Cooperative ReVirt: Adapting M essage L ogging for Intrusion Analysis

Murtaza Basrai and Peter M. Chen

Computer Science and EngineeringiBion
Department of Electrical Engineering and Computer Science
University of Michigan
http://www.eecs.umich.edu/CaoN

Abstract: Virtual-machindogging andreplay enablessystemadministratorgo analyzeintrusionsmore
completelyandwith greaterintegrity thantraditionalsystemloggers.Onechallengen thesetypesof sys-
temsis theneedto log apotentiallylarge volumeof network traffic. Cooperatre Re\Mirt addsmessage-log-
ging techniquedo ReMrt to reducethe amountof network traffic that needsto be logged.Cooperatie
ReMrt adaptanessage-loggingechniquedo addresshe challenge®f intrusionanalysis suchasthe need
to work in the presencef network attacksandunreliablenetworks, the needto supportasymmetridrust
relationshipsamongcomputersandthe needto supportdynamictrust andtraffic patterns.Cooperatie
ReMrt is ableto reducethelog volumeneededo replaya computerby anaverageof 70%for avariety of
distributedcomputingbenchmarksyhile addinglessthan7% overhead Measurementsf a live network
indicate that Cooperat Re\irt would be able towwid logging 85% of the recegd netvork data.

1. Introduction

Making computergerfectlysecureappearso be unachieable,at leastin the shortterm. The steady
streamof securityalerts,patchesandincidentsover the pastfew yearsindicatesthat computerbreak-ins
will bewith usfor the foreseeablduture. Giventhis, animportantcomponenbf defensve stratgy is to
analyzeattacksafterthey occur Post-attackanalysisis usedto understandn attack,fix the vulnerability
that allaved the compromise, and repaiyatamage caused by the intruder

Most computersystemsenablesomeanalysisof intrusionsby logging variousevents[Anderson80],
suchaslogin attempts,TCP connectiorrequestsandweb sener logs. Unfortunately thesetypesof audit
logs are inadequate in terms of gniéy and completeness.

Currentsystemloggerslack integrity becausahey assumehe operatingsystemkernelis trustwor-
thy—a badassumptiorgiventhe size,complity, andtrack recordof modernoperatingsystemsAttack-
erswho compromisehe operatingsystemcanforge misleadinglog recordsor preventusefullog records
from beingsavedafterthey compromisehe operatingsystemthey mayevenbeableto deletelog records
thatwerewritten beforethe point of compromiseThe absenc®f usefullog recordsafterthe point of com-
promise maks it \ery difficult to assess and fix the damage incurred in the attack.

Currentsystemloggerslack completenesbecausehey do not log sufiicient informationto recreate
or understanall attacksTypicalloggerssave only afew typesof systemevents,andtheseaventsareoften
insufiicient to determinewith certaintyhow the break-inoccurredor whatdamagewasinflicted after the
break-in.Instead,the administratoris left to guesswhat might have happenedandthis is a painful and
uncertain task.

A recently developed system called ReMrt addresseghe problemsin current systemloggers
[Dunlap02].To improve theintegrity of thelogger ReVirt encapsulatethe targetsystem(boththe operat-
ing systemandtheapplicationsjnsideavirtual machinethenplacegheloggingsoftwarebeneattihis vir-
tual machine.Runningthe loggerin a differentdomainthanthe target systemprotectsthe loggerfrom a
compromisedpplicationor operatingsystemReMrt continuego log theactionsof intrudersevenif they
replace the tget boot block or the tget kernel.

Cooperatre ReMrt: AdaptingMessage.oggingfor IntrusionAnalysis 1

guest guest guest
application application application

guest operating system
VMM kernel module + Reivt

host operating system

host hardware

Figure 1: FAUmachine virtual machine and ReVirt replay service. ReVirt is a virtual-machinereplay
service Ourversionof the FAUmachinevirtual machinas implementedasaloadablekernelmodulein the
host Linux operatingsystem.The device and interrupt drivers in the guestoperatingsystemuse host
services such as system calls and signals.

To improve the completenes®sf the logger ReMirt usescheckpointingand logging techniquegto
enablereplay-drienintrusionanalysis Ratherthanprovide the systemanalystwith ad hoc, partial infor-
mation,ReMrt is ableto replaythe complete jnstruction-by-instructiorexecutionof the virtual machine,
evenif thatexecutiondependsn non-deterministi@ventssuchasinterruptsanduserinput. An adminis-
trator canusethis type of replayto answerarbitrarily detailedquestionsaboutwhattranspiredoefore,dur-
ing, andafteran attack.For example,becausdreMrt canreplayinstruction-by-instructiorsequencegshe
administratorcan seethe completestateof registers,memories,and disk drives on arbitrary instruction
boundaries.

To enablereplay-driven intrusion analysis,ReMrt logs all non-deterministicevents (viz. external
input andinterrupttiming), thelargestcomponenbf which is incomingnetwork data.This paperseekgo
applymessage-loggingechniqueso reducgheamountof datathatReMrt needdo log. We call theresult-
ing systemCooperatie ReMirt, becauset leveragescooperatiorbetweencommunicatingcomputersto
reducethesizeof ReMrt’'slog. Cooperatre ReMrt reduceshesizeof ReVirt’slog by 70%for a variety of
distributedsystembenchmarksvhile addinglessthan7% overheadMeasurementsf alive network indi-
cate that Cooperat Re\irt would be able towaid logging 85% of the recsed netvark data.

Therestof the paperis organizedasfollows. Section2 presentsan overview of the virtual machine
andlogging functionality usedby ReMrt. Sections3 and 4 describehow Cooperatie ReMrt leverages
message-loggintechniquego reducethe amountof datathat ReMrt mustlog. Section5 evaluatesSCoop-
erative ReMrt in termsof thelog spacet saszesandthetime overheadt adds.Section6 discusseselated
work, and Section 7 concludes.

2. ReVirt

2.1. Virtual machine

ReMrt is areplay servicethat works in the context of a virtual machinemonitor (Figure1). A vir-
tual-machinemonitor (VMM) is a layer of software that emulatesfaithfully the hardware of a complete
computersystemGoldbeg74]. Theabstractiorcreatedby the VMM s calledavirtual machineThemain
benefitof implementingthe replayservicein the VMM is the smallsizeof the VMM. A VMM is several
ordersof magnitudesmallerthan a normal operatingsystemand thus makes a bettertrustedcomputing
base.

The currentReMrt prototypeusesa virtual machinecalled FAUmachine(formerly calledUMLinux)
[Buchacler01]. In FAUmachine the hostplatform on which the VMM runsis anotheroperatingsystem,
which we referto asthe host operatingsystemto distinguishit from the guest operatingsystemthatruns
inside the virtual machine.

FAUmachineprovides a software analogto eachperipheraldevice in a normal computersystem.
Table 1 shavs the mappingfrom eachhost componentor event to its software analogin the virtual

Cooperatre ReMrt: AdaptingMessage.oggingfor IntrusionAnalysis 2

Host component or Emulation mecha-

event nism in FAUmachine
hard disk host rav partition
CD-ROM host /de/cdrom
floppy disk host /de/floppy

TUN/TAP virtual
Ethernet deice

console host stdout
none (display to

network card

video card remote X sergr)
current prilege level VMM variable
system calls SIGUSR1 signal
: , timer + SIGALRM
timer interrupts ,
signal
I/O device interrupts SIGIO signal
memory &ception SEGV signal

enable/disable interrupts mask signals

Table 1: Mapping between host components and FAUmachine equivalents.

machine.The mostrelevant peripheralfor this paperis the network card. FAUmachineemulateghe net-

work cardwith a TUN/TAP virtual Ethernetcardin Linux. The guestoperatingsystemsendsEthernet
framesto the TUN/TAP driver in the hostoperatingsystemwhich thenroutesit to the intendedrecever

like ary other paclet. Similarly, if anothercomputersendsa paclet to the guestoperatingsystems IP

addressthe hostoperatingsystemrecevesthis andforwardsit to the TUN/TAP driver, which canthenbe
receved by the guest operating system.

2.2. Logging and replay

To enablereplay of the original execution,ReMrt mustcheckpointthe stateof the virtual machine,
thenlog all non-deterministiceventsthat affect the virtual machines execution. The checkpointedstate
includesregisters,memory and disk; it doesnot include the processos microarchitecturaktate(e.g.,
pipelinestate) asthis statedoesnot affect the softwarerunningon thevirtual machine Thenon-determin-
istic eventsthat mustbe loggedare keyboardinput, network input, andinterrupttiming. Note that disk
input neednot be logged.Becausdhe disk is checkpointedand disk writes arereplayed disk readswill
returnthe samedataasduringthe original run. Interrupttiming is the mostdifficult eventto replay Inter-
ruptsareemulatedoy softwaresignals,andthesemustbe replayedat the exact sameinstructionasduring
the original run [Bressoud96Slye98]. ReMrt usesthe x86 performancecountersto countthe numberof
branchesThe combinationof branchcountandthe addresof the interruptedinstructionuniquelyidenti-
fies the point in the instruction stream where the sigasldeiered.

Re\irt hasbeenshavn to addreasonabléime andspaceoverhead The maintime overheads dueto
virtualization,which adds14-35%in runtime for a variety of benchmarksuchasSPECweb9@ndalocal
kernel build [King03]. Virtualization overheadwill vary with the specificvirtual machineplatform; for
example,the Xen virtual machine[Barham03]slows the machineby only a few percent.The time over-
headfor loggingis nominalfor thesebenchmarkssangingfrom 4-8%[Dunlap02].Spaceoverheadf log-

Cooperatre ReMrt: AdaptingMessage.oggingfor IntrusionAnalysis 3

ging is minimal for local applicationsFor examplea local kernelbuild added80 MB/day of log space.
However, log volumecanbe muchgreateffor network-intensve workloads Building thekerneloveranet-
work file systemin the systemmeasuredby [Dunlap02]generated..2 GB/dayof log volumeontheclient,
andSPECweb99®enerated..4 GB/dayof log volumeonthewebsener. At currentpricesandsizes,mod-
erndiskscanstorethis volumeof log dataat reasonableost;however worst-casescenariogaremoretrou-
bling. If a computerreceved an intensive messagestreamfrom a computerat LAN speedg(say 100
Mb/second)thelog couldgrow atarateof 1 TB/day! This rateof log growth would strainboththe storage
capacity and bandwidth of modern disks.

The purposeof this paperis to reducethe volume of datathat mustbe loggedby ReMrt. Ideally,
Cooperatre Re\irt would reduce the logolume from LAN speeds to W\ speeds.
3. Expanding the unit of replay

Replaysystemssuchas ReVirt canbe viewed as a perimeterarounda unit of replay This unit of
replaycanbe chosenarbitrarily, aslong assereral conditionsare met. First, the stateof the unit of replay
mustbe checkpointedSecondtheinputcominginto the unit of replayfrom outsidethe perimetemustbe
logged.Third, theunit of replaymustexecutedeterministicallywith respecto ary stateor actionsvisible
to an aternal obserer.

In ReVrt, the perimeteris dravn arounda singlevirtual machine(Figure2a), so ReMrt mustlog all
incomingmessageslhevolumeof loggeddatacanbe reducedy expandingthe unit of replayto include
seseral computers(Figure 2b). We usethe term “replay set” to describethe set of computersthat are
enclosedsasinglereplayunit. Logginga clusterof computersasa singleunit of replayalwaysgenerates
lesslog datathanlogging eachcomputerindividually (input from outsidethe clustermustbe loggedin
eithercasewhereasnessagebetweemachinesn the clusterneedonly beloggedif the unit of replayis
individual computers)In eithercase,a checkpointmustincludethe stateof all computersn the cluster
Evenif oneis only interestedn replayinga singlecomputeyit maystill save log volumeto expandthe unit
of replayto include several computersdependingon whetherthe input into the extra computergwhich
now mustbe logged)outweighsthe messagefrom the extra computerdo the original computer(which
now need not be logged).

As aspecificexample,imaginethatan administratoiseekgo provide replaycapabilityto all comput-
erson a LAN. Loggingandreplayingeachcomputerrequireseachcomputerto log messagefrom other
computeronthe LAN (aswell asmessagefom computersoutsidethe LAN). The maximumrateof the
network messageortion of the log on sucha configurationis equalto the aggreyate bandwidthbetween
all machineonthe LAN. If sheexpandsthe unit of replayto includeall computerson the LAN, thelog-
ging systemno longerneedsto log messagebetweencomputerson the LAN, andthe maximumrate of
the network messageortion of the log dropsto the bandwidthcomingfrom outsidethe LAN, which is
likely ordersof magnituddessthantheaggreyateLAN bandwidth.Of coursetherearelimits to how large
the unit of replaycanbe. For instance computerdrom differentadministratve domains(suchasa home
machine and an e-commerce web sgreannot form a single unit of replay

Thereare mary considerationsvhendecidingwhich computergo includein the unit of replay As
discussedbore, the main advantageof addinga computerto the unit of replay(ratherthanreplayingthe
computerseparately)s thereductionin log volume.Themaindisadwantagds the needfor bothcomputers
to cooperaten orderto replayanexecutionfor intrusionanalysisThis disadwantagecanbeamelioratedy
conductingthe replayon non-productiorcomputeror clonedvirtual machinesput replayinga cooperat-
ing setof computersis still more complex thanreplayinga single computer A side effect of requiring
cooperationn replayis anincreasedevel of vulnerability If the logging systemon ary computerwithin
theunit of replayis compromisedthenit will notbe possibleto replayarny computerin thereplaysetthat
receved a message from the one with the compromised logging system.

Thesedisadwantagesmply thatmultiple computershouldbe includedin a singleunit of replayonly
if they communicatdrequentlyandarepartof the sametrustdomain.Goodcomputerdo includein acli-

Cooperatre ReMrt: AdaptingMessage.oggingfor IntrusionAnalysis 4

network

(a) Three separate replay units

(b) One combined replay unit

Figure 2: Units of replay. The originad ReVirt system assumed each computer would replay as an
individual unit, which forced each computer to log all incoming messages. Expanding the unit of replay to
encompass multiple computers reduces the volume of data that must be logged to support replay. The
disadvantage to expanding the unit of replay in this manner is an increased trust of (and therefore an
increased vulnerability to errorsin) other computers in order to analyze intrusions.

ent’s replay set are the servers that the client communicates with frequently, such as the client’s mail
server, file server, and web server.
4. Design and Implementation of Cooper ative ReVirt

Cooperative ReVirt leverages the above reasoning to reduce the total volume of logging needed to
replay a set of computers. This section describes various aspects of the design of Cooperative ReVirt. The
first two aspects of the design (coordinated checkpointing and message ordering) have been explored in
traditional applications of message-logging techniques. The last three aspects (tolerating network attacks,
asymmetric trust, and dynamic replay sets) are new issues that arise because we are applying message-log-
ging techniques for the new purpose of intrusion analysis.

Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 5

4.1. Checkpointing a multi-computer replay unit

Because Cooperative ReVirt replays a set of computers, it must start from a checkpoint of that set of
computers. There are numerous ways to handle thisissue, including coordinated checkpointing, uncoordi-
nated checkpointing, and communication-induced checkpointing [Elnozahy02]. Our goal was to focus on
the new issues that arise for intrusion analysis, so we chose to use the ssimplest strategy, which was to com-
bine sender-based logging with a two-phase coordinated checkpoint [EInozahy94]. We envisage a usage
model in which periodic coordinated checkpoints are taken to bound the time period over which replay for
intrusion analysis takes place.

4.2. Tolerating unreliable networks

A common issue that arises for message-logging systems is how to deal with unreliable networks.
Networks can change a sequence of messages by re-ordering them, duplicating them, dropping them, or
corrupting them. These changes lead to differences between the message sequence received during logging
and the message sequence received during replay. We address this issue by adding a reliable communica-
tion protocol under Cooperative ReVirt [Johnson89]. Rather than building a custom reliable communica
tion protocol, we take the Ethernet frames that are sent by FAUmachine (over the virtual Ethernet device)
and send them over a TCP stream to the receiving computer (Figure 3). A proxy process on the receiving
computer then unpacks the Ethernet frames and sends them to the receiving virtual machine’'s TUN/TAP
device. During replay, the receiving computer’s proxy provides the data to the replay manager via a pipe.
4.3. Tolerating network attacks

Applying message-logging techniques to intrusion analysis raises severa issues that do not exist for
the traditional fault-tolerance uses of message logging. One of those issues is the need to defend against
attackers trying to mislead the replay system into using a different message stream during replay than it
used during the logging run. While sending the Ethernet frames over TCP protects the system against acci-
dental changes to the message stream, it does not defend against a malicious modification of the message
Stream.

Cooperative ReVirt uses two techniques to defend against network attacks. First, we add a crypto-
graphic hash to each Ethernet frame to defend against modification of the source address and payload
inside the Ethernet frame. To compute this cryptographic hash, we compute the SHA-1 hash of the Ether-
net header and payload, then encrypt the resulting hash value using a symmetric key encryption algorithm
(AES). The symmetric key is unique to each pair of computers and is specified in our system in a configu-
ration file. An alternative solution would have been to use the IPsec-AH patch to the Linux operating sys-
tem on the host (adding our own hash turned out to be easier). This cryptographic hash protects both the
data being sent and the source address. Protecting the source address is important because the receiver
must be able to reliably identify if the sender isin its replay set and, if so, which computer sent the mes-
sage. If an attacker were able to fool the receiver into thinking the message was sent from a cooperating
computer, the receiver would neglect to log a message it needed for replay.

Second, we add a sequence number to the Ethernet frame to defend against replay attacks (note that a
replay attack is different from the replay service that Cooperative ReVirt is trying to provide). The
seguence number increases monotonically for messages for each (sender, receiver) pair. The sequence
number that we add must also be included in the data protected by the cryptographic hash, otherwise the
attacker could simply manufacture a new sequence number for an old message.

4.4, Asymmetrictrust

A second consideration that arises in the context of intrusion analysis is the issue of trust between
replaying computers. With traditional message logging, all computersin the system trust each other asthey
jointly perform rollback-recovery. In contrast, with intrusion analysis, not all computersin the system trust
each other. Further, it is likely that even if computer A trusts computer B, computer B may not trust com-
puter A. For example, aclient may be willing to depend on its file server to enable replay, but the file server

Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 6

guest operating system sender proxy

1. guest OS sends Ethernet 2. send frame
SENDER frameto host TUN/TAP driver to proxy viapipe

host operating system

3. add Cooperative
ReVirt information,
send frame over

network via TCP

guest operating system receiver proxy

RECEIVER 5. guest network driver

receives Ethernet frame 4. parse TCP stream to get

Ethernet frame; send to receiver’'s
TUN/TAP driver

host operating system

Figure 3: Host-host TCP provides reliable transport for guest Ethernet frames. Cooperative ReVirt
provides a reliable communication channel for network packets between virtual machines by forwarding
them over a TCP connection between hosts.

may not be willing to rely on the client. Instead, an administrator may want to enable the file server to
replay without any help from its clients, especialy if the logging layer of the clients is more likely to be
compromised than the logging layer of the file server.

These types of asymmetric trust relationships lead to asymmetric (or non-commutative) sets of
replaying computers. If computer A iswilling to depend on computer B to perform replay, then B will be
in A's replay set. At the same time, if computer B is not willing to depend on computer A to perform
replay, then A will not bein B’sreplay set.

Even if the trust relationship between computers is symmetric, the tradeoffs (complexity vs. log sav-
ings) of adding another computer to areplay set may dictate asymmetric replay sets. Consider a situation
in which computer A sends many messages to computer B, but B sends only a few messagesto A. In this
situation, B may find it worthwhile to add A to itsreplay set, but A may not find it worthwhile to add B to
itsreplay set.

Our implementation of Cooperative ReVirt allows an administrator to specify arbitrary replay setsfor
individual computers. Replay sets may be symmetric or asymmetric depending on trust relationships and
expected traffic patterns.

Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 7

4.5. Dynamic replay sets

A third distinguishing feature of using message logging for intrusion analysis is the generality of
applications that must be supported. Message logging has traditionally been used to provide fault tolerance
for long-running, scientific computations. In contrast, intrusion analysis focuses on replaying a general set
of applications on client and server computers.

One consequence of using message logging for general-purpose workloads is the possibility that traf-
fic patterns may change. Including computer B in computer A’s replay set may make sense one day but not
another. For example, if B isalocal web server, A may useit heavily one day but not another.

Consider how one might want to change computer A's replay set. If A starts receiving a lot of data
from computer B, A might choose to add B to itsreplay set. Adding B to A'sreplay set immediately allows
A to stop logging messages received from B (assuming B is running Cooperative ReVirt, of course). A
dightly trickier caseisif computer A wants to remove computer B from itsreplay set, presumably because
A wants to not depend on B during replay. Unfortunately, A will still depend on B to regenerate all mes-
sages from the beginning of the current checkpoint interval until A started logging B’s messages. Hence
the benefit of removing B from A’s replay set will not materialize until the next coordinated checkpoint is
taken.

Cooperative ReVirt supports the ability to dynamically change a computer’s replay set. To effect a
change to the replay set, Cooperative ReVirt takes a coordinated checkpoint, reads the membership of the
new replay set from its configuration file, and continues executing from the checkpoint.

5. Evaluation

Cooperative ReVirt reduces log volume for each computer by avoiding the need to save messages
from other computers in that computer’s replay set. In this section, we measure this reduction in log vol-
ume for avariety of benchmarks. We assess how effectively Cooperative ReVirt would reduce log volume
for actual use by measuring the network traffic for several real computers. Finally, we measure the time
overhead added by our prototype implementation of Cooperative ReVirt. The experimental setup used for
these measurements was a network of computers connected via a 100 Mb/s Ethernet switch. Experiments
involving two computers used two AMD Athlon XP 2200+ computers. Experiments involving three com-
puters (SPECweb99) used two Athlon XP 2200+ computers and one 3 GHz Pentium 4 compulter.

We measure performance of Cooperative ReVirt on several benchmarks. The first benchmark is com-
piling the Linux kernel from scratch, where the kernel source tree is stored on a remote NFS server. The
second benchmark is PostMark, which was designed to approximate the workload of a file server used for
electronic mail, netnews, and web based services [Katcher97]. PostMark creates alarge pool of continually
changing files. The third benchmark is SPECweb99, which is designed to measure the performance of a
web server. For SPECweb99, we use one web server running Apache and two client computers.

Table 2 shows the log volume generated by each benchmark by ReVirt and two configurations of
Cooperative ReVirt. Log savings are presented for asymmetric and symmetric replay sets. Cooperative
ReVirt is able to reduce log volume by an average of 70% for both clients and servers. Asymmetric config-
urations of Cooperative ReVirt realize this log savings for computers that are willing to depend on other
computersto assist in replay.

We next assess how effectively Cooperative ReVirt would reduce log volume for actua use. We mea-
sured the volume of network traffic for three desktop computers, belonging to users in three different
research groups in the EECS Department at the University of Michigan. Our first goal was to evaluate how
large the replay set for each computer would need to be in order to reduce dramatically the log volume due
to network traffic. Our second goal was to evaluate how much of the incoming network traffic was from
computers in the same administrative domain (in our case, computers in the eecs.umich.edu domain).

Table 3 shows the results of our measurements. While each of the computers received data from
numerous (several hundred to several thousand) sources, the incoming network data was dominated by
only afew sources. Infact, for each computer, most of the data received came from a single computer, and

Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 8

ReVirt

Symmetric Coopera-
tive Revirt

Asymmetric
Cooperative ReMrt
(sewver is in client’s

replay set;
clientis not in
server’s replay set)

server: 1.4 GB/day

server: 1.0 GB/day

NFS kernel client: 2.8 GB/day client: 1.0 GB/day client: 1.0 GB/day
compile server: 5.7 GB/day server: 0.9 GB/day server: 5.7 GB/day
PostMark client: 10.2 GB/day client: 3.0 GB/day client: 3.0 GB/day
server: 14.3 GB/day server: 3.6 GB/day server: 14.3 GB/day

SPECweb99 client: 13.9 GB/day client: 0.7 GB/day client: 0.7 GB/day

server: 1.4 GB/day

Table 2: Log savings from Cooperative ReVirt. Symmetric Cooperative ReVirt reduces the log space
required to replay by an average of 70% for the three benchmarks across clients and servers. Asymmetric
Cooperative ReVirt yields thislog savings for the client because it iswilling to depend on the server during

replay.

Fraction of network data received from top N computers
N=1 N=2 N=3
vaniti.eecs.umich.edu 75% 81% 86%
guantify.eecs.umich.edu 91% 94% 95%
tapi.eecs.umich.edu 76% 82% 86%

Table 3: Log savings from Cooperative ReVirt for actual usage.For each computer we measured
(vaniti, quanity, tapi), most of the network data received came from a single host, and the top three sources
accounted for over 85% of all network data received. In each case, these sources were in the same
administrative domain. These results indicate that Cooperative ReVirt would be able to drastically reduce
the volume of logged network data in the measured environment.

the top three sources accounted for at least 85% of the total network data received. The top source of data
differed for the different computers. For vaniti, the top source was from an NFS-mounted file server that
stored the user’s home directory. For quantify, the top source was from a computer that stored many of the
user’s files but not the user’s home directory (which was on the local disk). For tapi, the top source was
from the computer responsible for backing-up tapi’s local disk. The high volume of data received by tapi
from the backup server was due to a huge number of small query messages used in the backup protocol
(rsync). For each computer we measured, over 85% of incoming network data was from machines in the
eecs.umich.edu domain. These resultsindicate that Cooperative ReVirt would be able to drastically reduce
the volume of logged network data by cooperating with a couple machines, all within the same administra-
tive domain.

Finally, we measure the time overhead added by Cooperative ReVirt on the distributed benchmarks
(Figure 4). These measurements assume a configuration with symmetric replay sets (all computers arein
each other’s replay set). Asymmetric replay sets would add less overhead, because some messages would

Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 9

110

100 - EE E:Sc;/cr)ﬁ%rgttri?g ReVirt
90~ H H ReVirt
80—
70—
60 —
50
40 -
30
20
10—

0
NFS kernel compile PostMark SPECweb99

Normalized runtime

Figure 4: Time overhead of Cooper ative ReVirt. Cooperative ReVirt adds 0-6% overhead to ReVirt for
the three benchmarks we ran. Sources of overhead are forwarding packets over TCP via a host-host proxy
process, computing the SHA-1 hash over the packet header and data, and encrypting the SHA-1 hash with
AES.

avoid the processing added by the proxy (adding a secure hash and forwarding over TCP). Cooperative
ReVirt adds less than 7% overhead to ReVirt for all benchmarks we ran.

These benchmarks show that Cooperative ReVirt is able to reduce the volume of log data substan-
tially. The additional overhead is reasonable and will drop further if encryption hardware becomes more
commonplace.

6. Related work

ReVirt is based on prior work by Bressoud and Schneider on hypervisor-based fault tolerance
[Bressoud96]. Bressoud and Schneider use a virtual machine for the PA-RISC architecture to interpose a
software layer between the hardware and an unchanged operating system, and they log non-determinism to
reconstruct state changes from a primary computer onto its backup. While ReVirt shares several mecha-
nismswith Hypervisor, ReVirt usesthem to achieve a different goal. Hypervisor isintended to help tolerate
faults by mirroring the state of a primary computer onto a backup. ReVirt takes some of the techniques
developed for fault tolerance and applies them to provide intrusion analysis. This difference in goals leads
to different design choices. For instance, Hypervisor only seeks to restore the backup to the last saved state
of the primary and so discards log records after each synchronization point. In contrast, ReVirt enables
replay over long periods (e.g. months) of the computer’s execution, so it must save al log records over the
period.

Cooperative ReVirt draws on several techniques from the fault-tolerance community, especially from
prior work on rollback-recovery [Elnozahy02]. Cooperative ReVirt uses standard rollback-recovery tech-
niques such as coordinated checkpointing and logging of non-deterministic events [EInozahy94]. Coopera-
tive ReVirt adapts message logging in several ways to make it suitable for the domain of intrusion analysis.
The first adaptation is adding a cryptographic hash of the IP header, payload, and sequence number to
defend against network attacks during logging or replay. The second adaptation is allowing asymmetric
cooperation between hosts to reflect asymmetric trust or traffic patterns. The third adaptation is allowing
dynamic membership in each participant’s replay set.

Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 10

7. Conclusions

ReVirt alows one to analyze intrusions in arbitrary detail by replaying the execution of a virtua
machine instruction by instruction. The dominant portion of the log data needed to support this replay is
incoming network data. Cooperative ReVirt enhances ReVirt with techniques from the message-logging
community to reduce the amount of data that must be logged. Using sender-based message logging and
coordinated checkpointing, multiple computers running ReVirt can be logged and replayed as a single unit.
Cooperative ReVirt adapts message-logging techniques to address the challenges of intrusion analysis.
Cooperative ReVirt adds a cryptographic hash of the network header and data to defend against network
attacks, allows asymmetric cooperation between hosts to reflect asymmetric trust or traffic patterns, and
alows dynamic membership in replay sets to reflect the dynamic nature of general-purpose computing.
Cooperative ReVirt is able to reduce the volume of log data by an average of 70% for a variety of distrib-
uted computing benchmarks, while adding less than 7% overhead. Measurements of a live network indi-
cate that Cooperative ReVirt would be able to avoid logging 85% of the received network data.

8. References

[Anderson80] James P. Anderson. Computer Security Threat Monitoring and Surveillance. Technica re-
port, James P. Anderson Co., April 1980. Contract 79F296400.

[BarhamO3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, lan Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In Proceedings of
the 2003 Sympaosium on Operating Systems Principles, October 2003.

[Bressoud96] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance. ACM Trans-
actions on Computer Systems, 14(1):80-107, February 1996.

[Buchacker01] Kerstin Buchacker and Volkmar Sieh. Framework for testing the fault-tolerance of systems
including OS and network aspects. In Proceedings of the 2001 |EEE Symposium on High As-
surance System Engineering (HASE), pages 95-105, October 2001.

[Dunlap02] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and Peter M. Chen. ReVirt:
Enabling Intrusion Anaysisthrough Virtual-Machine Logging and Replay. In Proceedings of
the 2002 Symposium on Operating Systems Design and Implementation (OSDI), pages
211-224, December 2002.

[Elnozahy94] E. N. Elnozahy and W. Zwaenepoel. On the Use and Implementation of Message Logging.
In Proceedings of the 1994 International Symposium on Fault-Tolerant Computing (FTCS),
pages 298-307, June 1994.

[Elnozahy02] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of roll-
back-recovery protocols in message-passing systems. ACM Computing Surveys,
34(3):375-408, September 2002.

[Goldberg74] Robert P. Goldberg. Survey of Virtual Machine Research. IEEE Computer, pages 3445,
June 1974.

[Johnson89] David B. Johnson. Distributed System Fault Tolerance Using Message Logging and Check-
pointing. Technical Report COMP TR89-101, Rice University, December 1989. Ph.D. thesis.

[Katcher97] Jeffrey Katcher. PostMark: A New File System Benchmark. Technical Report TR3022, Net-
work Appliance, October 1997.

[King03] Samuel T. King, George W. Dunlap, and Peter M. Chen. Operating System Support for Virtual
Machines. In Proceedings of the 2003 USENIX Technical Conference, pages 71-84, June
2003.

[Slye98] J. Hamilton Slye and E. N. Elnozahy. Support for Software Interruptsin Log-Based Rollback-Re-
covery. |EEE Transactions on Computers, pages 1113-1123, October 1998.

Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 11

