
Abstract

This paper teststhe hypothesisthat genericrecovery
techniques,such asprocesspairs, cansurvivemostappli-
cation faults without using application-specificinforma-
tion. We examinein detail the faults that occur in three,
large, open-source applications: the Apache web server,
the GNOMEdesktopenvironment,and the MySQLdata-
base. Using informationcontainedin thebug reportsand
source code, we classifyfaults basedon how they depend
on theoperating environment.We find that 72-87%of the
faults are independentof the operating environmentand
are hencedeterministic(non-transient).Recovering from
the failures causedby thesefaults requires the use of
application-specificknowledge. Half of the remaining
faultsdependon a conditionin theoperating environment
that is likely to persiston retry, andthefailurescausedby
thesefaults are also likely to require application-specific
recovery. Unfortunately, only 5-14% of the faults were
triggeredby transientconditions,such as timing andsyn-
chronization,thatnaturally fix themselvesduringrecovery.
Our results indicate that classical application-generic
recoverytechniques,such asprocesspairs,will notbesuf-
ficient to enable applications to survive most failures
caused by application faults.

1. Introduction

As computersbecomean integral part of today’s soci-
ety, making them dependable becomes increasingly
important.Fieldstudies[Gray91]andeverydayexperience
make it clear that the dominantcauseof failurestodayis
softwarefaults,both in theapplicationandsystemlayers.
Reducingthenumberof softwarefaultsandsurviving the
onesthat remain is thereforean importantchallengefor

the fault-tolerance community.

Onekey componentof this questto avoid andsurvive
softwarefaultsis understandingwhattypesof faultsoccur
in releasedapplications.This understandingcan help us
develop recovery techniquesfor surviving softwarefaults
and develop new languagesand tools for avoiding soft-
ware faults in the future. Unfortunately, most production
softwarein the pastwasproprietaryandthereforehardto
analyze.In particular, most companieswere understand-
ably reluctantto releaseinformationon the exact failings
of their software.

However, therecenttrendtowardopen-sourcesoftware
may make this information available. There are now
widely used,open-sourceprogramsof all types,including
operatingsystems,databases,web servers,web browsers,
wordprocessors,spreadsheets,andahostof others.Open-
sourceprogramssharea numberof importantcharacteris-
tics. First, they arewidely usedandhenceform a relevant
baseof software to study. For example,the Apacheweb
server is usedby 54% of all web sites[Netcraft99].Sec-
ond, their developmentprocessis open. Open develop-
ment allows others to perusethe history of bugs and
softwarerevisions,informationwhich is normallynotpub-
lic. Last,while thereis little harddatacomparingthequal-
ity of open-sourcewith proprietary software, the rapid
increasein the useof opensourcesoftware like Apache
and Linux indicatesthat the quality of open-sourcesoft-
ware is good enough for mainstreamuse. Both open-
sourceandproprietarysoftwareare releasedquickly and
with plentiful bugs,perhapsasa resultof thecurrentpace
of innovation in the computerindustry. We believe this
trend toward open-source,open-development software
presentsa treasure-trove of information for researchin
software reliability.

In this paper, we use information in bug reportsand
sourcecodeto understandandclassifyfaultsthatoccurin

Whither Generic Recovery from Application Faults?
A Fault Study using Open-Source Software

Subhachandra Chandra and Peter M. Chen
Computer Science and Engineering Division

Department of Electrical Engineering and Computer Science
University of Michigan

{schandra,pmchen}@eecs.umich.edu
http://www.eecs.umich.edu/Rio

Proceedings of the 2000 International Conference on Dependable Systems and Networks /
Symposium on Fault-Tolerant Computing (FTCS)

threewidely used,open-sourceprograms.Thegoalof this
paperis to provide informationto guideresearchon how
to survive applicationfaults.In particular, we wish to test
the hypothesisthat generic(i.e. not application-specific)
recovery techniques,suchasprocesspairs,cansurvive a
majority of application faults. Our methodologydiffers
from that of prior studies[Lee93]. We reasonfrom bug
reportsand sourcecode as to whethera purely generic
recovery systemwould have recovered from application
faults, while past studiesexamine the field behavior of
implemented,mostlygenericrecovery systems.This com-
parisonis valuablebecauseof our focuson purelygeneric
recovery and becausethere is no data available on the
effectivenessof recovery on widely used,open-software
systems.For this software,we find thatonly a small frac-
tion (5-14%)of faultsaretriggeredby transientconditions
(so-calledHeisenbugs)whichcanbesurvivedwith generic
recovery techniques such as rollback and retry.

2. Recovery from Software Faults

Faults may be classifiedinto two categories: opera-
tional anddesign[Gray91].Operationalfaultsarecaused
by conditionssuchas wear-out and can be handledwith
simplereplication.Faultscausedby designbugsaremuch
more difficult to handle, becausesimply replicating a
buggy designoften resultsin dependentfailuresin which
all the replicasfail. Softwarefaultsaredifficult to survive
because they are all caused by design bugs.

Faultsmay occurin applicationor systemsoftware.In
this paper, applicationsoftwarerefersto any softwarethat
runs on top of the recovery system,that is, software for
which the recovery systemis responsiblefor recovering.
Systemsoftware refers to software that runs below the
recovery system,that is, softwarethat recoversitself. The
scopeof this paperis limited to faultsthatoccurin appli-
cation software and how often a recovery system can
recover from these faults.

We categorizetechniquesfor recovering from software
faults as either application-specificrecovery or applica-
tion-generic recovery. Both styles of recovery involve
redundancy. In application-specificrecovery, a non-fault-
tolerantdesignis madefault-tolerantby addingcodethat
is specific to the application. This includes techniques
where the programmermakes calls to fault-tolerance
libraries or reconstructspart of the programstateduring
recovery. An extreme example of application-specific
recovery is N-versionprogramming,which usesN inde-
pendent implementations of the same program
[Avizienis85]. Recovery blocks also usemultiple imple-
mentationsof a block of code,but usea passive-replica-
tion style with error-checking and rollback to avoid

running multiple versionsat the sametime [Randell75].
Application-specificrecovery canbevery effective, but is
often prohibitively expensive to implement.

Becauseof the cost of implementingapplication-spe-
cific recovery for eachapplication,researchershave sug-
gested various application-generic ways to survive
software faults. Thesetechniquesdo not add redundant,
specific code for each application (we do not consider
errorcheckingcodeasredundant,thoughtechnicallymost
errorchecksareapplication-specificandredundant).As a
result,application-generictechniquesneedno information
aboutthe application,nor do they requireany assistance
from the application programmerin the form of extra
code.Instead,application-genericrecovery typically relies
on time redundancy. For example,processpairs[Gray86]
aresimilar to recovery blocks,but insteadof retrying the
operationon a differentimplementationof thecodeblock,
processpairsretry theoperationon thesamecode(possi-
bly on a differentcomputer).Processpairs,androllback-
recovery protocols in general [Elnozahy99, Huang93],
survive a specific class of software faults known as
“Heisenbugs” [Gray86]. Heisenbugs are transient,non-
deterministicfaults that disappearwhen the operationis
retried,evenif thesamecodeis used.Thetransientnature
of thefault arisesbecausesomefactorexternalto thepro-
gram has changed;for example,a different interleaving
orderof threadsmayoccurduringretryandsoavoid arace
condition.Note that a truly genericrecovery mechanism
mustpreserve all applicationstate(e.g.by checkpointing
or logging), becausethereis no application-specificcode
to reconstructmissingstate.Henceonly a changeexternal
to the applicationcanallow the applicationto succeedon
retry.

It hasbeenhypothesizedthat mostfaultsthat occur in
releasedapplicationsaretransient[Gray86].The intuition
for this hypothesisis thattransientfaultssuchasracecon-
ditions are more difficult to reproduceand hencedebug
thannon-transientfaults(so-calledBohrbugs),sotransient
faultsaremorelikely to remainin releasedsoftware.This
is an importanthypothesisfor guiding researchin how to
recover from softwarefaults,becauseit encourageswork
on application-genericrecovery. The primary goal of this
paperis to test this hypothesisby analyzingbug reports
and bug fixes of several large, widely used,open-source
programs.

3. Categorizing Software Faults

We classifysoftwarefaultsbasedon how they depend
on the operatingenvironment.By operatingenvironment,
we meanstatesor eventsthatoccuroutsideof theapplica-
tion being studied.The operatingenvironment includes

bothsoftwareandhardware.Softwareexamplesof operat-
ing environmentincludeotherprograms,suchastheDNS
name server and user-level applications,or the kernel,
suchasthe numberof availableslots in the kernel’s pro-
cesstable.Hardwareexamplesincludetransienthardware
conditionssuch as disk ECC errors and events such as
clock interrupts to the thread scheduler. The operating
environment also includes the timing of the workload
requeststo the program (e.g. the user’s typing speed).
However, we considerthe sequenceof workloadrequests
madeto theprogramaspartof theprogram,ratherthanas
partof theoperatingenvironment,becausethesequenceof
requestsis usuallyfixed for any givenprogramtask.That
is, we assumethe user is not willing to aid recovery by
avoiding certain input sequences.

It is importantto notethatgivena fixedoperatingenvi-
ronment,a setof concurrent,sequentialprocessesis com-
pletely deterministic [Dijkstra72]. Non-deterministic
executionis alwaysdueto a changein theoperatingenvi-
ronment.For example,a raceconditionis non-determinis-
tic becauseof the different times a clock interrupt is
deliveredto thethreadscheduler. Thisconnectionbetween
changing operating environment and non-deterministic
executionis why we classifyfaultsbasedon their depen-
dence on the operating environment.

We classify software faults into two main categories:
environment-independent and environment-dependent.

Environment-independentfaults occur independentof
theoperatingenvironment.Givenaspecificworkload(e.g.
requestedoperationsfrom theuser),anenvironment-inde-
pendent fault will always occur. As an example, one
releaseof Apachehad an environment-independentfault
thatcausedit to fail whenever a browsersubmitteda long
URL (Section 5.1). Becauseenvironment-independent
faults do not dependon the operatingenvironment,they
arecompletelydeterministic(non-transient).Henceappli-
cation-genericrecovery techniqueswill not survive these
faults.

Environment-dependentfaultsdependon the operating
environment.For thesefaults, the operatingenvironment
plays somerole in triggering the designbug in the pro-
gram.For example,the programmay not dealgracefully
with a slow network, a full disk, or an operatingsystem
that hasrun out of file descriptors.Becauseenvironment-
dependentfaultsdependon theoperatingenvironment,the
programmaybehave differentlywhentherequestedoper-
ation is retried.Hence,application-genericrecovery tech-
niquesmaysurvive thesefaultsif theenvironmentchanges
enough to avoid the fault when the operation is retried.

Environment-dependentfaultscanbe further classified
into transientandnon-transient,dependingon how likely
it is for the operatingenvironment to be fixed in the

absenceof application-specificrecovery. In environment-
dependent-nontransientfaults,theenvironmentis unlikely
to be changedenoughto avoid the bug during retry. For
example,theprogrammayfail if thedisk is full. We con-
sider this an environment-dependent-nontransientbug
becausemost current systemsdo not fix this condition
automatically. Of course,some systemsmay provide a
way to automaticallyincreasethedisk capacityandhence
avoid the bug during retry. If this becomescommon,we
would re-classifythis as an environment-dependent-tran-
sient fault.

Like environment-dependent-nontransientfaults, envi-
ronment-dependent-transientfaultsdependontheenviron-
ment. Unlike environment-dependent-nontransientfaults,
however, the environmentaldependency is suchthat sim-
ply retryingtheoperationis likely to encountera different
environmentandhencesucceed.For example,a racecon-
dition will typically betriggeredby a specificinterleaving
of threadsby the thread scheduler. If the operation is
retried,theenvironmentalcondition(thespecificinterleav-
ing of threads)is likely to be different,andthe operation
may succeed.As anotherexample of an environment-
dependent-transientfault,a programmaycreatechild pro-
cessesbut not kill them. Theseprogramstypically fail
whentheoperatingsystemrunsoutof processes.A typical
genericrecovery systemwould kill all processesrelatedto
the application(therebychangingthe operatingenviron-
ment), recover the program, and successfully continue.

4. Software and Faults Targeted

Everypieceof softwaregoesthroughahugenumberof
bugsover its lifetime of developmentanduse.In thisstudy
we look at a subsetof the faultsthatweredetectedby the
usersof releasedversionsof the software.Fault-recovery
techniquesare generallydirectedat this subsetof faults.
Amongthissubsetof faultsweconcentrateonhigh-impact
faults,i.e. thosethatcausethesoftwareto crash,returnan
errorcondition,causesecurityproblems,or stoprespond-
ing. Therearemany other typesof faults that we do not
examine, such as thoseencounteredduring compilation
andinstallation.Thesefaultsdo not causecritical outages
becausethey occurbeforethe softwareis beingusedin a
productionsetting.Weassumethatuserstestnew versions
of software beforeincorporatingthem into their produc-
tion environment.

Our primary sourceof datafor analyzingfaults is the
on-line bug reports that are maintainedfor open-source
software. These bug reports contain information about
eachreportedfault, including the symptomsaccompany-
ing thefault, theresultsof thefault, theoperatingenviron-
ment and workload that inducesthe fault, and, in most

cases,how theunderlyingbug wasfixed.A key field in all
thebug reportswestudyis the“How To Repeat”field. We
usethe information suppliedin this field along with the
commentsenteredby the developersof the software to
decidewhich fault classthe fault belongedto. The devel-
opersalsoprovide informationon how the bug wasfixed
andwhetherthey couldrepeatthefailureon their develop-
ment machines.

We analyze three large, open-sourceapplications:
Apache,GNOME, and MySQL. Apacheis a robust and
commercially used open-sourceimplementationof an
HTTP (web) server. As of November1998,Apachewas
beingusedby 36%of the53,265Internetdomainsowned
by U.S businesseswith annualrevenueof $10 million or
more [SiteMetrics98],and as of October1999, Apache
wasbeingusedasa webserver by 54%of over 8 million
sites polled in a survey [Netcraft99]. The Apache bug
reportsare available at http://bugs.apache.org. Of all the
bugsreported,we considerbugson productionversionsof
the software that were categorized as severe or critical.
The site hasa total of 5220bug reportslisted,andin our
studywe narrow theseto 50 uniquebug reportsmeeting
these criteria.

GNOME (GNU Network ObjectModel Environment)
is an open-sourcedesktopenvironment for usersand a
powerful applicationframework for software developers.
GNOME, along with KDE, is included in most of the
Linux distributionsavailabletoday. GNOME is alsoused
by usersrunningotherflavorsof UNIX on their hardware.
We usetwo sourcesof fault information for our survey.
The first (http://bugs.gnome.org) provides us with bug
reportsandthe second(http://cvs.gnome.org) providesus
with information about how the bugs were fixed. The
GNOMEpackagecomeswith asetof corefilesandlibrar-
ies anda numberof applications.We look at faultsin the
corefiles andlibrariesandfour commonlyusedGNOME
applications:panel(a usercustomizabletoolbar),gnome-
pim (a personal information manager), gnumeric (a
spreadsheetapplication),andgmc(afile managementutil-
ity). We looked at about 500 bug reportsand narrowed
them to 45 unique bugs meeting our criteria.

MySQL is a multi-user, multi-threadedSQL database
server designedfor client-server implementations.It is a
fastandrobust server aimedat handlingsmall to medium
amountsof data. These featuresmake it the database
server of choicefor web applicationsand ISP’s offering
database-hostingservices.All the fault datausedin our
studywasobtainedfrom thearchivesof themysqlmailing
list at http://www.geocrawler.com.Thereareabout44,000
messagesarchivedat thewebsite.In this study, we useall
the messagesfrom the archives that matchedone of the
following keywords:“crash”, “segmentation”,“race”, and

“died” (we looked at a few hundredmessagesandfound
that thesekeywords were the ones commonly used to
describeseriousbugs).We thennarrowed thesemessages
to 44 unique bugs.

5. Results

We categorize the faults for eachof the threeapplica-
tions into the threeclassesdiscussedearlieranddescribe
more fully the causesof all the environment-dependent
faults.Therearetoomany environment-independentfaults
to describeeachonefully in thelimited spaceavailable,so
we give descriptions of several representative ones.

5.1. Apache

Table1 containsthe resultsof classifying50 faultsfor
Apache. The overwhelming majority of faults do not
dependon theoperatingenvironment.Thesedeterministic
bugsarerelatively easyto repeat,so it is perhapssurpris-
ing that Apachesuffered from so many in releasedsoft-
ware. Even for deterministic faults, testing all the
boundary conditions is notoriously difficult.

The following are someof the environment-indepen-
dent bugs reported for Apache:

• dies with a segfault when the submittedURL is very
long. This problemwasa resultof an overflow in the
hash calculation.

• SIGHUP kills apacheon Solarisand Unixware.Nor-
mally, thisshouldgracefullyrestart/rejuvenateApache.

• dumps core on Linux/PPC if handeda nonexistent
URL. The problem is that ap_log_rerror()uses a
va_list variable twice without an intervening
va_end/va_start combination.

• thiserroroccurswhendirectorylisting is turnedonand
thedirectoryhaszeroentries.Thepalloc()call usedin
index_directory() doesn’t handle size zero properly.

• sharedmemory segment keepsgrowing and reaches
sizesexceeding100 Mbytes in less than 5 hours of
operation.When a HUP signal is sent to rotate logs,
Apachesfreezesor dies. This is causedby memory
leaks in the application.

Of the 14 faults that do dependon the operatingenvi-
ronment,half are due to conditions that persist during
recovery. Theconditionsof theoperatingenvironmentthat
trigger the 7 environment-dependent-nontransientbugs
are:

• high load leading to an unknown resource leak.
Resourceleaks in the applicationwill persistduring
recovery, assuminga genericrecovery mechanismthat
saves and recovers all application state.

• lack of file descriptors.As above, truly genericrecov-
ery mechanismswill recover all applicationresources
suchas file descriptors,so this condition will persist
during recovery.

• disk cacheusedby the applicationgets full and the
application cannot store any more temporary files.

• size of log file is greaterthan maximumallowed file
size.

• full file system.

• unknown network resource.exhausted.

• removal of PCMCIA network card from the computer

Theremainingfaultsaretriggeredby conditionsin the
operatingenvironment that are likely to be fixed during
recovery. Theconditionsof theoperatingenvironmentthat
trigger the 7 environment-dependent-transient bugs are:

• call to DomainNameServicereturnsan error. This is
likely to change when the DNS server is restarted.

• child processeshangsduring peakload and consume
all availableslotsin theprocesstable.As partof auto-
matic recovery, the recovery systemis likely to kill all
processes associated with the application.

• userpressesstopon thebrowserin themidstof a page
download. This fault dependson the exact timing of
the requestedworkload, which is not likely to be
repeated during recovery.

• hungchild processeshangontorequirednetwork ports.
Thesewill likely be killed during recovery and the
ports will be freed.

• slow DomainNameServiceresponse.Thecauseof the
slow DNS responsewill likely be fixed eventually
without application-specificrecovery, eitherby restart-
ing DNS, or by fixing the network.

• slow network connection.The network may be fixed
by the time Apache recovers.

• lackof eventsto generatesufficient randomnumbersin
/dev/random.During recovery, it is likely that more
events will be generated for /dev/random.

Figure1 shows the distribution of faultsover releases
of theApachesoftware.Thefault distribution exhibits two
distinct properties.First, the relative proportionof envi-
ronment-independentbugsstaysaboutthe sameeven for
new releasesof the software.Second,the total numberof
bugs reportedincreaseswith newer releasesof software.
This is probablydueto anincreasein thenumberof users
of the newer releases.

5.2. Gnome

Table2 containsthe resultsof classifying45 faultsfor
GNOME. As with Apache,theoverwhelmingmajority of
faults do not depend on the operating environment.

The following are someof the environment-indepen-
dent bugs reported for Gnome:

• clicking on the “tasklist” tab in gnome-pagersettings,
causes the pager to die.

Table 1: Classification of faults for Apac he.
Environment-independent faults do not depend on
the operating environment and are therefore
deterministic. Environment-dependent-nontransient
faults depend on the operating environment, and the
environmental condition that triggers the fault is
likely to persist during retry. Environment-
dependent-transient faults depend on the operating
environment, and the environmental condition that
triggers the fault is likely to be fixed during retry.

Class # Faults

environment-independent 36

environment-dependent-nontransient 7

environment-dependent-transient 7

1.0 1.1 1.2 1.3
Version Number

10

20

30

N
um

be
r

of
 F

au
lts

env-dep-transient
env-dep-nontransient
env-ind

Figure 1: Distrib ution of faults for Apac he over
software releases.

• clicking on the“prev” button in the“year” view of the
gnomecalendarapplicationcausesit to crash.Thiswas
dueto assigninga valueto a local copy of thevariable
instead of the global copy.

• thespreadsheetapplication“gnumeric” crashesif a tab
is pressedin the “define name” dialog or in the
“File/Summary” dialog. This was causedby initializ-
ing a variable to an incorrect value.

• double-clickingon a “tar.gz” file that is lying as an
icon on the desktopcrashesgmc, the gnomefile man-
ager. This wascauseddueto thedeclarationof a vari-
able as “long” instead of “unsigned long”.

• afterclicking themainbuttononceto popup themain
menu,a click again on thedesktopin orderto remove
the menu freezes the desktop.

The conditionsin the operatingenvironmentthat trig-
ger the 3 environment-dependent-nontransient bugs are:

• hostnameof themachinewaschangedwhile theappli-
cation was running.

• opensockets left aroundby soundutilities while exit-
ing. Eachopensocket consumesa file descriptorand
the application runs out of file descriptors.

• file hasan illegal valuein theownerfield. Application
crashes when trying to edit the file or its properties

The conditionsin the operatingenvironmentthat trig-
ger the 3 environment-dependent-transient bugs are:

• unknown failure of application which works on a retry

• raceconditionbetweena imageviewer anda property
editor. Raceconditionsdependon the exact timing of
threadschedulingevents,andthesearelikely to change
during retry.

• race condition betweena requestfor action from an
applet and its removal.

Figure2 shows the distribution of faultsreportedover
time. We usedtime asopposedto releasesbecauseof the
natureof GNOME. GNOME is a collection of modules,
each of which are releasedindependently. There is an
occasionalmajor releaseof all the modulesput together.
But therewas only one releaseover the period we per-
formedthefaultstudy. Thedistributionshowsthatthepro-
portionof environment-independentbugsis veryhighover
all periods.GNOME shows a decreasein the numberof
faultsreportedfor a shortinterval beforeincreasingagain.
Thiswasprobablyaperiodof few changesin thesoftware.

5.3. MySQL

Table3 containsthe resultsof classifying44 faultsfor
MySQL. As with the other two applications,the over-
whelmingmajority of faultsdo not dependon theoperat-
ing environment.

The following are someof the environment-indepen-
dent bugs reported for MySQL:

• updatingan index to a value that will be found later
while scanningtheindex treeandhencecreatingdupli-
catevaluesin the index will crashMySQL. This was
solvedby first scanningfor all matchingrows andthen
updating the found rows.

Table 2: Classification of faults for GNOME.
Environment-independent faults do not depend on
the operating environment and are therefore
deterministic. Environment-dependent-nontransient
faults depend on the operating environment, and the
environmental condition that triggers the fault is likely
to persist during retry. Environment-dependent-
transient faults depend on the operating
environment, and the environmental condition that
triggers the fault is likely to be fixed during retry.

Class # Faults

environment-independent 39

environment-dependent-nontransient 3

environment-dependent-transient 3

3-4 5-6 7-8 9-10
Month (1999)

10

20

30

N
um

be
r

of
 F

au
lts

env-dep-transient
env-dep-nontransient
env-ind

Figure 2: Distrib ution of faults for GNOME over
time .

• a querywhich selectszero recordsandhasan “order
by” clausewill causetheserver to crash.This wasdue
to some missing initialization statements.

• the useof a “count” clauseon an empty tablecauses
MySQL to crash.This wascausedueto missingcheck
for empty tables.

• an “OPTIMIZE TABLE” query crashesthe server.
This was caused by a missing initialization statement.

• a “FLUSH TABLES” command after a “LOCK
TABLES” command crashes the server.

The conditionsin the operatingenvironmentthat trig-
ger the 4 environment-dependent-nontransient bugs are:

• shortageof file descriptorsdueto competitionbetween
MySQL and a web server.

• server crasheswhen it receives a connectionrequest
from a remotemachineif reverseDNS is not config-
ured for the remote host.

• size of databasefile is greater than the maximum
allowed file size.

• full file system prevents all operations on the database.

The conditionsin the operatingenvironmentthat trig-
ger the 2 environment-dependent-transient bugs are:

• raceconditionbetweenthemaskingof a signalandits
arrival. raceconditionsdependon the exact timing of
threadschedulingevents,andthesearelikely to change
during retry.

• race condition betweena new user login and com-
mands issued by the administrator.

Figure3 shows the distribution of faultsover releases
of the MySQL software. The fault distribution exhibits
two distinct propertiessimilar to what Apacheexhibits.
One, the relative proportionof environment-independent
bugsstaysaboutthe sameeven with new releasesof the

software.Two, thetotalnumberof bugsreportedincreases
with newer releasesof software.This is probablydue to
increasein thenumberof usersof thenewer releases.The
last releasehas a substantiallylower number of faults
becausethe releaseis very new andhencevery few users
are using the software and reporting bugs.

5.4. Discussion

The distributionsof faults for the threepiecesof soft-
warewe looked at show that therearevery few environ-
ment-dependentfaults.Of the 139 bugswe looked at, we
found 14 (10%) environment-dependent-nontransient
faults and 12 (9%) environment-dependent-transient
faults. We acknowledge that classifying bugs between
environment-dependent-transientandenvironment-depen-
dent-nontransientclassesis subjective and dependsupon
therecoverysystemin place.However, thisdoesnotaffect
thefactthatthenumberof environment-independentfaults
is very high.

This result differs from the generalperceptionthat a
majority of bugs in releasedsoftware are Heisenbugs
[Gray86]. According to this perception,most Bohrbugs
are caughtduring development,or perhapsduring early
releasesof the software.As thesebugsarefixed and the
softwarebecomesmorestable,the relative percentageof

Table 3: Classification of faults for MySQL.
Environment-independent faults do not depend on
the operating environment and are therefore
deterministic. Environment-dependent-nontransient
faults depend on the operating environment, and the
environmental condition that triggers the fault is likely
to persist during retry. Environment-dependent-
transient faults depend on the operating
environment, and the environmental condition that
triggers the fault is likely to be fixed during retry.

Class # Faults

environment-independent 38

environment-dependent-nontransient 4

environment-dependent-transient 2

3.19 3.20 3.21 3.22 3.23
Version Number

10

20

30

N
um

be
r

of
 F

au
lts

env-dep-transient
env-dep-nontransient
env-ind

Figure 3: Distrib ution of faults for MySQL over
software releases .

Heisenbugs in the remaining bugs should increase.In
today’s softwareculture,however, new featuresandcode
areaddedvery quickly, andthis rapid rateof changemay
prevent the application from reaching stability.

Another possibleexplanationfor why Heisenbugs are
sorareis thatthey occurinfrequentlyandsodonotappear
in bug reports. However, recovery efforts should be
directedat thefaultsthatoccurmostfrequentlyin practice,
andtheseappearto primarily consistof environment-inde-
pendent Bohrbugs.

As with any casestudybasedon reporteddata,a few
limitations apply to our work. First, results may differ
widely for other applications;for example,mission-criti-
cal applicationsundergo morerigoroustestingthanmost
software, and this may changethe distribution of faults.
Second,the reporteddata may be biased;for example,
peoplemaytendnot to reportfaultsthey cannotduplicate.
Third, we analyzethedistribution of bugs,ratherthanthe
distribution of actualfailures.Finally, we reasonfrom bug
reportsabouttheability for genericrecovery mechanisms
to recover from specific faults. An important avenueof
future researchis to implementgenericrecovery andver-
ify its ability to survive a specific fault [Lee93]. This
would serve as an end-to-endcheckon whetherthe bug
reporthada completelist of environmentaldependencies
for that fault.

6. Surviving Software Faults

In this sectionwe look at varioustechniquesto survive
software faults belonging to different classes.Some of
thesetechniquesare well known, especiallyfor environ-
ment-dependent-transientfaults and some categories of
environment-dependent-nontransientfaults.For othercat-
egoriesof faults we suggestsometechniquesto survive
them and refer to techniques suggested by researchers.

6.1. Environment-Independent Faults

Sinceenvironment-independentfaultsareguaranteedto
reoccurgivena specificworkloadthereis no easyor gen-
eral techniqueto recover applicationsafter the fault has
manifesteditself. Thebestway to survive suchfaultsis to
prevent them from occurringin the first place.However,
this is notalwayspossibledueto thedifficultiesassociated
with testingall of the boundaryconditionsthe software
may encounterin the field. Formal codeinspectionsand
thoroughtestingare highly effective to remove software
faults before releasing software [Weller93].

Therealsoexist languagesandtoolsto helpsolve some
of the problemsin this category. Languageslike Java,
which aretype-safeandallocate/deallocatememoryauto-

matically, can be usedsolve problemslike buffer over-
flows and memoryleaks.Tools like Purify can also help
find problemsrelatedto memoryallocationanddealloca-
tion. Tools like Ballista [Kropp98] test functions for
boundaryconditionsandplacewrappercodearoundthem
to prevent failure. Using standardlibraries like POSIX
helps prevent problemsrelated to inconsistentfunction
behavior on different operating systems.

6.2. Environment-Dependent-Nontransient Faults

Most environment-dependent-nontransientfaults are
dueto someresourcebeingexhausted,suchasfile descrip-
tors, sockets, or disk space. There are two general
approachesfor solvingresourceexhaustion.Oneway is to
detect the problem and automatically increase the
resourcesavailable to the application.For example, the
operatingsystemmaybeableto dynamicallyincreasethe
number of file descriptorsavailable to a process.This
approachworks when the application only temporarily
exceeds the resources available (e.g. during a peak load).

Thesecondapproachis to try to automaticallydecrease
theamountof resourcesusedby theapplication.Oneway
to do this is to usegarbagecollectiontechniquesto discern
which resourcesareno longerneededandreclaim these.
For example,the systemmay monitor which file descrip-
torsareusedandautomaticallyclosetheunusedones.Or
thesystemmayprovide “virtual sockets” to anapplication
by multiplexing theapplication’ssocketsontothesystem’s
sockets.

Someapplicationsimplementapplication-specificsolu-
tions to prevent some environment-dependent-nontran-
sient faults. One example is Apache, which can be
rejuvenatedby sendingit a specialsignal.During rejuve-
nation, Apachekills all its child processesand thereby
reclaimsany processstructuresusedup by zombiepro-
cesses.This techniqueis widely usedby web administra-
tors to reduce failures in Apache. A more detailed
discussionof this type of rejuvenationcan be found in
[Huang95].

6.3. Environment-Dependent-Transient Faults

Processpairs[Gray86]androllback-recovery protocols
[Elnozahy99,Huang93]in generalsolve faultsin thisclass
very well. Faultsin this classarerelatedto eithertime or
to anenvironmentalconditionwhich is expectedto change
very frequently. So retrying the sameoperationat a later
timewill usuallysucceed.Sometechniqueshavealsobeen
suggestedto induce changes in the environment to
increasethe successof a retry without affecting the pro-
gram correctness.One such techniquechangesthe mes-
sage ordering to simulate changesin the environment

[Wang93].

7. Related Work

Several prior studies have examined the faults that
occur in releasedsoftware.Most of thesestudiesdo not
discussthe interactionbetweenthe faults anda recovery
system.Becauseof this, their error descriptionsare not
sufficiently detailedto classify faults preciselyinto tran-
sient and non-transientfaults. For comparisonpurposes,
however, we caninfer a roughclassificationbasedon the
information they do provide. Our rough classificationof
faults studied in relatedpaperssupportsour conclusion
thatmostfaultsin releasedsoftwarearenon-transient,and
therefore,that application-specificrecovery is neededto
survive these faults.

SullivanandChillaregestudyfaultsin theMVS operat-
ing system and the DB2 and IMS databasesystems
[Sullivan91,Sullivan92].They categorize someerrorsas
beingtiming or synchronizationrelated,eitherin termsof
theerrortypeor theerrortrigger. Theseerrorsarelikely to
be environment-dependent-transientfaults. They found
that 5-13% of the faults were timing or synchronization
related. Sullivan and Chillarege were surprised(as we
were) that most faults were non-transientbugs (e.g.
boundaryconditions)thatwould have beenrelatively easy
to catch during the testing phase.

Lee andIyer study faults in the TandemGUARDIAN
operatingsystem[Lee93]. They alsohave a category for
errorsrelatedto timing and raceconditions,which com-
prise 14% of the faults. Again, theseresultsmatchours
conclusionthatmostfaultsdonotdependon theoperating
environment and so are non-transient.

LeeandIyer alsoexaminedhow oftentheTandempro-
cess-pairmechanismenabledthesystemto recover from a
softwarefault. They foundthat82%of thesoftwarefaults
could be recovered with processpairs. This is a much
higher fraction than our estimatesand requires some
explanation.First, we are assuminga pure application-
genericrecovery system,and the Tandemoperatingsys-
tem’s processpair implementationusessomeapplication-
specificinformation.For example,LeeandIyer reportthat
many errorswere recoveredbecausethe backupprocess
did not startfrom thesamestateasthefailedprimary(this
eliminatestheir “memory state”and“error latency” cate-
gories).Second,a large fraction of recoveredfaultswere
dueto thebackupnot re-executingtherequestedtask(per-
hapsbecausethe taskwasdirectedat a specificprocessor
rather than to the process-pairedapplication). In our
model,all requestedtasksneedto beexecuted;we do not
assumea userwill generouslyavoid the fault trigger, nor
do we considerfaults below the process-pairedapplica-

tion. Third, many recoveredfaultsin [Lee93]only affected
the backupprocess.This resultsfrom bugsintroducedby
theprocess-pairsystem.LeeandIyer counttheseastran-
sientbugs;we areonly concernedwith bugsin the appli-
cationitself. After eliminatingthesesourcesof differences
from consideration,only 29% of the software faults are
transientbugsin the operatingsystem.This is still some-
whathigherthanwe found,andwe conjecturethat this is
due to two reasons.First, Tandemsoftware is probably
testedmore thoroughly than most current software, and
this testinglikely eliminatesmorenon-transientfaultsthan
transientones.Second,operatingsystemsoftware inter-
actsmorecloselywith the hardwarethanthe application-
level software we study. This interaction createsmore
dependencieson the environment, which increasesthe
fraction of environment-dependent-nontransientandenvi-
ronment-dependent-transient faults.

Several schemeshave beenproposedto enablegeneric
recovery to work for a largerclassof faults.For example,
somerecovery techniquesseekto increasethe non-deter-
minism in the applicationby re-orderingeventssuchas
messagereceives[Wang93]:thesearebasicallytechniques
to inducechangeto the external environment.Thesedo
not transformenvironment-independentfaults into envi-
ronment-dependentfaults. Rather, they increase the
chancethata environment-dependentfault will experience
a different operating environment (order of message
receives,in thiscase)duringrecovery. A secondtechnique
that seeksto reducethe impact of software bugs is soft-
warerejuvenation[Huang95].Softwarerejuvenationtakes
advantageof recovery codethat is alreadypresentin the
application,e.g.codeto re-initializetheapplication’sstate.
Softwarerejuvenationseeksto prevent failuresby invok-
ing this application-specificrecovery codebeforethepro-
gram crashes.

8. Conclusions and Future Work

In thispaper, wehave testedthehypothesisthatgeneric
recovery techniques,such as processpairs, can survive
most software faults without using application-specific
information.Weexaminedin detailthefaultsthatoccurred
in three,large,open-sourceapplications:the Apacheweb
server, the GNOME desktop environment, and the
MySQL database.Using informationcontainedin thebug
reportsandsourcecode,we classifiedfaultsbasedon how
they dependedon the operatingenvironment.We found
that 72-87%of the faultswereindependentof theoperat-
ing environmentandwerehencedeterministic(non-tran-
sient). Recovering from thesefaults requiresthe use of
application-specificknowledge. Half of the remaining
faults dependedon a condition in the operatingenviron-

ment that was likely to persiston retry. Thesefaults are
alsolikely to requireapplication-specificrecovery. Unfor-
tunately, only 5-14%of thefaultswerecausedby transient
conditions,suchastiming andsynchronization,thatwould
naturallyfix themselvesduringrecovery. Ourdataindicate
that classical application-genericrecovery techniques,
suchasprocesspairs,will not besufficient to enablethese
applications to survive most software faults.

In the future, we hopeto implementapplicationslike
Apache and MySQL using various fault-tolerant tech-
niques and test how well they recover from the bugs
reportedin errorlogs.This will allow usto verify thecon-
clusionswe drew from information in the error logs; for
example, it will allow us to verify that a fault did not
depend on an unreported environmental condition.

9. Acknowledgments

We aregratefulto theopen-sourcecommunityfor pro-
viding useful,robust softwareandfor providing a wealth
of information to help make future programseven more
useful and robust. We thank the programcommitteeand
reviewers,particularlyRavi Iyer andChandraKintala, for
their insightful feedback.

This researchwassupportedin partby NSFgrantMIP-
9521386,NSFCAREERAwardMIP-9624869,IBM Uni-
versity PartnershipProgram#19981020024,Intel Tech-
nology for Education 2000, and AT&T Labs.

10. References

[Avizienis85] Algirdas Avizienis. The N-Version Approach
to Fault-TolerantSoftware.IEEETransactions
on Software Engineering, SE-11(12):1491–
1501, December 1985.

[Dijkstra72] EdsgerW. Dijkstra. HierarchicalOrdering of
SequentialProcesses.Technical report, Aca-
demicPress,1972.In OperatingSystemsTech-
niques, Hoare and Perrott eds.,.

[Elnozahy99] E.N. Elnozahy,L.Alvisi, Y.-M. Wang,andD.
B. Johnson.A Survey of Rollback-Recovery
Protocolsin Message-PassingSystems.Tech-
nical ReportCMU-CS-99-148,CarnegieMel-
lon University, June 1999.

[Gray86] JimGray.Whydocomputersstopandwhatcan
be doneaboutit? In Proceedingsof the 1986
Symposiumon Reliability in Distributed Soft-
wareandDatabaseSystems, pages3–12,Janu-
ary 1986.

[Gray91] JimGrayandDanielP.Siewiorek.High-Avail-
ability Computer Systems.IEEE Computer,
24(9):39–48, September 1991.

[Huang93] Y. HuangandC.Kintala.SoftwareImplement-
ed Fault Tolerance:TechnologiesandExperi-
ence.In Proceedingsof the1993International
SymposiumonFault-TolerantComputing, pag-
es 2–9, June 1993.

[Huang95] Y. Huang,C. Kintala, N. Kolettis, andN. Ful-
ton. SoftwareRejuvenation:Analysis,Module
andApplications.In Proceedingsof the 1995
International Symposiumon Fault-Tolerant
Computing, pages 381–390, June 1995.

[Kropp98] N. P. Kropp, P.J. Koopman, and D.P.
Siewiorek.AutomatedRobustnessTestingof
Off-the_shelfSoftwareComponents.In Pro-
ceedingsof the1998InternationalSymposium
on Fault-TolerantComputing, pages230–239,
June 1998.

[Lee93] I. LeeandR. Iyer. Faults,Symptoms,andSoft-
wareFault Tolerancein the TandemGUARD
IAN OperatingSystem.In InternationalSym-
posiumon Fault-TolerantComputing(FTCS),
pages 20–29, 1993.

[Netcraft99] The Netcraft Web Server Survey. At ht-
tp://www.netcraft.com/survey/

[Randell75] Brian Randell.SystemStructurefor Software
Fault Tolerance.IEEE Transactionson Soft-
ware Engineering, 1(2):220–232, June 1975.

[SiteMetrics98] InternetServerSurvey.At http://www.sitemet-
rics.com/serversurvey/ ss_98_q3/revseg.htm

[Sullivan91] M. Sullivan and R. Chillarege.SoftwareDe-
fectsandTheir ImpactonSystemAvailability–
A Study of Field Failuresin OperatingSys-
tems.In Proceedingsof the1991International
Symposium on Fault-Tolerant Computing,
June 1991.

[Sullivan92] M. Sullivan andR. Chillarege.A Comparison
of SoftwareDefectsin DatabaseManagement
Systemsan d OperatingSystems.In Proceed-
ings of the 1992 International Symposiumon
Fault-Tolerant Computing, pages 475–484,
July 1992.

[Wang93] Yi-Min Wang, W. KentFuchs, and
YennuanHuang. ProgressiveRetry for Soft-
wareErrorRecoveryin DistributedSystems.In
Proceedingsof the1993Symposiumon Fault-
Tolerant Computing, June 1993.

[Weller93] EdwardF. Weller. Lessonsfrom ThreeYears
of InspectionData. IEEE Software, 10(5):38–
45, September 1993.

