
On the Comparison-Addition Complexity

of All-Pairs Shortest Paths?

Seth Pettie

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

Abstract. We present an all-pairs shortest path algorithm for arbi-
trary graphs that performs O(mn log �) comparison and addition op-
erations, where m and n are the number of edges and vertices, resp.,
and � = �(m;n) is Tarjan's inverse-Ackermann function. Our algorithm
eliminates the sorting bottleneck inherent in approaches based on Dijk-
stra's algorithm, and for graphs with O(n) edges our algorithm is within
a tiny O(log �) factor of optimal. The algorithm can be implemented
to run in polynomial time (though it is not a pleasing polynomial). We
leave open the problem of providing an eÆcient implementation.

1 Introduction

In 1975 Fredman [F76] presented a simple and elegant algorithm for the all-pairs
shortest paths problem that performs only O(n2:5) comparison and addition
operations, rather than the O(n3) bound of Floyd's algorithm (see [CLRS01]).
However, Fredman gave no polynomial-time implementation of this algorithm,
illustrating that the notion of comparison-addition complexity in shortest paths
problems can be studied apart from the usual notion of algorithmic complexity,
that is, the actual running times of shortest path programs. We present, in
the same vein, an APSP algorithm that makes O(mn log�(m;n)) comparisons
and additions, where m and n are the number of edges and vertices, resp., and
� is the mind-bogglingly slow growing inverse-Ackermann function. For sparse
graphs, the best comparison-addition-based algorithm to date was established
very recently [Pet02]; it runs in O(mn+n2 log logn) time, improving on the long-
standing bound of O(mn+n2 logn) [Dij59,FT87,J77]. A trivial lower bound on
the APSP problem is
(n2), implying that our algorithm is tantalizingly close to
optimal for edge-densitym=n = O(1). For dense graphs, the best implementable
algorithm is due to Takaoka [Tak92], running in time O(n3

p
log logn= logn). We

refer the reader to Zwick's survey [Z01] for a summary of other shortest path
algorithms.

It is still an open question whether there are O(n2) + o(mn) algorithms for
APSP when m = O(n1:5). Karger et al. [KKP93] have shown that
(mn) is

? This work was supported by Texas Advanced Research Program Grant 003658-0029-
1999, NSF Grant CCR-9988160, and an MCD Graduate Fellowship.

a lower bound among algorithms that only compare path-lengths. Fredman's
algorithm obviously does not �t into this class, and neither does our algorithm.
This raises the interesting possibility that our techniques could be used to obtain
O(n2) + o(mn) APSP algorithms for sparse graphs.

Our APSP algorithm is based on the component hierarchy (CH) approach
to single source shortest paths invented by Thorup [Tho99] for the special case
of undirected graphs, and generalized by Hagerup [Hag00] to directed graphs.
The [Tho99,Hag00] algorithms were designed for integer-weighted graphs in the
RAM model of computation. Their improved running times depended crucially
on the ability of RAMs to sort n integers in o(n logn) time. It was, therefore, not
obvious whether these algorithms could be translated into good algorithms for
real-weighted graphs in the comparison-additionmodel. Pettie & Ramachandran
[PR02] gave an adaptation of Thorup's algorithm to real-weighted undirected
graphs; it solves APSP in O(mn�) time.1 Pettie et al. implemented a simpli�ed
version of [PR02]; in their experiments with real-weighted graphs it consistently
outperformed Dijkstra's algorithm. The techniques used in [PR02] are speci�c
to undirected graphs and simply have no analogues in directed graphs. Pettie
[Pet02], using a di�erent set of techniques, gave a version of Hagerup's algorithm
for real-weighted directed graphs. It solves APSP in O(mn + n2 log logn) time.
Table 1 summarizes the state of the art in APSP for real-weighted graphs.

APSP Algorithms for Real-Weighted Graphs

Citation Complexity Uniform?

Fredman [F76] O(n2:5) NO

Takaoka [Tak92] O(n3
q

log log n

log n
) yes

Pettie-Ramachandran [PR02] O(mn�(m;n)) yes
(undirected graphs only)

Pettie [Pet02] O(mn+ n2 log log n) yes
this paper O(mn log �(m;n)) NO

Table 1. The best comparison-addition APSP algorithms to date, both uniform and
non-uniform. Excluded from this table are algorithms for integer-weighted graphs and
average-case algorithms. See [Z01] for a good survey on shortest path algorithms.

In this paper we build on the techniques introduced in [Pet02]. Speci�cally,
our algorithm leverages approximate shortest path distances in the computation
of exact distances, and it uses a novel mechanism for di�erent SSSP computations
to share information. In the next Section we give a technical introduction to
the component hierarchy approach which focusses on a high-level feature of
all CH-type algorithms [Tho99,Hag00,PR02,Pet02] and not on the algorithmic
particulars. This high-level characterization also turns out to be useful in lower
bounding the complexity of the CH approach in a comparison-based model.
1 Actually, it solves the s-sources shortest path problem, s > log n, in O(sm�) time.

1.1 Technical Introduction

One way to characterize Dijkstra's SSSP algorithm [Dij59] is to say that it �nds
a permutation �s of the vertices such that

�s(u) < �s(v)) d(s; u) � d(s; v)

where d(�; �) is the distance function and s is the source. We give a similar
characterization of the shortest path algorithms based on component hierarchies
[Tho99,Hag00,PR02,Pet02].

Suppose for this discussion that the graph is strongly connected. Let circ(u; v)
be the set of all cycles containing vertices u and v and let sep(u; v) be de�ned as

sep(u; v) = min
C 2circ(u;v)

max
e2C

length(e)

All component hierarchy-based algorithms [Tho99,Hag00,PR02,Pet02] gen-
erate a permutation �s satisfying Property 1.

Property 1. 8u; v : d(s; v) � d(s; u) + sep(u; v)) �s(u) < �s(v)

It is not obvious whether there is a sorting bottleneck inherent in Property
1. In [Pet02] it is proved that any directed SSSP algorithm obeying Property 1
must make
(m +minfn logn; n log rg) operations, where r is the ratio of the
maximum to minimum edge length, even if the sep function is already known.
Interestingly, these bounds become signi�cantly weaker for undirected graphs. In
an upcoming full version of [PR02] it is proved that any Property 1 undirected
SSSP algorithmmust perform
(m+minfn logn; n log log rg) operations (notice
the weaker dependence on r); however, if the sep function is already known there
is only a trivial
(m) lower bound for undirected graphs.

What conclusions should be made from these lower bounds? First, one should
not waste time trying to develop substantially faster SSSP algorithms obeying
Property 1: the directed & undirected SSSP algorithms in [PR02] are tight to
within � factors. Second, any directed APSP algorithm that �rst computes a
component hierarchy (read: computes the sep function) then performs n inde-
pendent SSSP computations obeying Property 1 must make
(mn + n2 logn)
operations since each SSSP computation is subject to the lower bound of [Pet02].
The key technique to improving this bound, which was used to a lesser extent
in [Pet02], is to make the SSSP computations dependent. In the algorithm pre-
sented here, we perform a sequence of n SSSP computations in such a way that
later SSSP computations learn from the time-consuming mistakes of earlier ones.

2 Preliminaries

The input is a weighted, directed graph G = (V;E; `) where jV j = n; jEj = m,
and ` : E ! R assigns a real length to every edge. It is well-known [J77] that the
shortest path problem is reducible in O(mn) time to one of the same size but

having only non-negative edge lengths. We therefore assume that ` : E ! R
+

assigns only non-negative lengths. We let d(u; v) denote the length of the shortest
path from u to v, or 1 if none exists. The all-pairs shortest path problem is to
compute d(�; �) and the single-source shortest paths problem is to compute d(s; �)
where the �rst argument, the source, is �xed. Generalizing the d notation, let
d(u;H) be the shortest distance from u to H , where H is a subgraph or an object
associated with a subgraph.

2.1 The Comparison-Addition Model

In the comparison-addition model real numbers are only subject to comparisons
and additions and comparison-addition complexity refers to the number of such
operations. In order to specify an implementation of a comparison-addition-based
algorithm one would also need to �x some kind of underlying model governing
non-real number computation such as a pointer machine or RAM; implementa-
tions, however, are not the focus of this paper. We frequently use subtraction in
our algorithms; refer to [PR02] for a simulation of subtraction.

There are several lower bounds for shortest paths in the comparison-addition
model though they are all for restricted classes of algorithms. See [PR02] for a
summary.

3 The Component Hierarchy Approach

Dijkstra's classic algorithm [Dij59] computes SSSP by visiting vertices by in-
creasing distance from the source s. It can be thought of as simulating a physi-
cal process. Suppose the graph-edges represent water pipes and at time zero we
begin releasing water from vertex s. Dijkstra's algorithm simulates the ow of
water at unit-speed through the graph. Component hierarchy-based algorithms
can also be thought of as simulating this process, though in a much coarser way.
Instead of maintaining the same simulated time throughout the whole graph,
as Dijkstra's algorithm does, CH-based algorithms decompose the graph into a
hierarchy of subgraphs (the component hierarchy), where each subgraph main-
tains its own local simulated time. Progress is made by giving a well-selected
subgraph, say at simulated time a, permission to advance its clock to simulated
time b > a. The correctness of this scheme is not obvious, and depends upon the
subgraphs and intervals [a; b) being chosen carefully. Due to space constraints we
can only sketch the basic component hierarchy algorithm; refer to [Pet02,Pet02b]
for a complete description.

The component hierarchy we use is the same CH given in [Pet02,Pet02b].
Below we describe a generalized CH meant solely for understanding our APSP
algorithm; it leaves out many important details from [Pet02,Pet02b]. Assume
w.l.o.g. that the graph is strongly connected. The CH is de�ned w.r.t. an increas-
ing sequence of real lengths (`1; : : : ; `k) where `1 is the minimum edge length
in the graph. Let Gi�1 denote the graph G restricted to edges with length less
than `i, so for instance, G0 contains no edges. A level i component hierarchy

node x corresponds to a strongly connected component Cx of Gi. The notation
diam(Cx) refers to the diameter of Cx (the longest shortest path length) and
norm(x) = `i by de�nition. A node x is an ancestor of y if Cy is a subgraph
of Cx. Since we would like to ignore CH nodes with only one child, de�ne the
`parent' of a CH node to be its nearest ancestor with a strictly larger strongly
connected component. If fxjgj is the set of children of x then Cc

x denotes the
subgraph derived from Cx by contracting the subgraphs fCxjgj . Because of the
nice correspondence between component hierarchy nodes and subgraphs, we fre-
quently treat them as equivalent in our notation, so d(s; x) refers to the distance
from s to Cx, and y 2 V (Cc

x) is understood to mean y is a child of x.

The basic idea of the component hierarchy approach [Tho99,Hag00,PR02,Pet02]
is to compute d(s; x) for all x 2 CH . Since the leaves of the component hierarchy
represent graph vertices, this solves SSSP from source s as well. One can imagine
that there is a separate process identi�ed with each CH node where the job of
y is to compute d(s; y). If x is the parent of y, y simply waits for x to compute
d(s; x), then y computes d(s; y) � d(s; x). The key observation from [Pet02] is
that this scheme can be made very eÆcient in the comparison-addition model
if y is supplied with a key piece of information: an integer approximation to
(d(s; y)�d(s; x))=norm(x) that is accurate to within some absolute constant. We
summarize the important aspects of the high-level CH algorithm [Pet02,Pet02b],
from the point of view of the process of a CH node y, child of x.

First, all CH algorithms, like Dijkstra's, maintain a set S of visited vertices
whose distance from the source has been �xed. Let dS(s; u) be the distance from
s to u using only intermediate vertices from S. De�ne D(y) as minfdS(s; u) :
u 2 V (Cy)g.

2 Note that dS is simply Dijkstra's tentative distance function; D
represents the tentative distance to whole subgraphs represented by CH nodes.

As soon as x (parent of y) discovers d(s; x) it creates a bucket array of
at least diam(Cx)=norm(x) + 1 buckets, each representing a real interval of
width norm(x). The �rst bucket begins at t0, a real such that t0 � d(s; x) <
t0 + norm(x). (We will refer to buckets by their place in the array or by their
associated interval, whichever is more convenient.) It would be nice to guarantee
that y always appears in the correct bucket, namely bucket number b(D(y) �
t0)=norm(x)c. This \ideal" invariant is maintained in the CH-based algorithms
of [Tho99,Hag00]; however, we do not know how to maintain it eÆciently in the
comparison-addition model. Our solution is to simulate the ideal bucket array
with an actual bucket array and a heap, denoted Hx.

Invariant 1 If d(s; y) has not yet been �xed, then either y appears in an actual

bucket between bd(s;y)�t0
norm(x) c � 2 and bD(y)�t0

norm(x)c inclusive, or in the heap Hx.

The purpose of the heap Hx is to hold nodes until enough information is
available to bucket them in accordance with Invariant 1. The eÆciency of this

2 Updating and querying D-values is a non-trivial task, requiring O(m log �(m;n))
comparisons per SSSP computation using Gabow's split-�ndmin structure [G85], as
modi�ed in [PR02].

scheme depends on there being relatively few heap insertions, since heap deletion
is a non-constant time operation. We will not go into why the \-2" is a tolerable
error (see [Pet02b]).

Our algorithm should be thought of as consisting of two levels, the \high-
level" component hierarchy algorithm (see [Pet02b]) and a \low-level" algorithm
that maintains Invariant 1 behind the scenes, which we give in Section 4. The
low-level algorithm uses some simple, though non-obvious properties of shortest
paths.

4 Our Algorithm

In Section 4.1 we de�ne a set of new length functions fxgx2CH and a set of
relative distance functions f�xgx2CH . A relative distance is just the di�erence
between two distances. In Section 4.2 we show that, using discrete approxima-
tions of the length and relative distance functions, it can be possible to stitch
together new shortest paths from previously computed ones, in a manner that is
cheaper than computing them from scratch. There is a tradeo� between the accu-
racy of the discrete approximations and their usefulness; our amortized analysis
depends on the degree of accuracy being chosen carefully.

Naming conventions. The letters x; y; z will refer to CH nodes and u; v; w; s
to graph vertices. A hat (^) or tilde (~) indicates a discrete approximation to a
real quantity.

4.1 Approximating Relative Distances

Let anchorx(u) be some vertex in V (Cc
x) (recall, V (C

c
x) corresponds to the chil-

dren of x) and ax(u) = d(u; anchorx(u)). The anchor of u is speci�ed as soon as
possible. That is, as soon as d(u; y) is known for some y 2 V (Cc

x), anchorx(u)
is set to y. The edge-labeling functions x and ̂x are also calculated as soon as
possible. As soon as ax(v) and ax(u) are known, x(u; v) is set to:

x(u; v)
def
= `(u; v) + ax(v)� ax(u)

It follows that for edges (u; v) 2 E(Cx), x(u; v) = `(u; v) is �xed immedi-
ately, since ax(u) = ax(v) = 0 is known a priori. As far as conserving comparisons
& additions, it turns out that x is not as useful as a discrete approximation to

x. If x(u; v) > 2 � diam(Cx) then ̂x(u; v)
def
= 1. Otherwise, de�ne ̂x(u; v) as

̂x(u; v)
def
= �x � b

x(u; v)

�x
c where �x

def
=

norm(x)

4 � jV (Cc
x)j

Why is ̂x better than x? The di�erence is in how they are represented. We
represent x in the natural way, as a real number kept in a real variable. On
the other hand ̂x is represented implicitly. That is, the statement \̂x(u; v) is
known" means the integer ̂x(u; v)=�x can be derived from previous comparisons

and additions. Clearly two x-values require one operation to be compared or
added. Manipulating ̂x-values is really just a mental exercise; there are no
comparisons or additions involved in computing functions of the ̂x values.

De�ne �x; �̂x : V (G) � V (Cc
x) ! R. As above, the integer �̂x=�x will be

represented implicitly.

�x(u; y)
def
= d(u; y)� ax(u) and �̂x(u; y)

def
= �x � b

�x(u; y)

�x
c

Lemma 1. Let x; y 2 CH; y 2 V (Cc
x) and u; v be vertices.

(i) Given x(u; v) (resp., �x(u; y)), ̂x(u; v) (resp., �̂x(u; y)) can be computed

with O(log
jV (Cc

x)j�diam(Cx)
norm(x)) comparisons and additions.

(ii) Computing ̂x(e), over all x and edges e, takes O(mn) comparisons and
additions.

�̂x-values are very useful for conserving on comparison-addition operations
in the component hierarchy algorithm; however, even given �x, �̂x is fairly ex-
pensive to compute. Lemma 1(ii) illustrates that we can a�ord to compute all
̂-values; however, it will become clear in the analysis that we can only a�ord
to compute a small fraction of the �̂ -values Our solution is to introduce an-
other approximation of �x which is signi�cantly less accurate than �̂x. De�ne
~�x : V (G)� V (Cc

x)! R to be any function that satis�es:

�x(u; y)� ~�x(u; y) 2 [0; jV (Cc
x)j �x) and

~�x
�x

is represented as an integer

Notice that �x jV (C
c
x)j = norm(x)=4 which is just about as accurate as we

will ever need. Lemma 2 illustrates the relationship between ̂x; �̂x; ~�x; and �x.

Lemma 2. Suppose P = hu0; u1; : : : ; uki, uk 2 V (Cy), y 2 V (Cc
x), is known

to be the shortest path from u0 to Cy, and uh is the �rst vertex in P for which

�̂x(uh; y) is known. Then if h < jV (Cc
x)j,

~�x(ui; y) is known as well, for i � h.

Proof. Because P is known to be the shortest path to some vertex in V (Cc
x),

it follows that anchorx(w) has been chosen for all vertices w 2 P and that
x(e); ̂x(e) are computed for all edges e 2 P . We now prove that for i � h

�x(ui; y)�
�
�̂x(uh; y) +

h�1X
j=i

̂(uj ; uj+1)
�
2 [0; (h� i+ 1)�x)

Hence �̂x(uh; y)+
Ph�1

j=i ̂(uj ; uj+1) is a good enough approximation to �x(ui; y)

to satisfy the constraints put on ~�x(ui; y), so long as h� i < jV (Cc
x)j. Let [a; b)

denote some number in that interval. Then, in general, ̂x = x � [0; �x) and
�̂x = �x � [0; �x). Let � = [0; �x(h� i+ 1)). Then

�x(ui; y)�
�
�̂x(uh; y) +

h�1X
j=i

̂(uj ; uj+1)
�

= �x(ui; y)�
�
d(uh; y)� ax(uh) +

h�1X
j=i

(`(uj ; uj+1) + ax(uj+1)� ax(uj))
�
+ �

= �x(ui; y)� d(ui; y) + ax(ui) + � = �

The above equalities follow directly from the de�nitions of ; ̂; � , and �̂ . ut

4.2 The Algorithm

The algorithm is best described as a list of triggers of the form P �! A, where
P is a precondition and A an action to be performed. The high-level component
hierarchy algorithm can only proceed if none of the triggers are applicable. We
have already informally de�ned a few triggers. Let us state them formally.

Trigger 1 anchorx(u) is unspeci�ed but d(u; y) is known, y 2 V (Cc
x) �! Set

anchorx(u) := y; ax(u) := d(u; y)

Trigger 2 (u; v) is an edge and both ax(u) and ax(v) are known �! Compute
x(u; v) and ̂x(u; v)

Trigger 3 Some edge is relaxed, decreasing D(y), where y 2 V (Cc
x), d(s; x) is

known. �! If possible, bucket y according to Invariant 1

Lemma 2 suggests another trigger. Let OUT(u) and IN(u) denote the known
trees of shortest paths out of, and into u, respectively.3 So, for instance, IN(y),
y 2 CH , initially has no edges because we do not know any non-trivial shortest
paths to Cy. After each SSSP computation, from say, source s, one can see that
IN(y) grows the minimal amount to incorporate s. It will be important to know
the ~�x(u; y) function for vertices u 2 IN(y); by Lemma 2 it is enough to compute
�̂x(�; y)-values for a suÆciently large and well-chosen subset of the vertices in
IN(y). It can be proved that Trigger 4 �ts the bill.

Trigger 4 The closest ancestor of u in IN(y) for which �̂x(�; y) is known is at
distance exactly jV (Cc

x)j �! Compute �̂x(w; y), where w is the ancestor of u in
IN(y) at distance exactly bjV (Cc

x)j=2c

Lemma 3. For CH nodes x and y 2 V (Cc
x)

(i) The ~�x(�; y) function is known for vertices in IN(y).
(ii) At most 2n=jV (Cc

x)j di�erent �̂x(�; y)-values are computed.
(iii) The total comparison-addition cost of (ii), over all x; y, is O(n2).

Proof. Part (i): Trigger 4 ensures that every vertex in IN(y) has some ancestor
at distance at most jV (Cc

x)j � 1 whose �̂x(�; y)-value is known. By Lemma 2
the ~�x(�; y)-value of every vertex in IN(y) is also known. Part (ii) is straightfor-
ward [Pet02b]. Part (iii) can be shown to follow from Part (ii) and Lemma 1(i)
[Pet02b]. ut

3 For y 2 CH, IN(y) is really an in-forest.

Let Ĝx be the subgraph of G consisting of edges whose ̂x-values are known.
Every time Ĝx grows we can better estimate shortest distances. Trigger 5, given
below, attempts to bucket nodes residing in the heap as soon as possible.

Trigger 5 Edge(s) are added to Ĝx �! If possible, migrate nodes from Hx to
the bucket array, consistent with Invariant 1.

We now clarify exactly what is meant by \if possible" in Triggers 3 and 5,
that is, how we decide if it is possible to bucket a node y 2 V (Cc

x). Suppose s is
the source in the current SSSP computation. The �rst moment we are concerned
about the distance from s to Cy, y 2 V (Cc

x), is when d(s; x) becomes known.
At this moment the shortest path from s to Cy consists of a head in OUT(s),
a bridge, and a tail in IN(y). We show that if the head, bridge, and tail satisfy
certain conditions, then a good, discrete approximation of d(s; x) � d(s; y) is
known implicitly, allowing us to bucket y in constant time. Every time new

edges are added to GÆ̂x or when D(y) decreases (Triggers 5 and 3, resp.) we have
a new opportunity to bucket y.

We now describe the bucketing procedure for y 2 V (Cc
x) more carefully. Let

f 2 Cz ; z 2 V (Cc
x) be such that d(s; f) = d(s; x), that is, f is the closest vertex

to s in Cx | Figure 1 diagrams our situation. Because we are attempting to
bucket y, d(s; x) must already be known. Let Psf denote the shortest s-to-f path
(which is also the shortest s-to-Cx path).

CxC
f

s v i

v j

v0

the bridge

Cyz

part of IN(y)

part of OUT(s)

Fig. 1. The path hs; : : : ; vji, divided into a head hs; : : : ; v0i, a bridge hv0; : : : ; vii, and
a tail hvi; : : : ; vji.

De�nition 1. Let Qy be the set of paths fhv0; : : : ; vi; : : : ; vjig satisfying

(i) v0 2 Psf � OUT(s)
(ii) i � jV (Cc

x)j and hv0; : : : ; vii 2 Ĝx

(iii) vj 2 Cy and hvi; : : : ; vji 2 IN(y)

Bucketing y by itsD-value is equivalent to estimatingD(y)�d(s; f), however
we generally will not have enough information to do this. Our solution is not to
focus solely on the current path with length D(y), but to estimate the distance
of many hypothetically shortest paths from s to Cy .

For Q 2 Qy; Q = hv0; : : : ; vi; : : : ; vji, de�ne di�(Q) and di�(Qy) as

di�(Q)
def
= ~�x(vi; y) +

i�1X
k=0

̂x(vk; vk+1) � ~�x(v0; z)

di�(Qy)
def
= min

Q 2 Qy

di�(Q)

Lemma 4. di�(Q) requires no comparisons or additions to compute, and

di�(Q) = `(Q)� d(v0; x) + (�norm(x)
2 ; norm(x)

4)

Proof. Let � = (�2�x jV (C
c
x)j ; �x jV (C

c
x)j) =

�
�norm(x)

2 ; norm(x)
4

�

Recall that f 2 Cz; z 2 V (Cc
x) were such that d(s; f) = d(s; z) = d(s; x).

di�(Q) =
i�1X
k=0

x(vk; vk+1) + �x(vi; y)� �x(v0; z) + � (1)

= `(hv0; : : : ; vii)� ax(v0) + ax(vi) + �x(vi; y)� �x(v0; z) + � (2)

= `(hv0; : : : ; vji)� ax(v0)� �x(v0; z) + � (3)

= `(Q)� d(v0; x) + � (4)

Line 1 follows from the equalities ~�x = �x � [0; �x jV (C
c
x)j) and ̂x = x �

[0; �x), and the bound i � jV (Cc
x)j. Line 2 is derived by cancelling the terms in the

telescoping sum. Line 3 follows from the equality �x(vi; y) = d(vi; y)� ax(vi) =
`(hvi; : : : ; vji) � ax(vi), and Line 4 from the equality �x(v0; z) = d(v0; z) �
ax(v0) = d(v0; x) � ax(v0).

The ̂x terms in di�(Q) are known from the fact that Q 2 Qy. By Lemma

3 the ~�x(vi; y) and ~�x(v0; z) terms are also implicitly known. Therefore, di�(Q)
can be computed with no real number operations. ut

Our procedure for bucketing y 2 V (Cc
x) is as follows. Recall that we denote

the beginning of x's bucket array with t0. Let [�; � + norm(x)) be the bucket
s.t. � � t0 + di�(Qy) < � + norm(x). Since � � t0, norm(x), and di�(Qy) are
all known multiples of �x, this bucket can be identi�ed without real number
operations.

1. If D(y) � �, put y in bucket [�; � + norm(x)) and stop.
2. If D(y) � � � norm(x); put y in bucket [� � norm(x); �) and stop.
3. Otherwise, put y in Hx (or keep y in Hx if it is already there).

Lemma 5. The bucketing procedure does not violate Invariant 1, and if Qy

contains a suÆx of a shortest s-to-Cy path, then y is bucketed in Line 1 or 2.

Proof. Recall from Section 3 that t0 was chosen so that d(s; x) 2 [t0; t0 +
norm(x)). Lines 1 and 2 guarantee that y is never bucketed in a higher bucket

than bD(y)�t0
norm(x) c. We only need to show that in Line 1, y is not bucketed before

bucket bd(s;y)�t0
norm(x) c�2. Because di�(Qy) cannot correspond to a path shorter than

d(s; y), we have, from Lemma 4, di�(Qy) > d(s; y)�d(s; x)� 1
2norm(x). Using the

inequality d(s; x) < t0+norm(x), we also have di�(Qy) > d(s; y)�t0�
3
2norm(x).

So bucketing y according to di�(Qy) can put it at most d 32e = 2 buckets

before bucket bd(s;y)�t0
norm(x) c. For the last part of the Lemma, assume that some

Q 2 Qy is a suÆx of the shortest s-to-Cy path. It follows from Lemma 4 that
di�(Qy) < d(s; y) � d(s; x) + 1

4norm(x). This, together with the inequalities
d(s; x) � t0 and � � di�(Qy) + t0, implies D(y) > � � 1

4norm(x), meaning y
must be bucketed in Line 1 or 2. ut

We address the eÆciency of our bucketing procedure in Lemma 6. Since
deleting items from a heap is a non-constant operation, we must show that the
percentage of times Step 3 is reached in the bucketing procedure is suÆciently
low to counterbalance the cost of the heap operations. Lemma 6 does not depend
on any fancy heap implementation. It holds if Hx supports constant time insert
and decrease-key operations, and deletion of any subset of Hx in time linear in
jHxj � jV (Cc

x)j. These are very weak assumptions.

Lemma 6. The bucketing and heap costs over n SSSP computations are O(mn).

Proof. (sketch) We prove in [Pet02b] that the bucketing procedure above is called
only O(mn) times, requiring a constant number of comparisons per invocation,
and that the total cost of heap operations is O(n2). We briey outline how one
would bound the number of heap operations.

Suppose in the SSSP computation from source s, y 2 V (Cc
x) is inserted into

Hx. Let Psy = hP1; P2; P3i be the shortest s-to-Cy path, where P1 and P3 are
maximal such that P1 � Psx � OUT(s) and P3 � IN(y). From Lemma 5 we
know that hP2; P3i 62 Qy, otherwise y would have been bucketed properly. Why
wasn't hP2; P3i 2 Qy? From De�nition 1 there can be only two reasons: either
(a) jP2j > jV (Cc

x)j or (b) some edge in P2 is not in Ĝx , which by Trigger 1
means some vertex in P2 is unanchored. One can easily bound the number of
times (a) occurs, since after the current SSSP computation with source s, at
least jV (Cc

x)j edges are added to IN(y). A suÆcient bound on (b) is n times
for each CH node x, since any unanchored vertex in P2 will, by Trigger 1, be
anchored by the end of the current SSSP computation. One can, using other
properties of the component hierarchy, prove that the heap costs due to (a) and
(b) are O(n2) [Pet02b]. ut

The only costs not covered by Lemma 6 are constructing the component hi-
erarchy, which is O(m logn) [Pet02b], computing the �̂ and ̂ functions, which is
O(mn) by Lemma 1 and 3, and maintaining the D-values of CH nodes, which is
O(m log�(m;n)) for each SSSP computation [G85,PR02]. Regarding an actual
implementation of this algorithm, the tricky part is maintaining shortest dis-
tances in the graphs fĜxgx2CH under insertion of new edges. Simply running
Bellman-Ford every time a batch of new edges are inserted gives a bound of
O(mn3). However, if we use the dynamic shortest path algorithm from [RR96]
the upper bound can be reduced to ~O(mn2). Theorem 1 follows.

Theorem 1. The all-pairs shortest path problem on arbitrarily weighted, di-
rected graphs can be solved with O(mn log�(m;n)) comparisons & additions in
~O(mn2) time, where m and n are the number of edges & vertices, resp., and �
is the inverse-Ackermann function.

Acknowledgment. We thank Vijaya Ramachandran for her comments and
Camil Demetrescu for references on dynamic shortest paths.

References

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algorithms.
MIT Press, 2001.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. In
Numer. Math., 1 (1959), 269-271.

[F76] M. Fredman. New bounds on the complexity of the shortest path problem.
SIAM J. Comput. 5 (1976), no. 1, 83{89.

[FT87] M. L. Fredman, R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. In JACM 34 (1987), 596{615.

[G85] H. N. Gabow. A scaling algorithm for weighted matching on general graphs.
In 26th Ann. Symp. on Foundations of Computer Science (FOCS 1985),
90{99.

[Hag00] T. Hagerup. Improved shortest paths on the word RAM. In Proceedings
27th Int'l Colloq. on Automata, Languages and Programming (ICALP 2000),
LNCS volume 1853, 61{72.

[J77] D. B. Johnson. EÆcient algorithms for shortest paths in sparse networks.
JACM 24 (1977), 1{13.

[KKP93] D. R. Karger, D. Koller, S. J. Phillips. Finding the hidden path: time bounds
for all-pairs shortest paths. SIAM J. on Comput. 22 (1993), no. 6, 1199{1217.

[Pet02] S. Pettie. A faster all-pairs shortest path algorithm for real-weighted sparse
graphs. Proceedings 29th Int'l Colloq. on Automata, Languages and Pro-
gramming (ICALP 2002), LNCS 2380, 85{97.

[Pet02b] S. Pettie. On the comparison-addition complexity of all-pairs shortest paths.
UTCS Technical Report TR-02-21, May 2002.

[PR02] S. Pettie, V. Ramachandran. Computing shortest paths with comparisons
and additions (extended abstract). Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2002, 267{276.

[PRS02] S. Pettie, V. Ramachandran, S. Sridhar. Experimental evaluation of a new
shortest path algorithm. 4th Workshop on Algorithm Engineering and Ex-
periments (ALENEX), 2002.

[RR96] G. Ramalingam, T. Reps. An incremental algorithm for a generalization of
the shortest path problem. J. Algorithms 21 (1996), 267{305.

[Tak92] T. Takaoka. A new upper bound on the complexity of the all pairs shortest
path problem. Inform. Process. Lett. 43 (1992), no. 4, 195{199.

[Tho99] M. Thorup. Undirected single source shortest paths with positive integer
weights in linear time. JACM 46 (1999), no. 3, 362{394.

[Z01] U. Zwick. Exact and approximate distances in graphs { A survey. Updated
version at http://www.cs.tau.ac.il/~zwick/, Proc. of 9th ESA (2001), 33{
48.

