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Given a spanning tree T of some graph G, the problem of minimum spanning tree ver-
ification is to decide whether T = MST (G). A celebrated result of Komlós shows that
this problem can be solved with a linear number of comparisons. Somewhat unexpectedly,
MST verification turns out to be useful in actually computing minimum spanning trees
from scratch. It is this application that has led some to wonder whether a more flexible
version of MST verification could be used to derive a faster deterministic minimum span-
ning tree algorithm. In this paper we consider the online MST verification problem in
which we are given a sequence of queries of the form “Is e in the MST of T∪{e}?”, where
the tree T is fixed. We prove that there are no linear-time solutions to the online MST
verification problem, and in particular, that answering m queries requires Ω(mα(m,n))
time, where α(m,n) is the inverse-Ackermann function and n is the size of the tree. On
the other hand, we show that if the weights of T are permuted randomly there is a simple
data structure that preprocesses the tree in expected linear time and answers queries in
constant time.

1. Introduction

The minimum spanning tree (MST) problem has seen a flurry of activity
lately, driven largely by the success of a new approach to the problem. The
recent MST algorithms [22,9,32,31], despite their superficial differences, are
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all based on the idea of progressively improving an approximately minimum
solution until the actual minimum spanning tree is found. It is still possi-
ble that this progressive improvement approach will continue to bear fruit.
However the current techniques seem to have been pushed to the limit. For
instance, the technique of random sampling combined with Komlós’s MST
verification routine, pioneered by Karger, Klein, and Tarjan [22], yields an
expected linear-time randomized MST algorithm, settling the randomized
complexity of the problem. Despite some success in reducing the depen-
dence on random bits (see the algorithms of Pettie and Ramachandran [31])
it does not seem possible to fully derandomize the Karger et al. [22] algo-
rithm. The MST algorithms of Chazelle [9] and Pettie and Ramachandran
[32] are based on Chazelle’s Soft Heap [10], a priority queue that can be
construed as sampling in a deterministic fashion. Chazelle’s algorithm runs
in super-linear O(mα(m,n)) time, where m and n are the number of edges
and vertices, respectively, and α is the slowly growing inverse-Ackermann
function. The running time of the Pettie-Ramachandran algorithm [32] is
asymptotically equal to the decision-tree complexity of MST, and is there-
fore optimal. In light of Chazelle’s algorithm [9] the decision-tree complexity
of MST is somewhere between Ω(m) and O(mα(m,n)).
It is not possible to improve the asymptotic performance of Komlós’s

MST verification algorithm [26], used in [22,31], nor Chazelle’s Soft Heap
[10], used in [9,32,31]. It is then natural to ask, assuming that Chazelle’s
algorithm [9] is not optimal, what data structure will be the basis of the
next MST algorithm? In [9, p. 1029] Chazelle speculates on the subject:

Given a spanning tree T , to verify that it is minimum can be done in
linear time [Dixon et al. 1992; King 1997; Komlós 1985]. The problem
is to check that any edge outside T is the most expensive along the
cycle it forms with T . With real costs this can be viewed as a problem
of computing over the semigroup (R,max) along paths of a tree. In-
terestingly, this problem requires Ω(mα(m,n)) time over an arbitrary
semigroup [Chazelle and Rosenberg 1991; Tarjan 1978]. This lower
bound suggests that in order to improve upon our algorithm specific
properties of (R,max) will have to be exploited. This is done statically
in [Dixon et al. 1992; King 1997; Komlós 1985]. We speculate that an
answer might come from a dynamic equivalent.

In this paper we study the complexity of one such “dynamic equivalent”
to MST verification, namely the online MST verification problem. Whereas
the offline MST verification problem is given a tree T (the alleged MST)
and a set of non-tree edges, an online MST verifier is presented each non-
tree edge e one at a time. It must decide, before the next edge is presented,
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whether e∈MST (T∪{e}). We prove that there is no linear-time online MST
verifier, ruling out this sort of data structure as the basis of a faster explicit
MST algorithm.

Theorem 1.1. Any online minimum spanning tree verification algorithm
performs Ω(mα(m,n)+n) edge-weight comparisons, where m is the number
of queries, n is the size of the fixed tree, and α is the inverse-Ackermann
function.

Perhaps restricting the MST verifier to answer one query at a time is
too unrealistic. A simple corollary of Theorem 1.1 is that giving the MST
verifier large batches of queries does not significantly affect the complexity
of the problem.

Corollary 1.2. Consider the problem of answering m MST verification
queries, presented in k batches, where each batch of queries must be an-
swered before receiving the next. Any algorithm for this problem performs
Ω(mα(m

k ,
n
k )+n) edge-weight comparisons.

For instance, if queries are grouped into log∗n batches of size m/ log∗n,
Corollary 1.2 implies that the complexity of the problem remains
Ω(mα(m,n)+n).

1.1. Previous Work

The minimum spanning tree verification problem is ostensibly about mini-
mum spanning trees; however, as Chazelle noted, it can also be viewed as a
partial sums (or range searching) problem over the semigroup (R,max). The
range searching problem has been the subject of intense study for quite some
time (see, e.g., the survey of Agarwal & Erikson [2]). In a typical formulation
of the problem we are to preprocess a set system (or range space) (X,Q),
where X is a set of weighted elements, whose weights are drawn from some
semigroup, and Q is a collection of subsets of X, so that given any query
set Q∈Q we can quickly determine the sum of the weights of the elements
in Q. In a commonly studied scenario the elements X are identified with
points in R

d and Q corresponds to the set of all regions of R
d with some

nice structure, such as the simplices or d-rectangles. Under the assumption
of an arbitrary semigroup (S,◦), the only operation allowed on a semigroup
variable x is of the form x :=y◦z, where y,z∈S. Thus, for a fixed set system
(X,Q) any program in the arbitrary semigroup model must be a straight-
line program. However for the semigroups (R,max) and (R,min) it is most
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natural to assume the decision-tree model, where the program decides which
comparison to make based on the outcomes of previous comparisons.
If we view the MST verification problem as a range searching problem, the

set of weighted elements X coressponds to the weighted tree edges, Q corre-
sponds to the set of tree paths, and edge weights are drawn from (R,max).
This is not a geometric problem in general, although it subsumes one as a
special case. If the input tree is a single path, MST verification becomes iso-
morphic to a 1-dimensional range searching problem where the query sets
correspond to intervals. We will call this problem interval maximum if the
semigroup is (R,max) and interval sum under arbitrary semigroups. Simi-
larly, tree sum refers to the MST verification problem when generalized to
arbitrary semigroups.
Tarjan [35] gave an algorithm for the offline tree sum problem and other

algorithms for certain online variants of tree sum. All the algorithms in [35]
are based on the same path-compression technique used in the standard
union-find algorithm [33] and therefore run in time Θ(mα(m,n)) where n
is the size of the tree and m≥n is the number of queries. Yao [39] proved
that the query time of any online interval sum algorithm is Θ(α(m,n)) if it
uses m≥ n units of storage. See also [34,4] for related results. Chazelle [8]
showed that algorithms on intervals (such as one solving interval sum) can
be systematically translated into algorithms on trees. This yielded an online
tree sum algorithm which answers queries in Θ(α(m,n)) time using m≥n
units of storage. Chazelle and Rosenberg [11] strengthened the results of Yao
[39] and Alon and Schieber [4] by showing that offline interval sum is just
as hard as online interval sum. In other words, there exist m queries that
can only be answered using Θ(mα(m,n)) operations. Tarjan [37] showed
that the complexity of any offline subset sum problem over an arbitrary
semigroup is precisely the same as its dual.1 Tarjan’s result was used to prove
an O(mα(m,n)) upper bound on the MST sensitivity analysis problem,
which is the dual to MST verification. Together with [11] it also proves
an Ω(mα(m,n)) lower bound on any oblivious2 MST sensitivity analysis
algorithm.
The complexity of all these problems seems to change when we substitute

the specific semigroup (R,max) in place of an arbitrary semigroup. Komlós
[26] (see also [17,6]) gave a simple reduction from the (online) interval-

1 A subset sum problem can be represented as a zero-one matrix M where M [i, j] = 1
indicates element i is in set j. The dual of this subset sum problem is MT , i.e. elements
become sets and sets become weighted elements.

2 In this model an oblivious algorithm is a fixed sequence of operations of the form
a :=max{b,c} where a, b, and c are variables or inputs. The output of the algorithm is a
certain fixed set of variables.
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maximum problem to the (online) least common ancestors problem, which,
together with Harel and Tarjan’s online LCA algorithm [20], implies that
interval-maximum queries can be answered in O(1) time after an O(n)-
time preprocessing phase. Compare this with the inverse-Ackermann type
lower bounds of [39,4,11]. Komlós [26], making use of his interval-maximum
algorithm, showed that offline MST verification can be solved with O(m+
n) comparisons, where n and m are the number of tree-edges and non-
tree edges, respectively. Much work has been devoted to finding a simple
implementation of Komlós’s algorithm in a simple model of computation
[14,23,7,5]. The MST sensitivity analysis problem was investigated in [14];
they gave two algorithms: a randomized, expected linear-time algorithm
and a provably optimal algorithm with unknown running time. A recent
improvement [30,28] to the split-findmin data structure [16] implies that
MST sensitivity analysis can be solved deterministically in O(m logα(m,n))
time.
Given this history one might be tempted to conjecture that all partial

sums/range searching problems are significantly easier under (R,max), as
opposed to an arbitrary semigroup.3 Our main result disproves this con-
jecture, and it is quite surprising given the known linear-time algorithms
for similar problems. Our result represents the first inverse-Ackermann type
lower bound on a purely comparison-based problem.
Because the elementary operation in our model is the comparison, as

opposed to, e.g., the cell probe [15], the matrix query [24], or the pointer
manipulation [36], our proof technique is information-theoretic in nature.
This is in contrast to traditional inverse-Ackermann style lower bounds [36,
39,4,11,24,21,15], which are based on mostly structural properties of the
problem or problem instance. We suspect that our techniques will be useful
in lower-bounding other problems in a comparison-based model of compu-
tation. We give two such candidates in Section 5.

1.2. Organization

Section 2 defines our notation and a class of hard problem instances. The
lower bound proper appears in Section 3. In Section 4 we give almost match-
ing upper bounds for online MST verification, and show that the problem

3 This conjecture basically holds for random offline partial sums problems: nearly all
such problems on n elements and m sets require Θ(mn/ logm) semigroup operations to
solve (see [34]), whereas they require an expected O(n logmin{n, m+n

n
}) comparisons to

solve [18] when the semigroup is (R,max).
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becomes significantly easier when the input edge-weights are permuted ran-
domly. We discuss some open problems in Section 5.

2. Preliminaries

The problem is to answer, in an online fashion, a sequence of m minimum
spanning tree verification queries. Each is of the form: given an edge e,
decide whether e∈MST (T∪{e}), where T is a fixed, edge-weighted tree. By
the cycle property of minimum spanning trees this is equivalent to asking
whether e is not the heaviest edge on the unique cycle in T∪{e}. We restrict
the types of input trees and queries as follows:

• The fixed tree T is a full, rooted binary tree.
• Every query edge connects a leaf to one of its ancestors.

For the sake of simpler notation we will actually consider trees that are
vertex-weighted. (Hence we decide if e is heavier than all vertices in the
unique cycle of T ∪{e}.) It is easy to transform an edge-weighted tree T ′

into an equivalent vertex-weighted tree T satisfying |T |<2|T ′|.4 Since we are
only considering leaf-to-ancestor queries we can use a simpler transformation
that does not increase the size of the tree. We let the weight of a vertex v
in T be the weight of the edge (v,parent(v)) in T ′. The weight of the root is
irrelevant. A query (u,v) in T ′ is equivalent to the query (u,v′) in T , where
v′ is the child of v that is an ancestor of u.
It is clear that the query edge must participate in at least one compari-

son. The parameter t≥1 used throughout the paper represents the desired
number of comparisons per query. We will prove that for each t there is an
input distribution Distr(t) such that for some query, either (a) Answering
the query requires at least t+1 comparisons (worst case or amortized) or
(b) The verification algorithm already performed cn logλt(n) comparisons
preceeding the query, where c is an absolute constant and λt is the tth-row
inverse of a function similar to Ackermann’s function. By judiciously setting
τ(m,n)=max{t : cn logλt(n)≥ tm}, this implies that answering m verifica-
tion queries requires m · τ(m,n) comparisons. It is then straightforward to
show that τ(m,n) is always within an absolute constant of the traditional
inverse-Ackermann function defined by Tarjan [33].

4 The transformation: For each edge (u,v)∈T ′, with v the parent of u, we add two edges
(u,w) and (w,v), where w is a new vertex, u has weight −∞ and w has the same weight
as (u,v).



LOWER BOUND FOR MINIMUM SPANNING TREE VERIFICATION 213

2.1. A Variation on Ackermann’s Function

In the field of algorithms & complexity Ackermann’s function [1] is rarely
defined the same way twice [1,36,15,11,12,9,13]. We would not presume to
buck such a well established precedent. Here is a slight variant:

A(1, j) = 2j j ≥ 0;
A(i+ 1, 0) = A(i, 1) i ≥ 1;

A(i+ 1, j + 1) = A(i, 22
A(i+1,j)

) i ≥ 1, j ≥ 0.

Let λi(n) be the inverse of the ith row of A, defined as:

λi(n) = min{j : A(i, j) ≥ n}.

2.2. The Input Distribution Distr(t)

We denote nodes of the fixed tree T with lower case letters. If q is a tree node
we let w(q) be the weight of q and size(q) be the number of leaf-descendants
of q. Since T is a full binary tree, size(q) is always a power of two. Note also
that A(i,j) is always a power of two. The input distribution Distr(t) is fully
characterized by Definitions 2.1 and 2.2 and Property 2.3.

Definition 2.1. InDistr(t), a non-leaf node p is an i-node if size(p)=A(i,j)
for 1≤ i≤ t and some j, and an i-node if it is an i-node but not an (i+1)-node.
In Distr(t), leaf-nodes are (t+1)- and (t+1)-nodes by definition.

Definition 2.2. Let p be an arbitrary (i+1)-node and let q be the nearest
(i+1)-node ancestor of p, or, if there is no such node, let q be the root.
We define the set Cp to be those i-nodes that lie on the path between p
and q.

Property 2.3. Let p be a tree node. If p is a 1-node then w(p), the weight
of p, equals the height of p in T , i.e., log size(p). If p is an i-node, for i>1,
then w(p) =w(Xp), where Xp is a tree node selected uniformly at random
from Cp, and independent of {Xq}q �=p – see Figure 1.

In our analysis we will assume that the online MST verification algo-
rithm knows that the permutation of tree weights was drawn from Distr(t).
Therefore, a statement of the form “it is known that w(p)<w(q)” means
the inequality w(p) < w(q) follows from the inequalities discovered by the
algorithm and the inequalities implicit in Property 2.3. For instance, the
following Lemma follows from Property 2.3.
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.    .    .

w(p)
def
=w(Xp)

Xp is selected from Cp

i-node

arrow points to

the heavier node

(i−1)-node

Cp

p

q

size=A(i−1,h+1)

size(q)=A(i, j+1)=A(i−1,h)

size=A(i−1,h−1)

size=A(i−1,h−2)

size=A(i−1,h−3)

size=A(i−1, g+3)

size=A(i−1, g+2)

size=A(i−1, g+1)

size(p)=A(i, j)=A(i−1, g)

size=A(i−1, g−1)

Figure 1. An i-node p, where i>1, and its associated set Cp. Cp consists of the
(i−1)-nodes between p and q, its nearest i-node ancestor. The weight of p is equal to

that of some node in Cp selected uniformly at random.

Lemma 2.4. Suppose p1 is an i1-node, p2 is an i2-node, i1 ≤ i2, and p1

appears at a lower level of T than p2. Then w(p1)<w(p2).

Proof. Let size(p1) = A(i1, j1) and size(p2) = A(i2, j2). It follows from
Property 2.3 that w(p1) ∈ [logA(i1, j1), logA(i1, j1 + 1)) and w(p2) ∈
[logA(i2, j2), logA(i2, j2 + 1)). Whether i1 = i2 and j1 < j2 or i1 < i2, it
follows from the definition of A that A(i1, j1+1)≤A(i2, j2).

A consequence of Lemma 2.4 is that, on any leaf-to-root path, the weights
of the i-nodes are monotonically increasing, for any i. This implies that any
query can be answered in at most t+1 comparisons. If a query edge e connects
a leaf to one of its ancestors there are at most t+2 candidate maxima on
the cycle in T∪{e}: the most ancestral i-node, for 1≤ i≤ t+1, plus the edge
e itself.
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2.3. A Measure of Information

Before the verification algorithm performs any comparisons it knows, by
Property 2.3, that w(q) = w(Xq), where q is any i-node, i > 1, and Xq

is uniformly distributed over Cq. We define, with respect to the current
moment, the set Dq ⊆Cq as:

Dq = {p ∈ Cq : w(q) = w(p) is consistent}.

That is, Cq\Dq consists of those p∈Cq for which the equality w(q) =w(p)
is impossible, given Property 2.3 and all the inequalities discovered by the
verification algorithm up until the current moment. It follows from Prop-
erty 2.3 that Dq is non-empty. We will use the sizes of the Cq and Dq sets
to roughly measure how much information is known about Xq. Define φ as:

φ(q) =




0 if q is a 1-node,
log |Cq|+ 2(t+ 1)2 if |Dq| = 1 and log |Cq| ≥ 2(t+ 1)2,

log |Cq|
|Dq| otherwise.

Define Φ as:
Φ =

∑
q∈T

φ(q).

It would be preferable to define φ(q) as simply log(|Cq|/|Dq|). However
we need to differentiate between the case when Xq is completely known and
when there is a little uncertainty left in Xq (corresponding to |Dq|=1 and
|Dq|>1, respectively.) Therefore, we add to φ(q) a little “bonus” of 2(t+1)2
whenever |Dq| reaches 1. Lemma 2.5 relates the Φ measure to the number
of bits of information learned about the verification algorithm.

Lemma 2.5. Φ/2 is a lower bound on the information learned about the
tree-weights, as drawn from Distr(t).

Proof. The number log(|Cq|/|Dq|) measures the bits of information learned
about the variable Xq, in the special case when Xq is uniformly distributed
over Dq and independent of {Xp}p �=q. This is certainly a lower bound on
the actual number of bits of information learned about Xq. By definition,
φ(q)≤ 2log(|Cq|/|Dq |). Therefore Φ=

∑
q φ(q) is at most twice the number

of bits of information learned about the tree-weights.

Our lower bound proof uses the Φ and φ values to argue about the exis-
tence of “hard” queries and to quantify their exact hardness. We show that
if Φ is sufficiently small, where small is a function of n and t, then there
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exists a query that requires t+1 comparisons to be answered in the worst
case. However there is a danger in continually forcing worst-case behavior.
In so doing we may inadvertantly expose significantly more than one bit of
information per comparison. That is, we would lose the ability to claim any
relationship between comparisons and entropy/information. We prove amor-
tized bounds by showing that either (a) the verification algorithm answers
the query in at least t+1 comparisons or (b) after the query is answered, Φ/2
increases by some amount much larger than t+1. Theorem 2.6 shows that
if such a dichotomy exists then with high probability the amortized cost of
the query is lower bounded by t+1 minus some small quantity.

Theorem 2.6. Let π be an unknown permutation drawn from some known
probability distribution. An algorithm performs a sequence of m operations
by comparing elements of π. Let Ψi≥Ψi−1 be a lower bound on the amount
of information learned about π just before the ith operation. Suppose that
it is known that the ith operation either performs at least ν comparisons
or Ψi+1−Ψi≥µ. Let amort(ν,µ,ε)=ν(1+(1+ ε)ν/µ)−1. Let C be the total
number of comparisons made in m operations and M =m · amort(ν,µ,ε).
Then:

Pr[C ≥M ] ≥ 1− 2−εM .

Proof. Let I denote the number of bits of information learned about π after
C comparisons. We have Ψm+1≤I. It is simple to prove by induction5 that
Pr[I > (1+ δ)C]< 2−δC . Therefore, if C <M then Pr[I > (1+ ε)M ]< 2−εM .
Let mν be the number of operations that perform at least ν comparisons
and let mµ be the number of operations that increase Ψ by at least µ. We
have the following inequalities:

m ≤ mν +mµ

≤ C/ν + I/µ
< M(1/ν + (1 + ε)/µ) (with prob. greater than 1− 2−εM )
=M(amort(ν, µ, ε))−1 = m.

Therefore, C<M only with probability less than 2−εM .

In our lower bound proof Φ/2 will take the role of Ψ in Theorem 2.6 and
if we select the input from Distr(t) then ν will be t+1. We are basically free
to set the other parameters. For ε=1/t and µ=(t+1)2, Theorem 2.6 says

5 A sketch of the proof: Let ρ(c,f) be the probability that f bits of information are
revealed in c comparisons. Then ρ(1,f > 1) ≤ 2−f and ρ(c,f ≤ c) ≤ 1. Furthermore, ρ
satisfies the relation: ρ(c+1,f >c+1)≤max0<s≤1/2{sρ(c,f+logs)+(1−s)ρ(c,f+log(1−s))}.
It then follows by induction that ρ(c,c+δ)<2−δ.
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that the actual amortized cost (C/m) is at least amort(t+1,(t+1)2,1/t)= t
with probability 1−2−m. By increasing µ or decreasing ε the lower bound on
the amortized cost can be driven arbitrarily close to t+1, with probability
at least 1−2−Ω(m). For the sake of specificity, let the term amortized cost
be w.r.t. ε=1/t.

3. The Lower Bound

Theorem 1.1 will follow very easily from Lemma 3.1, given below. The re-
mainder of this section will constitute a proof of Lemma 3.1.

Lemma 3.1. Suppose that Φ < 1
8n logλt(n), where it is assumed that

λt(n)>23(t+1)2 . Then there exists a verification query whose amortized cost
is at least t.

The proof of Lemma 3.1 is structured as follows. We define a measure
cost(q) over the leaves q of the input tree and show that if any leaf’s cost is
sufficiently small, then there exists a “hard” query edge that connects that
leaf to one of its ancestors. In particular, we generate a sequence of nodes
qt+1,qt, . . . ,q1 where qt+1 is a low-cost leaf (recall, leaves are (t+1)-nodes),
and qi is an i-node ancestor of qi+1. The query edge is then e= (qt+1,q1).
We show that qt+1,qt, . . . ,q1 are all candidate maxima on the unique cycle
in T∪{e}, which immediately implies that in the worst case, the verification
algorithm must make t+1 comparisons to certify that e is heavier than
qt+1,qt, . . . ,q1. We then show that if, somehow, the verification algorithm
got by with fewer than t+1 comparisons, then it must have caused Φ to
increase by at least 2(t+1)2. By appealing to Theorem 2.6 we can then show
that the amortized cost of the query is at least t.
Define cost(q), where q is a leaf, as

cost(q) =
∑

p ancestral to q
(including q)

φ(p)
size(p)

.

That is, we can think of p contributing φ(p)/size(p) to the cost of each
of its size(p) leaf-descendants. Clearly

∑
q cost(q)=

∑
q φ(q)=Φ. We choose

a hard query as follows:

1. Let qt+1 be a leaf such that cost(qt+1)< 1
8 logλt(n).

2. For i from t down to 1: let qi be the second most ancestral node in Dqi+1.
3. The query edge is e=(qt+1,q1). We fix w(e) to be more than w(q1), but
less than any other weight more than w(q1).



218 SETH PETTIE

In (1), such a qt+1 can always be found because the average leaf cost
is bounded by logλt(n)/8. For (2) we clearly require |Dqi+1| ≥ 2. For our
analysis to go through we will actually require Dqi+1 to have at least 2

2(t+1)2

elements. We first prove bounds on |Cqi | , |Dqi | and size(qi). We then bound
the cost of answering the query (qt+1,q1).

Lemma 3.2. If q is a leaf then |Cq|=λt(n). If q is a non-leaf i-node, where
i>1, and there exists some i-node above q, then |Cq|≥22

size(q)−1.

Proof. When q is a leaf the set Cq consists of all t-node ancestors of q, of
which there are λt(n), by the definition of λt. Now suppose that q is an i-
node, for i>1, and let p be the next i-node ancestor of q. Let j,j1, j2 be such
that size(q)=A(i,j)=A(i−1, j1) and size(p)=A(i,j+1)=A(i−1, j2). The set
|Cq| consists of the j2−j1−1 (i−1)-nodes between q and p. If j=0 then by
the definition of A, |Cq|=22

A(i,0)−2. If j>0 then |Cq|=22
A(i,j)−22A(i,j−1)−1.

In either case |Cq|≥22
size(q)−1 since A(i,j−1)< 1

2A(i,j) when i>1.

Lemma 3.3. Let p be an arbitrary leaf descendant of an i-node q, where
i>1. Then

|Dq| ≥
|Cq|

2cost(p) size(q)
.

Proof. By definition of φ, |Dq|≥ |Cq|/2φ(q). By the definition of cost(p) we
have cost(p)≥φ(q)/size(q). The lemma follows.

Lemma 3.4. For 1≤ i≤ t, size(qi)≥ λt(n)≥ 23(t+1)2 .

Proof. Since qi is an ancestor of qi+1, implying size(qi) > size(qi+1), we
need only prove the lemma for i = t. We selected qt+1 for satisfying
φ(qt+1) < logλt(n)/8. Therefore, it follows from Lemmas 3.2 and 3.3 that
|Dqt+1| ≥ (λt(n))7/8. We chose qt to be the second most ancestral node in
Dqt+1. Therefore, size(qt)≥A(t,(λt(n))7/8−2), which is at least λt(n) since
A(t,j)≥2j and (λt(n))7/8−2≥ logλt(n) for all but small constant values of
λt(n). (Recall that we assumed λt(n)≥23(t+1)2 ≥212.)

Lemma 3.5. For 1<i≤ t+1, |Dqi |≥22(t+1)2 .

Proof. It was already shown in the proof of Lemma 3.4 that Dqt+1 ≥
(λt(n))7/8≥22(t+1)2 . Consider qi, for i≤ t. We have the inqualities:

|Dqi | ≥
|Cqi |

2size(qi) cost(qt+1)
≥ 2(2

size(qi)−1−size(qi) log λt(n)) ≥ size(qi) ≥ 22(t+1)2 .
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The first inequality follows from Lemma 3.3. The second follows the inequal-
ity cost(qt+1)< logλt(n)/8 and Lemma 3.2. The third and fourth follow from
Lemma 3.4.

Lemma 3.6. The query e=(qt+1,q1) requires t+1 comparisons to answer
in the worst case.

Proof. Consider the unique cycle in T ∪{e}. We will show that among the
weighted elements on this cycle (weighted vertices and the edge e), the set of
possible maxima is precisely {e,qt+1,qt, . . . ,q1}. Therefore, confirming that e
is indeed the heaviest element will require t+1 comparisons in the worst case
since for any comparison made by the verification algorithm, at least one
outcome eliminates at most one possible maximum. Suppose that before the
query algorithm began it was already known that w(qi)≤w(qj), ruling out qi
as a potential maximum. We consider two cases, depending on the ordering
of i and j. Assume first that j<i, that is, qj is an ancestor of qi. Let p be the
most ancestral element in Dqi . By our selection of qi−1 from Dqi , qi−1 lies
strictly below p, which implies qi−1,qi−2, . . . ,qj , . . . ,q1 lie strictly below p –
see Figure 2 for a diagram. This leads to a contradiction since p∈Dqi implies

w(qi)<w(qj)

implies that w(qi)<w(p)

contradicting p∈Dqi

j<i i<j

w(qj)=w(p)

implies w(qj)=w(r) for some

i-node r between p and qj−1

which implies w(r)<w(qi)

contradicting w(qi)<w(qj)

qj

qj

qi−1

qi

qi

qj−1

r

p

p

Figure 2. Before answering the query the verification algorithm cannot know that
w(qi)≤w(qj). The two situations, i<j and j<i, are diagrammed. Some of the nodes
depicted may actually represent the same node, as in the case when j= i−1 (left) or

i=j−1 (right).

w(p) = w(qi) is consistent with any known inequalities. However we know
that w(qi)≤w(qj)<w(p), where the first inequality is by assumption and the
second by Lemma 2.4. The other case, when i<j, is similar but not exactly
symmetrical. Let p be the least ancestral element in Dqj . By our choice of
qj−1 and Lemma 3.5, we know that p lies strictly below qj−1. If w(qj)=w(p),
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which is possible since p∈Dqj , then by Property 2.3 w(qj)=w(r) where r
is some i-node between p and qj−1. By Lemma 2.4 w(r)<w(qi), giving us
the inequalities w(r)<w(qi)≤w(qj)=w(r), a contradiction.
In Lemmas 3.7 and 3.8 we show that if the query (qt+1,q1) is answered

in fewer than t+1 comparisons, then Φ must increase by at least 2(t+1)2.
Let ∆Φ denote the change in Φ, measured before and after the query.

Lemma 3.7. Either ∆Φ≥2(t+1)2 or w(qt+1)≤w(qt)≤·· ·≤w(q1)<w(e).

Proof. Let high(i) denote the event that w(qi)=w(p) where p is the most
ancestral node in Dqi . Recall that qi−1 was chosen to be the second most
ancestral node in Dqi and that w(e) > w(q1). Therefore, it must be the
case that w(qt+1)≤ ·· ·≤w(q1)<w(e) or high(t+1)∨high(t)∨·· ·∨high(2).
The event high(j) occurs iff w(qj) > w(q1), which implies w(qj) > w(e).
Since, by Lemma 3.6 the only possible maxima on the cycle in T ∪{e} are
qt+1,qt, . . . ,q1,e, if e is not maximal then the verification algorithm must
have discovered that w(qj)>w(e) for some j, i.e. it must have discovered
that high(j) holds. According to Lemma 3.5 |D(qj)| ≥ 22(t+1)2 before the
query e is issued. However, after the query high(j) holds, which implies that
|Dqj |=1. According to the definition of φ, φ(qj) must increase by at least
2(t+1)2, implying ∆Φ is at least that much.

Lemma 3.8. Either ∆Φ≥2(t+1)2 or each comparison made by the verifi-
cation algorithm eliminates at most one candidate maximum from the set
{qt+1,qt, . . . ,q1,e}.

Proof. Suppose that there exists a comparison that eliminates two or more
candidate maxima from the unique cycle in T ∪{e}. By Lemma 3.6 the set
of candidate maxima initially includes {qt+1,qt, . . . ,q1,e}. Suppose that the
comparison reveals the inequality w(qi)≥w(x) and that it is already known
that w(x)≥w(qj),w(qk), where qj and qk are candidate maxima at the time
of the comparison. Let x be an 0-node. There are several cases, depending on
the ordering of i,j,k, and 0. Lemma 3.7 lets us restrict our attention to the
case when w(qt+1)≤w(qt)≤ ·· · ≤w(q1)<w(e), which immediately implies
i< j <k. The proof is structured as follows. Let p be the next (k−1)-node
above qk−1, i.e., at the time the query e was issued, p was the most ancestral
node in Dqk

. We will show that either p �∈Dqk
just before the comparison,

or the comparison causes Φ to increase by at least 2(t+1)2, which implies
∆Φ is at least that much. The case p �∈Dqk

leads to a contradiction because
it implies, by the definition of Dqk

, that w(qk)≤w(qk−1), meaning qk was
not a candidate maximum just before the comparison.
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w(qk),w(qj)<w(x)<w(qi)

implies that

w(xl)=w(xl−1)= · · ·=w(xj)

w(xk−1)=w(x)>w(qk)

implies w(p)>w(qk)

and that p �∈Dqk

xi

xj

xk−1

xk

xl=xql

qk

qk−1

qj

qi

p

Figure 3. It was discovered that w(qj),w(qk)≤w(x)≤w(qi), ruling out qj and qk as
potential maxima. The node x=x� is proved to be at the same level as q�, for some  ≥k.

The nodes x�−1, . . . ,x1, are by definition the ancestors or x at the same levels as
q�−1, . . . , q1.

We will first show that 0≥k and x is at the same level in T as q�. Suppose
that 0<k. If the inequalities w(qk)≤w(x)≤w(qi) were a possibility before
the comparison was made then x must lie in the band of T between the levels
of qk and p: any 0-nodes outside that band are, by Lemma 2.4, definitely
lighter than qk or heavier than qi. However the inequality w(x)≥w(qk) then
implies, by Lemma 2.4, that w(p)>w(qk), that is, p �∈Dqk

, a contradiction.
This shows that 0≥ k. We now consider the height of x in T . We cannot
have x lower in T than q�, for this would imply by Lemma 2.4 that w(x)<
w(q�) ≤ w(qk). It also cannot lie above q�, as this implies w(qi) < w(x),
again by Lemma 2.4. We define x�,x�−1, . . . ,x1 to be the ancestors of x at
the same levels as, respectively, q�,q�−1, . . . ,q1, where x=x� – see Figure 3.
Notice that if w(qj),w(qk)≤w(x)=w(x�)≤w(qi), it must be the case that
w(x�)=w(x�−1)= · · ·=w(xj), implying that |Dx�

|= |Dx�−1
|= · · ·= |Dxj+1|=

1. If any one of these D-sets, say Dxr , had strictly more than 1 element
before the query e was issued then we argue that ∆Φ ≥ 2(t+1)2. Since xr

is at the same level as qr, it follows from Lemma 3.5 that |Cxr | ≥ 22(t+1)2 .
Given this lower bound on |Cxr |, the transition from |Dxr |> 1 to |Dxr |=1
causes φ(xr) to increase by at least 2(t+1)2, which causes Φ to increase
by at least that much. Therefore, if |Dxr |> 1 before the query was issued
then ∆Φ≥2(t+1)2. The last situation to consider is when |Dx�

|= |Dx�−1
|=

· · ·= |Dxj+1 |=1 before the query e was issued. In this situation the known
inequality w(x) = w(x�) ≥ w(qk) implies w(xk−1) ≥ w(qk) since j ≤ k− 1.
However Lemma 2.4 implies that w(p) > w(xk−1), and consequently, that
p �∈ Dqk

just before the comparison was made. This contradicts the claim
that qk was a candidate maximum.
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Lemma 3.8 implies that the query e is answered in t+1 comparisons or
else increases Φ by at least 2(t+1)2. By invoking Theorem 2.6 with Ψ=Φ/2,
ε=1/t, ν= t+1, µ=(t+1)2, the amortized cost of the query e is at least t.
In the next section we prove that Lemma 3.1 implies Theorem 1.1.

3.1. Proof of Main Theorem

In this section we define a function τ(m,n) and prove a lower bound on the
online MST verification problem in terms of m, n, and τ(m,n). We then
show that τ(m,n) is within an absolute constant of the inverse-Ackemann
function α as defined by Tarjan [33]. Define τ(m,n) as:

τ(m,n) = max
{
t : λt(n) ≥ 216t2�m/n	

}
.

It is true that τ(m,n) is undefined when λ1(n) < 216�m/n	. For the sake
of completeness, assume τ(m,n)=1 in this situation.

Lemma 3.9. Any deterministic algorithm answering m MST verification
queries on an n-node tree can make at least max{m·τ(m,n), n} comparisons.
If the algorithm is randomized this bound holds with probability 1−2−Ω(m).

Proof. If τ(m,n)=1 or m ·τ(m,n)<n then the lemma is trivial. Any MST
verification algorithm must perform 1 comparison per query and in the case
where T ∪{e} consists of a single cycle, confirming that e �∈MST (T ∪{e})
requires n comparisons. We assume that τ(m,n) > 1. By the definition of
τ(m,n) it follows that 1

16n logλt(n)≥2·m·τ(m,n). If the MST verification al-
gorithm made fewer than m·τ(m,n) comparisons it follows from Lemma 2.5
that Φ< 1

8n logλt(n) with probability at least 1−2−m·τ(m,n). It also follows
from the definition of τ(m,n) that λt(n)≥23(t+1)2 . Therefore, the precondi-
tions of Lemma 3.1 are met with high probability. According to Lemma 3.1
the amortized cost of each query is amort(t+1,(t+1)2, t−1)= t, and by The-
orem 2.6 the probability that the amortized costs exceed the actual costs is
no more than 2−εtm = 2−m. If the algorithm is deterministic then all high
probability bounds become probability 1 on some worst case input.
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In [33] Tarjan defined a variant of Ackermann’s function and a certain
inverse which we denote by B and α, respectively. They are defined as:

B(0, j) = 2j for j ≥ 0,
B(i, 0) = 0 for i ≥ 1,
B(i, 1) = 2 for i ≥ 1,
B(i, j) = B(i− 1, B(i, j − 1)) for i ≥ 1, j ≥ 2,

α(m,n) = min
{
i : B

(
i, 4

⌈
m

n

⌉)
> log n

}
.

Lemma 3.10. α(m,n)−3≤ τ(m,n)≤ α(m,n)+1.

Proof. We will use several properties of A and B, given in Lines (1)
through (4). They are all simple to prove by induction. The proofs, which
are somewhat tedious, are left to the reader.

A(i, j) ≥ B(i, j) for i ≥ 1 and j ≥ 0(1)
B(i, 3j) ≥ A(i, j) for i ≥ 1, j ≥ 1(2)

B(i+ 1, j) ≥ 2B(i,j) for i ≥ 2, j ≥ 3(3)
B(i+ 1, j) ≥ 2B(i,j)/2 for i ≥ 1, j ≥ 3(4)

We had defined τ(m,n) =max{t : λt(n)≥ 216t2�m/n	}. One can see that
this is equivilent to the definition:

τ(m,n) = min
{
t ≥ 1 : A

(
t+ 1, 216(t+1)2�m/n	

)
> n

}
,

which is more in line with the definition of α. We will first show that
α(m,n)≤τ(m,n)+3. Consider the inequalities below, where t=τ(m,n).

A
(
t+ 1, 216(t+1)2�m/n	

)
> n(5)

B
(
t+ 1, 217(t+1)2�m/n	

)
> log n(6)

B

(
t+ 3, 4

⌈
m

n

⌉)
> log n(7)

Line (5) follows from the definition of τ(m,n). Line (6) follows from Line (2).
Line (7) follows from Line (3), though not directly. Let x ↑ y denote an
exponential stack of x 2’s with a y on top; e.g. 2 ↑ 3 = 22

3
= 256. One

can easily show that B(1, j) = 2j = 1 ↑ j. Lines (3) and (4) together imply
that B(i,j) ≥ i ↑ (j − 1) for all i ≥ 1, j ≥ 3. Therefore, B(t+ 3,4�m

n �) =
B(t+2,B(t+3,4�m

n �−1))≥B(t+2,(t+3)↑(4�m
n �−2)), which is greater than

B(t+2,217(t+1)2�m/n	) since (t+2)↑(4�m
n �−2) always dominates 17(t+1)2�m

n �.
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Therefore Line (7) follows from Line (6), and implies, by the definition of
α(m,n), that α(m,n)≤ t+3=τ(m,n)+3.
The bound τ(m,n)≤α(m,n)+1 is proved in a similar fashion. Consider

the following inequalities, where α is short for α(m,n).

B

(
α, 4

⌈
m

n

⌉)
> log n(8)

B
(
α, 28�m/n	

)
> n(9)

A
(
α+ 1, 216α2�m/n	

)
> n(10)

Line (8) is the definition of α(m,n). Line (9) follows from the inequality
B(i,j) ≥ 2j. Line (10) follows from Line (1) and the monotonicity of A
and B. Line (10) is not given as A(α,. . .)>n because α may be zero while
A(i,j) is only defined for i≥1. Therefore, τ(m,n)≤max{α,1}≤α+1.

4. Upper Bounds

In this section we show that the actual complexity of online minimum span-
ning tree verification is not too far from the lower bound presented in Sec-
tion 3. We also provide nearly tight bounds on the average case complexity of
the problem, where the average is over all permutations of the tree weights.
We will think of the MST verification algorithm as divided into two parts: a
preprocessing algorithm that, given T , produces some fixed data structure,
and a query algorithm that answers MST verification queries by referring
only to the fixed structure. The complexities of interest are the number of
preprocessing comparisons and the worst case number of comparisons per
query.

Theorem 4.1. Suppose the tree-weights are permuted randomly. With
no more than 2n preprocessing comparisons (expected), MST verification
queries can be answered with no more than 2 comparisons. If queries must
be answered with 1 comparison then the expected preprocessing time is
Θ(n logn).

Proof. First consider the 1-comparison case with randomly permuted edge
weights. Let T be a star with center vertex c. For every two vertices u,v �=
c the preprocessing algorithm must have determined the relative order of
w(u,c) and w(v,c); otherwise it could not answer the query (u,v) in one
comparison. The preprocessing algorithm sorts (n− 1) numbers and must
therefore perform Ω(n logn) comparisons. O(n logn) preprocessing time is
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also clearly sufficient for any tree T . (Remark: If all tree nodes have degree
bounded by a constant, it seems likely that o(n logn) preprocessing would
be required on average.)
For the 2-comparison case the preprocessing algorithm must reduce the

number of candidate maxima on any query to at most 2 (not counting the
query edge). We root the tree arbitrarily and divide any query (u,v) into
two queries (u, LCA(u,v)) and (v, LCA(u,v)), where LCA(u,v) is the least
common ancestor of u and v. Therefore it will be sufficient to reduce the
number of candidate maxima on a query (z,a) to one, where a is an ancestor
of z. For any node z ∈ T let z = z0,z1,z2,z3, . . . be the sequence of nodes
from z up to the root. We must find the prefix-maxima of the sequences
{(w(zi))}z∈T,i≥0, where w(zi) is the weight of the edge (zi,parent(zi)). This is
tantamount to finding the subsequence L(z)=(zi1 ,zi2 ,zi3 , . . .) where zip has
maximum weight among (z0, . . . ,zip+1−1). One can see that L(z) is derived
from L(z1) = (zj1 ,zj2 ,zj3, . . .) by substituting a (possibly empty) prefix of
L(z1) with z = z0. After determining L(z1) we compute such a prefix in
the obvious manner, by comparing w(z0) with w(zj1),w(zj2), . . . until jq is
found such that w(z0) < w(zjq). (If there is no such zjq then for the sake
of consistent notation we let it be the non-existent parent of the root.) The
cost of this procedure, which is performed for every node in the input tree, is
no more than q.6 We analyze the behavior of q and jq under the assumption
that the tree edge-weights are randomly permuted. We have

Pr[jq = r] ≤ 1/(r(r + 1)) ,(11)

E[q | jq = r] ≤ 1 +
r−1∑
i=1

Pr
[
w(zi) = max

1≤k≤i
{w(zk)}

]

= 1 +Hr−1 ,(12)

E[q] =
∞∑

r=1

Pr[jq = r] · E[q | jq = r]

≤ 1 +
∞∑

r=2

Hr−1

r(r + 1)

= 1 +
∞∑
i=1


1
i
·

∞∑
r=i+1

1
r(r + 1)




= 1 +
∞∑
i=1

1
i(i+ 1)

= 2 .(13)

6 It is usually equal to q, unless zjq happens to be the parent of the root, in which case
the comparison w(e0)<w(ejq) never actually takes place.
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Lines (11) and (12) are inequalities, rather than equalities, due to the
finiteness of the (zi)i sequence. Line (13) follows from Lines (11) and (12)
and the identity

∑k
i=1 1/i(i+1) = 1− 1/(k+1), which is easily proved by

induction on k.

Any (online) tree-sum algorithm for arbitrary semigroups can be used as
an (online) MST verification algorithm. The constructions from [4,8] show
that a tree T can be preprocessed in O(nλt(n)) time so that the sum of the
weights on any path is computable with 2t− 1 semigroup operations. We
sketch below how the preprocessing time can be reduced to O(n logλt(n))
for the online MST verification problem, without affecting the query time.
The [4,8] preprocessing algorithms implicitly generate a set of forests of
rooted trees F1,F2, . . . ,Ft with the property that the sum of the weights of
any path in T is equal to the sum of the weights of 2t paths: 2 paths in each
of T1 ∈ F1,T2 ∈ F2, . . . ,Tt ∈ Ft, where T1, . . . ,Tt are trees in their respective
forests. The paths in T1, . . . ,Tt run from a leaf to one of its ancestors. Pre-
processing the trees in F1, . . . ,Ft to answer leaf-to-ancestor queries is done
in the obvious fashion: for a tree with size s and height h the preprocessing
time is O(sh). F1, . . . ,Ft−1 are constructed so that their preprocessing time is
O(n), and Ft is guaranteed to be a single tree with size at most n and height
at most λt(n); therefore the total preprocessing time is O(nλt(n)). This al-
gorithm can be improved, slightly, when the semigroup is (R,max) and t>1.
Komlós’s MST verification algorithm [26] can be thought of as an O(s logh)-
time preprocessing scheme for answering leaf-to-ancestor queries. Using it to
preprocess Ft instead of the [4,8] algorithms yields an O(n logλt(n)) prepro-
cessing algorithm with query complexity 2t (not 2t−1, as in [4,8], because
the query edge must be compared against the tree-weights too!). We can
reduce the query complexity to 2t−1 by preprocessing the the trees in F1

more effectively. Any tree T1∈F1 with size s and height h has the property
that s logs=O(sh). Therefore, we shall preprocess the F1 trees by sorting
their weights rather than use the [4,8] algorithm. The preprocessing time is
unaffected but the query algorithm may reduce the number of comparisons
by 1.
The above construction assumed t > 1, specifically that F1 �= Ft. What

is the best preprocessing time we can achieve for query complexity 1,
2 and 2t? For 1-comparison queries the optimal preprocessing time is
clearly Θ(n logn). For 2-comparison queries there is a simple algorithm with
O(n log logn) preprocessing time. King [23] showed that any tree T could
be easily transformed into a new tree T ′ with several nice properties. First,
any MST verification query on T can be mapped to an equivalent query in
T ′. Second, T ′ has size linear in |T | and height logarithmic in |T |. Applying
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Komlós’s O(n log logn)-time preprocessing algorithm to T ′ lets us answer
queries in 2 comparisons. It can be shown that this bound is optimal for 2-
comparison queries, using the input distribution Distr(1) and an argument
similar to that of Lemma 3.1. If the query complexity is fixed at 2t, where
t≥2, we do not know of any faster preprocessing algorithm than the one for
query complexity 2t−1. Our results on the worst case complexity of online
MST verification are summarized in Theorem 4.2.

Theorem 4.2. For query complexity 1 the optimal online MST verification
algorithm preprocesses the tree in Θ(n logn) time. For query complexity 2
the optimal preprocessing time is Θ(n log logn). For query complexity 2t−1≥
3 the optimal preprocessing time is O(n logλt(n)) and Ω(n logλ2t−1(n)).

For query complexity 2t−1 we suspect that the upper bound in Theo-
rem 4.2 is tight. However for the special case of leaf-to-ancestor queries the
lower bound from Section 3 is tight. Therefore, to improve our lower bounds
one must necessarily consider more general types of queries.

5. Open Problems

Among natural comparison-based problems there are relatively few whose
asymptotic complexities remain unresolved. The minimum spanning tree
problem [22,9,32,31] is certainly the oldest such problem, though there are
many others that seem equally difficult. In the local sorting problem [18]
one is given a vertex-weighted undirected graph and asked to orient all the
edges to point to the heavier endpoint. When generalized to hypergraphs the
problem is known as set maxima. There are elegant, optimal algorithms for
both local sorting and set maxima [18,31]; however they are all randomized.
Surprisingly there are no known non-trivial deterministic solutions.
Besides online MST verification we are aware of no comparison-based

problems for which inverse-Ackermann type lower bounds are very likely.
However there are a couple such problems for which super-linear lower
bounds seem at least plausible:

• The split-findmin problem is a data structuring problem. We are to
maintain a set of disjoint sequences of n weighted elements under two
types of operations. A decrease-key operation reduces the weight of some
element, and a split operation divides a sequence into two disjoint se-
quences: one consisting of elements to the left of some designated ele-
ment, and another consisting of the rest. The problem is to maintain, at
all times, the minimum-weight element in each sequence. This peculiar
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data structure turns out to be useful in certain weighted matching al-
gorithms [16] and several recent shortest path algorithms [38,19,30,27,
29]. It can also be used to solve the minimum spanning tree sensitivity
analysis problem (see [37] for the definition of MST sensitivity analysis.)
The fastest data structure to date [30,28] runs in O(m logα(m,n)) time,
where m is the number of operations. It is a slight improvement over
Gabow’s data structure [16], which runs in O(mα(m,n)) time.

• The problem of finding row-maxima in totally monotone matrices has
many applications [3]. For complete m×n matrices the problem can be
solved in O(m+n) time [3]. However for partial matrices (where some
elements may be blank) the complexity of the problem depends on the
shape of the non-blank elements. Klawe [24] proved super-linear lower
bounds of Ω(nα(n)) on the time to find row-maxima in an n×n matrix
where the non-blank elements are either contiguous in each column (v-
matrices) or in each row (h-matrices). For the more restrictive classes of
m×n “staircase” or “skyline” matrices, there are known upper bounds of
O(mα(m,n)+n) [25,24]. It is conceivable that these super-linear upper
bounds are tight.
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ments, and Stephen Alstrup, Theis Rauhe, and Uri Zwick for reintroducing
me to this problem.
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