Progress Reports

Rhonda L. McCaffery, PhD
E00-250 W18
Remember the two questions writers should always consider:

Who are my stakeholders?
(Or *Who is my audience?*)

What is my purpose?

This entails asking several questions that help you analyze what writers call the “rhetorical situation.”
Who are my stakeholders?
Who might read or use this report?

What is my purpose?
Why do they want the report? What information do they need to know? What do I want to happen as a result of this report?
Progress Report
a type of activity report written for an audience of mixed stakeholders written to document work accomplished to date on a project

(Johnson-Sheehan, 2007; Woolver, 2005)

Possible stakeholders include … (management, project leaders, clients, coworkers, etc.)
Remember, too, that technical documents are often written to inform or persuade. This definition may seem to imply an informative purpose. But there are often several purposes for a progress report.
Purposes

- To show how far you have come with a project
- To show you will finish on time
- To justify any changes you have made
- To give any interim findings or explain any developments

Are these purposes informative or persuasive?
Two of the main purposes are persuasive, and you may not have anything to report on the fourth listed here.
What this means, then, is that a progress report is both persuasive document and informative.
An additional question writers of technical reports should consider:

How will my report be used? How will my readers look for and use the information they expect to find in the report?

Earlier I mentioned that writers often analyze the “rhetorical situation.” In doing so, there is something besides audience and purpose that writers consider—the context. This leads to the question here.
Information in progress reports needs to be organized so readers can find it quickly and grasp it easily.
Which is better?

Chronological Organization

vs.

Topical Organization
“First we researched semiconductors, then we began a preliminary project design, and then we stopped that in order to research some points that we hadn’t thought about before. After the second round of research, we went back and tested a second aspect of the project design and, while this was going on, we took up the preliminary design again, but we didn’t finish it. Instead we conducted some experiments with a multimeter, and this got us thinking that perhaps we should revise the preliminary design…”

How would one find information they need quickly in this type of organization? How would one grasp your progress on the project easily?
A progress report is not a story, and should not read like one; **topical organization** is better.
Topical organization considers what your stakeholders want to know:

1. What you have accomplished to date
2. What remains to be done
3. Whether you will finish on time
Topical

Sufficient Background: Remind the readers of what they may already know about your project with an adequate description of what you are doing

1. What you have accomplished to date
2. What remains to be done
3. Whether you will finish on time

This will be difficult to understand without sufficient background.
Introduction
Main Sections
Conclusion
Introduction

- motivation (opportunity; problem)
- project description
- tasks listed and described clearly
- intended start and completion dates

Which is better?
Main Sections

tasks completed with completion dates & preliminary findings, conclusions or assessments (if appropriate)

tasks remaining (includes current tasks) with projected completion dates & up-to-date Gantt chart
Conclusion

assessment of progress
changes in scope
forecast about completion
For your assignment, this means
The following sample report is not perfect, but it has several good characteristics.
A descriptive subject line.
Contains descriptive abstract (but it does not need to be offset from the margins).
Flaw: Headings are equidistant.
Contains a figure of the project (but the figure does not have a label).
The project involves nine main tasks:

1. Developing an initial design. This task involves using TRIZ techniques to adapt current technology to a new purpose. (Completion date: 2 November 2015)

2. Assessing current designs. This task involves conducting a patent search of current designs on the market in order to assess what the design space is for a similar product and to identify further ideas for the refinement of our product. (Completion date: 4 November 2015)

3. Researching and obtaining appropriate materials. We will review the catalogues and handbooks through Engineering Village in order to choose materials for our device, which materials we will then order for testing and prototyping. (Completion date: 10 November 2015)

4. Construction of first prototypes. This involves building two sets of Walker Skin to our design specifications. (Completion date: 15 November 2015)

5. Conducting tests on our prototypes. This task involves conducting several tests on our prototypes and testing our likelihood. (Completion date: 22 November 2015)

6. Producing final design. We will compile the results of our tests and, in view of what we have learned, we will produce a final design. (Completion date: 1 December 2015)

7. Conducting marketing research. We will conduct market research to determine the most likely customers of our product. (Completion date: 1 December 2015)

8. Preparing the presentation of the device to clients. We will prepare an oral presentation supported by PowerPoint slides and deliver the presentation to the clients. (Due date: 8 December 2015)

9. Writing final report. We will draft and submit a formal design report discussing the design, function and marketability of our device. (Due date: 15 November 2015)

Contains a good number of tasks: not too many, not too few.

Tasks are grouped according to type (but the reports may not be necessary to include).

Tasks are described briefly.

Formatting is consistent.

Intended completion date is included (but this report omits the start dates).
Tasks completed

Checking space on initial design
We met as a group on three occasions and decided that a device consisting of two
ski-like structures made of a flexible, yet strong material, and joined by a wide cross-
piece, would allow a walker to function as a sitting device.

Task completed: 2 November 2015

Assessing current designs
We conducted a patent search through the United States Patent Office and were
unable to find any device resembling ours. We did learn that certain skiing poles, such
as Sherpas, are housed in ski.

Task completed: 6 October 2014

Choosing and obtaining appropriate materials
A search through materials available on Engineering - Helped us to order and
obtain 50 feet of Sherpas of a width of four to three and a half inches long. We have
also obtained a second piece of Banff Plus 20 feet long, 1 foot wide and
3 inches thick, from which to create a pair of treads for construction and
testing.

Task completed: 9 November 2015

Work not yet completed

Construction of first prototype
Two of our team members will undergo training at the Wilkes Student Project
Center as the Safety Officer of the University of Magog. Following this we intend
to build two sets of treads to our design specifications, and we will do so under
the supervision of the assistant instructor. This should be finished on 15 November.

Collaboration on our prototypes
We will conduct two tests of design and treads on our prototype Walker-Site in order to
determine what forces are needed in order to break them. This should provide us an idea
of the amount of how the assembled device could safely bear. This should be
finished on 23 November 2015.

Flaw: Headings are stacked.
Task names match up with initial list of tasks.
Actions/progress are described.
Completion dates are easy to locate.
Projected completion dates are easy to locate.
Note: The Gantt chart should contain all of the main tasks described in the report; subtasks may also appear on the Gantt chart and be described under main tasks.
Acknowledgments

Much of the information in this lecture has been adapted from the lecture Dr. Erik Hildinger gave in previous years in E100-250. Other information within this lecture has been adapted from the following sources:
