions availabletoday GNOME is alsoused
by usersrunningotherflavorsof UNIX ontheir hardware.
We usetwo sourcesof fault information for our surey.
The first (http://bugs.gnome.@) provides us with bug
reportsandthe second(http://cvs.gnome.q) providesus
with information about how the bugs were fixed. The
GNOME packagecomeswith a setof corefilesandlibrar-
ies anda numberof applicationsWe look at faultsin the
corefiles andlibrariesandfour commonlyusedGNOME
applications:panel(a usercustomizabldoolbar),gnome-
pim (a personal information manager), gnumeric (a
spreadsheetpplication)andgmc(afile managementtil-
ity). We looked at about 500 bug reportsand narroved
them to 45 uniqueugys meeting our criteria.

MySQL is a multi-user multi-threadedSQL database
sener designedfor client-serer implementationslt is a
fastandrobust sener aimedat handlingsmallto medium
amountsof data. These featuresmale it the database
sener of choicefor web applicationsand ISP’s offering
database-hostingervices.All the fault datausedin our
studywasobtainedfrom the archivesof the mysqglmailing
list at http://www.geocravler.com.Thereareabout44,000
messagearchied at the website.In this study we useall
the messages$rom the archives that matchedone of the

following keywords:“crash”, “segmentation”,“race”, and

“died” (we looked at a few hundredmessageand found
that these keywords were the ones commonly used to
describeseriousbugs). We thennarroved thesemessages
to 44 unique bgs.

5. Results

We cateyorize the faultsfor eachof the threeapplica-
tions into the threeclassediscussedearlierand describe
more fully the causesof all the ernvironment-dependent
faults.Therearetoo mary environment-independeriitults
to describeeachonefully in thelimited spaceavailable,so
we gve descriptions of seral representate ones.

5.1. Apache

Table 1 containsthe resultsof classifying50 faultsfor
Apache. The overwhelming majority of faults do not
dependon the operatingernvironment.Thesedeterministic
bugsarerelatively easyto repeat,soit is perhapssurpris-
ing that Apachesuffered from so mary in releasedsoft-
ware. Even for deterministic faults, testing all the
boundary conditions is notoriously filifult.

The following are someof the ervironment-indepen-
dent hugs reported for Apache:

¢ dieswith a segfault whenthe submittedURL is very
long. This problemwas a resultof an overflow in the
hash calculation.

* SIGHUPkills apacheon Solarisand Unixware. Nor-
mally, this shouldgracefullyrestart/rejuenateApache.

¢ dumpscore on Linux/PPC if handeda noneistent
URL. The problem is that ap_log_rerror()uses a
va_list variable twice without an intervening
va_end/a_start combination.

¢ thiserroroccurswhendirectorylisting is turnedonand
thedirectoryhaszeroentries.The palloc() call usedin
index_directory() doesm’handle size zero properly

¢ sharedmemory seggment keepsgrowing and reaches
sizesexceeding100 Mbytes in lessthan 5 hours of
operation.When a HUP signalis sentto rotatelogs,
Apachesfreezesor dies. This is causedby memory
leaks in the application.

Of the 14 faultsthat do dependon the operatingenvi-
ronment, half are due to conditionsthat persistduring
recovery. The conditionsof the operatingervironmentthat
trigger the 7 environment-dependent-nontransiebtigs
are:

* high load leading to an unknowvn resource leak.
Resourceleaksin the applicationwill persistduring
recovery, assuminga genericrecovery mechanisnthat
saves and receers all application state.

Faults
environment-independent 36

Class

environment-dependent-nontransient

environment-dependent-transient

Table 1: Classification of faults for Apache.
Environment-independent faults do not depend on
the operating environment and are therefore
deterministic. Environment-dependent-nontransient
faults depend on the operating environment, and the
environmental condition that triggers the fault is
likely to persist during retry. Environment-
dependent-transient faults depend on the operating
environment, and the environmental condition that
triggers the fault is likely to be fixed during retry.

* lack of file descriptorsAs above, truly genericrecor-
ery mechanismsvill recover all applicationresources
suchasfile descriptors,so this condition will persist
during receoery.

¢ disk cacheusedby the applicationgetsfull and the
application cannot store ymore temporary files.

* sizeof log file is greaterthan maximumallowed file
size.

e full file system.

* unknavn network resourcexhausted.

* removal of PCMCIA netvork card from the computer
The remainingfaultsaretriggeredby conditionsin the

operatingervironmentthat are likely to be fixed during

recovery. The conditionsof the operatingervironmentthat
trigger the 7 evironment-dependent-transienids are:

¢ call to DomainNameServicereturnsan error. Thisis
likely to change when the DNS servs restarted.

¢ child processesangsduring peakload and consume
all availableslotsin the procesdable.As partof auto-
matic recovery, the recorery systemis likely to kill all
processes associated with the application.

* userpressestoponthebrowserin the midstof a page
download. This fault dependson the exact timing of
the requestedworkload, which is not likely to be
repeated during regery.

¢ hungchild processehangontorequirednetwork ports.
Thesewill likely be killed during recovery and the
ports will be freed.

¢ slow DomainNameServiceresponseThe causeof the
slov DNS responsewill likely be fixed eventually
without application-specificecovery, eitherby restart-
ing DNS, or by fixing the netark.

30

[env-dep-transient
env-dep-nontransient
Il env-ind

20t

2

E

@®©

LL

©

38 N
5 10

5 10}

Version Number
Figure 1: Distrib ution of faults for Apache over
software releases.

¢ slow network connection.The network may be fixed
by the time Apache regers.

* lackof eventsto generatesuficientrandomnumbersn
/dev/frandom. During recovery, it is likely that more
events will be generated for Adeandom.

Figure 1 shaws the distribution of faultsover releases
of the Apachesoftware. Thefault distribution exhibits two
distinct properties.First, the relative proportion of envi-
ronment-independeriugs staysaboutthe sameeven for
new release®f the software. Secondthe total numberof
bugs reportedincreaseswith newer releasesf software.
This is probablydueto anincreasan the numberof users
of the never releases.

5.2. Ghome

Table 2 containsthe resultsof classifying45 faultsfor
GNOME. As with Apachethe overwhelmingmajority of
faults do not depend on the operatingiemment.

The following are someof the ervironment-indepen-
dent ugs reported for Gnome:
¢ clicking on the “tasklist” tabin gnome-pagesettings,

causes the pager to die.

Faults
environment-independent 39

Class

environment-dependent-nontransient

environment-dependent-transient

Table 2: Classification of faults for GNOME.
Environment-independent faults do not depend on
the operating environment and are therefore
deterministic. Environment-dependent-nontransient
faults depend on the operating environment, and the
environmental condition that triggers the fault is likely
to persist during retry. Environment-dependent-
transient faults depend on the operating
environment, and the environmental condition that
triggers the fault is likely to be fixed during retry.

¢ clicking onthe“prev” buttonin the “year” view of the
gnomecalendamapplicationcausest to crash.Thiswas
dueto assigninga valueto alocal copy of thevariable
instead of the global cgp

¢ thespreadsheetpplication‘gnumeric” crashesf atab
is pressedin the “define name” dialog or in the
“File/Summary” dialog. This was causedby initializ-
ing a \ariable to an incorrectalue.

* double-clickingon a “tar.gz” file that is lying as an
icon on the desktopcrashegmc, the gnomefile man-
ager This was causeddueto the declarationof a vari-
able as “long” instead of “unsigned long”.

¢ afterclicking the main buttononceto pop up the main
menu,a click again on the desktopin orderto remove
the menu freezes the desktop.

The conditionsin the operatingenvironmentthat trig-
ger the 3 evironment-dependent-nontransienigs are:

* hostnamef the machinewaschangedvhile the appli-
cation was running.

* opensocletsleft aroundby soundutilities while exit-
ing. Eachopensoclet consumes file descriptorand
the application runs out of file descriptors.

¢ file hasanillegal valuein the ownerfield. Application
crashes when trying to edit the file or its properties
The conditionsin the operatingernvironmentthat trig-

ger the 3 evironment-dependent-transienids are:

* unknown failure of application which arks on a retry

¢ raceconditionbetweenaimageviewer anda property
editor Raceconditionsdependon the exact timing of
threadschedulingevents,andthesearelik ely to change
during retry

¢ race condition betweena requestfor action from an
applet and its renval.

30

[env-dep-transient
env-dep-nontransient
Il env-ind

20

10

Number of Faults

Month (1999)
Figure 2: Distrib ution of faults for GNOME over
time.

Figure 2 shaws the distribution of faultsreportedover
time. We usedtime asopposedo releasedecausef the
natureof GNOME. GNOME is a collection of modules,
each of which are releasedindependently There is an
occasionamajor releaseof all the modulesput together
But there was only one releaseover the period we per-
formedthefault study Thedistribution shavs thatthepro-
portionof ervironment-independerugsis very high over
all periods.GNOME shaws a decreasén the numberof
faultsreportedfor a shortintenval beforeincreasingagain.
Thiswasprobablya periodof few changesn the software.

5.3. MySQL

Table 3 containsthe resultsof classifying44 faultsfor
MySQL. As with the other two applications,the over-
whelmingmajority of faultsdo not dependon the operat-
ing ervironment.

The following are someof the ervironment-indepen-
dent ugs reported for MySQL.:
¢ updatingan index to a value that will be found later
while scanningheindex treeandhencecreatingdupli-
catevaluesin the index will crashMySQL. This was
solvedby first scanningor all matchingrows andthen
updating the found wes.

Class # Faults
environment-independent 38
environment-dependent-nontransient
environment-dependent-transient 2
Table 3: Classification of faults for MySQL.

Environment-independent faults do not depend on
the operating environment and are therefore
deterministic. Environment-dependent-nontransient
faults depend on the operating environment, and the
environmental condition that triggers the fault is likely
to persist during retry. Environment-dependent-
transient faults depend on the operating
environment, and the environmental condition that
triggers the fault is likely to be fixed during retry.

* aquerywhich selectszerorecordsand hasan “order
by” clausewill causethe senerto crash.Thiswasdue
to some missing initialization statements.

¢ theuseof a“count” clauseon an emptytable causes
MySQL to crash.This wascausedueto missingcheck
for empty tables.

* an “OPTIMIZE TABLE" query crashesthe sener.
This was caused by a missing initialization statement.

* a “FLUSH TABLES” command after a “LOCK
TABLES” command crashes the serv
The conditionsin the operatingenvironmentthat trig-

ger the 4 evironment-dependent-nontransienigs are:

* shortageof file descriptorglueto competitionbetween
MySQL and a web seev.

* sener crasheswhenit receves a connectionrequest
from a remotemachineif reverseDNS is not config-
ured for the remote host.

* size of databasefile is greaterthan the maximum
allowed file size.

¢ full file system preents all operations on the database.

The conditionsin the operatingenvironmentthat trig-
ger the 2 evironment-dependent-transienids are:

¢ raceconditionbetweerthe maskingof a signalandits
arrival. raceconditionsdependon the exact timing of
threadschedulingevents,andthesearelik ely to change
during retry

* race condition betweena new user login and com-
mands issued by the administrator

Figure 3 shaws the distribution of faults over releases
of the MySQL software. The fault distribution exhibits
two distinct propertiessimilar to what Apacheexhibits.
One, the relative proportionof ervironment-independent
bugs staysaboutthe sameeven with new releaseof the

30

[env-dep-transient
env-dep-nontransient
Il env-ind

20+

Number of Faults

. ~ Version Number
Figure 3: Distrib ution of faults for MySQL over
software releases .

software.Two, the total numberof bugsreportedncreases
with newer releasef software. This is probablydueto
increasdn the numberof usersof the newer releasesThe
last releasehas a substantiallylower number of faults
becausehereleasds very new andhencevery few users
are using the softare and reportingugs.

5.4. Discussion

The distributions of faultsfor the threepiecesof soft-
ware we looked at shaw that thereare very few erviron-
ment-dependerfaults. Of the 139 bugswe looked at, we
found 14 (10%) ernvironment-dependent-nontransient
faults and 12 (9%) environment-dependent-transient
faults. We acknavledge that classifying bugs between
ervironment-dependent-transieand ervironment-depen-
dent-nontransientlassess subjectve and dependsupon
therecovery systemin place.However, this doesnot affect
thefactthatthe numberof environment-independeifiaults
is very high.

This result differs from the generalperceptionthat a
majority of bugs in releasedsoftware are Heisenlngs
[Gray86]. According to this perception,most Bohrhugs
are caughtduring development,or perhapsduring early
releaseof the software. As thesebugs are fixed and the
software becomeanore stable,the relative percentagef

Heisenlngs in the remaining bugs should increase.In
today’s software culture, however, new featuresand code
areaddedvery quickly, andthis rapid rate of changemay
prevent the application from reaching stability

Another possibleexplanationfor why Heisenligs are
sorareis thatthey occurinfrequentlyandsodo notappear
in bug reports. However, recovery efforts should be
directedatthefaultsthatoccurmostfrequentlyin practice,
andtheseappeato primarily consistof environment-inde-
pendent Bohnigs.

As with ary casestudy basedon reporteddata,a few
limitations apply to our work. First, results may differ
widely for otherapplications;for example, mission-criti-
cal applicationsundego morerigoroustestingthan most
software, and this may changethe distribution of faults.
Second,the reporteddata may be biased;for example,
peoplemaytendnotto reportfaultsthey cannotduplicate.
Third, we analyzethe distribution of bugs, ratherthanthe
distribution of actualfailures.Finally, we reasorfrom bug
reportsaboutthe ability for genericrecovery mechanisms
to recover from specific faults. An important avenue of
future researchs to implementgenericrecovery andver-
ify its ability to survive a specific fault [Lee93]. This
would sene as an end-to-endcheck on whetherthe bug
reporthada completelist of ervironmentaldependencies
for that fult.

6. Surviving Softwar e Faults

In this sectionwe look at varioustechniquedo survive
software faults belongingto different classes.Some of
thesetechniquesare well known, especiallyfor erviron-
ment-dependent-transiefidults and some categories of
environment-dependent-nontransidatlts. For othercat-
egories of faults we suggestsometechniquesto survive

them and refer to techniques suggested by researchers.

6.1. Environment-lndependent Faults

Sinceervironment-independeffibultsareguaranteetb
reoccurgiven a specificworkloadthereis no easyor gen-
eral techniqueto recover applicationsafter the fault has
manifestedtself. The bestway to survive suchfaultsis to
prevent them from occurringin the first place. However,
thisis not alwayspossibledueto thedifficultiesassociated
with testingall of the boundaryconditionsthe software
may encounterin the field. Formal codeinspectionsand
thoroughtesting are highly effective to remove software
faults before releasing sofine [Weller93].

Therealsoexist languagesndtoolsto helpsolve some
of the problemsin this catgyory. Languagedike Jaa,
which aretype-safeandallocate/deallocatsnemoryauto-

matically, can be usedsolve problemslike buffer over-
flows and memoryleaks. Tools like Purify canalso help
find problemsrelatedto memoryallocationanddealloca-
tion. Tools like Ballista [Kropp98] test functions for
boundaryconditionsandplacewrappercodearoundthem
to prevent failure. Using standardlibraries like POSIX
helps prevent problemsrelated to inconsistentfunction
behaior on diferent operating systems.

6.2. Environment-Dependent-Nontransient Faults

Most ernvironment-dependent-nontransiefaults are
dueto someresourcébeingexhaustedsuchasfile descrip-
tors, soclets, or disk space. There are two general
approachefor solvingresourceexhaustion Oneway is to
detect the problem and automatically increase the
resourcesavailable to the application.For example, the
operatingsystemmay be ableto dynamicallyincreasehe
number of file descriptorsavailable to a process.This
approachworks when the application only temporarily
exceeds the resourcegadlable (e.g. during a peak load).

Thesecondapproachs to try to automaticallydecrease
theamountof resourcesisedby the application.Oneway
to dothisis to usegarbagecollectiontechniquego discern
which resourcesare no longer neededandreclaimthese.
For example,the systemmay monitor which file descrip-
tors areusedandautomaticallyclosethe unusedones.Or
the systemmay provide “virtual soclets”to anapplication
by multiplexing theapplications socletsontothe systems
soclets.

Someapplicationdgmplementapplication-specifisolu-
tions to prevent some ervironment-dependent-nontran-
sient faults. One example is Apache, which can be
rejuvenatedby sendingit a specialsignal. During rejuve-
nation, Apachekills all its child processesand thereby
reclaimsary processstructuresusedup by zombie pro-
cessesThis techniqueis widely usedby web administra-
tors to reduce failures in Apache. A more detailed
discussionof this type of rejuvenationcan be found in
[Huang95].

6.3. Environment-Dependent-Transient Faults

Procesgairs[Gray86]androllback-receery protocols
[EInozaly99, Huang93]in generakolve faultsin this class
very well. Faultsin this classarerelatedto eithertime or
to anervironmentalconditionwhichis expectedo change
very frequently So retrying the sameoperationat a later
time will usuallysucceedSometechniqueshave alsobeen
suggestedto induce changesin the ervironment to
increasethe succesof a retry without affecting the pro-
gram correctnessOne suchtechniquechangeshe mes-
sageordering to simulate changesin the ervironment

[Wang93].
7. Related Work

Several prior studies have examined the faults that
occurin releasedsoftware. Most of thesestudiesdo not
discussthe interactionbetweenthe faults and a recovery
system.Becauseof this, their error descriptionsare not
sufficiently detailedto classify faults preciselyinto tran-
sient and non-transientfaults. For comparisonpurposes,
however, we caninfer a rough classificationbasedon the
information they do provide. Our rough classificationof
faults studiedin related paperssupportsour conclusion
thatmostfaultsin releasedoftwarearenon-transientand
therefore,that application-specifiaecovery is neededto
survive thesedults.

SullivanandChillarege studyfaultsin the MVS operat-
ing system and the DB2 and IMS databasesystems
[Sullivan91, Sullivan92]. They cateyorize someerrorsas
beingtiming or synchronizatiorrelated eitherin termsof
theerrortypeor theerrortrigger Theseerrorsarelikely to
be ernvironment-dependent-transiefiadults. They found
that 5-13% of the faults were timing or synchronization
related. Sullivan and Chillarege were surprised(as we
were) that most faults were non-transientbugs (e.g.
boundaryconditions)thatwould have beenrelatively easy
to catch during the testing phase.

Lee and lyer studyfaultsin the TandemGUARDIAN
operatingsystem[Lee93]. They alsohave a cateyory for
errorsrelatedto timing and race conditions,which com-
prise 14% of the faults. Again, theseresultsmatchours
conclusionthatmostfaultsdo notdependon the operating
ervironment and so are non-transient.

Leeandlyer alsoexaminedhow oftenthe Tandempro-
cess-paimechanisnmenabledhe systemto recover from a
softwarefault. They foundthat82% of the softwarefaults
could be recovered with processpairs. This is a much
higher fraction than our estimatesand requires some
explanation. First, we are assuminga pure application-
genericrecovery system,and the Tandemoperatingsys-
tem’s procesair implementatiorusessomeapplication-
specificinformation.For example,Leeandlyer reportthat
mary errorswere recovered becauseahe backupprocess
did not startfrom the samestateasthefailed primary (this
eliminatestheir “memory state”and “error lateng” cate-
gories).Seconda large fraction of recoreredfaultswere
dueto the backupnotre-executingtherequestedask(per-
hapsbecausehe taskwasdirectedat a specificprocessor
rather than to the process-pairedapplication). In our
model,all requestedasksneedto be executed;we do not
assumea userwill generouslyavoid the fault trigger, nor
do we considerfaults belov the process-paire@pplica-

tion. Third, mary recoreredfaultsin [Lee93]only affected
the backupprocessThis resultsfrom bugsintroducedby
the process-paisystem.Lee andlyer counttheseastran-
sientbugs; we areonly concernedvith bugsin the appli-
cationitself. After eliminatingthesesourcesf differences
from considerationpnly 29% of the software faults are
transientbugsin the operatingsystem.This is still some-
what higherthanwe found, andwe conjecturethatthis is
due to two reasonsFirst, Tandemsoftware is probably
testedmore thoroughly than most current software, and
thistestinglik ely eliminatesmorenon-transienfaultsthan
transientones. Second,operatingsystemsoftware inter-
actsmore closelywith the hardwarethanthe application-
level software we study This interaction createsmore
dependencie®n the ervironment, which increasesthe
fraction of ervironment-dependent-nontransientd ervi-
ronment-dependent-transieatifts.

Several scheme$have beenproposedo enablegeneric
recovery to work for a larger classof faults.For example,
somerecovery techniguesseekto increasethe non-deter-
minism in the applicationby re-orderingeventssuchas
messageeceves[Wang93]:thesearebasicallytechniques
to induce changeto the external ervironment. Thesedo
not transformernvironment-independerfiaults into ernvi-
ronment-dependentffaults. Rather they increase the
chancehata ervironment-dependerfiault will experience
a different operating ervironment (order of message
receves,in this case)duringrecovery. A secondechnique
that seeksto reducethe impact of software bugsis soft-
warerejuvenationfHuang95].Softwarerejuvenationtakes
adwantageof recovery codethatis alreadypresentin the
application e.g.codeto re-initializetheapplications state.
Software rejuvenationseeksto prevent failuresby invok-
ing this application-specificecorery codebeforethe pro-
gram crashes.

8. Conclusions and Future Work

In this paper we have testecthe hypothesighatgeneric
recovery technigues,such as processpairs, can survive
most software faults without using application-specific
information.We examinedin detailthefaultsthatoccurred
in three,large, open-sourcapplicationsthe Apacheweb
sener, the GNOME desktop ervironment, and the
MySQL databaseUsinginformationcontainedn the bug
reportsandsourcecode,we classifiedfaultsbasedon how
they dependedbn the operatingervironment. We found
that 72-87%of the faultswereindependentf the operat-
ing ervironmentand were hencedeterministic(non-tran-
sient). Recorering from thesefaults requiresthe use of
application-specificknowledge. Half of the remaining
faults dependedn a conditionin the operatingerviron-

mentthat was likely to persiston retry. Thesefaults are
alsolikely to requireapplication-specificecovery. Unfor-

tunately only 5-14%of thefaultswerecausedy transient
conditions suchastiming andsynchronizationthatwould

naturallyfix themselesduringrecovery. Our dataindicate
that classical application-genericrecovery techniques,
suchasprocesgairs,will notbe suficientto enablethese
applications to surve most softwre awults.

In the future, we hopeto implementapplicationslike
Apache and MySQL using various fault-tolerant tech-
niques and test how well they recover from the bugs
reportedn errorlogs. Thiswill allow usto verify the con-
clusionswe drew from informationin the error logs; for
example, it will allow us to verify that a fault did not
depend on an unreportedv@onmental condition.

9. Acknowledgments

We aregratefulto the open-sourceommunityfor pro-
viding useful, robust software andfor providing a wealth
of informationto help make future programseven more
useful and robust. We thank the programcommitteeand
reviewers, particularlyRavi lyer and ChandraKintala, for
their insightful feedback.

This researctwassupportedn partby NSFgrantMIP-
9521386 NSFCAREERAward MIP-9624869|BM Uni-
versity PartnershipProgram#19981020024)ntel Tech-
nology for Education 2000, andr&T Labs.

10. References

[Avizienis85] Algirdas Avizienis. The N-Version Approach
to Fault-ToleranSoftware |EEE Transactions
on Software Engineering SE-11(12):1491—
1501, December 1985.

[Dijkstra72] EdsgeW. Dijkstra. Hierarchical Ordering of
SequentialProcessesTechnical report, Aca-
demicPress1972.In OperatingSystemd ech-
niques, Hoare and Perrott eds.,.

[Elnozahy99] E.N. Elnozahy,L.Alvisi, Y.-M. Wang,andD.
B. Johnson A Survey of Rollback-Recovery
Protocolsin Message-PassinBystemsTech-
nical ReportCMU-CS-99-148 CarnegieMel-
lon University, June 1999.

[Gray86] JimGray.Why docomputerstopandwhatcan
be doneaboutit? In Proceedingsf the 1986
Symposiunon Reliability in Distributed Soft-
wareandDatabaseSystemsgpages3—12,Janu-
ary 1986.

[Gray91]

[Huang93]

[Huang95]

[Kropp98]

[Lee93]

[Netcraft99]

[Randell75]

[SiteMetrics98]

[Sullivan91]

[Sullivan92]

[Wang93]

[Weller93]

JimGrayandDaniel P.Siewiorek High-Avail-
ability Computer Systems.IEEE Computer
24(9):39-48, September 1991.

Y. HuangandC. Kintala. Softwarelmplement-
ed Fault Tolerance:Technologiesand Experi-
ence.In Proceeding®of the 1993International
Symposiunen Fault-TolerantComputingpag-
es 2-9, June 1993.

Y. Huang,C. Kintala, N. Kolettis, andN. Ful-
ton. SoftwareRejuvenationAnalysis,Module
and Applications.In Proceedingsf the 1995
International Symposiumon Fault-Tolerant
Computing pages 381-390, June 1995.

N.P. Kropp, P.J. Koopman, and D.P.

Siewiorek. AutomatedRobustnesd esting of

Off-the_shelf Software Componentsin Pro-

ceedingof the 1998International Symposium
on Fault-TolerantComputing pages230-239,
June 1998.

I. LeeandR. lyer. Faults,SymptomsandSoft-
ware Fault Tolerancein the TandemGUARD
IAN OperatingSystem.In International Sym-
posiumon Fault-TolerantComputing(FTCS)
pages 20-29, 1993.

The Netcraft Web Server Survey. At ht-
tp://www.netcraft.com/survey/

Brian Randell. SystemStructurefor Software
Fault Tolerance.lEEE Transactionson Soft-
ware Engineeringl1(2):220-232, June 1975.

InternetServerSurvey At http://www.sitemet-
rics.com/serversurvey/ ss_98 g3/revseg.htm

M. Sullivan and R. Chillarege.Software De-
fectsandTheirImpacton SystemAvailability—
A Study of Field Failuresin OperatingSys-
tems.In Proceeding®f the 1991 International
Symposiumon Fault-Tolerant Computing
June 1991.

M. SullivanandR. Chillarege.A Comparison
of SoftwareDefectsin Databasévianagement
Systemsand OperatingSystemslin Proceed-
ings of the 1992 International Symposiunon
Fault-Tolerant Computing pages 475-484,
July 1992.

Yi-Min Wang, W.KentFuchs, and
YennuarHuang. ProgressiveRetry for Soft-
wareError Recovenyin DistributedSystemsin
Proceeding®f the 1993 Symposiunon Fault-
Tolerant ComputingJune 1993.

EdwardF. Weller. Lessonsirom Three Years

of InspectionData. |[EEE Software 10(5):38—
45, September 1993.

