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Abstract. We present new, and mostly sharp, bounds on the maximum length of certain
generalizations of Davenport–Schinzel (DS) sequences. Among the results are sharp bounds on
order-s double DS sequences, for all s, sharp bounds on (double) formation-free sequences, and new
lower bounds on sequences avoiding zig-zagging patterns.
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1. Introduction. A generalized Davenport–Schinzel (DS) sequence is one over
a finite alphabet, say, [n] = {1, . . . , n}, none of whose subsequences are isomorphic to
a fixed forbidden sequence σ or a set of such sequences. (A sparsity criterion is also
included in order to prohibit degenerate infinite sequences such as aaaaa · · · .) When
σ is the alternating sequence abab · · · with length s+ 2 this definition reverts to that
of standard order-s DS sequences. Whereas standard DS sequences have countless
applications in discrete and computational geometry, generalized DS sequences have
found fewer applications [3, 6, 18, 21, 25, 29]. Whereas bounding the length of DS
sequences is now essentially a closed problem [2, 16, 17], the most basic questions
about generalized DS sequences are open or have received only partial answers.

We are mainly interested in answering two questions about forbidden sequences.
A purely quantitative question is to determine the maximum length Ex(σ, n) of a σ-
free sequence over an n-letter alphabet, for specific σ or large classes of σ. An equally
interesting question, particularly when Ex(σ, n) is superlinear in n, is to character-
ize the structure of σ-free sequences. There are infinitely many forbidden sequences
one could study, but some classes of subsequences are more interesting than others,
either because of their applications or because of their intrinsic structure or for his-
torical reasons. In this article we focus on forbidden sequences that generalize, in
various ways, the idea of an alternating sequence. In order to properly explain our
results, in section 1.4, we need to introduce some notation and terminology and to
review the history of DS sequences and their generalizations, in sections 1.1–1.3. For
the moment we can take a high-level tour of the results. Following convention, let
λs(n) = Ex(abab · · · , n) be the extremal function for order-s DS sequences, where the
alternating pattern has length s+ 2.
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Double DS sequences. The most modest way to generalize an alternating sequence
abab · · · is simply to double each letter, transforming it to abbaabb · · · .1 Double DS
sequences were the first generalized DS sequences to be studied [1, 5, 14]. Let λdbl

s

be the extremal function of order-s double DS sequences. Davenport and Schinzel [5]
noted that λdbl

1 (n) is linear (see [13, p. 13]) and Adamec, Klazar, and Valtr [1] proved
that λdbl

2 (n) is also linear, matching λ1 and λ2 up to constant factors. (The forbidden
sequences here are abba and abbaab.) Klazar and Valtr [14] claimed without proof that
λdbl
3 (n) = Θ(nα(n)), which would match λ3 asymptotically [9]. However, this claim

was later retracted [13]. Here α(n) is the inverse-Ackermann function. We prove that
λdbl
3 (n) is, in fact, Θ(nα(n)) and, more generally, that λdbl

s and λs are asymptotically
equivalent for every order s.

Formation-free sequences. Take any s + 1 permutations over {a, b}. Regardless
of one’s choice, the concatenation of these permutations necessarily contains an alter-
nating subsequence of length s+2: the first permutation contributes two symbols and
every subsequent permutation at least one. More generally, an (r, s + 1)-formation
is obtained by concatenating s + 1 permutations over an r-letter alphabet. Define
Form(r, s + 1) to be the set of all (r, s + 1)-formations, and let Λr,s be the extremal
function of Form(r, s+1)-free sequences. The argument above shows that order-s DS
sequences are Form(2, s + 1)-free, which implies that λs(n) ≤ Λ2,s(n). Klazar [10]
introduced Form(r, s + 1)-free sequences as a “universal” method for finding upper
bounds on Ex(σ, n). If there exist r, s (and there always do) such that σ is contained
in every member of Form(r, s+ 1), then Ex(σ, n) = O(Λr,s(n)).

A natural hypothesis, given [16, 17], is that λs and Λr,s are asymptotically equiv-
alent for all r. We prove that this hypothesis is false, which is quite surprising. One
upshot of [2, 16, 17] is that when s ≥ 7 is odd, λs(n) and λs−1(n) are essentially
indistinguishable, and that λ5(n) and λ4(n) are asymptotically distinguishable but
very similar. In contrast, we prove that, in general, Λr,s(n) behaves very differently
at odd and even s. The extremal functions λs and Λr,s are asymptotically equivalent
only when s ≤ 3, or s ≥ 4 is even, or r = 2.

Just as DS sequences can be generalized to double DS sequences, Form(r, s+ 1)
can be transformed into a set dblForm(r, s+ 1) by “doubling” it. Let Λdbl

r,s(n) be the
extremal function of dblForm(r, s+ 1)-free sequences. The function Λdbl

r,s was studied
in a different but essentially equivalent form by Cibulka and Kynčl [3]. We prove
that Λdbl

r,s is asymptotically equivalent to Λr,s for all r, s. This fact is not surprising,
but what is surprising is how many new techniques are needed to prove it when
s = 3.

Zig-zagging patterns. One way to view the alternating sequence abab · · · with
length s+2 is as a zig-zagging pattern with s+1 zigs and zags. Generalized to larger
alphabets, we obtain the N -shaped sequences, of the form ab · · · zy · · · ab · · · z, when
s = 2, the M -shaped sequences ab · · · zy · · ·ab · · · zy · · · a when s = 3, the N-shaped
sequences ab · · · zy · · ·ab · · · zy · · · ab · · · z when s = 4, and so on. Klazar and Valtr [14]
(see also [21]) proved that the extremal function of each N -shaped forbidden sequence
is linear, matching λ2(n). See Valtr [29] for an application of N -shaped sequences to
bounding the size of geometric graphs and Pettie [21] for an application of M -shaped
sequences to bounding the complexity of the union of fat triangles.

1It is straightforward to show that repeating letters more than twice, or repeating the first and
last at all, can affect the extremal function by at most a constant factor. See [1].
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GENERALIZED DAVENPORT–SCHINZEL SEQUENCES 2191

Given [14, 21], one is tempted to guess that the extremal function for a zig-zagging
forbidden sequence is, if not asymptotically equivalent to the corresponding order-s
DS sequence, at least close to it. We give lower bounds showing that for each t, there is
an M -shaped forbidden sequence with extremal function Ω(nαt(n)) and an N-shaped

forbidden sequence with extremal function Ω(n ·2(1+o(1))αt(n)/t!). Put a different way,
in terms of their extremal functions M -shaped sequences may be similar to ababa but
N-shaped sequences bear no resemblance to ababab.

Our results on zig-zagging patterns are the least conclusive and therefore offer the
most opportunities for future research. They are based on a general, parameterized
method for constructing nonlinear sequences.

1.1. Sequence notation and terminology. Let |σ| be the length of a sequence
σ = (σi)1≤i≤|σ| and let ‖σ‖ be the size of its alphabet Σ(σ) = {σi}. Two equal length
sequences are isomorphic if they are the same up to a renaming of their alphabets.
We say σ is a subsequence of σ′ if σ can be obtained by deleting symbols from σ′. The
predicate σ ≺ σ′ asserts that σ is isomorphic to a subsequence of σ′. If σ ⊀ σ′ we say
σ′ is σ-free. If P is a set of sequences, σ ≺ P holds if σ ≺ σ′ for every σ′ ∈ P and
P ⊀ σ holds if σ′ ⊀ σ for every σ′ ∈ P . The alphabet size of P is ‖P‖ = maxσ∈P ‖σ‖.
The assertion that σ appears in or occurs in or is contained in σ′ means σ ≺ σ′. The
projection of a sequence σ onto G ⊆ Σ(σ) is obtained by deleting all non-G symbols
from σ. A sequence σ is k-sparse if whenever σi = σj and i �= j, then |i − j| ≥ k.
A block is a sequence of distinct symbols. If σ is understood to be partitioned into a
sequence of blocks, �σ� is the number of blocks. The predicate �σ� = m asserts that
σ can be partitioned into at most m blocks. The extremal functions for generalized
DS sequences are defined to be

Ex(σ, n,m) = max{|S| : σ ⊀ S, ‖S‖ = n, and �S� ≤ m},
Ex(σ, n) = max{|S| : σ ⊀ S, ‖S‖ = n, and S is ‖σ‖-sparse},

where σ may be a single sequence or a set of sequences. The conditions “�S� ≤
m” and “S is ‖σ‖-sparse” guarantee that the extremal functions are finite. Note
that Ex(σ, n,m) has no sparseness criterion. The extremal functions for order-s DS
sequences are defined to be

λs(n) = Ex(

length s + 2︷ ︸︸ ︷
abab · · · , n) and λs(n,m) = Ex(

length s + 2︷ ︸︸ ︷
abab · · · , n,m).

Since ‖abab · · · ‖ = 2, the sparseness criterion forbids only immediate repetitions.

1.2. Davenport, Schinzel, Ackermann, Tarjan. Davenport and Schinzel [4]
observed that λ1(n) = n and λ2(n) = 2n − 1. It took several decades for all
the other orders to be understood. The following theorem synthesizes results of
Hart and Sharir [9], Agarwal, Sharir, and Shor [2], Klazar [12], Nivasch [16], and
Pettie [17].

Theorem 1.1. Let λs(n) be the maximum length of a repetition-free sequence
over an n-letter alphabet avoiding subsequences isomorphic to abab · · · (length s+2).
Then λs satisfies
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2192 SETH PETTIE

λs(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n, s = 1,

2n− 1, s = 2,

2nα(n) +O(n), s = 3,

Θ(n2α(n)), s = 4,

Θ(nα(n)2α(n)), s = 5,

n · 2αt(n)/t! +O(αt−1(n)), s ≥ 6, t = 	 s−2
2 
.

Here α(n) is the functional inverse of Ackermann’s function discovered by Tar-
jan [28], defined as follows:

a1,j = 2j , j ≥ 1,

ai,1 = 2, i ≥ 2,

ai,j = w · ai−1,w, i, j ≥ 2,

where w = ai,j−1.

One may check that in the table (ai,j), the first column is constant and the second
column merely exponential: ai,1 = 2 and ai,2 = 2i. Ackermann-type growth appears
only at the third column, motivating the following definition of the inverse functions:

α(n,m) = min{i | ai,j ≥ m, where j = max{�n/m�, 3}},
α(n) = α(n, n).

There are numerous variants of Ackermann’s function in the literature, all of which
are equivalent inasmuch as their inverses differ by at most a constant. Observe that
Theorem 1.1 is robust to perturbations of α(n) by O(1), so it does not depend on any
particular definition of Ackermann’s function or its inverse.2

1.3. Generalizations of DS sequences. Certain classes of forbidden sequences
have received significant attention. We review three systems for generalizing (stan-
dard) DS sequences, then mention some miscellaneous results in the area.

Double DS sequences. Let dbl(σ) be obtained from σ by doubling each letter ex-
cept for the first and last, for example, dbl(abcabc) = abbccaabbc. The extremal
functions for order-s double DS sequences are λdbl

s (n) = Ex(dbl(abab · · · ), n) and
λdbl
s (n,m) = Ex(dbl(abab · · · ), n,m), where the alternating sequence has length s+2.

It is known that λdbl
1 (n) and λdbl

2 (n) are linear, matching λ1 and λ2 asymptotically.
See Davenport and Schinzel [5], Adamec, Klazar, and Valtr [1], and Klazar [11, 13, p.
13]. Pettie [20, 21] proved that λdbl

3 (n) = O(nα2(n)) and Ex({abbaabba, ababab}, n) =
Θ(nα(n)) and that for s ≥ 4, λdbl

s (n) matched what were the best upper bounds

on λs(n) at the time [16], namely, λdbl
s (n) < n · 2αt(n)/t! +O(αt−1(n)), for even s, and

λdbl
s (n) < n · 2αt(n)(log(α(n))+O(1))/t!, for odd s.

Formation-free sequences. Recall that Form(r, s + 1) is defined to be the set of
sequences obtained by concatenating s + 1 permutations over an r-letter alphabet.
For example, abcd cbad badc ∈ Form(4, 3). Let Λr,s(n) = Ex(Form(r, s + 1), n)
be the extremal function for Form(r, s + 1)-free sequences, with Λr,s(n,m) defined

2See Pettie [17, Remark 1.1] for a discussion of this notion of “Ackermann-invariance.”
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analogously.3 It is straightforward to show that if σ is contained in every member of
Form(r, s+ 1), then

Ex(σ, n,m) ≤ Λr,s(n,m) and Ex(σ, n) = O(Λr,s(n)).

Nivasch [16] proved that any σ is contained in every member of Form(‖σ‖, |σ|−‖σ‖+
1). Very recently Geneson, Prasad, and Tidor [8] showed that it suffices to consider a
subset Binr,s+1 ⊂ Form(r, s+1) consisting of binary patterns, where each of the s+1
permutations is either 12 · · · (r−1)r or r(r−1) · · · 21. By repeated application of the
Erdős–Szekeres theorem, they showed that every member of Form(r′, s+ 1) contains
a member of Binr,s+1, where r′ = (r − 1)2

s

+ 1. Consequently, if σ is contained in
every member of Binr,s+1, then Ex(σ, n) = O(Λr′,s(n)).

Nivasch [16], improving [10], gave the following upper bounds on Λr,s, for any
r ≥ 2, s ≥ 1, where t = 	 s−2

2 
. The lower bounds follow from previous [9, 2] and
subsequent [17] constructions of order-s DS sequences.

Λr,s(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(n), s ≤ 2,

Θ(nα(n)), s = 3,

Θ(n2α(n)), s = 4,

Ω
(
nα(n)2α(n)

)
and O

(
n2α(n)(logα(n)+O(1))

)
, s = 5,

n · 2αt(n)/t! +O(αt−1(n)), even s ≥ 6,

Ω
(
n · 2αt(n)/t! +O(αt−1(n))

)
,

and O
(
n · 2αt(n)(logα(n)+O(1))/t!

)
,

odd s ≥ 7.

Note that Λr,s matches the behavior of λs when s ≤ 3 or s is even.
Cibulka and Kynčl [3] studied a problem on 0-1 matrices that is essentially equiva-

lent to the following generalization of formation-free sequences. Define dblForm(r, s+
1) to be the set of all sequences over [r] = {1, . . . , r} that can be written σ1 . . . σs+1,
where σ1 and σs+1 are permutations of [r] and σ2, . . . , σs are sequences containing two
copies of each symbol in [r]. Define Λdbl

r,s(n) and Λdbl
r,s(n,m) to be the extremal functions

of dblForm(r, s + 1)-free sequences. Cibulka and Kynčl only considered Λdbl
r,s(n,m).

For consistency we state the bounds on Λdbl
r,s(n) they would have obtained using the

available reductions from r-sparse to blocked sequences [16].4 For any r ≥ 2, s ≥ 1,

3The “s+1” here is chosen to highlight the parallels with order-s DS sequences. Recall that every
σ ∈ Form(2, s+1) contains an alternating sequence abab · · · with length s+2, hence λs(n) ≤ Λ2,s(n).

4The only notable case here is s = 4. Cibulka and Kynčl proved that Λdbl
r,1(n,m) = O(n + m),

Λdbl
r,2(n,m) = O((n+m)α(n,m)), and Λdbl

r,4(n,m) = O((n+m)α(n,m)2α(n,m)), which imply, by [16,

Lemma 5.7], that Λdbl
r,2(n) = O(nα(n)), and Λdbl

r,4(n) = O(nα2(n)2α(n)).
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and t = 	 s−2
2 
,

Λdbl

r,s(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(n), s = 1,

Ω(n) and O(nα(n)), s = 2,

Ω(nα(n)) and O(nα2(n)), s = 3,

Ω(n2α(n)) and O(nα2(n)2α(n)), s = 4,

Ω
(
nα(n)2α(n)

)
and O

(
n2α(n)(logα(n)+O(1))

)
, s = 5,

n · 2αt(n)/t! +O(αt−1(n)), even s ≥ 6,

Ω
(
n · 2αt(n)/t! +O(αt−1(n))

)
,

and O
(
n · 2αt(n)(logα(n)+O(1))/t!

)
,

odd s ≥ 7.

The definition of dblForm(r, s+1) may at first seem unnatural. Surely dbl(Form(r, s+
1)) = {dbl(σ) |σ ∈ Form(r, s + 1)} would be a more useful way to “double” the set
Form(r, s+1). For example, it is known that abcacbc ≺ Form(4, 4), and therefore that
dbl(abcacbc) ≺ dbl(Form(4, 4)), but we cannot immediately conclude, as we would
like, that Ex(dbl(abcacbc), n) ≤ Λdbl

4,3(n). It turns out that the maximum length of
dblForm(r, s + 1)-free sequences and dbl(Form(r, s + 1))-free sequences is the same
asymptotically. The proof of Lemma 1.2 appears in the appendix.

Lemma 1.2. The following bounds hold for any r ≥ 2, s ≥ 1:

Ex(dbl(Form(r, s+ 1)), n,m) ≤ r · Λdbl

r,s(n,m) + 2rn,

Ex(dbl(Form(r, s+ 1)), n) = O(Λdbl

r,s(n)).

Zig-zagging patterns. Klazar and Valtr [14] introduced the N -shaped zig-zagging
patterns {Nk}, where

Nk = 1 2 . . . (k + 1) k ... 1 2 . . . (k + 1).

Note that Nk-free sequences generalize order-2 DS sequences since N1 = abab. (The
vertical placement of the symbols in Nk carries no meaning. It is intended only to im-
prove readability.) It was shown [14, 21] that Ex(dbl(Nk), n) = O(n), which matches
λ2(n) asymptotically. Pettie [21] proved that Ex({Mk, ababab}, n) = Θ(nα(n)), match-
ing λ3(n), where Mk is the kth M -shaped sequence,

Mk = 1 2 . . . (k + 1) k ... 1 2 . . . (k + 1) k ... 1.

See [29, 25, 6, 21] for applications of N - and M -shaped sequences.

A different way to view even-length alternating patterns abab · · · with length
s+2 is as a sequence of (s+2)/2 zigs, without corresponding zags. When generalized
to an r-letter alphabet we get the sequence (12 · · · r)(s+2)/2, which is contained in
every member of Binr,s+1 since at least � s+1

2 � of the constituent permutations must

be identical. It follows from [2, 8, 16] that Ex((1 · · · r)(s+2)/2, n) = Θ(Λr′,s(n)) =

n · 2(1+o(1))αt(n)/t!, where r′ = (r − 1)2
s

+ 1 and t = 	 s−2
2 
.
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Other forbidden patterns. Much of the research on generalized DS sequences [1,
13, 14, 19, 20, 21, 22] has focused on delineating linear and nonlinear forbidden se-
quences. A σ is linear if Ex(σ, n) = O(n). It is known that ababa and abcacbc are
the only 2-sparse minimally nonlinear sequences over three letters [14, 20, 21]. There
are only a few varieties of sequences known to be linear. We have already seen that
doubled N -shaped sequences (dbl(Nk)) are in this category. Pettie [21, 19] proved
that abcbbccac is linear and showed that if π1, π2 are two permutations on the same
alphabet, then π1 dbl(π2) is linear. For example, Ex(abcde acceebbd, n) = O(n). More
linear sequences can be generated via Klazar and Valtr’s [14] splicing operation. If
σ = σ1aaσ2 and σ′ are linear, where Σ(σ) ∩ Σ(σ′) = ∅, then σ1aσ

′aσ2 is also linear.
Other research has focused on identifying cofinal sets of forbidden sequences, with

respect to the total order on extremal functions.5 Klazar’s general upper bounds [10]
imply that standard DS sequences {(ab)k} are cofinal. Pettie [20], answering a ques-
tion of Klazar [13], proved that the set of ababa-free forbidden sequences is also cofinal.
This fact is witnessed by the two-sided comb-shaped sequences {Dk}, which generalize
D1 = abacacbc. Here Dk is defined to be

Dk = 1
2
1
3
1
4

. . .

1

(k + 2)

1

(k + 2)

2

(k + 2)

3

(k + 2)
. . . (k + 1)

(k + 2).

1.4. New results. In prior work [17] we showed that λs behaves very similarly
at the odd and even orders. In this paper we prove, quite unexpectedly, that Λr,s

matches λs only when s ≤ 3, or s ≥ 4 is even, or r = 2. When s ≥ 5 is odd and r ≥ 3,
Λr,s and λs diverge. Moreover, we prove that λs and λdbl

s are essentially equivalent
and that Λr,s and Λdbl

r,s are essentially equivalent.
Theorem 1.3 (omnibus bounds). For all s ≥ 1 and r = 2, λs, λ

dbl
s , Λr,s, and

Λdbl
r,s are asymptotically equivalent, namely,

λs(n), λ
dbl
s (n),

Λ2,s(n), Λ
dbl
2,s(n)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(n), s ≤ 2,

Θ(nα(n)), s = 3,

Θ(n2α(n)), s = 4,

Θ(nα(n)2α(n)), s = 5,

n · 2αt(n)/t! +O(αt−1(n)), s ≥ 6, where t = 	 s−2
2 
.

However, the behavior of Λr,s and Λdbl
r,s changes when r ≥ 3. In particular,

Λr,s(n),Λ
dbl

r,s(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(n), s ≤ 2,

Θ(nα(n)), s = 3,

Θ(n2α(n)), s = 4,

n · 2αt(n)(logα(n)+O(1))/t!, odd s ≥ 5,

n · 2αt(n)/t! +O(αt−1(n)), even s ≥ 6.

5A set A of sequences is cofinal if, for any σ, there is a σ′ ∈ A such that Ex(σ, n) = O(Ex(σ′, n)).

D
ow

nl
oa

de
d 

11
/1

2/
15

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2196 SETH PETTIE

The new parts of Theorem 1.3 not covered by previous work [2, 3, 9, 16, 17] are

(i) upper bounds on λdbl
s , for s ≥ 4, which also cover Λdbl

2,s,
(ii) lower bounds on Λr,s for r ≥ 3 and odd s ≥ 5,
(iii) a linear upper bound on Λdbl

r,2,

(iv) an O(n2α(n)) upper bound on Λdbl
r,4, and

(v) an O(nα(n)) upper bound on Λdbl
r,3, which also covers λdbl

3 .

For task (i) we generalize (and simplify) the recent analysis of [17] to work for double
DS sequences. This analysis only achieves tight bounds for s ≥ 4. For task (ii)
we give a construction of sequences that are Form(3, s + 1)-free (but necessarily not

Form(2, s+1)-free) with length n · 2αt(n)(logα(n)+O(1))/t!. Task (iii) requires no proof.
It follows from the linearity of dbl(Nk)-free sequences. For task (iv) we give a single
analysis of Λdbl

r,s that is tight for all r ≥ 3, s ≥ 4, but not s = 3. Task (v) is far and
away the most difficult to prove. It requires the development of techniques new to
the analysis of generalized DS sequences.

Zig-zagging patterns. Recall that the N - and M -shaped sequences {Nk,Mk} gen-
eralize abab = N1 and ababa = M1. Define Zk to be the corresponding generalization
of ababab = Z1, that is,

Zk = 1 2 . . . (k + 1) k ... 1 2 . . . (k + 1) k ... 1 2 . . . (k + 1).

We give a flexible new way to construct (and succinctly encode) nonlinear sequences
that subsumes nearly all prior constructions [2, 9, 15, 16, 17, 20, 22]. Using the
new constructions we are able to show that for any t, there exists a k such that
Ex(Mk, n) = Ω(nαt(n)) and an l such that Ex(Zl, n) = Ω(n · 2(1+o(1))αt(n)/t!). The
bounds on Mk-free sequences are perhaps not too surprising, but they demonstrate
that the extremal function for a set of forbidden sequences can be different from any
member. (Recall that Ex({Mk, ababab}, n) = Θ(nα(n)) for any k [21].) The new
bounds on Zl show definitively that, in general, zig-zagging sequences are not closely
tied to the corresponding DS sequences. In fact, the set {Zl} is cofinal among all
forbidden sequences, the other known cofinal sets being {(ab)k} and two-sided combs
{Dk}. Our new sequence constructions also let us show that the one-sided combs
{Ck} behave differently than C1 = abcacbc, where

Ck = 1 2 3
. . .

(k + 2)

1

(k + 2)

2

(k + 2)

3

(k + 2)
. . . (k + 1)

(k + 2).

We prove Ex(Ck, n) = Ω(nαk(n)).

1.5. Organization. In section 2 we present sharp lower bounds on Form(r, s+
1)-free sequences. In section 3 we review a number of standard sequence transforma-
tions and review the linear upper bounds on λs, λ

dbl
s ,Λr,s, and Λdbl

r,s when s ∈ {1, 2}. In
section 4 we establish sharp upper bounds on Λdbl

r,s-free sequences for all s ≥ 4. Section
5 reviews the derivation tree structure introduced in [17], which is used in sections 6
and 7. In section 6 we present sharp upper bounds on Λdbl

r,3 (and λdbl
3 ) and in section

7 we give sharp upper bounds on λdbl
s for all s ≥ 4. Section 8 is devoted to a new,

generalized construction of nonlinear sequences. We prove that, under appropriate
parameterization, they are Mk-free, Zk-free, and Ck-free. Some open problems are
discussed in section 9.
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2. Lower bounds on formation-free sequences.

2.1. Composition and shuffling. We consider sequences made up of blocks,
each of which is designated live or dead. To distinguish the two we use parentheses to
indicate live blocks and angular brackets for dead blocks. The number of live blocks
in T is �T � and the number of both types is �T �. Our sequences are constructed
through composition and two types of shuffling operations. These operations were
implicit in all constructions since Hart and Sharir [9] but were usually presented in
an ad hoc manner.

Composition. A sequence T over the alphabet {1, . . . , ‖T ‖} is in canonical form
if symbols are ordered according to their first appearance in T . All sequences en-
countered in our construction are assumed to be in canonical form. To substitute T
for a block B = (a1, . . . , a‖T‖) means to replace B with a copy of T (B) under the
alphabet mapping k �→ ak. If Tmid is a sequence with ‖Tmid‖ = j and Ttop a sequence
in which live blocks have length j, Tsub = Ttop ◦Tmid is obtained by substituting
for each live block B in Ttop a copy Tmid(B). The live/dead status of a block in
Tsub is inherited from its status in Ttop or Tmid, hence �Tsub � = �Ttop � · �Tmid � and
�Tsub� = �Ttop� + �Ttop �(�Tmid� − 1). If each symbol appears in μtop live blocks and
νtop dead blocks in Ttop, and μmid live blocks and νmid dead blocks in Tmid, then the
corresponding multiplicities in Tsub are μtop · μmid and νtop + μtop · νmid.

Shuffling. Let Tbot = (L1) 〈D1〉 (L2) 〈D2〉 · · · (Ll) 〈Dl〉 be a sequence with l live
blocks L1, . . . , Ll and let Tsub = (L′

1) 〈D′
1〉 (L′

2) 〈D′
2〉 · · · (L′

l′) 〈D′
l′〉 be a sequence whose

live blocks L′
1, . . . , L

′
l′ have length precisely l = �Tbot �. The Ds here represents zero

or more dead blocks appearing between live blocks. The postshuffle Tsh = Tsub �Tbot

is obtained by first forming the concatenation T ∗
bot of l

′ copies of Tbot, each over an
alphabet disjoint from the other copies and disjoint from Σ(Tsub). A copy of Tsub is
shuffled into T ∗

bot as follows. Let L′
q = (a1a2 · · · al) be the qth live block of Tsub and

T
(q)
bot = (L

(q)
1 ) 〈D(q)

1 〉 · · · (L
(q)
l ) 〈D(q)

l 〉 be the qth copy of Tbot in T ∗
bot. We substitute

the following for T
(q)
bot, for all q, yielding Tsh:(

L
(q)
1 a1

) 〈
D

(q)
1

〉
· · ·
(
L
(q)
l al

) 〈
D

(q)
l D′

q

〉
.

In other words, we insert ap at the end of the pth live block in T
(q)
bot and insert

all the dead blocks D′
q following L′

q in Tsub immediately after T
(q)
bot. See Figure 1.

The preshuffle Tsh = Tsub � Tbot is formed in exactly the same way except that we

insert ap at the beginning of the block, that is, we substitute for T
(q)
bot the sequence

(a1L
(q)
1 ) 〈D(q)

1 〉 · · · (alL
(q)
l ) 〈D(q)

l D′
q〉. In this section we consider only postshuffling,

whereas both pre- and postshuffling are used in section 8.

2.2. Construction of the sequences. Our Form(r, s + 1)-free sequences are
constructed inductively, beginning with Form(r, 4)-free sequences {Tρ(i, j)}i≥1,j≥0,ρ≥2.
Each Tρ(i, j) consists of a mixture of live and dead blocks. The parameters i and j con-
trol the multiplicity of symbols and the length of live blocks, respectively. The length
of dead blocks is guaranteed to be a multiple of ρ. Ignoring the role of ρ, this construc-
tion is essentially the same as the order-3 DS sequences presented in [9, 15, 30, 22].

Tρ(1, j) = (1 · · · j) 〈1 · · · j〉 , one live block, one dead,

Tρ(i, 0) = ( )ρ, ρ ≥ 2 empty live blocks, for i ≥ 2,

Tρ(i, j) = Tsub � Tbot = (Ttop ◦Tmid) � Tbot,
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Fig. 1. Here L′
q = (a1 · · · al) is the qth live block of Tsub and T

(q)
bot is the qth copy of Tbot in

T ∗
bot. The sequence Tsub �Tbot is obtained by shuffling L′

q into the live blocks of T
(q)
bot and inserting

D′
q after T

(q)
bot.

where Tbot = Tρ(i, j − 1),

Tmid = (1 · · · �Tbot �) 〈�Tbot � · · · 1〉 , one live block, one dead,

Ttop = Tρ(i− 1, �Tbot �).

Lemma 2.1 identifies some simple properties of Tρ(i, j) that let us analyze its
length and forbidden substructures.

Lemma 2.1. Let T = Tρ(i, j) for some ρ ≥ 2.

1. Live blocks of T consist solely of first occurrences and all first occurrences
appear in live blocks.

2. Live blocks of T have length j.
3. All symbols appear i+ 1 times in T .
4. When i ≥ 2, the number of live blocks and the length of dead blocks are both

multiples of ρ.
5. As a consequence of parts 1–3, |T | = (i+ 1)‖T ‖ = (i+ 1)j�T �.

Proof. All the claims trivially hold in the base cases, when i = 1 or j = 0. Assume
the claim holds inductively for pairs lexicographically smaller than (i, j). Note that
part 1 holds for Tmid. If it holds for Ttop and Tmid it clearly holds for Tsub, and if it
holds for Tbot as well, then it also holds for Tρ(i, j) = Tsub � Tbot.

Part 2 follows since, by the inductive hypothesis, live blocks in Tbot = Tρ(i, j− 1)
have length j − 1 and exactly one symbol gets shuffled into each live block when
forming Tρ(i, j) = Tsub �Tbot. Part 3 follows since the multiplicity of symbols in Ttop

is i, by the induction hypothesis, and the multiplicity in Tmid is 2, so the multiplicity
of symbols in Tsub is i+1. The multiplicity of symbols in Tbot is already i+1, by the
induction hypothesis, so all symbols occur in T with multiplicity i+ 1.

Turning at last to part 4, the claim is vacuous when i = 1 and clearly holds
when i ≥ 2, j = 0. In general, if �Tbot � = �Tρ(i, j − 1) � is a multiple of ρ, then
�Tρ(i, j) � is also a multiple of ρ. All dead blocks in Tρ(i, j) are either (i) inherited
from Tbot, or (ii) inherited from Ttop, or (iii) first introduced in Tsub as the second
block in a copy of Tmid = (1 · · · �Tbot �) 〈�Tbot � · · · 1〉. The inductive hypothesis
implies that the length of category (i) blocks are multiples of ρ. When i ≥ 3 the
inductive hypothesis also implies the length of category (ii) blocks are multiples of
ρ. When i = 2 we have Ttop = Tρ(1, �Tbot �) = (1 · · · �Tbot �) 〈1 · · · �Tbot �〉. By
virtue of �Tbot � being a multiple of ρ, the length of the lone dead block in Ttop is
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a multiple of ρ. Category (iii) blocks satisfy the property for the same reason, since
Tmid = (1 · · · �Tbot �) 〈�Tbot � · · · 1〉 and �Tbot � is a multiple of ρ.

Lemma 2.2. Tρ(i, j) is an order-3 DS sequence and hence Form(r, 4)-free for all
r ≥ 2.

Proof. The claim clearly holds in all base cases, so we can assume T = Tρ(i, j)
was formed from Ttop, Tmid, and Tbot. Any occurrence of ababa could not have arisen
from a shuffling event. If a ∈ Σ(Ttop) and b ∈ Σ(T ∗

bot), the projection of T onto
{a, b} is |b∗ab∗| a∗, where the bars mark the boundary of b’s copy of Tbot. (The live
block of Tsub shuffled into b’s Tbot contains the first occurrence of a. All other as in
Tsub are inserted after this copy of Tbot.) We could also not create an occurrence of
ababa during a composition event, where a and b shared a live block in Ttop. The
projections of Ttop and Tsub onto {a, b} would be, respectively, of the form (ab)a∗b∗

and (ab) 〈ba〉a∗b∗, the latter being ababa-free.
The Us(i, j) sequences defined below have the property that all blocks are live and

have length exactly j and all symbols occur μs,i times, where the μ-values are defined
below. This contrasts with Tρ(i, j), where there is a mixture of live and dead blocks
having nonuniform lengths. We define U3(i, j) to be identical to Tj(i, j) as a sequence,
but we interpret it as a sequence of live blocks of length exactly j. This is possible
since, in Tj(i, j), the length of live blocks is j and the length of each dead block is
a multiple of j. Since all blocks in Us are live we can use the identities �Us(i, j)� =
�Us(i, j) � and |Us(i, j)| = μs,i‖Us(i, j)‖ = j�Us(i, j)�. Sequences essentially the same
as {Us} were used in [20] to prove lower bounds on Ex(Dk, n), where {Dk} are the
two-sided combs defined in section 1.3.

U2(i, j) = (1 · · · j) (j · · · 1), two blocks, for all i,

Us(i, 1) = (1)μs,i , μs,i identical blocks, for i ≥ 1, s ≥ 3,

Us(0, j) = (1 · · · j), one block, for s ≥ 3,

U3(i, j) = Tj(i, j) (reinterpreted), for i ≥ 1, where ρ = j ≥ 2,

Us(i, j) = Usub � Ubot = (Utop ◦Umid) � Ubot,

where Ubot = Us(i, j − 1),

Umid = Us−2(i, �Ubot�),

Utop = Us(i− 1, ‖Umid‖).

The multiplicities {μs,i} are defined as follows:

μ2,i = 2 for all i,

μ3,i = i+ 1 for all i,

μs,0 = 1 for all s ≥ 4,

μs,i = μs,i−1μs−2,i for s ≥ 4 and i ≥ 1.

Lemma 2.3. Let U = Us(i, j), where s ≥ 2, i ≥ 1, j ≥ 1.
1. All symbols appear in U with multiplicity precisely μs,i.
2. All blocks in U have length precisely j.
3. If a and b share a common block and a < b according to the canonical ordering

of Σ(U), then the projection of U onto {a, b} has the form either a∗b∗(ba)b∗a∗

or a∗(ab)a∗b∗. Moreover, unless s = 2, every pair of symbols appears in at
most one common block.
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Proof. Parts 1 and 2 hold in the base cases and follow easily by induction on s, i,
and j. For part 3, if b precedes a in their common block, then, in some shuffling event,
a ∈ Σ(Usub) was postshuffled into b’s copy of Ubot and all other copies of a were placed
before or after this copy of Ubot, hence U ’s projection onto {a, b} is a∗b∗(ba)b∗a∗. If
a precedes b in their common block, then this must be the first occurrence of b in
U (otherwise b < a in the canonical ordering). By the same reasoning as above the
projection of U onto {a, b} must be of the form a∗(ab)a∗b∗.

In Lemma 2.4 we analyze the subsequences avoided by Us and in Lemma 2.5 we
lower bound the length of Us.

Lemma 2.4. When s = 3 or s ≥ 2 is even, Us is an order-s DS sequence and
hence Form(2, s+ 1)-free. When s ≥ 5 is odd and r ≥ 3, Us is Form(r, s+ 1)-free.

Proof. The claim is clearly true for s = 2 and Lemma 2.2 takes care of s = 3.
Observe that ababab can never be introduced by a shuffling event. If a ∈ Σ(Usub)
and b ∈ Σ(U∗

bot), only one copy of a can appear between two bs; all others precede or
follow b’s copy of Ubot in U∗

bot. Thus any alternating subsequence ab · · ·ab of length
s+2 ≥ 6 must be introduced in Usub = Utop ◦Umid by composition. The projection of
Utop onto {a, b} is of the form a∗b∗(ba)b∗a∗. Since Umid = Us−2(·, ·) has order s−2 and
b precedes a in the canonical ordering of Umid, its longest alternating subsequence is
bab · · ·ab (length s− 1), hence the longest alternating subsequence in Usub has length
s+ 1.

We now consider U = Us(i, j), where s ≥ 5 is odd. Define Ps+1 to be the set of
all sequences σ ∈ {1, 2, 3}∗ such that dbl(σ) contains a subsequence of the form

123 {123}s−1 {23},
where {123} indicates any permutation of the symbols 1, 2, 3. We will prove by induc-
tion that Us contains no Ps+1 subsequence. This implies that it is Form(r, s+1)-free as
well for all r ≥ 3. The claim holds at s = 3 since all members of P4 contain 23232. For
s ≥ 5, Ps+1 could not have arisen from a shuffling event since every member of Ps+1

contains a sequence isomorphic to ababab for each pair of symbols {a, b} ⊂ {1, 2, 3}.
It also could not have arisen from a composition event in which some strict subset of
{1, 2, 3} appears in one block. Suppose a block in Utop contains 1 and 2 but not 3.
The projection of Utop onto {1, 2} is of the form 1∗2∗(21)2∗1∗. Even if there were 3s
interspersed conveniently outside the block (21), substituting any Umid for the block
(21) could only create four permutations on {123}, whereas we need at least s ≥ 5
such permutations.

We can therefore assume that any Ps+1 sequence in Us, say, over the alphabet
{a, b, c}, first arose in Usub from a composition event in which some block B containing
{a, b, c} is substituted for a copy Umid(B). By the inductive hypothesis Umid is Ps−1-
free. By Lemma 2.4, before the substitution the projection of Utop onto {a, b, c} is of
the form

c∗ b∗ a∗ (abc) a∗ b∗ c∗.

Some prefix of a Ps+1 sequence is taken from c∗b∗a∗, some suffix of the Ps+1 sequence
is taken from a∗b∗c∗, and the remainder must come from the Umid(B) substituted for
(abc). We consider three cases depending on the mapping from {a, b, c} to {1, 2, 3}.

Case 1. The mapping is c = 1 and {a, b} = {2, 3}. The suffix of Ps+1 can
include at most a ab, that is, the final permutation {23} and the last letter of the
last permutation of {123} if it is an a. The prefix of Ps+1 can include at most
cba a = 1233. Of course, since Umid(B) is in canonical form and a < b < c according
to the canonical order of Σ(Umid(B)), we know a is the first letter among {a, b, c} to
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appear in Umid(B).6 Thus, for Ps+1 to appear in Usub we would need Umid(B) to
contain abc{abc}s−3{bc}, contradicting the Ps−1-freeness of Umid(B).

Case 2. The mapping is a = 1 and {b, c} = {2, 3}. In this case the suffix can
include at most ab bc, but only if the last permutation on {abc} in Ps+1 is exactly cab.
Since Umid(B) is in canonical form the first occurrence of a precedes those of b and c,
so no useful prefix of Ps+1 is provided by the c∗b∗a∗ preceding B in Utop. For a Ps+1

to appear in Usub we would need Umid(B) to contain abc{abc}s−2c, contradicting the
Ps−1-freeness of Umid(B).

Case 3. The mapping is b = 1 and {a, c} = {2, 3}. The suffix can include at most
a ac. The prefix can apparently include as much as ba, but just as in Case 2, this is not
a useful prefix. Since Umid(B) is in canonical form the first c is already guaranteed to
be preceded by ab. Thus, for Usub to contain Ps+1 we would need Umid(B) to contain
abc{abc}s−2{bc}, contradicting the Ps−1-freeness of Umid(B).

We have established that Us is Form(r, s + 1)-free and now need to lower bound
its length.

Lemma 2.5. Fix s and let t = 	(s− 2)/2
.
1. For even s, μs,i = 2(

i+t−1
t ) = 2i

t/t! +O(it−1).

2. For odd s, μs,i =
∏i

l=0(i + 1− l)(
l+t−1
t−1 ) = 2i

t(log i)/t! +O(it).

Proof. Consider the even case first. When i = 0 we have μs,0 = 1 = 2(
0+t−1

t ) and

when s = 2, t = 0 we have μ2,i = 2(
i+0−1

0 ) = 2. The claim holds for all even s ≥ 4

since, by Pascal’s identity, μs,i = μs,i−1 · μs−2,i = 2(
(i−1)+t−1

t )+(i+(t−1)−1
t−1 ) = 2(

i+t−1
t ).

Clearly 2(
i+t−1

t ) ≥ 2i
t/t!.

For odd s the base case i = 0 is trivial. When s = 5, t = 1 we have μ5,i =

μ3,iμ3,i−1 · · ·μ3,0 = (i + 1)!, which can be expressed as
∏i

l=0(i + 1 − l)(
l+t−1
t−1 ) since

t = 1 and
(
l+0
0

)
= 1 for all l. For odd s ≥ 7 the bound follows by induction.

μs,i = μs,i−1 · μs−2,i

=
i−1∏
l=0

((i − 1) + 1− l)(
l+t−1
t−1 ) ·

i∏
l′=0

(i + 1− l′)(
l′+t−2

t−2 )

=

i∏
l′′=0

(i+ 1− l′′)(
l′′+t−2

t−1 ) ·
i∏

l′=0

(i+ 1− l′)(
l′+t−2

t−2 )

{l′′ def
= l + 1. When l′′ = 0, (i+ 1)(

t−2
t−1) = 1.}

=

i∏
l=0

(i+ 1− l)(
l+t−2
t−1 )+(l+t−2

t−2 )

=

i∏
l=0

(i+ 1− l)(
l+t−1
t−1 ).

When s is odd, it is simpler to obtain asymptotic bounds on log2(μs,i) directly, without
analyzing the closed-form expression above. Assuming inductively that log2(μs−2,i) =
it−1(log i)/(t− 1)! + O(it−2), where the constant hidden in the second term depends

6Note that the canonical orderings of {a, b, c} within Utop and Umid(B) are unrelated and in fact
typically are the reversal of each other. If B contains neither the first occurrence of b nor c, then
c < b < a according to the canonical order of Σ(Utop) but a < b < c according to the canonical order
of Σ(Umid(B)).
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on s− 2, we have

log2(μs,i) = log2(μs−2,i) + log2(μs,i−1) =

i∑
x=1

log2(μs−2,x)

=

i∑
x=1

[xt−1 log x

(t− 1)!
+O(xt−2)

]

=
it log i

t!
+O(xt−1).

Note that the sum is faithfully approximated by the integral
∫ i

0 x
t−1(log x)/(t− 1)!+

O(xt−2) dx = it(log i)/t! +O(it−1) as the two differ by O(it−1).
It is a tedious exercise to show that for n = ‖Us(i, j)‖ and m = �Us(i, j)�, i =

α(n,m)+O(1) and i = α(n)+O(1) when j = O(1). (See [16, 20] for several examples
of such calculations.) Lemmas 2.2, 2.4, and 2.5 establish all the lower bounds of
Theorem 1.3, with the exception of λ5(n) = Ω(nα(n)2α(n)), which is proved in [17].

Remark 2.6. It should be possible to improve the lower bounds on Λ3,s, for odd
s ≥ 5, by substituting Nivasch’s construction of order-3 DS sequences [16, section 6]
for Tj(i, j) in the definition of U3(i, j). Nivasch’s sequences are roughly twice as

long as Tj(i, j), which would lead to a 2(
i+O(1)

t ) factor improvement in μs,i for odd
s ≥ 5. The only technical issue is to deal with nonuniform block lengths. In the [16]
construction there is no straightforward way to force dead blocks to have lengths that
are multiples of some ρ. As a consequence, the block lengths in Us(i, j) would also be
nonuniform but upper bounded by j.

3. Sequence transformations and decompositions. This section reviews
some basic results and notation used throughout the article, sometimes without direct
reference.

3.1. Sparse versus blocked sequences. An m-block sequence can easily be
converted to an r-sparse one by removing up to r − 1 symbols in each block, except
the first. This shows, for example, that λs(n,m) ≤ λs(n) +m − 1 and Λdbl

r,s(n,m) ≤
Λdbl
r,s(n)+(r−1)(m−1). However, converting an r-sparse sequence into one with O(n)

blocks is, in general, not known to be possible without suffering some asymptotic loss.
The following lemma generalizes reductions of Sharir [24] and Pettie [17] to λdbl

s ,Λr,s,
and Λdbl

r,s. In the interest of completeness we include a proof in Appendix A.
Lemma 3.1 (cf. Sharir [24], Füredi and Hajnal [7], and Pettie [17]). Define

γs, γ
dbl
s , γr,s, γ

dbl
r,s : N → N to be nondecreasing functions bounding the leading factors

of λs(n), λ
dbl
s (n),Λr,s(n), and Λdbl

r,s(n), e.g., Λ
dbl
r,s ≤ γdbl

r,s(n) · n. The following bounds
hold:

λs(n) ≤ γs−2(n) · λs(n, 2n),

λdbl

s (n) ≤ (γdbl

s−2(n) + 4) · λdbl

s (n, 2n),

λs(n) ≤ γs−2(γs(n)) · λs(n, 3n),

λdbl

s (n) ≤ (γdbl

s−2(γ
dbl

s (n)) + 4) · λdbl

s (n, 3n),

Λr,s(n) ≤ γr,s−2(n) · Λr,s(n, 2n) + 2n,

Λdbl

r,s(n) ≤ (γdbl

r,s−2(n) +O(1)) · Λdbl

s (n, 2n)),

Λr,s(n) ≤ γr,s−2(γr,s(n)) · Λr,s(n, 3n) + 2n,

Λdbl

r,s(n) ≤ (γdbl

r,s−2(γ
dbl

r,s(n)) +O(1)) · Λdbl

s (n, 3n)),

where the O(1) terms depend on r and s.
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3.2. Reductions between formation-free sequences and DS sequences.
It is not immediate from the definitions that the extremal functions λs, λ

dbl
s ,Λ2,s, and

Λdbl
2,s are closely related. Lemma 3.2 is used to reduce the number of facts that must

be established to prove Theorem 1.3: lower bounds on λs apply to the other extremal
functions and upper bounds on Λdbl

2,s apply to the other extremal functions:
Lemma 3.2. The following inequalities hold for all s:

λs(n) ≤ Λ2,s(n) ≤ λdbl
s (n) ≤ Λdbl

2,s(n) + 2n ≤ 5 · λdbl
s (n) + 2n,

λs(n,m) ≤ Λ2,s(n,m) ≤ λdbl
s (n,m) ≤ Λdbl

2,s(n,m) + n ≤ 3 · λdbl
s (n,m) + n.

Refer to Appendix A for proof of Lemma 3.2.

3.3. Linearity at orders 1 and 2. We bound the length of sequences induc-
tively through the use of recurrences. The induction bottoms out when s ∈ {1, 2}, so
we need to handle these two orders directly. Lemma 3.3 summarizes linear bounds
on λs, λ

dbl
s ,Λr,s, and Λdbl

r,s that were discovered by Davenport and Schinzel [4, 5],
Klazar [10, 13], Klazar and Valtr [14], Füredi and Hajnal [7], and Pettie [21]. A proof
of Lemma 3.3 appears in Appendix A.

Lemma 3.3. At orders s = 1 and s = 2, the extremal functions λs, λ
dbl
s ,Λr,s, and

Λdbl
r,s obey the following:

λ1(n) = n, λ1(n,m) = n+m− 1,
λ2(n) = 2n− 1, λ2(n,m) = 2n+m− 2 [4],

λdbl
1 (n) = 3n− 2, λdbl

1 (n,m) = 2n+m− 2 [5, 13],
λdbl
2 (n) < 8n, λdbl

2 (n,m) < 5n+m [11, 7],
Λr,1(n) = Λdbl

r,1(n) < rn, Λr,1(n,m) = Λdbl
r,1(n,m) < n+ (r − 1)m [10],

Λr,2(n) < 2rn, Λr,2(n,m) < 2n+ (r − 1)m [10],
Λdbl
r,2(n) < 6rrn, Λdbl

r,2(n,m) < 2 · 6r−1(n+m/3) [21].

The linear bound on Λdbl
r,2 is a consequence of bounds on dbl(Nr−1)-free se-

quences [14, 21], though this connection was not noted earlier [3].

3.4. Sequence decomposition. We adopt and extend the sequence decom-
position notation from [17]. This style of decomposition goes back to Hart and
Sharir [9] and Agarwal, Sharir, and Shor [2] and has been used many times since
then [3, 10, 16, 20]. This notation is used liberally throughout sections 4–7.

Let S be a sequence over an n = ‖S‖ letter alphabet consisting of m = �S�
blocks. (It may be that S avoids some forbidden sequences, but this has no bearing
on the decomposition.) A partition of S into m̂ intervals S1 · · ·Sm̂ is called uniform if
m1 = · · · = mm̂−1 are equal powers of two and mm̂ may be smaller, where mq = �Sq�
is the number of blocks in the qth interval. A symbol is global if it appears in multiple
intervals and local otherwise. Let Š = Š1 · · · Šm̂ and Ŝ = Ŝ1 · · · Ŝm̂ be the projections
of S onto local and global symbols, so |S| = |Š|+ |Ŝ|. Define n̂ = ‖Ŝ‖ to be the size
of the global alphabet and n̂q = ‖Ŝq‖ and ňq = ‖Šq‖ to be the number of global and
local symbols in Σ(Sq), so n = n̂+

∑
1≤q≤m̂ ňq.

A global symbol a ∈ Σ(Ŝq) is classified as first, last, or middle if no as ap-
pear before Sq, no as appear after Sq, or as appear both before and after Sq.

7 Let

Śq, S̀q, S̄q ≺ Ŝq be the projections of Ŝq onto symbols classified as first, last, and

7Note that if a ∈ Σ(Ŝq) is classified as first, all the possibly many occurrences of a in Sq are
“first” occurrences.
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middle in Ŝq; let ńq, ǹq, and n̄q be the sizes of the alphabets Σ(Śq),Σ(S̀q), and Σ(S̄q).

Define Ś, S̀, and S̄ to be subsequences of first, last, and middle occurrences, namely,

Ś = Ś1 Ś2 · · · Śm̂−1,

S̀ = S̀2 · · · S̀m̂−1 S̀m̂,

S̄ = S̄2 · · · S̄m̂−1.

Note that Ŝ1 = Ś1 consists solely of first occurrences and Ŝm̂ = S̀m̂ consists solely
of last occurrences, so S̄ is empty if m̂ = 2. These notational conventions will be
applied to sequences and other objects defined later. For example, the diacritical
marks ,̌ ,̂ ,́ ,̀ and ¯ will be applied to objects pertaining to local, global, first, last,
and middle symbols, respectively. Moreover, whenever we define a new subsequence
of Sq, say, S̃q, quantities and objects pertaining to S̃q will be indicated with the same

diacritical mark, such as ñq = ‖S̃q‖.
The global contracted sequence Ŝ′ = B1 · · ·Bm̂ is obtained by contracting each

interval Ŝq to a single block Bq consisting of some permutation of Σ(Ŝq). Unless
specified otherwise, the symbols in Bq are ordered according to their first occurrence

in Ŝq. It follows that Ŝ
′ ≺ Ŝ, so Ŝ′ inherits any forbidden sequences of Ŝ.

4. Upper bounds on dblForm(r, s)-free sequences. In this section we give
recurrences for the extremal functions of Form(r, s+1)-free sequences and dblForm(r,
s + 1)-free sequences. Lemmas 4.4 and 4.5 give closed-form upper bounds on the
length of such sequences in terms of Ackermann’s function. These bounds on Λr,s

and Λdbl
r,s are sharp, except for Λ2,s and Λdbl

2,s, when s ≥ 5 is odd, and Λdbl
r,3, for any

r ≥ 2. These exceptions are addressed in sections 6 and 7.

4.1. A Recurrence for Λr,s. In reading the proofs of Recurrences 4.1 and 4.3
one should keep in mind that all extremal functions are superadditive. For example,

Λr,s(n1,m1) + Λr,s(n2,m2) ≤ Λr,s(n1 + n2,m1 +m2).

Recurrence 4.1. Define n and m to be the alphabet size and block count
parameters. For any m̂ ≥ 2, any block partition {mq}1≤q≤m̂, and any alphabet parti-
tion {n̂} ∪ {ňq}1≤q≤m̂, Λr,s obeys the following recurrences, for any fixed
r ≥ 2, s ≥ 3: When m̂ = 2,

Λr,s(n,m) ≤
∑

q∈{1,2}
Λr,s(ňq,mq) + Λr,s−1(2n̂,m),

and when m̂ > 2,

Λr,s(n,m) ≤
m̂∑
q=1

Λr,s(ňq,mq) + 2 · Λr,s−1(n̂,m) + Λr,s−2(Λr,s(n̂, m̂)− 2n̂,m).

Proof. We adopt the sequence decomposition notation from section 3.4. The
contribution of local symbols is

∑
q |Šq| ≤

∑
q Λr,s(ňq,mq). As each symbol in Śq

appears at least once after Sq, each Śq is a Form(r, s)-free sequence, it follows that

m̂−1∑
q=1

|Śq| ≤
m̂−1∑
q=1

Λr,s−1(ńq,mq) ≤ Λr,s−1

(
m̂−1∑
q=1

ńq,

m̂−1∑
q=1

mq

)
= Λr,s−1(n̂,m−mm̂).
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A symmetric statement is true for each S̀q; hence the contribution of last occurrences

is
∑

q |S̀q| ≤ Λr,s−1(n̂,m −m1). If m̂ = 2, then we have accounted for all symbols,
and by superadditivity Λr,s−1(n̂,m1) + Λr,s−1(n̂,m2) ≤ Λr,s−1(2n̂,m).

If m̂ > 2, then we must also count middle symbols. Each symbol in S̄q appears at
least once before S̄q and at least once afterward. This implies that S̄q is Form(r, s−1)-
free, hence∑

q

|S̄q| ≤
∑
q

Λr,s−2(n̄q,mq)

≤ Λr,s−2

(∑
q

n̄q,
∑
q

mq

)
superadditivity

= Λr,s−2(|Ŝ′| − 2n̂,m−m1 −mm̂)(4.1)

< Λr,s−2(Λr,s(n̂, m̂)− 2n̂,m) Ŝ′ is Form(r, s+ 1)-free.

Equality (4.1) follows since
∑

q n̄q counts the number of middle occurrences of symbols

in Ŝ′, that is, the length of Ŝ′ less 2n̂ for first and last occurrences.

4.2. A recurrence for Λdbl

r,s. Recall that Λdbl
r,s(n,m) was defined to be the ex-

tremal function for dblForm(r, s+1)-free, m-block sequences over an n-letter alphabet.
Here dblForm(r, s+1) is the set of sequences over the alphabet [r] = {1, . . . , r} of the
form σ1 · · ·σs+1, where σ1 and σs+1 contain one occurrence of each symbol in [r] and
σ2, . . . , σs contain exactly two occurrences of each symbol in [r].

Remark 4.2. The definition of Λdbl
r,s has one annoying property. Suppose S is a

sequence and S′ a contracted version of it in which each occurrence of a symbol repre-
sents two or more occurrences in S. We would like to say that if S is dblForm(r, s+1)-
free, then S′ is Form(r, s+1)-free, but this is not strictly true. For example, suppose
S′ contained the Form(2, 4) sequence ab

∣∣b(a ∣∣b)a ∣∣ab, where the bars separate the four
constituent permutations over {a, b} and the parentheses mark the boundaries of one
block B in S′. If we substitute aa and bb for all as and bs outside B, and substitute
abab for B, we find that S may only contain aabb bb (abab) aa aabb, which contains
no dblForm(2, 4) sequence. On the other hand, if occurrences in S′ represent at least
three occurrences in S, and symbols in the blocks of S′ are sorted according to the
second occurrence in the corresponding subsequence of S, then S′ is Form(r, s+1)-free
if S is dblForm(r, s+ 1)-free.

We can easily “force” blocks in S′ to represent at least three corresponding occur-
rences in the original sequence. Suppose we are given an initial dblForm(r, s+1)-free
sequence S�. Obtain S from S� by retaining every other occurrence of each symbol,
so S is also dblForm(r, s + 1)-free and |S| ≥ |S�|/2. When bounding |S| inductively
we may construct a contracted version S′ whose occurrences represent at least two
occurrences in S, and hence at least three occurrences in S�. (One subtlety here is
that S′ will be a subsequence of S�, not necessarily S, since we order symbols in the
blocks of S′ according to their position in S�.)

In Recurrence 4.3 (and Recurrences 6.1 and 7.4 later on) we use the inference
[S is dbl(σ)-free] → [S′ is σ-free], knowing that the bounds we obtain on the given
extremal function may be off by a factor of two.

Recurrence 4.3. Define n and m to be the alphabet size and block count
parameters. For any m̂ ≥ 2, block partition {mq}1≤q≤m̂, and alphabet partition
{n̂} ∪ {ňq}1≤q≤m̂, Λdbl

r,s obeys the following recurrences for any fixed r ≥ 2, s ≥ 3:
When m̂ = 2,
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Λdbl

r,s(n,m) ≤
∑

q∈{1,2}
Λdbl

r,s(ňq,mq) + Λdbl

r,s−1(2n̂,m) + 2n̂,

and when m̂ > 2,

Λdbl

r,s(n,m) ≤
m̂∑
q=1

Λdbl

r,s(ňq,mq) + Λdbl

r,s(n̂, m̂) + 2 · Λdbl

r,s−1(n̂,m)

+ Λdbl

r,s−2(Λr,s(n̂, m̂)− 2n̂,m) + 2 · Λr,s(n̂, m̂).

Proof. We consider the case when m̂ > 2 first. Let S be a dblForm(r, s+ 1)-free
sequence. The contribution of local symbols is

∑
q |Šq| ≤

∑
q Λ

dbl
r,s(ňq,mq). If a global

symbol appears exactly once in some Ŝq that occurrence is called a singleton. Let Ṡ

be the subsequence of Ŝ consisting of singletons. Clearly Ṡ can be partitioned into
m̂ blocks, hence |Ṡ| ≤ Λdbl

r,s(n̂, m̂). Remove all singleton occurrences from Ŝ and let

S̈ be what remains. Classify occurrences in S̈q as first, middle, and last according
to whether they do not occur before, do not occur after, or occur both before and
after interval q in Ŝ (not in S̈.) Let Ś, S̀, S̄ ≺ S̈ be the subsequences of first, last,
and middle occurrences. Obtain Ś−

q (and S̀−
q ) from Śq (and S̀q) by removing the

last (and first) occurrences of each symbol, and obtain S̄−
q from S̄q by removing both

the first and last occurrences of each symbol. It follows that both Ś−
q and S̀−

q are

dblForm(r, s)-free and that S̄−
q is dblForm(r, s− 1)-free. The contribution of first and

last nonsingleton occurrences in S̈ is therefore at most∑
q

[
Λdbl

r,s−1(ńq,mq) + ńq + Λdbl

r,s−1(ǹq,mq) + ǹq

]
≤ 2 ·

[
Λdbl

r,s−1(n̂,m) + n̂
]
.

Form S̈′ from S̈ by contracting each interval into a single block. Since S̈ is dblForm(r, s+
1)-free, S̈′ must be Form(r, s+ 1). (See Remark 4.2.) Therefore, the contribution of
middle nonsingleton occurrences is at most∑

q

[
Λdbl

r,s−2(n̄q,mq) + 2n̄q

]
≤ Λdbl

r,s−2

(∑
q

n̄q,
∑
q

mq

)
+ 2 ·

∑
q

n̄q

= Λdbl

r,s−2(|S̈′| − 2n̂,m) + 2(|S̈′| − 2n̂)

≤ Λdbl

r,s−2(Λr,s(n̂, m̂)− 2n̂,m) + 2 · Λr,s(n̂, m̂)− 4n̂.

When m̂ = 2 there are no middle occurrences and, in the worst case, no singletons.
The total number of first and last occurrences is (Λdbl

r,s−1(n̂,m1)+n̂)+(Λdbl
r,s−1(n̂,m2)+

n̂) ≤ Λdbl
r,s−1(2n̂,m) + 2n̂. This concludes the proof of the recurrence.

Lemma 4.4 gives explicit upper bounds on Λr,s and Λdbl
r,s in terms of inductively

defined coefficients {πs,i, π
dbl

s,i } and the ith row-inverse of Ackermann’s function. One
should keep in mind, when reading this lemma and similar lemmas, that we will
ultimately substitute α(n,m)+O(1) for i and that this choice makes the dependence
on the block count m negligible.

Lemma 4.4. Fix parameters i ≥ 1, r ≥ 2, s ≥ 3, and c ≥ s− 2. Let n,m be the
alphabet size and block count and let j be minimal such that m ≤ (ai,j)

c. Then Λr,s

and Λdbl
r,s are bounded as follows:
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Λr,s(n,m) ≤ πs,i

(
n+O((cj)s−2m)

)
,

Λdbl

r,s(n,m) ≤ πdbl

s,i

(
n+O((cj)s−2m)

)
,

where the asymptotic notation hides a constant depending only on r. The coefficients
{πs,i, π

dbl

s,i} are defined as follows:

π1,i = πdbl

1,i = 1,

π2,i = 2,

πs,1 = 2πs−1,1 = 2s−1,

πs,i = 2πs−1,i + πs−2,i(πs,i−1 − 2),(4.2)

πdbl

2,i = 2 · 6r−1,

πdbl

s,1 = 2πdbl

s−1,1 + 1 < (6r−1 + 1)2s,

πdbl

s,i = πdbl

s,i−1 + 2πdbl

s−1,i + (πdbl

s−2,i + 2)πs,i−1.(4.3)

The proof is by induction over tuples (s, i, j), where c and r are regarded as
fixed. (The base cases when s ∈ {1, 2} follow from Lemma 3.3.) At the base case
i = 1 we let j be minimal such that m ≤ a1,j . By invoking Recurrence 4.1 with
m̂ = 2 is it easy to show that Λr,s(n,m) ≤ πs,1(n + O(js−2m)), where the constant
hidden by the asymptotic notation does not depend on s or c. This also implies
that Λr,s(n,m) ≤ πs,1(n + O((cj)s−2m)) when j is defined to be minimal such that
m ≤ ac1,j, since ac1,j = a1,cj = 2cj. In the general case, when i > 1, we apply
Recurrence 4.1 using a uniform block partition with width wc = aci,j−1, so

m̂ = �m/wc� ≤ (ai,j)
c/(ai,j−1)

c = (ai−1,w)
c.

We invoke the inductive hypothesis with parameters i, j − 1 on sequences with wc

blocks (namely, {Šq}). On sequences with m blocks (such as Ś, S̀) we invoke the
inductive hypothesis with i, j and on sequences with m̂ blocks we invoke it with
i − 1, w. The induction goes through smoothly so long as the coefficients {πs,i, π

dbl
s,i}

are defined as in Lemma 4.4, (4.2), and (4.3). See [17, Appendix B] for several
examples of such proofs in this style.8

Lemma 4.5. The ensemble {πs,i, π
dbl
s,i}s≥3,i≥1 satisfies the following, where t =

	 s−2
2 
:

π3,i = 2i+ 2,

πdbl

3,i = Θ(i2),

π4,i, π
dbl

4,i = Θ(2i),

π5,i, π
dbl

5,i ≤ 2i(i+O(1))!,

πs,i, π
dbl

s,i ≤ 2(
i+O(1)

t ) for even s > 4,

πs,i, π
dbl

s,i ≤ 2(
i+O(1)

t ) log(2(i+1)/e) for odd s > 5.

8For an alternative approach see Nivasch [16, section 3]. It differs in two respects. First, it refers
to the slowly growing row-inverses of Ackermann’s function rather than using the “j” parameter of
Ackermann’s function. Second, there is no equivalent to our “c” parameter in [16], which leads to a
system of two recurrences, one for the leading factor of the n term and one for the leading factor of
the js−2m term. For yet another style of analysis, which leads to the same recurrences for πs,i and
πdbl
s,i , see Nivasch [16, section 4], Cibulka and Kynčl [3, section 2], or Sundar [26].
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Proof. First consider the case when s ∈ {3, 4}. Equation (4.2) simplifies to

π3,i = 2 + π3,i−1,

π4,i = 2π3,i + 2(π4,i−1 − 2).

One proves by induction that π3,i = 2i+ 2 and π4,i = 10 · 2i − 4(i + 2). Using these
identities, (4.3) can be simplified to

πdbl

3,i = πdbl

3,i−1 + 2 · (2 · 6r−1) + (1 + 2)(2i− 2),

πdbl

4,i ≤ πdbl

4,i−1 + 2 · πdbl

3,i + (2 · 6r−1 + 2)(10 · 2i−1 − 4(i+ 1)).

A short proof by induction shows πdbl

3,i ≤ 6
(
i+1
2

)
+ 4 · 6r−1(i + 1) and that πdbl

4,i ≤
20(6r−1 + 2)2i. In the general case we have, for s ≥ 5,

πs,i ≤ 2πs−1,i + πs−2,iπs,i−1(4.4)

= 2πs−1,i + πs−2,i(2πs−1,i−1 + πs−2,i−1(2πs−1,i−2

+ πs−2,i−2( · · · + πs−2,2πs,1) · · · ))

=

i−2∑
l=0

2πs−1,i−l ·
l−1∏
k=0

πs−2,i−k + πs,1 ·
i−2∏
k=0

πs−2,i−k.

When s = 5 we have πs−1,i = Θ(2i) and πs−2,i = 2(i+ 1), so (4.4) can be written

=

i−2∑
l=0

Θ(2i−l) · 2(i+ 1)2i · · · 2(i+ 2− l) + πs,1 · 2(i+ 1)2i2(i− 1) · · · 2(3)

= Θ(2i · (i + 1)!) = 2(i+O(1)) log( 2(i+1)
e ).

We prove that there are constants {Cs} such that πs,i ≤ 2(
i+Cs

t ) when s is even and

πs,i ≤ 2(
i+Cs

t ) log(2(i+1)/e) when s is odd. The analysis above shows that C4 and C5

exist. When s > 4 is even, (4.4) is bounded by

≤
i−2∑
l=0

2(
i−l+Cs−1

t−1 ) log( 2(i−l+1)
e ) ·

l−1∏
k=0

2(
i−k+Cs−2

t−1 ) + πs,1 ·
i−2∏
k=0

2(
i−k+Cs−2

t−1 ).

(4.5)

By Pascal’s identity
∑x

k=0

(
i−k+Cs−2

t−1

)
=
(
i+1+Cs−2

t

)
−
(
i−x+Cs−2

t

)
, so (4.5) is bounded

by

≤ 2(
i+1+Cs−2

t ) ·
(

i−2∑
l=0

2(
i−l+Cs−1

t−1 ) log( 2(i−l+1)
e ) − (i−l+1+Cs−2

t ) + πs,1

)(4.6)

≤ 2(
i+1+Cs

t ) for some sufficiently large Cs.
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The sum in (4.6) clearly converges as i→∞, though for some constant values of i− l
(depending on Cs−1 and Cs−2),

(
i−l+Cs−1

t−1

)
log(2(i − l + 1)/e) may be significantly

larger than
(
i−l+1+Cs−2

t

)
. When s > 5 is odd the calculations are similar. By the

inductive hypothesis, (4.6) is bounded by

≤
i−2∑
l=0

2(
i−l+Cs−1

t ) ·
l−1∏
k=0

2(
i−k+Cs−2

t−1 ) log( 2(i−k+1)
e ) + πs,1 ·

i−2∏
k=0

2(
i−k+Cs−2

t−1 ) log( 2(i−k+1)
e )

(4.7)

≤ 2(
i+1+Cs−2

t ) log( 2(i+1)
e ) ·

(
i−2∑
l=0

2(
i−l+Cs−1

t )−(i−l+1+Cs−2
t ) log( 2(i+1)

e ) + πs,1

)

≤ 2(
i+1+Cs

t ) log( 2(i+1)
e ) for some sufficiently large Cs.

Turning to πdbl

s,i , we have

πdbl

s,i = πdbl

s,i−1 + 2πdbl

s−1,i + (πdbl

s−2,i + 2)πs,i−1

(4.8)

= πdbl

s,1 +
i−2∑
l=0

[
2πdbl

s−1,i−l + (πdbl

s−2,i−l + 2)πs,i−1−l

]
.

It is straightforward to show that when s ≥ 4, the bounds on πs,i also hold for πdbl

s,i

with respect to different constants {Ds}. When s = 5, (4.8) becomes

πdbl

5,i = πdbl

5,1 +

i−2∑
l=0

(
2 ·Θ(2i−l) + (Θ(i− l)2) + 2) ·Θ(2i−1−l(i− l)!)

)
= Θ(2i(i + 2)!) ≤ 2(i+D5) log(

2(i+1)
e ) for a sufficiently large D5.

When s > 4 is even, (4.8) implies, by the inductive hypothesis, that

πdbl

s,i ≤ πdbl

s,1 +

i−2∑
l=0

[
2(

i−l+Ds−1
t−1 ) log( 2(i−l+1)

e )+1 + (2(
i−l+Ds−2

t−1 ) + 2)2(
i−1−l+Cs

t )
]

≤ 2(
i+l+Ds

t ) for a sufficiently large Ds.

When s > 5 is odd,

πdbl

s,i ≤ πdbl

s,1 +

i−2∑
l=0

[
2(

i−l+Ds−1
t )+1 + (2(

i−l+Ds−2
t−1 ) log( 2(i−l+1)

e ) + 2)2(
i−1−l+Cs

t ) log( 2(i−l)
e )
]

≤ 2(
i+Ds

t ) log( 2(i+1)
e ) for a sufficiently large Ds.

Given that Lemma 4.5 holds for all i, one chooses i to be minimum such that the
“m” term does not dominate, that is, the minimum i for which j ≤ 3 or (cj)s−2 ≤
n/m. It is straightforward to show that i = α(n,m)+O(1) is optimal, which immedi-
ately gives bounds on Λr,s(n,m) and Λdbl

r,s(n,m) analogous to those claimed for Λr,s(n)
and Λdbl

r,s(n) in Theorem 1.3, excluding the case s = 3, which is dealt with in section 6.

D
ow

nl
oa

de
d 

11
/1

2/
15

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2210 SETH PETTIE

In order to obtain bounds on Λr,s(n) and Λdbl
r,s(n) we invoke Lemma 3.1. For example,

it states that Λr,s(n) = γr,s−2(γr,s(n)) · Λr,s(n, 3n)) + 2n, where γr,s(n) is a nonde-
creasing upper bound on Λr,s(n)/n. The γr,s−2(γr,s(n)) factor may not be constant,
but it does not affect the error tolerance already in the bounds of Theorem 1.3.9

Remark 4.6. Our lower and upper bounds on Λr,s(n) are tight (when r ≥ 3)

inasmuch as they are both of the form n · 2αt(n)/t! +O(αt−1(n)) when s ≥ 4 is even and
n · 2αt(n)(logα(n)+O(1))/t! when s ≥ 5 is odd. However, it is only when s is even that
these bounds are sharp in the Ackermann-invariant sense of [17, Remark 1.1], that
is, invariant under ±O(1) perturbations in the definition of α(n). For example, our
lower and upper bounds on Λr,5(n) are n · (α(n) +O(1))! and n · 2α(n)(α(n) +O(1))!.
The 2α(n) factor gap could probably be closed by substituting Nivasch’s construction
of order-3 DS sequences [16, section 6] for U3(i, j) in section 2, which would lead
to sharp, Ackermann-invariant bounds of Λr,5(n) = n · 2α(n)(α + O(1))!. With a
more careful analysis of the recurrence for πs,i it should be possible to obtain sharp,
Ackermann-invariant bounds on Λr,s(n) for all odd s.

5. Derivation trees. Derivation trees were introduced in [17] to model hi-
erarchical decompositions of sequences. They are instrumental in our analysis of
dblForm(r, 4)-free sequences, in section 6, and of double DS sequences, in section
7. Throughout this section we use the sequence decomposition notation defined in
section 3.4.

A recursive decomposition of a sequence S can be represented as a rooted deriva-
tion tree T = T (S). Nodes of T are identified with blocks. The leaves of T correspond
to the blocks of S, whereas internal nodes correspond to blocks of derived sequences.
Let B(v) be the block of v ∈ T , which may be treated as a set of symbols if we are
indifferent to their permutation in B(v).

Base case. Suppose S = B1B2 is a two-block sequence, where each block contains
the whole alphabet Σ(S). The tree T (S) consists of three nodes u, u1, and u2, where
u is the parent of u1 and u2, B(u1) = B1, B(u2) = B2, and B(u) does not exist. For
every a ∈ Σ(S) call u its crown and u1 and u2 its left and right heads, respectively.
These nodes are denoted cr|a, lh|a, and rh|a.

Inductive case. If S contains m > 2 blocks, choose a uniform block partition
{mq}1≤q≤m̂, that is, one where m1, . . . ,mm̂−1 are equal powers of two and mm̂ may
be smaller. This block partition induces local sequences {Šq}1≤q≤m̂ and an m̂-block

contracted global sequence Ŝ′. Inductively construct derivation trees T̂ = T (Ŝ′) and
{Ťq}1≤q≤m̂, where Ťq = T (Šq). To obtain T (S), identify the root of Ťq (which has

no block) with the qth leaf of T̂ , then place the blocks of S at the leaves of T . This
last step is necessary since only local symbols appear in the blocks of {Ťq}, whereas
the leaves of T must be identified with the blocks of S. The crown and heads of each
symbol a ∈ Σ(S) are inherited from T̂ if a is global or some Ťq if a is local to Sq. See
Figure 2 for a schematic.

5.1. Special derivation trees. It is useful to constrain T to use a uniform
block partition. Every derivation tree generated in this fashion can be embedded in a
full rooted binary tree with height �logm�, though the composition of blocks depends
on how block partitions are chosen. We will generate two varieties of derivation trees.

9For example, when s = 6, γr,s−2(γr,s(n)) = O(2α(2α
2(n)/2 +O(α(n)))) = O(2α(α(n))) is

nonconstant. Nonetheless O(2α(α(n))) · Λr,s(n, 3n) = O(2α(α(n))) · n · 2α2(n)/2 +O(α(n)) = n ·
2α

2(n)/2+O(α(n)).
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Fig. 2. The derivation tree T (S) is the composition of T̂ = T (Ŝ′) and {Ťq}1≤q≤m̂, where

Ťq = T (Šq). A global symbol a ∈ Σ(Ŝ) appears in blocks at the leaf level of T , at the leaf level of T̂ ,

and possibly at higher levels of T̂ .

At one extreme is the canonical derivation tree, where block partitions are chosen in
the least aggressive way possible. At the other extreme is one where block partitions
are guided by Ackermann’s function.

Canonical derivation trees. The canonical derivation tree T �(S) of a sequence S
is obtained by choosing the uniform block partition with m̂ = �m/2�. We form T �(S)
by constructing T �(Ŝ′) recursively and composing it with the trivial three-node base
case trees {T (Šq)}q.

Derivation trees via Ackermann’s function. Given a parameter i ≥ 1, define j ≥ 1
to be minimal such that m ≤ ai,j . If j = 1, then m = ai,1 = 2, meaning T (S) must
be the three-node base case tree. When j > 1 we choose a uniform block partition
with width w = ai,j−1 (which is a power of 2), so m̂ = �m/w� ≤ ai,j/ai,j−1 = ai−1,w.

The global tree T̂ is constructed recursively with parameter10 i − 1 and each local
tree Ťq is constructed recursively with parameter i.

5.2. Projections of the derivation tree. The projection of T onto a ∈ Σ(S),
written T|a, is the tree rooted at cr|a on the node set {cr|a}∪ {v ∈ T | a ∈ B(v)}. The
edges of T|a represent paths in T passing through blocks that do not contain a.

Definition 5.1 (anatomy of a projection tree).
• The leftmost and rightmost leaves of T|a are wingtips, denoted lt|a and rt|a.
• The left and right wings are those paths in T|a extending from lh|a to lt|a and
from rh|a to rt|a.
• Descendants of lh|a and rh|a in T|a are called doves and hawks, respectively.
• A child of a wing node that is not itself on the wing is called a quill.
• A leaf is called a feather if it is the rightmost descendant of a dove quill or
leftmost descendant of a hawk quill.
• Suppose v is a node in T|a. Let wi|a(v) be the nearest wing node ancestor
of v, qu|a(v) the quill ancestral to v, and fe|a(v) the feather descending from
qu|a(v). See Figure 3 for an illustration.

10Note that when i = 1 it does not matter that i − 1 = 0 is an invalid parameter. In this case
w = a1,j−1 = a1,j/2 and m̂ = 2, so T̂ is forced to be a three-node base case tree.
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Fig. 3. In this example v is a hawk leaf in T|a since it is a descendant of rh|a. Its wing node
wi|a(v), quill qu|a(v), and feather fe|a(v) are indicated.

If T (S) is specified, the terms feather and wingtip can also be applied to individual
occurrences in S. For example, an occurrence of a in block B(v) of S is a feather if v
is a feather in T|a.

When T (S) is constructed according to Ackermann’s function, a short proof by
induction shows that the height of each projection tree T|a (distance from cr|a to a
leaf) is at most i+ 1.

6. Upper bounds on dblForm(r, 4)-free sequences. Since order-3 DS se-
quences are necessarily Form(2, 4)-free, we have Λdbl

r,3(n) ≥ Λr,3(n) ≥ λ3(n) = Θ(nα(n)).
In this section we prove tight upper bounds of Λdbl

r,3(n) = O(nα(n)). These bounds
imply λdbl

3 (n) is also O(nα(n)), resolving one of Klazar’s open problems [13].

Our analysis is different in character from all previous analyses of (generalized)
DS sequences. There are two new techniques used in the proof which are worth
highlighting. Previous analyses partitioned the symbols in a block based on some
attributes (first, middle, last, etc.) but did not assign any attributes to the blocks
themselves. In our analysis we must treat blocks differently based on their context
within the larger sequence, that is, according to properties that are independent of
the contents of the block. (See the definition of roosts in section 6.2.) The second
ingredient is an accounting scheme for bounding the proliferation of symbols. Rather
than count the number of occurrences of a symbol, say, b, we assign each occurrence
of b a potential based on its context. If one b in Ŝ′ begets multiple bs in Ŝ, the number
of bs increases, but the aggregate potential of the bs in S may, in fact, be at most the
potential of the originating b in Ŝ′. That is, sometimes proliferating symbols “pay
for themselves.” We need to track changes only in sequence potential, not sequence
length. Amortizing the analysis in this way lets us account for the proliferation of
symbols across many levels of the derivation tree, not just between Ŝ′ and S.

6.1. A potential-based recurrence. Fix a dblForm(r, 4)-free sequence Z and
i� ≥ 1. Define j� to be minimal such that its block count �Z� ≤ ai�,j� and let
T = T (Z) be constructed as in section 5.1 with parameter i�. In this section we
analyze a sequence S encountered in the recursive decomposition of Z, that is, S
is either Z itself or a sequence encountered when recursively decomposing Ẑ ′ and
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{Žq}. Since S ≺ Z, it too must be dblForm(r, 4)-free but we can often say something
stronger. If each occurrence of a symbol in S represents at least two occurrences in
Z, then S must be Form(r, 4)-free.11 Call an occurrence in S terminal if it represents
exactly one occurrence in Z and nonterminal otherwise. In terms of the derivation
tree, an occurrence of a in S is terminal if and only if it has exactly one leaf descendant
in T|a.

Each occurrence of a symbol in S carries a nonnegative integer potential based
on its context within S and even within T (Z). Since the length of S is no more than
its aggregate potential, it suffices to upper bound the potential. Define Υ(n,m) to be
the maximum potential of an m-block sequence over an n-letter alphabet encountered
in decomposing Z. The way potentials are assigned will be discussed shortly. For the
time being it suffices to know that the maximum potential is φ = O(1), all terminals
carry unit potential, and all nonterminals carry potential at least three.

Our goal is to prove that Υ obeys the following recurrence.
Recurrence 6.1.

Υ(n,m) =
∑

1≤q≤m̂

Υ(ňq,mq) + 2 ·
[
φ · Λr,2(n̂,m) + Λdbl

r,2(n̂,m) + n̂
]
+ Υ(n̂, m̂)

+ (r − 1)φ ·m + 2[(r − 1)(i� − 2)]2 · m̂.

Decomposing S as usual, it follows that the maximum potential of local sequences
{Šq}q is

∑
q Υ(ňq,mq), giving the first term of Recurrence 6.1. The sequence Ś of

global first occurrences can be partitioned into terminals Śt and nonterminals Śnt.
After removing the last occurrence of each symbol in Śt, the resulting sequence is
dblForm(r, 3)-free, so its length (and potential) is |Śt| ≤ Λdbl

r,2(n̂,m) + n̂. We endow

each nonterminal in Śnt an initial potential at most φ. (Note that occurrences of a in
Ś correspond to quills in T|a.) Being Form(r, 3)-free, the potential of Śnt is therefore

at most φ · Λr,2(n̂,m). A symmetric analysis is applied to S̀, the sequences of last
occurrences, which gives the second term of Recurrence 6.1.

The global contracted sequence Ŝ′ begets Ś, S̀, and S̄, the first two of which we
have just accounted for. In general |S̄| may be significantly larger than |Ŝ′|. We
account for this proliferation in symbols by showing that the aggregate potential of
S̄ is nonetheless at most that of Ŝ′ plus (r − 1)φ ·m+ 2[(r − 1)(i� − 1)]2 · m̂, which
explains the last three terms of Recurrence 6.1. Consider the sequence S̄q begat by

the middle symbols of block Bq in Ŝ′. We decompose S̄q as follows:
1. Tag any symbol occurring exactly once in S̄q. (Its potential in S̄q will be at

most its potential in Ŝ′.)
2. Tag the first nonterminal occurrence of each symbol in S̄q.
3. Tag the first, second, and last terminal occurrences of each symbol in S̄q.
4. Tag the first r − 1 untagged occurrences (terminal and nonterminal) in each

block of S̄q.
Symbols that are tagged in both steps 2 and 3 have molted; all others are unmolted.
We will say that the nonterminal a tagged in step 2 has molted those terminal as
tagged in step 3. See Figure 4 for a schematic.

We claim S̄q has been completely tagged after step 4. If this were not so, there
must be r symbols a1, . . . , ar in some block B in S̄q. If ak is terminal in B it must

11This is not quite true, but we can make this inference when bounding Λdbl
r,3 asymptotically. See

Remark 4.2 for a discussion of this issue.
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2214 SETH PETTIE

Fig. 4. Here v is an internal node of T|a. Between qu|a(v) and v, a has molted twice: At v’s
parent it molted one a to the right and at v’s grandparent it molted two as to the left.

be preceded by two terminal aks and followed by one terminal ak in S̄q; if ak is
nonterminal in B it must be preceded by a nonterminal ak. Dividing S̄q at the left
boundary of B, we see two occurrences of each of a1, . . . , ar on both the left and right
sides of the boundary, which may take the form of one nonterminal or two terminals.
Since a1, . . . , ak are categorized as global middle in Sq, each appears both before and
after Sq, yielding an instance of dblForm(r, 4) in Z, a contradiction.

The aggregate potential of those symbols tagged in step 4 is at most (r− 1)φ ·m,
which are covered by the second-to-last term of Recurrence 6.1. Suppose that a ∈ Bq

is nonterminal in Ŝ′ but it begets only terminal as in S̄q, that is, no as are tagged in
step 2. This proliferation of as causes no net increase in potential since the a ∈ Bq

carries potential at least 3, which covers the potential of the three terminal as tagged
in step 3. In general, for each molted symbol a, we will tag one nonterminal and
up to three terminals in steps 2 and 3. This will cause no net increase in potential
provided that the a in Bq carries at least the potential of the nonterminal a in S̄q plus
3. In order to avoid cumbersome statements, we will treat the nonterminal a tagged
in step 2 as the “same” a ∈ Bq. For example, if B is a block in S̄q and a ∈ B is
nonterminal, to say the a ∈ B has molted four times means that, in T|a, B has four
ancestors, possibly including itself, and all strict descendants of qu|a(B), which each
have at least one sibling in T|a. This sibling corresponds to an a removed in step 3 at
some stage in the decomposition of S.

In the remainder of this section we explain why it suffices to endow each new
nonterminal quill with a constant potential φ. The analysis above shows that 3·(i�−1)
suffices, which is not constant.12

6.2. Roosts, eggs, and fertility. Our analysis considers properties of blocks
(and of occurrences of symbols) that depend on their context within a larger sequence.

Definition 6.2 (roosts and eggs). Let S be a sequence encountered in the de-
composition of Z.

12Observe that for any a ∈ Σ(Z), the height of T|a is i� + 1 and all quills of T|a are at distance
at least 2 from cr|a. Every nonterminal quill can therefore molt up to i� − 1 times, generating up to
three terminals per molting, each of which carries unit potential.
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GENERALIZED DAVENPORT–SCHINZEL SEQUENCES 2215

Fig. 5. A k-egg is formed when a middle a1 ∈ Bq is dropped into a (k − 1)-roost in Šq.

1. An interval I of zero or more blocks in S is a k-roost if there are k distinct
symbols a1, . . . , ak such that the sequence contains

a1 a2 · · ·ak a2ka
2
k−1 · · · a21 I a21a

2
2 · · ·a2k akak−1 · · · a1,

where b2 refers to two terminal bs or one nonterminal b. The occurrences of
a1 just to the left and right of I are called k-left mature and k-right mature.
A k-mature occurrence of a symbol whose block is a k-roost is infertile. A
k-left mature occurrence that is not infertile is k-left fertile; k-right fertile is
defined analogously. (For any l < k, k-roosts are clearly also l-roosts, and
k-mature occurrences are also l-mature.)

2. An occurrence of a1 in block B of S is a k-egg if the sequence contains

a1 a2 · · ·ak a2ka
2
k−1 · · · a22 B a22a

2
3 · · ·a2k akak−1 · · ·a1.

Note that any middle occurrence of a symbol is a 1-egg.
One may already discern from Definition 6.2 the shape of the rest of the proof.

A k-roost can exist only if the sequence contains a dblForm(k, 4) sequence, so there
cannot be r-roosts. If the proliferation of symbols necessarily leads to k-roosts for
ever larger k, we have a cap on the proliferation of symbols. Lemma 6.3 lists some
straightforward consequences of Defintion 6.2.

Lemma 6.3 (properties of roosts and eggs). Let S be an m-block sequence en-
countered in the recursive decomposition of a dblForm(r, 4)-free sequence Z. Define
{Sq, Šq, Ŝq}1≤q≤m̂ and Ŝ′ = B1 · · ·Bm̂ as usual.

1. No block in S is an r-roost. All r-eggs represent at most three occurrences in
Z.

2. If Bq is a k-roost in Ŝ′, every block of Sq is a k-roost in S.
3. Let B be a block in Sq containing a global symbol a. If B is a (k − 1)-roost

in Šq and the a ∈ Bq is a middle occurrence in Ŝ′, then a ∈ B is a k-egg in
S. See Figure 5.

4. Let B be a block in Sq containing a global symbol a. Suppose the a ∈ Bq is

k-left fertile in Ŝ′ and the a ∈ B is k-left fertile in S. All blocks following
B in Sq are k-roosts in S. A symmetric statement is true of k-right fertile
occurrences. See Figure 6.

6.3. Molting and the evolution of potentials. Consider the status of a
nonterminal symbol a as it descends, in T|a, from qu|a(v) to some leaf v. Since
a ∈ B(qu|a(v)) is a middle symbol at that level (it is not on either wing of T|a), this
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Fig. 6. The shaded blocks are k-roosts. A k-left fertile occurrence of a ∈ Bq in Ŝ′ begets at
most one k-left fertile occurrence in Sq and, in this example, one k-infertile occurrence. Since Bq+1

is a k-roost in Ŝ′, all blocks in Sq+1 are k-roosts in S whether or not they were already k-roosts in
Šq+1.

a begins as a 1-egg and may become 1-fertile (left or right), then 1-infertile, then a
2-egg, 2-fertile, 2-infertile, and so on. It cannot become r-mature (fertile or infertile)
for this would mean that dblForm(r, 4) ≺ Z, so there are at most 3(r− 1) transitions.
Multiple transitions may occur simultaneously. When a nonterminal first becomes a
k-egg, or k-fertile, or k-infertile, its potential becomes φeg

k , φfe
k , or φ

in
k , where

φ = φeg
1 > φfe

1 > φin
1 > · · · > φeg

r−1 > φfe
r−1 > φin

r−1 > φeg
r = 3.

If we can show that each symbol molts O(1) times between status transitions, it
suffices to set the initial potential at φ = O(r) = O(1). This is clearly true of k-egg
→ k-mature transitions. Any k-egg a that molts three as must have molted two of
them to the same side, left or right, making it k-mature. Since a nonterminal can
molt up to three terminals in the molting event that makes it k-mature, it suffices
to set φeg

k − φfe
k = 5. (If this a transitions directly from a k-egg to k-infertile, all the

better, for φin
k < φfe

k .) We now analyze the k-fertile → k-infertile and k-infertile →
(k + 1)-egg transitions.

Lemma 6.4. Fix a block index q ≤ �Ŝ′� and let F ⊂ Bq be those symbols newly
k-left fertile, that is, they were not k-left fertile at any ancestor of Bq in their respec-
tive derivation trees. The total number of terminals molted by F -symbols before they
become k-infertile is at most 2|F |+ (r − 1)

(
i�−1
2

)
.

Proof. Part 4 of Lemma 6.3 implies that so long as symbols in F remain k-fertile,
as they travel from Bq to a block in Sq, to blocks at lower levels of the derivation
tree, they will always be contained in a single block at that level of the tree. In other
words, there is a sequence of nodes (Bq = v1, v2, . . . , vl) in T lying on a path from

Bq = v1 (in Ŝ′), to v2 (in S), to a descendant leaf vl (where l ≤ i�) such that any
symbol a ∈ F is k-left fertile in some prefix of the list B(v1),B(v2), . . . ,B(vl). See
Figure 7. Call a symbol a ∈ F type (f, g) if a molted a terminal to the right at both
B(vf ) and B(vg), for 1 < f < g ≤ l.13 That is, in T|a, B(vf) and B(vg) have right
siblings. Note that during the time in which this a is k-left fertile it can molt at most
once to the left: molting two as to the left would make it k-infertile.

By the pigeonhole principle, if (r− 1)
(
i�−1
2

)
+1 symbols in F molted twice to the

right, then a subset F ′ ⊂ F of r of them has the same type, say, (f, g). However,
this would imply that Z is not dblForm(r, 4)-free. Since k-fertile symbols are middle

13Note that a symbol that molts exactly twice to the right has one type. In general, a symbol
that molts h times to the right is of

(h
2

)
distinct types.

D
ow

nl
oa

de
d 

11
/1

2/
15

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENERALIZED DAVENPORT–SCHINZEL SEQUENCES 2217

Fig. 7. A newly k-left-fertile symbol a ∈ Bq = B(v1) in Ŝ′. As a progresses down T|a it
continues to be k-left fertile at B(v2), . . . ,B(v5). Since it molts to the right at blocks B(v3) and
B(v5) it has type (3, 5). It also molts to the left at B(v3). Were it to molt twice to the left at B(v3),
B(v3) would then become a k-roost and the a ∈ B(v3) k-infertile.

symbols, every symbol in F ′ appears at least once before and after Bq. The occur-
rences of F ′-symbols in B(vg) are nonterminal, so they each represent at least two
occurrences in Z. Finally, the F ′-symbols appear twice at descendants of Bq but to
the right of B(vg). See Figure 7.

To sum up, we let each F -symbol molt once to the left and once to the right while
k-left fertile. Some subset can molt more than once to the right, but the total number
of such terminals molted by these symbols is at most (r − 1)

(
i�−1
2

)
.

A nearly symmetric analysis can be applied to right fertile symbols. The asym-
metry comes from the fact that nonterminals can molt two terminals to the left but
only one to the right.

Lemma 6.5. Fix a block index q ≤ �Ŝ′� and let F ⊂ Bq be those symbols newly
k-right fertile, that is, they were not k-left fertile at any ancestor of Bq in their
respective derivation trees. The total number of terminals molted by F -symbols before
they become k-infertile is at most 2|F |+ (r − 1)(

(
i�−1
2

)
+ i� − 1).

Proof. The argument is the same as above, except that we allow types (f, f) if

a symbol molts twice to the left at B(vf). There are now at most (
(
i�−1
2

)
+ i� − 1)

possible types, and we cannot see r symbols of the same type.

According to Lemmas 6.4 and 6.5, it suffices to set φfe
k = φin

k +2. The total number
of molted terminals unaccounted for, over all q, all k < r, counting both k-left fertile
and k-right fertile symbols in Bq, is m̂ ·(r−1)2(2

(
i�−1
2

)
+ i�−1) < m̂ · [(r−1)(i�−1)]2,

which are covered by the last term of Recurrence 6.1.

The remaining task is to analyze the k-infertile → (k + 1)-egg transition.

Lemma 6.6. Let u, v, w be distinct nodes such that a, b ∈ B(u), a ∈ B(v), b ∈
B(w), where v is the parent of u in T|a and w is the parent of u in T|b. If a, b were
k-infertile in blocks B(v) and B(w), then at least one of a, b became a (k+1)-egg when
it was inserted into B(u).
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Proof. This is a consequence of parts 2 and 3 of Lemma 6.3. Without loss of
generality w is a strict ancestor of v, so a was inserted into B(u) before b was inserted
into B(u). Since the a ∈ B(v) was k-infertile, B(v) was a k-roost, by definition. By
part 2 of Lemma 6.3, B(u) became a k-roost after a was inserted there. By part 3 of
Lemma 6.3, when b was inserted in B(u) it became a (k + 1)-egg.

Lemma 6.7. Let I ⊂ Σ(Ŝq) be those nonterminals that were k-infertile, non-
(k+1)-eggs in Bq but became (k+1)-eggs in Sq. The number of terminals molted by I

symbols while they were k-infertile, non-(k+1)-eggs is at most 2|I|+(r−1)(2
(
i�−2
2

)
+

i� − 2).
Proof. Lemma 6.6 implies that on a path from Bq to the root of T we en-

counter nodes v1 = Bq, v2, . . . , vl, not necessarily adjacent, such that, for each symbol
a ∈ I, the set of blocks in which a is k-infertile and not a quill is some prefix of
B(v1), . . . ,B(vl), where l ≤ i�− 2. Call an a ∈ I type (→, f, g) if it molted a terminal
to the right in both B(vf ) and B(vg), where 1 ≤ f < g ≤ l. Call it type (←, f, g),
where 1 ≤ f ≤ g ≤ l, if it molted a terminal to the left in both B(vf ) and B(vg), or
two terminals to the left if f = g. There are 2

(
l
2

)
+ l distinct types. There cannot

be r symbols of one type, for this would imply that Z is not dblForm(r, 4)-free. (The
argument is the same as in the proof of Lemma 6.4.) Since every symbol that molts
more than two terminals is of at least one type, the total number of terminals molted
by I while being k-infertile, non-(k + 1)-eggs is 2|I|+ (r − 1)(2

(
i�−2
2

)
+ i� − 2).

We set φin
k −φeg

k+1 = 2, so the total number of terminals unaccounted for, over all
q < m̂ and k < r, is at most m̂ · [(r − 1)(i� − 2)]2, which is covered by the last term
of Recurrence 6.1. Given the constraints we have established on potentials it suffices
to set φ = φeg

1 = 7(r− 1) + 1, since |φeg
k − φfe

k | = 5, |φfe
k − φin

k | = |φin
k − φeg

k+1| = 2, and
φeg
r = 3.

Remark 6.8. Observe the asymmetry in the arguments of Lemmas 6.4–6.5 and
Lemma 6.7. In Lemmas 6.4 and 6.5 we are tracking moltings that will happen “in
the future” (below the level of S in T ), whereas in Lemma 6.7 we are accounting for
moltings that have already occurred at and above the level of Ŝ′ in T .

6.4. Wrapping up the analysis. Since Λr,2(·, ·) and Λdbl
r,2(·, ·) are both linear

and m̂ < m, we can simplify Recurrence 6.1 to

Υ(n,m) ≤
∑

1≤q≤m̂

Υ(ňq,mq) + Υ(n̂, m̂) + C[n̂+ (i�)2m]

for some constant C depending only on r. A straightforward proof by induction shows
that for any i ≤ i� and j minimal such that m ≤ ai,j , Υ(n,m) ≤ Ci(n + (i�)2jm).
Putting it all together we have, for ‖Z‖ = n� and �Z� = m�,

(6.1) |Z| ≤ Λdbl

r,3(n
�,m�) ≤ Υ(n�,m�) ≤ Ci�n� + C(i�)3j�m�.

Equation (6.1) leads to an upper bound of Λdbl
r,3(n,m) = O(nα(n,m) + mα3(n,m)),

which, by Lemma 3.1, implies an upper bound of Λdbl
r,3(n) = O(nα3(n)). Theorem 6.9

reduces this to O(nα(n)), which is asymptotically tight since Λdbl
r,3(n) = Ω(λ3(n)).

Theorem 6.9. For any r ≥ 2, Λdbl
r,3(n) = Θ(nα(n)) and Λdbl

r,3(n,m) = Θ(nα(n,m)+
m).

Proof. Let S be a dblForm(r, 4)-free sequence. To bound |S| asymptotically we
can assume, using Lemmas 3.1 and 3.3, that S consists of m ≤ 2n blocks. (If there are
m > 2n blocks, remove up to r−1 symbols at block boundaries to make it r-sparse. If
the sequence is r-sparse, we can discard a constant fraction of occurrences to partition
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Fig. 8. An example of a canonical derivation tree for S. Dashed boxes isolate the base case
trees that assign a, b ∈ Σ(S) their crowns and heads.

the sequence into 2n blocks.) Choose i to be minimal such that m ≤ ai,j , where j =
max{3, �n/m�}. Partition S = S1 · · ·Sm̂ into m̂ = �m/i2� intervals, each consisting
of i2 blocks. Define Ŝ, Ŝ′, Šq, etc., as usual. Applying (6.1) with i� = i, we have |Ŝ′| ≤
C(in̂+ i3jm̂) ≤ C(i(n̂+ jm)) = O(in). Since each Śq, S̀q, and S̄q is dblForm(r, 3)-free

and Λdbl
r,2(nq,mq) = O(nq + mq) is linear, it follows that |Ŝ| = O(in + m) = O(in).

We now apply (6.1) to local symbols with i� = 1, that is, for each index q ≤ m̂, j is
chosen to be minimal such that mq ≤ a1,j . Since a1,j = 2j, j = �logmq� ≤ �log i2�. It
follows that |Š| =

∑
q |Šq| ≤

∑
q C(ňq +mq logmq) = O(ň +m log(i2)) = O(n log i).

Since i = α(n,m) +O(1), |S| = |Ŝ|+ |Š| = O(nα(n,m)) = O(nα(n)).
Theorem 6.9 and Lemma 1.2 immediately give us asymptotically sharp bounds

on the extremal functions for certain doubled forbidden sequences.
Corollary 6.10 (see Nivasch [16, Remark 5.1], Pettie [21], Geneson, Prasad,

and Tidor [8], and Klazar [13, p. 13]).

λdbl

3 (n) = Θ(Λdbl

2,3(n)) = Θ(nα(n)),

Ex(dbl(abcacbc), n) = Θ(Λdbl

4,3(n)) = Θ(nα(n)), see [21],

Ex(dbl(abcabca), n) = Θ(Λdbl

3,3(n)) = Θ(nα(n)), see [16],

and, more generally,

Ex(dbl(1 · · · k 1 · · · k 1), n) = Θ(Λdbl

r,3(n)) = Θ(nα(n)),

where r = (k − 1)3 + 1.

7. Double DS sequences. Recall from section 5.1 that the canonical derivation
tree T �(S) is obtained by decomposing S in the least aggressive way possible, choosing
m̂ = ��S�/2� whenever �S� > 2. Figure 8 gives an example of such a tree.

The structure of the canonical derivation tree is, in many respects, simpler than
general derivation trees. For example, all wing nodes in any projection tree T|a, where
a ∈ Σ(S), have either one or two children. Those with two children (branching nodes)
are associated with precisely one quill and therefore one feather,14 so counting the
number of feathers is tantamount to counting branching wing nodes.

14Recall that a feather of T|a is the rightmost descendant of a dove quill or leftmost descendant
of a hawk quill.
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Nesting was a concept introduced in [17] to analyze odd-order DS sequences. Here
we generalize it to deal with double DS sequences.

Definition 7.1 (nesting). Let B be a block of S containing a, b ∈ Σ(S). If S
contains either

a b b B b b a or b a a B a a b,

then a and b are called double-nested in B.
Lemma 7.2 can be thought of as a generalization of [17, Lemma 4.4] to deal with

double-nestedness. Whereas [17, Lemma 4.4] assumed any derivation tree, Lemma 7.2
refers to the canonical derivation tree T �(S′) as this makes the proof slightly simpler.
This assumption is actually without much loss of generality since any derivation tree
obtained with uniform block partitions is “contained” in the canonical derivation tree,
that is, its blocks are subsequences of the corresponding blocks in the canonical tree.

Lemma 7.2. Consider a sequence S′, its canonical derivation tree T �(S′), and a
leaf v for which a, b ∈ B(v). Let S be obtained from S′ by substituting, for each leaf
u �= v, a sequence S(u) containing at least two copies of each symbol in B(u). (The
block B(v) appears verbatim in S.) If v is neither a wingtip nor a feather in both T �

|a
and T �

|b , then, in S, a and b are double-nested in B(v).
Proof. Without loss of generality we can assume that v is a dove in T �

|a and cr|b
is ancestral to cr|a. Because v is neither a wingtip nor a feather in T �

|a, it must be

distinct from the leftmost and rightmost leaf descendants of wi|a(v), namely, lt|a and
fe|a(v). Moreover, since v is a dove in T �

|a it descends from the right child of wi|a(v),
namely, qu|a(v). Partition S into four intervals:

I1: everything preceding B(lt|a).
I2: everything from I1 to the beginning of B(v).
I3: everything from the end of B(v) to the end of B(fe|a(v)).
I4: everything following I3.

If b appeared in both I1 and I4, then a, b ∈ B(v) would clearly be double-nested in S.
Therefore it suffices to consider two cases: (1) I1 contains no bs, and (2) I4 contains
no bs. Figures 9 and 10 illustrate the two cases.

Case 1. The wingtip lt|b must be in interval I2, though it may be identical to
lt|a. Since wi|a(v) is ancestral to both lt|b and v, and is a strict descendant of cr|b,
it follows that v is a dove in T �

|b and that wi|b(v) is a descendant of wi|a(v). The

rightmost descendant of wi|b(v) in T|b is fe|b(v), which is distinct from v. Since wi|a(v)
is a descendant of lh|a, any descendant of rh|a, such as rt|a, lies to the right of fe|b(v),
in interval I4. By the same reasoning, rt|b lies in I4.

Regardless of whether lt|a and lt|b are identical or distinct, B(v) is preceded, in
S, by either abb or baa. In the first case lt|a, lt|b, v, fe|b(v), rt|a certify that a, b are
double-nested in B(v); see Figure 9. In the latter case lt|b = lt|a, v, fe|a(v), rt|b certify
that a, b are double-nested in B(v).

Case 2. The wingtip rt|b must lie in I3, so v and rt|b are both descendants of
qu|a(v), the right child of wi|a(v). It follows that v is a hawk in T �

|b and that no

descendants of wi|b(v) are in interval I1. Since fe|b(v) is the leftmost descendant of
wi|b(v) in T �

|b , and fe|b(v) �= v, the distinct nodes lt|a, fe|b(v), v, rt|b, rt|a certify that

a, b are double-nested in B(v). See Figure 10.
Recurrence 7.3 is essentially the same as the corresponding recurrence from [17].
Recurrence 7.3. Let S be an m-block, order-s DS sequence over an n-letter

alphabet and let T = T �(S) be its canonical derivation tree. Define Φs(n,m) to be the
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Fig. 9. In Case 1 interval I1 contains no bs. Contrary to the depiction, lt|a and lt|b are not
necessarily distinct, nor are wi|a(v) and wi|b(v) or cr|a and cr|b. In this depiction qu|a(v), the right

child of wi|a(v), happens to be identical to wi|b(v).

Fig. 10. In Case 2 interval I4 contains no bs. Contrary to the depiction, rt|b, and fe|a(v) are
not necessarily distinct.

maximum number of feathers of one type (dove or hawk) in such a sequence, where
feather is with respect to T . For any s ≥ 2,

Φs(n, 2) = 0,

Φ2(n,m) < m,
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and for any uniform block partition {mq}1≤q≤m̂ and alphabet partition {n̂}∪{ňq}1≤q≤m̂,

Φs(n,m) ≤
m̂∑
q=1

Φs(ňq,mq) + Φs(n̂, m̂) + Φs−1(n̂,m) + n̂.

Proof. Suppose we only wish to bound dove feathers. If there are only two
blocks, then all occurrences are wingtips and feathers are not wingtips. This gives
the first equality. In the most extreme case every nonwingtip is a dove feather, so
Φs(n,m) ≤ λs(n,m)−2n. In particular, Φ2(n,m) ≤ λ2(n,m)−2n < m. Decompose S
into Ŝ, Ŝ′, Śq, S̀q, S̄q in the usual way with respect to the given uniform block partition.

Let T̂ = T �(Ŝ′) be the canonical derivation tree of the contracted global sequence
Ŝ′. It follows that Śq is an order-(s − 1) DS sequence. Define T́q = T �(Śq) to
be its canonical derivation tree. The branching nodes on the left wing of T|a, where
a ∈ Σ(Śq), consist of (i) the branching nodes on the left wing of T̂|a, (ii) the branching
nodes on the left wing of (T́q)|a, and (iii) the crown ćr|a of (T́q)|a, which is on the

left wing of T|a but not (T́q)|a. Each branching node is identified with one feather in
T|a. The total number of branching nodes/feathers covered by (i), summed over all

a ∈ Σ(Ŝ), is at most Φs(n̂, m̂). The total number covered by (ii), summed over all
q ≤ m̂ and a ∈ Σ(Ŝq), is

∑
q Φs−1(ńq,mq) ≤ Φs−1(n̂,m). The number covered by

(iii) is clearly n̂, which gives the last inequality.
Recurrence 7.4 generalizes [16, Recurrence 3.1] and [17, Recurrences 3.3 and 5.2],

from DS sequences to double DS sequences. When s = 3 or s ≥ 4 is even, Recur-
rence 7.4 is substantively no different from Recurrence 4.3 for dblForm(r, s + 1)-free
sequences.

Recurrence 7.4. Let s, n, and m be the order, alphabet size, and block count
parameters. Let {mq}1≤q≤m̂ be a uniform block partition, where m̂ ≥ 2, and {n̂} ∪
{ňq}1≤q≤m̂ be an alphabet partition. When m̂ = 2, for any s ≥ 3,

λdbl

s (n,m) ≤
∑

q∈{1,2}
λdbl

s (ňq,mq) + λdbl

s−1(2n̂,m) + 2n̂.

When m̂ > 2 and either s = 3 or s ≥ 4 is even,

λdbl

s (n,m) ≤
∑
q

λdbl

s (ňq,mq) + λdbl

s (n̂, m̂) + 2 · λdbl

s−1(n̂,m) + λdbl

s−2(λs(n̂, m̂),m)

+ 2 · λs(n̂, m̂),

and when s ≥ 5 is odd,

λdbl

s (n,m) ≤
m̂∑
q=1

λdbl

s (ňq,mq) + λdbl

s (n̂, m̂) + 2 · λdbl

s−1(n̂,m) + λdbl

s−2(2 · Φs(n̂, m̂),m)

+ 4 · Φs(n̂, m̂) + λdbl

s−3(λs(n̂, m̂),m) + 2 · λs(n̂, m̂).

Proof. First consider the case when s ≥ 5 is odd. Let S be an order-s double DS
sequence, decomposed into Ŝ and {Šq} as usual. The contribution of local symbols is∑

q λ
dbl
s (ňq,mq). If a global symbol occurs exactly once in an Ŝq this occurrence is a
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singleton. Let Ṡ ≺ Ŝ be the subsequence of singletons and S̈ ≺ Ŝ be the subsequence
of nonsingletons. By definition Ṡ is partitioned into m̂ blocks, so |Ṡ| ≤ λdbl

s (n̂, m̂).
Symbols in Σ(S̈q) are classified as first, last, and middle if they appear, in S̈, after S̈q

but not before, before S̈q but not after, and both before and after S̈q, respectively.
In the worst case these three criteria are exhaustive. However, it may be that all
nonsingleton occurrences of a symbol appear exclusively in Σ(S̈q). In this case we call

the symbol first if it appears after interval q in Ṡ and last if it is not first and appears
before interval q in Ṡ. Define Śq, S̀q, S̄q ≺ S̈q to be the subsequences of first, last, and

middle occurrences in S̈q.

If we remove the last occurrence of each letter from Śq, or the first occurrence of

each letter from S̀q, the resulting sequence is an order-(s − 1) double DS sequence.
The contribution of first and last nonsingletons is therefore at most∑

q

[
λdbl

s−1(ńq,mq) + ńq + λdbl

s−1(ǹq,mq) + ǹq

]
≤ 2(λdbl

s−1(n̂,m) + n̂).

Obtain S̈′ = B1 · · ·Bm̂ from S̈ by contracting each interval S̈q into a single block Bq.

Since occurrences in S̈′ each represent at least two occurrences in S̈, we can conclude15

that |S̈′| ≤ λs(n̂, m̂).
Let T̈ = T �(S̈′) be the canonical derivation tree of S̈′. Define S̃′ to be the

subsequence of S̈′ consisting of feathers with respect to T̈ (both dove and hawk) and
let S̃ be the subsequence of S̈ begat by symbols in S̃′. It follows that |S̃′| ≤ 2·Φs(n̂, m̂)
since Φs only counts feathers of one type (dove or hawk). Define S̊′ ≺ S̈′ to be
the subsequence of nonfeather, nonwingtips with respect to T̈ , and define S̊ ≺ S̈
analogously. Since S̃ consists solely of middle symbols, removing the first and last
occurrences of each letter in S̃q leaves an order-(s− 2) double DS sequence, hence

|S̃| =
∑
q

|S̃q| ≤
∑
q

(λdbl

s−2(ñq,mq) + 2ñq)

≤ λdbl

s−2

(∑
q

ñq,m

)
+ 2
∑
q

ñq

≤ λdbl

s−2(|S̃′|,m) + 2(|S̃′|)
≤ λdbl

s−2(2 · Φs(n̂, m̂),m) + 4 · Φs(n̂, m̂).

We have accounted for every part of S except for S̊. Fix an interval q and a, b ∈ Σ(S̊q).

Since a, b ∈ Bq are neither feathers nor wingtips in T̈ , Lemma 7.2 implies that S̈

contains a b b S̈q b b a. Suppose we remove the first and last occurrences of each letter

in S̊q. (These letters are underlined below.) The resulting sequence must be an order-
(s − 3) double DS sequence, for if it contained a doubled alternating sequence with
length s− 1, which is even, we would see either

a b b

∣∣∣∣∣∣
s−1 alternations︷ ︸︸ ︷

a a b b · · · a a b b

∣∣∣∣∣∣ b b a or a b b

∣∣∣∣∣∣
s−1 alternations︷ ︸︸ ︷

b b a a · · · b b a a

∣∣∣∣∣∣ b b a,

15This is not quite true. As discussed in Remark 4.2, we can make this inference when bounding
λdbl
s asymptotically.
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contradicting the fact that S is an order-s double DS sequence. We can therefore
bound |S̊| by ∑

q

|S̊q| ≤
∑
q

(λdbl

s−3 (̊nq,mq) + 2n̊q)

≤ λdbl

s−3

(∑
q

n̊q,m

)
+ 2
∑
q

n̊q

≤ λdbl

s−3(|S̊′|,m) + 2|S̊′|
≤ λdbl

s−3(|S̈′| − 2n̂,m) + 2(|S̈′| − 2n̂)

≤ λdbl

s−3(λs(n̂, m̂)− 2n̂,m) + 2(λs(n̂, m̂)− 2n̂).

This establishes the recurrence for odd s ≥ 5. When s = 3 or s ≥ 4 is even, we ignore
the distinction between feathers and nonfeathers and bound |S̄| by λdbl

s−2(λs(n̂, m̂) −
2n̂,m) + 2(λs(n̂, m̂) − 2n̂). When S = S1S2 consists of m̂ = 2 intervals, no symbols
are classified as middle, so it suffices to account for first, last, and local occurrences
only. After discarding the last occurrence of each symbol from Ŝ1 and the first from
Ŝ2, what remains are order-(s− 1) double DS sequences, so |Ŝ| ≤ 2n̂+ λdbl

s−1(n̂,m1)+
λdbl
s−1(n̂,m2) ≤ 2n̂+ λdbl

s−1(2n̂,m).
Recurrence 7.5 combines the content of [17, Recurrences 3.3 and 5.2] but is pre-

sented in the style of Recurrence 7.4. The proof is essentially the same as that of
Recurrence 7.4 except that we do not need to distinguish singletons from nonsingle-
tons, nor do we need to remove symbols from Śq, S̀q, S̃q, S̊q, or S̄q in order to make
them double DS sequences with order s− 1 or s− 2 or s− 3, as the case may be.

Recurrence 7.5. Let s, n, and m be the order, alphabet size, and block count
parameters. Let {mq}1≤q≤m̂ be a uniform block partition, where m̂ ≥ 2, and let
{n̂} ∪ {ňq}1≤q≤m̂ be an alphabet partition. When m̂ = 2, for any s ≥ 3,

λs(n,m) ≤
∑

q∈{1,2}
λs(ňq,mq) + λs−1(2n̂,m).

When m̂ > 2 and either s = 3 or s ≥ 4 is even,

λs(n,m) ≤
∑
q

λs(ňq,mq) + 2 · λs−1(n̂,m) + λs−2(λs(n̂, m̂)− 2n̂,m),

and when s ≥ 5 is odd,

λs(n,m) ≤
m̂∑
q=1

λs(ňq,mq) + 2 · λs−1(n̂,m) + λs−2(2 · Φs(n̂, m̂),m)

+ λs−3(λs(n̂, m̂),m).

Lemma 7.6 states some bounds on Φs, λs, and λdbl
s in terms of coefficients {φs,i,

δs,i, δ
dbl

s,i} and the ith row-inverse of Ackermann’s function, for any i ≥ 1. Refer to [17,
Appendix B], for proofs of similar lemmas, and to the discussion following Lemma 4.4.

Lemma 7.6. Fix parameters i ≥ 1, s ≥ 3, and c ≥ s − 2 and let n,m be the
alphabet size and block count. Let j be minimal such that m ≤ (ai,j)

c. Then Φs, λs,
and λdbl

s are bounded by
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Φs(n,m) ≤ φs,i

(
n+O((cj)s−2m)

)
,

λs(n,m) ≤ δs,i
(
n+O((cj)s−2m)

)
,

λdbl

s (n,m) ≤ δdbl

s,i

(
n+O((cj)s−2m)

)
,

where {φs,i, δs,i, δ
dbl

s,i} are defined as follows:

φ2,i = 0, all i,

φs,1 = φs−1,1 + 1, s ≥ 3,

φs,i = φs,i−1 + φs−1,i + 1, s ≥ 3, i ≥ 2,

δ1,i = 1, all i,

δ2,i = 2, all i,

δdbl

1,i = 2, all i,

δdbl

2,i = 5, all i,

δs,1 = 2δs−1,1 = 2s−1, s ≥ 3,

δdbl

s,1 = 2(δdbl

s−1,1 + 1) = 2s+1 − 2s−2 − 2, s ≥ 3,

δs,i =

{
2δs−1,i + δs−2,i(δs,i−1 − 2),

2δs−1,i + 2δs−2,iφs,i−1 + δs−3,iδs,i−1,

s = 3 or even s ≥ 4,

odd s ≥ 5,

δdbl

s,i =

{
δdbl
s,i−1 + 2δdbl

s−1,i + (δdbl
s−2,i + 2)δs,i−1,

δdbl

s,i−1 + 2δdbl

s−1,i + 2(δdbl

s−2,i + 2)φs,i−1 + (δdbl

s−3,i + 2)δs,i−1,

s = 3 or even s ≥ 4,

odd s ≥ 5.

When applying Lemma 7.6, the tightest bounds are obtained by setting i =
α(n,m) + O(1), which is α(n) + O(1) whenever j = O(1). Lemma 7.7 gives closed-
form bounds on the coefficients {δs,i, δdbl

s,i , φs,i}, which immediately yield sharp bounds
on the extremal functions λs(n,m) and λdbl

s (n,m) for DS and double DS sequences
partitioned into blocks.

Lemma 7.7. For all s ≥ 3, i ≥ 1, we have

φs,i =

(
i+ s− 2

s− 2

)
− 1,

δ3,i = 2i+ 2,

δdbl

3,i = Θ(i2),

δ4,i, δ
dbl

4,i = Θ(2i),

δ5,i, δ
dbl

5,i = Θ(i2i),

δs,i, δ
dbl

s,i ≤ 2(
i+O(1)

t ), where t = 	 s−2
2 
.

Proof. The expression for φs,i holds in the base cases, when s = 2 or i = 1. By
Pascal’s identity it holds in general since

φs,i = φs,i−1 + φs−1,i + 1 =

(
i+ s− 3

s− 2

)
+

(
i+ s− 3

s− 3

)
− 1 =

(
i+ s− 2

s− 2

)
− 1.

D
ow

nl
oa

de
d 

11
/1

2/
15

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2226 SETH PETTIE

When s ∈ {3, 4}, δs,i and δdbl

s,i are identical to πs,i, and πdbl

s,i and therefore satisfy

the same bounds from Lemma 4.5. Define C4 such that δ4,i ≤ 2i+C4 . Assuming
inductively that for some sufficiently large C5, δ5,i−1 ≤ (i− 1)2(i−1)+C5 , we have

δ5,i ≤ 2δ4,i + 2δ3,iφ5,i−1 + δ2,iδ5,i−1

≤ 2i+C4+1 + 2(2i+ 2) ·
(
i+2
3

)
+ 2 · (i− 1)2i−1+C5

≤ i2i+C5 .

We claim that there are constants {Cs} such that, for all s > 5, δs,i ≤ 2(
i+Cs

t ). When
s > 4 is even,

δs,i ≤ 2δs−1,i + δs−2,iδs,i−1

≤ 2(
i+Cs−1

t−1 )+1 + 2(
i+Cs−2

t−1 )2(
i−1+Cs

t )

≤ 2(
i+Cs

t ) for some Cs > Cs−1 > Cs−2.

When s > 5 is odd, whether s − 2 = 5 or not, δs−2,i ≤ i2(
i+Cs−2

t−1 ) by the inductive
hypothesis, so

δs,i ≤ 2δs−1,i + 2δs−2,iφs,i−1 + δs−3,iδs,i−1

≤ 2(
i+Cs−1

t )+1 + i2(
i+Cs−2

t−1 )+1 ·
(
i+s−3
s−2

)
+ 2(

i+Cs−3
t−1 )2(

i−1+Cs
t )

≤ 2(
i+Cs−1

t )+1 + i2(
i+Cs−2

t−1 )+1 ·
(
i+s−3
s−2

)
+ 2−(Cs−Cs−3)2(

i+Cs
t−1 )+(

i−1+Cs
t )(7.1)

≤ 2(
i+Cs

t ).(7.2)

Inequality (7.1) follows since t − 1 ≥ 1 and inequality (7.2) follows since, for Cs

sufficiently large, 2(
i+Cs

t ) dominates both poly(i) · 2(
i+Cs−2

t−1 ) and 2(
i+Cs−1

t )+1. It is
straightforward to show the same bounds hold on δdbl

s,i , for s ≥ 4, with respect to

different constants {Ds}. That is, δdbl

s,i ≤ 2(
i+Ds

t ) when s �= 5 and δdbl

5,i ≤ i2i+D5 .
Choosing i = α(n,m) +O(1), Lemmas 7.6 and 7.7 imply that

λ3(n,m) = O((n+m)α(n,m)),

λdbl

3 (n,m) = O((n+m)α2(n,m)),

λ4(n,m), λdbl

4 (n,m) = O((n+m)2α(n,m)),

λ5(n,m), λdbl

5 (n,m) = O((n+m)α(n,m)2α(n,m)),

λs(n,m), λdbl

s (n,m) = O((n+m)2α
t(n,m)/t! +O(αt−1(n,m))).

When m = O(n) these bounds are all sharp, with the exception of λdbl
3 , which was

already handled in section 6. Using the best transformations from 2-sparse to blocked
sequences from Lemma 3.1, we obtain all the bounds on λs and λdbl

s claimed in The-
orem 1.3, except at s = 5, where we only get λ5(n) = O(α(α(n))) · λ5(n, 3n) and
λdbl
5 (n) = O(α(α(n))) · λdbl

5 (n, 3n). Refer to [17, section 6.2] for an ad hoc method to
eliminate this α(α(n)) factor.

8. Generalized constructions of nonlinear sequences. Lower bounds on
generalized DS sequences are generally expressed in an ad hoc manner. Nonetheless,
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all prior constructions can be expressed in terms of three basic operations: compo-
sition, preshuffling, and postshuffling.16 The nominal purpose of this section is to
establish specific lower bounds on certain forbidden subsequences. However, its true
contribution is a new succinct notation that is expressive enough to capture prior
sequence constructions and suggest numerous variations.

Recall from section 2.1 that the difference between postshuffling and preshuffling
is in how blocks of one sequence are merged with copies of another. In Usub � Ubot

symbols from Usub are inserted at the end of blocks in copies of Ubot, whereas in
Usub � Ubot they are inserted at the beginning of blocks. It is not immediately clear
why these two shuffling strategies should yield sequences with different properties.
Consider the projection of symbols R = {a, . . . , z} in a common block B of Utop,
where all symbols in R are middle occurrences in B. If Utop was constructed via
a series of composition and postshuffling operations, the projection of Utop onto R,
ignoring repetitions, would be

a b · · · z (z y · · · a) z y · · · a,

whereas if preshuffling were used the projection onto R would be

a b · · · z (a b · · · z) z y · · · a.

In a subsequent composition event Usub = Utop ◦Umid, the canonical ordering of R
in Umid(B) is identical to their ordering in Utop, in the case of preshuffling, or the
reversal of that ordering in the case of postshuffling.

In this section we explore the complexity of sequences avoiding “zig-zagging”
patterns, which can be viewed as one natural generalization of DS sequences. Recall
the definitions of Nk,Mk, and Zk:

Nk = 12 · · · (k + 1)k · · · 12 · · · (k + 1),

Mk = 12 · · · (k + 1)k · · · 12 · · · (k + 1)k · · · 1,
Zk = 12 · · · (k + 1)k · · · 12 · · · (k + 1)k · · · 12 · · · (k + 1).

Note that N1 = abab,M1 = ababa, and Z1 = ababab generalize order-2, -3, and
-4 DS sequences. Klazar and Valtr [14] and Pettie [21] proved that Ex(Nk, n) =
Θ(λ2(n)) = Θ(n) and that for any k ≥ 1, Ex({Mk, ababab}, n) = Θ(λ3(n)) =
Θ(nα(n)). (That is, avoiding both Mk and ababab are equivalent to just avoiding
M1.) One might guess that zig-zagging patterns, in general, mimic the behavior of
the corresponding order-s DS sequences.

We prove two results that, taken together, are rather surprising. Theorems 8.5
and 8.6 state the following in a more precise fashion:

1. For all t, there exists a k such that Ex(Mk, n) = Ω(nαt(n)).

2. For all t, there exists a k such that Ex(Zk, n) = Ω(n2(1+o(1))αt(n)/t!).
Overview. We define two classes of nonlinear sequences. Class I sequences have

lengths Θ(nαt(n)) and Class II sequences have length n2(1+o(1))αt(n)/t! for any t ≥ 1.
Both Class I and Class II sequences are parameterized by a binary pattern π over
the alphabet {�, �}, that is, π = π1π2 · · ·π|π| ∈ {�,�}|π|. The diagonals in π have

16The one possible exception to this blanket statement is Nivasch’s construction [16] of order-3
DS sequences with length 2nα(n)−O(n). That construction’s shuffling operation selectively applies
postshuffling to first occurrences and preshuffling to last occurrences, so it is still possible to view it
through the prism of these three basic operations.

D
ow

nl
oa

de
d 

11
/1

2/
15

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2228 SETH PETTIE

the following interpretation. Consider any set {a1, . . . , al} of symbols in a sequence
Tπ of type π. A maximally intertwined configuration is one in which each pair of
symbols in {a1, . . . , al} alternates the maximum number of times. In Tπ all maximally
intertwined configurations will take the form Aπ1Aπ2 · · ·Aπ|π| , where A� = a1 · · · al
and A� = al · · ·a1. Class I and II sequences are defined in sections 8.1 and 8.2 and
their forbidden sequences are analyzed in section 8.3.

8.1. Class I sequences. The sequence Tπ(i, j) consists of a mixture of live and
dead blocks. It is parameterized by a pattern π, which always begins with �. The base
cases for Tπ are given below. (Recall that live blocks are indicated with parentheses
and dead blocks with angular brackets.)

T��(i, j) = (12 · · · j) 〈j · · · 21〉 , one live block, one dead, for any i,

T��(i, j) = (12 · · · j) 〈12 · · · j〉 , one live block, one dead, for any i,

Tπ(1, j) =

{
(12 · · · j) 〈j · · · 21〉
(12 · · · j) 〈12 · · · j〉

if π|π| = � and |π| > 2,
if π|π| = � and |π| > 2,

Tπ(i, 0) = ( )2, two empty live blocks, any π.

Note that Tπ(1, j) is identical to either T��(·, j) or T��(·, j), depending on the last
character of π. For the inductive case, when i > 1, j > 0, and |π| > 2,

Tπ(i, j) =

⎧⎨
⎩

Tsub � Tbot = (Ttop ◦Tmid) � Tbot

Tsub � Tbot = (Ttop ◦Tmid) � Tbot

if π|π| = � ,

if π|π| = � ,

where Tbot = Tπ(i, j − 1),

Tmid = Tπ−(i, �Tbot �), π− = π1 · · ·π|π|−1.

Ttop = Tπ(i − 1, ‖Tmid‖),

The following facts can easily be proved about Tπ(i, j) by induction:
1. The first occurrence of every symbol appears in a live block and live blocks

consist solely of first occurrences.
2. All live blocks have length exactly j. The length of dead blocks varies, as

does the number of dead blocks between consecutive live blocks.
3. Each symbol occurs with the same multiplicity, νπ,i, defined below. Hence
|T | = νπ,i‖T ‖ = νπ,i · j · �T �.

The construction of Tπ gives us an inductive expression for the multiplicity νπ,i
of symbols in Tπ(i, j).

νπ,i = 2 for |π| = 2 and all i,

νπ,1 = 2 for all π,

νπ,i = νπ,i−1 + νπ−,i − 1, where π− = π1 · · ·π|π|−1.

A short proof by induction shows that νπ,i has the closed form

νπ,i =

(
i+ |π| − 3

|π| − 2

)
+ 1 for all i ≥ 1, |π| ≥ 2.
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It can be shown that i = α(n,m) + O(1), where n = ‖Tπ(i, j)‖ and m =
�Tπ(i, j)�), from which it follows that Tπ(i, j) has length Θ(nα|π|−2(n,m)) and length
Θ(nα|π|−2(n)) if j = O(1). Theorem 8.1 summarizes two results from [9, 20, 22] using
the Tπ notation.

Theorem 8.1 (see [9, 20, 22]).
1. ababa, abcaccbc ⊀ T���.
2. abaaba, abcacbc ⊀ T���.

As a consequence both Ex(ababa, n) and Ex(abcacbc, n) are Ω(nα(n)), which is asymp-
totically tight.

8.2. Class II sequences. Class II sequences consist solely of live blocks. They
are parameterized by binary patterns, which are restricted to being even-length palin-
dromes, starting with � and ending with �. If π = π1 · · ·π|π|, its flip flip(π) is obtained
by flipping the direction of each diagonal and its truncation π− is obtained by trim-
ming π1 and π|π|. For example, if π = ��������, flip(π−) = ������.

The base cases for Uπ are given below. The sequence Uπ(i, j) has the property
that each block has length j and each symbol has multiplicity μπ,i, which will be
defined below.

U��(i, j) = (12 · · · j) (j · · · 21), two blocks, for any i,

Uπ(1, j) = (12 · · · j) (j · · · 21), two blocks, for any π,

Uπ(0, j) = (12 · · · j), one block, for any π,

Uπ(i, 1) = (1)μπ,i , μπ,i identical blocks.

For the inductive case, when i > 1, j > 0, and |π| > 2, we have

Uπ(i, j) =

{
Usub � Ubot = (Utop ◦Tmid) � Ubot if π2π|π|−1 = ��,

Usub � Ubot = (Utop ◦Tmid) � Ubot if π2π|π|−1 = ��,

where Ubot = Uπ(i, j − 1),

Umid =

{
Uπ−(i, �Tbot�) if π2π|π|−1 = ��,

Uflip(π−)(i, �Tbot�) if π2π|π|−1 = ��,

Utop = Uπ(i − 1, ‖Tmid‖).

The construction of Uπ is a strict generalization of the Us sequences defined in
section 2 for even s. Note that when π = (��)s/2, only postshuffling is used, since
flip(π−) = (��)s/2−1. The multiplicity μπ,i of symbols in Uπ(i, j) is not affected by
which shuffling operation is used, so the analysis from section 2 still holds: μπ,i =

2(
i+t−1

t ) ≥ 2i
t/t!, where t = (|π| − 2)/2, and i = α(‖Uπ(i, j)‖, �Uπ(i, j)�) +O(1).

8.3. Analysis of Tπ and Uπ. Lemmas 8.2 and 8.3 isolate some properties of
Tπ useful in the analysis of M -shaped sequences and comb-shaped sequences.

Lemma 8.2. Let Tsh = Tπ(i, j), where i and j are arbitrary. Let χ = π|π| and
χ′ = π|π|−1 be the last and second-to-last characters of π, and let Ttop, Tmid, Tsub, and
Tbot be the sequences arising in the formation of Tsh.

1. If abba ≺ Tsh or baba ≺ Tsh, then it cannot be that b ∈ Σ(Tsub) while a ∈
Σ(T ∗

bot).
2. If a < b share a live block in one of Ttop, Tbot, or Tsh, then this sequence’s

projection onto {a, b} has the form (ab)a∗b∗ if χ = � and (ab)b∗a∗ if χ = �.
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3. If a1 < · · · < al share a live block in Tsub, then its projection onto {a1, . . . , al}
has the form (a1 . . . al)A

χ′
Aχ, where A� = a∗1 . . . a∗l and A� = a∗l · · · a∗1.

Lemma 8.3. Whereas ababa ⊀ T���, abaaba ⊀ Tπ, for any pattern π ∈
{���,���,���}.

Proof. Part 1 of Lemma 8.2 implies that ababa cannot be introduced by a shuffling
event but must first appear in Tsub = Ttop ◦Tmid from a composition event. Moreover,
abaaba could not arise in Tsub from an occurrence of ababa in Ttop since, in such an
occurrence, the middle a would necessarily be in a dead block and could therefore not
beget multiple as in Tsub. It must be that a and b share a common live block in Ttop,
so its projection onto {a, b} is contained in (ab)a∗b∗ if π3 = � and (ab)b∗a∗ if π3 = �.
Since Tmid is either T�� or T��, the projection of Tsub onto {a, b} is one of

(ab) 〈ba〉 a∗b∗ or (ab) 〈ba〉 b∗a∗ or (ab) 〈ab〉 a∗b∗ or (ab) 〈ab〉 b∗a∗.

The first is ababa-free, while the remaining are abaaba-free.
In Theorem 8.5 we prove that Ex(M2k , n) = Ω(nαk+1(n)) by induction. Lemma 8.4

handles the base case for M2.
Lemma 8.4. M2 = abcbabcba ⊀ Tπ for any of the length-4 patterns π ∈

�{�,�}2�.
Proof. Since M2 contains a subsequence of the form xyxyx for each pair of

symbols {x, y} ⊂ {a, b, c}, any instance of M2 must first arise in Tsub = Ttop ◦Tmid

from a composition event, not in Tsh = Tsub � Tmid from a shuffling event. Here Tmid

is defined by any of the four patterns π− ∈ �{�,�}2. It must be that a, b, c share
a live block in Ttop. If only b and c shared a live block, then the projection of Ttop

onto {a, b, c} would need to have the form a∗(bc or cb)a∗b∗c∗b∗a∗, violating Lemma 8.2
since neither (bc) nor (cb) can be followed by bcb. If only a and b shared a live block the
projection onto {a, b, c} would need to have the form a∗b∗c∗(ba or ab)c∗b∗a∗, which
violates the property that live blocks contain only first occurrences.

We have deduced that a, b, and c share a live block B in Ttop, but they do not
necessarily appear in that order. To form a copy of M2, some prefix must arise from
substituting the type π− sequence Tmid(B) for B; the remaining suffix must follow a, b,
and c’s live block in Ttop. We can always include at least one symbol in the suffix,
so the split between prefix and suffix can be one of three options: (i) abcbab | cba,
or (ii) abcbabc | ba, or (iii) abcbabcb | a. In cases (i) and (ii), b must precede a in B,
meaning b < a in the canonical ordering of Tmid(B). As a consequence, any occurrence
of the prefix abcbab (or abcbabc) in Tmid implies an occurrence of babbab ≺ Tmid,
contradicting Lemma 8.3. In case (iii) the prefix contains bcbbcb, also contradicting
Lemma 8.3.

Theorem 8.5. For any k ≥ 1, M2k ⊀ Tπ, where π ∈ �{�,�}2�k. As a
consequence, Ex(M2k , n) = Ω(nαk+1(n)).

Proof. The proof is by induction on k; the base case is covered by Lemma 8.4.
For succinctness let K = 2k. As in the proof of Lemma 8.4 we can restrict our atten-
tion to the case where MK , say, over the alphabet a1, . . . , aK+1, arises in Tsub after
a composition event. Moreover, we can assume a1, . . . , aK+1 appear in a common
live block B, so the projection of Ttop onto {a1, . . . , aK+1} is (a1 · · · aK+1)a

∗
1 · · · a∗K+1.

If substituting Tmid(B) for B creates an instance of MK , some prefix must come
from Tmid(B) and the remaining suffix from the sequence a∗1 · · ·a∗K+1 following B.
There are two cases: the suffix contains either a strict majority of the K +1 symbols
or a strict minority. In the former case we have aK/2+1 < · · · < aK+1 accord-
ing to the canonical ordering of Tmid(B), so any instance of the N -shaped pattern
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aK+1aK · · ·aK/2+1aK/2+2 · · · aK+1aK · · ·aK/2+1 in Tmid(B) implies that it also con-
tains

MK/2 = aK/2+1
aK/2+2

. . . aK+1 aK ... aK/2+1
aK/2+2

. . . aK+1 aK ... aK/2+1,

which contradicts the hypothesis that Tmid is MK/2-free. If, on the other hand, the
suffix of MK following B contains a strict minority of {a1, . . . , aK+1}, then Tmid(B)
must contain an instance of MK/2 on the alphabet a1, . . . , aK/2+1, also contradicting
the inductive hypothesis.

We now turn to the analysis of the forbidden sequences of Uπ.

Theorem 8.6. For any k ≥ 0, Z3k ⊀ Uπ, where π = �k+1 ���k+1. As a

consequence, Ex(Z3k , n) > n · 2(1+o(1))αk+1(n)/(k+1)!.

Before proving Theorem 8.6 we must make a few observations. First, preshuffling
is the norm when generating sequences of type π = �k+1 ���k+1. Whenever k > 0
we have π2π|π|−1 = ��, implying preshuffling is used; it is only when k = 0 (pattern
����) that postshuffling is used. In any sequence formed using preshuffling, if a
block contains (a1 · · · al), the projection of the sequence onto {a1, . . . , al} is of the
form

a∗1 a
∗
2 · · · a∗l (a1 · · · al) a∗l a∗l−1 · · · a∗1.

Second, note that Theorem 8.6 fails to be true for most patterns. Indeed, sufficiently
long sequences of type ����� contain ZK for every K > 0.

Proof. The proof is by induction on k. For succinctness we let K = 3k. In the
base case k = 0, ZK = ababab, and Uπ = U���� is ababab-free, by Lemma 2.4. In the
general case k ≥ 1 and π = �k+1 ���k+1, so Uπ = Usub �Ubot = (Utop ◦Umid)�Ubot

is formed by composing Utop with Umid, a type π− sequence, then preshuffling it with
Ubot. We can assume that any occurrence of ZK arises from the composition event
Usub = Utop ◦Umid since ababab ≺ ZK for every pair of symbols {a, b} ⊂ Σ(ZK) and
ababab cannot be introduced by shuffling. Write ZK as

a1 a2 . . . aK+1 aK ... a1 a2 . . . aK+1 aK ... a1 a2 . . . aK+1.

It is easy to verify that if ZK occurs in Usub, it must be that {a1, . . . , aK+1} share
a single block B in Utop. (Note, however, that their canonical orderings in Utop and
Umid(B) are not necessarily a1 < · · · < aK+1.) Some prefix of ZK appears before
B in Utop, some suffix of ZK appears after B in Utop, and the remaining middle
portion appears in Umid(B). Suppose a1 · · · al is the prefix and al′al′+1 · · · aK+1 the
suffix for some indices l, l′. It follows that a1 < a2 < · · · < al and aK+1 < aK <
· · · < al′ according to the canonical ordering of Umid(B), which implies l ≤ l′. (Since
preshuffling is used, the canonical ordering of nonfirst symbols in B is the same in Utop

and Umid(B), though the same is not true of symbols making their first appearance
in B.) At least one of the following must be true:

(i) The prefix contains at least K/3 + 1 symbols and is disjoint from the suffix,
that is, l ≥ K/3 + 1 and l < l′.

(ii) The suffix contains at least K/3 + 1 symbols and we are not in case (i), that
is, l′ ≤ 2K/3 + 1.

(iii) There are at least K/3 + 1 symbols in neither the prefix nor suffix, that is,
l ≤ K/3 and l′ ≥ 2K/3 + 2.
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Case (iii) is the simplest. To form a copy of ZK in Usub, we would need Umid(B) to
contain a copy of ZK/3 on the alphabet {aK/3+1, . . . , a2K/3+1}, contradicting the in-
ductive hypothesis. In case (i), Umid(B) must contain aK/3+1 · · ·a1 · · · aK/3+1 · · · a1 · · ·
aK/3+1. However, by the canonical ordering a1 < · · · < aK/3+1, this implies that the
first aK/3+1 is preceded by a1 · · ·aK/3, meaning Umid(B) also contains a copy of ZK/3,
a contradiction. Case (ii) is symmetric to case (i).

8.4. Comb-shaped sequences. The results of [9, 14, 20, 21] show that ababa
and abcacbc are the only minimally nonlinear 2-sparse forbidden sequences over a
three-letter alphabet, both with extremal function Θ(nα(n)). Just as ababa can be
generalized to M -shaped sequences, C1 = abcacbc can be generalized to the one-sided
comb-shaped sequences {Ck}k≥1, where

Ck = 1 2 3
. . .

(k + 2)

1

(k + 2)

2

(k + 2)

3

(k + 2)
. . . (k + 1)

(k + 2).

Our parameterized sequences let us obtain nontrivial lower bounds on comb-
shaped sequences.

Theorem 8.7. For all k ≥ 1, Ck ⊀ Tπ, where π = ���k. Consequently,
Ex(Ck, n) = Ω(nαk(n)).

Proof. The proof is by induction on k. Theorem 8.1 (see [20]) takes care of the base
case C1 = abcacbc. We will focus on C2 = abcdadbdcd, then note why the argument
works for any k. Define Ttop, Tsub, Tbot, Tmid, and Tsh as usual, where Tmid is now
a type ��� sequence. Note that both Ttop and Tmid are formed using preshuffling,
so if a live block in either contains (a1 · · ·al), the projection of the sequence onto
{a1, . . . , al} is of the form (a1 · · · al)a∗l · · · a∗1.

We first argue that {a, b, c, d} ⊂ Σ(Ttop). One may check that the only case
that does not immediately violate part 1 of Lemma 8.2 is that a ∈ Σ(T ∗

bot) while
b, c, d ∈ Σ(Ttop). This means that for C2 to show up in Tsh we must already have
(bcd)dbdcd ≺ Tsub, where the live block (bcd) is shuffled into a’s copy of Tbot. However,
part 3 of Lemma 8.2 implies that the projection of Ttop onto {b, c, d} is (bcd)d∗c∗b∗

and therefore that the projection of Tsub onto {b, c, d} is (bcd)d∗c∗b∗d∗c∗b∗. This does
not contain (bcd)dbdcd. We proceed to consider the case when {a, b, c, d} ⊂ Σ(Ttop).

One can see that a, b, c, and d must share a live block B in Ttop. If the first two as
in C2 ≺ Tsub arose from the composition that created Tsub, then b, c, and d must have
been in a’s live block. If not, then C2 would have already appeared in Ttop. Thus,
some prefix of C2 arose from substituting Tmid(B) for B and the remaining suffix
followed B in Ttop. Part 2 of Lemma 8.2 implies that the suffix cannot be dcd for
otherwise (cd)cd ≺ Ttop or (dc)dc ≺ Ttop. This implies that abdadbd = C1 ≺ Tmid(B)
(a type ��� sequence), which contradicts Theorem 8.1.

For k > 2 write Ck = a1a2 · · · ak+1ba1ba2b · · · bak+1b. The same argument from
above shows that {a1, . . . , ak+1, b} are contained in a single block B of Ttop. For Ck

to arise in Tsub a prefix of it must come from Tmid(B) and a suffix from the part of
Ttop following B. By part 2 of Lemma 8.2 the suffix cannot be bak+1b, which means
the prefix in Tmid(B) must contain a1 · · ·akba1ba2b · · · bakb = Ck−1, contradicting the
inductive hypothesis.

9. Conclusions. In Theorem 1.3 we established sharp bounds on the functions
Λr,s and Λdbl

r,s, for all values of r and s, and showed, perhaps surprisingly, that these
extremal functions are essentially the same. Moreover, they match λs and λdbl

s only
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when s ≤ 3, or s ≥ 4 is even, or r = 2. However, Theorem 1.3 is not the last word
on Λdbl

r,s. In Cibulka and Kynčl’s [3] application of Λdbl
r,s(n,m), s is a fixed parameter,

whereas r is variable and cannot be bounded as a function of s. Cibulka and Kynčl
require upper bounds on Λdbl

r,s(n,m) that are linear in r, whereas the leading constant
in our bounds matches that of Λdbl

r,2(n,m), currently known to be at most O(6r).
See Lemma 3.3. In other words, we now have two incomparable upper bounds on
Λdbl
r,2(n,m) when r is not treated as a constant, namely, O((n+rm)α(n,m)) [3], which

has optimal dependence on r, and O(6r(n+m)), which is optimal for fixed r. Whether
Λdbl
r,2(n,m) = O(n+ rm) or not is an intriguing open question.

We have shown that doubling various forbidden patterns (alternating sequences
and (r, s + 1)-formations) has no significant effect on their extremal functions. It is
an open problem whether Ex(dbl(σ), n) is asymptotically equivalent to Ex(σ, n) for
every σ. We conjecture the answer is no when σ can be a set of forbidden sequences,
though it seems plausible the answer is yes for any single forbidden sequence.

Conjecture 9.1. In general, it is not true that Ex(dbl(σ), n) = Θ(Ex(σ, n)).
In particular, whereas Ex(dbl({ababa, abcacbc}), n) = Θ(nα(n)), we conjecture that
Ex({ababa, abcacbc}, n) = O(n).

The main open problem in the realm of generalized DS sequences is to character-
ize linear forbidden sequences or, equivalently, to enumerate all minimally nonlinear
forbidden sequences. The number of minimally nonlinear sequences (with respect to
the partial order ≺) is almost certainly infinite [20], but whether there are infinitely
many genuinely different nonlinear sequences is open. Refer to [20] for a discussion of
how “genuinely” might be formally defined.

Conjecture 9.2 (informal). Every nonlinear sequence σ (having Ex(σ, n) =
ω(n)) contains ababa, abcacbc, or some sequence morally equivalent to abcacbc.

Our lower bounds on Ex(Mk, n) are weak, as a function of k, and we have provided
no nontrivial upper bounds. It may be possible to generalize the proof of Theorem 6.9
to show Ex(Mk, n) = O(n poly(α(n))), where the degree of the polynomial depends
on k.

Appendix A. Proofs.

A.1. Proof of Lemma 1.2. Recall that dbl(Form(r, s + 1)) = {dbl(σ) | σ ∈
Form(r, s + 1)}, whereas sequences in dblForm(r, s + 1) are formed by taking the
concatenation of s+ 1 sequences, the first and last being a permutation of {1, . . . , r}
and all the rest containing two occurrences of {1, . . . , r}. For example, abc abaccb bca ∈
dblForm(3, 3), whereas abbcc ccbbaa bbcca ∈ dbl(Form(3, 3)). We restate Lemma 1.2:

Lemma 1.2. The following bounds hold for any r ≥ 2, s ≥ 1:

Ex(dbl(Form(r, s+ 1)), n,m) ≤ r · Λdbl

r,s(n,m) + 2rn,

Ex(dbl(Form(r, s+ 1)), n) = O(Λdbl

r,s(n)).

Proof. Let S be a dbl(Form(r, s + 1))-free sequence over an n-letter alphabet.
Obtain S′ from S by discarding the first occurrence and last r occurrences of each
letter, then retaining every rth occurrence of each letter (i.e., the rth, 2rth, 3rth, etc.),
discarding the rest. Clearly S′ has the property that each b is preceded and followed
by at least r bs in S, and between two bs in S′ there are at least r − 1 bs in S. It
follows that |S′| ≥ (|S| − 2rn)/r. Suppose |S′| contained some sequence σ′

1 · · ·σ′
s+1 ∈

dblForm(r, s + 1). (Recall that σ′
1 and σ′

s+1 contain one copy of {1, . . . , r}, whereas
σ′
2, . . . , σ

′
s contain two copies of {1, . . . , r}.) This implies that S contains a sequence

σ1 · · ·σs+1, where each σk contains r+1 copies of {1, . . . , r}. We claim each σk contains
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a doubled permutation of {1, . . . , r}, which implies that S is not dbl(Form(r, s+ 1))-
free, a contradiction. Find the symbol b in σk whose second occurrence is earliest,
that is, we can write σk = σ′

k b σ
′′
k b σ

′′′
k , where σ′

kσ
′′
k contains at most one copy of each

symbol. Since σ′′′
k contains at least r copies of the r− 1 symbols in {1, . . . , r}\{b} we

can continue to find a doubled permutation of {1, . . . , r}\{b} by induction. If S is an
m-block sequence, then S′ is too, giving the first bound. When S is merely r-sparse
we can only bound S′ by Λdbl

r,s(n) if it, too, is r-sparse. This is done as follows.

Greedily partition S = S1S2 . . . Sm into maximal sequences {Sq} over alphabets
of size exactly 2r2, with ‖Sm‖ perhaps smaller. Since each Sq has length at most
Ex(dbl(Form(r, s+1)), 2r2) = O(1), it follows thatm = Ω(|S|). Obtain T be replacing
each Sq with a block consisting of its alphabet Σ(Sq). If |T | ≤ 2r2n there is nothing to
prove since |S| = Θ(|T |) = O(n) = O(Λdbl

r,s(n)), so assume otherwise. Obtain T ′ from
T by discarding the first occurrence and last r occurrences of each letter, then retaining
every rth occurrence of each letter. It follows that |T ′| ≥ (|T | − 2rn)/r ≥ |T | r−1

r2 ,
that is, the average length of blocks in T ′ is at least 2(r − 1). Let T ′′ be an r-sparse
subsequence of T ′ obtained by scanning T ′ from left to right, removing a symbol if
it is identical to one of the preceding r − 1 symbols. At most r − 1 letters from each
block of T ′ can be removed in this process. The average block length of T ′′ is at least
2(r − 1)− (r − 1) ≥ 1, hence |T ′′| ≥ m = Ω(|S|). Since T ′′ is dblForm(r, s + 1)-free,
we have |S| = O(Λdbl

r,s(n)).

A.2. Proof of Lemma 3.1. There is no theorem to the effect that Ex(σ, n) =
O(Ex(σ, n,O(n))). Lemma 3.1 restates the best known reductions from r-sparse to
blocked sequences. Some ad hoc reductions are known to be superior, for example,
those for order-5 DS sequences [17, section 6.2].

Lemma 3.1 (cf. Sharir [24], Füredi and Hajnal [7], and Pettie [17].) Define
γs, γ

dbl
s , γr,s, γ

dbl
r,s : N → N to be nondecreasing functions bounding the leading factors

of λs(n), λ
dbl
s (n),Λr,s(n), and Λdbl

r,s(n), e.g., Λ
dbl
r,s ≤ γdbl

r,s(n) · n. The following bounds
hold:

λs(n) ≤ γs−2(n) · λs(n, 2n),

λdbl

s (n) ≤ (γdbl

s−2(n) + 4) · λdbl

s (n, 2n),

λs(n) ≤ γs−2(γs(n)) · λs(n, 3n),

λdbl

s (n) ≤ (γdbl

s−2(γ
dbl

s (n)) + 4) · λdbl

s (n, 3n),

Λr,s(n) ≤ γr,s−2(n) · Λr,s(n, 2n) + 2n,

Λdbl

r,s(n) ≤ (γdbl

r,s−2(n) +O(1)) · Λdbl

s (n, 2n)),

Λr,s(n) ≤ γr,s−2(γr,s(n)) · Λr,s(n, 3n) + 2n,

Λdbl

r,s(n) ≤ (γdbl

r,s−2(γ
dbl

r,s(n)) +O(1)) · Λdbl

s (n, 3n)),

where the O(1) terms depend on r and s.

Proof. All the bounds are obtained from the following sequence manipulations,
which were first used by Hart and Sharir [9] and Sharir [24]. Let S be an r-sparse
sequence avoiding some set σ of subsequences over an r-letter alphabet, so |S| ≤
Ex(σ, n). Greedily parse S into m intervals S1S2 · · ·Sm by choosing S1 to be the
maximum-length prefix satisfying some property P , S2 to be the maximum-length pre-
fix of the remaining sequence satisfying P , and so on. Form S′ = Σ(S1)Σ(S2) · · ·Σ(Sm)
by replacing each interval Si with a single block Σ(Si) containing its alphabet, listed
in order of first appearance. Since S′ is a subsequence of S, |S′| ≤ Ex(σ, n,m). To
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bound |S| we only need to determine upper bounds on m and the shrinkage factor
|S|/|S′|.

Bounds on λs. If we parse S into maximal order-(s− 2) sequences, then each Si

must contain either the first or last occurrence of some symbol, hence m ≤ 2n. The
shrinkage factor is |Si|/‖Si‖ ≤ γs−2(‖Si‖) ≤ γs−2(n), which gives the first inequality.
Now consider parsing S into m maximal sequences that are both order-(s − 2) DS
sequences and have length at most γs(n). It follows that m ≤ 3n: at most n sequences
were terminated because they reached length γs(n) (by definition of γs) and the
remaining sequences number at most 2n since each must contain the first or last
occurrence of some letter.

Bounds on λdbl
s . Let σs+2 be the alternating sequence with length s+2. Order-s

double DS sequences are dbl(σs+2)-free. Obtain σ′
s+2 by doubling each letter of σs+2,

including the first and last. It is easy to show that Ex(σ′
s+2, n) ≤ λdbl

s (n)+4n so we can
take γdbl

s (n) + 4 to be the leading factor in this extremal function. Consider parsing
an order-s double DS sequence S. If we parse S into maximal σ′

s-free sequences,
then each subsequence must contain the first or last occurrence of some symbol, so
m ≤ 2n and the shrinkage factor is at most γdbl

s−2(n) + 4. If, further, we truncate any
subsequence in the parsing at length γdbl

s (n), then m ≤ 3n and the shrinkage factor
is at most γdbl

s−2(γ
dbl
s (n)) + 4.

Bounds on Λr,s and Λdbl
r,s. The argument is the same, except that during the pars-

ing step, we discard any symbol that triggers the termination of a subsequence. For
example, if S is a Form(r, s+1)-free sequence we parse it into S1a1S2a2 · · · am−1Smam,
where the {Si} are maximal Form(r, s− 1)-free sequences and {ai} the single letters
following them, where am might not be present. Since Siai contains some element
of Form(r, s− 1), Siai must contain the first or last occurrence of some letter, hence
m ≤ 2n. We form S′ by contracting each Si to a single block, discarding ai, so the
shrinkage factor is at most γr,s−2(n). It follows that |S| ≤ γr,s−2(n) ·Λr,s(n, 2n)+ 2n.
The procedure for Λdbl

r,s is a straightforward combination of the procedures described
above for Λr,s and λdbl

s .

A.3. Proof of Lemma 3.2. We restate the lemma.
Lemma 3.2. The following inequalities hold for all s:

λs(n) ≤ Λ2,s(n) ≤ λdbl
s (n) ≤ Λdbl

2,s(n) + 2n ≤ 5 · λdbl
s (n) + 2n,

λs(n,m) ≤ Λ2,s(n,m) ≤ λdbl
s (n,m) ≤ Λdbl

2,s(n,m) + n ≤ 3 · λdbl
s (n,m) + n.

Proof. Order-s DS sequences are Form(2, s+1)-free, which gives the first and fifth
inequalities. Form(2, s+ 1)-free sequences, in turn, are order-s double DS sequences,
which gives the second and sixth inequalities. Let S be an order-s double DS sequence.
Form S′ ≺ S by (i) removing the first occurrence of each letter and, if necessary, (ii)
removing up to n additional symbols to restore 2-sparseness. Clearly |S| ≤ |S′|+ n if
only (i) is applied and |S| ≤ |S′|+2n if (i) and (ii) are applied. Suppose S′ contained
a dblForm(2, s + 1) pattern of the form {ab} {aabb}s−1{ab}, where the bracketed
sequences can be permuted arbitrarily. Together with the initial a and b in S, this
shows that S contains a doubled alternating sequence isomorphic to abbaabb · · · (s+2
alternations), a contradiction. This gives the third and seventh inequalities.

We now turn to the fourth and eighth inequalities. Let S be a 2-sparse dblForm(2, s+
1)-free sequence and let S′ be derived as follows:

(i) Retain every third occurrence of each letter, starting from the first; discard
all others.

(ii) Discard additional occurrences to restore 2-sparseness.
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The number of letters discarded in step (i) is clearly at most (2/3)|S|. We claim
the number discarded in step (ii) is at most 1/5th the number discarded in step
(i). Suppose we see two consecutive as after step (i), one of which will be removed
to restore 2-sparseness. There must have been two additional as between those as
removed by step (i), and by 2-sparseness, at least three non-a interstitial letters,
also removed by step (i). The picture looks like a x a y a z a, where the overlined as
are those remaining after step (i). (Obviously x, y, and z cannot all be identical, for
otherwise at least one would be retained in step (i).) Thus, the total number of letters
removed by steps (i) and (ii) is at most (6/5)(2/3)|S| = (4/5)|S|, so |S| ≤ 5|S′|.
Suppose that S′ contained a doubled alternating sequence a bb aa bb · · · with s + 2
alternations. This implies that S contains a bbbb aaaa bbbb · · · , where the underlined
letters appear in S but not S′. This contradicts the dblForm(2, s + 1)-freeness of S.
The fourth inequality follows. The eighth follows from the same argument, omitting
step (ii) in the construction of S′.

A.4. Proof of Lemma 3.3. Some of the results cited in Lemma 3.3 refer to
(or implicitly use) results on forbidden 0-1 matrices. See Füredi and Hajnal [7] and
Pettie [19, 20, 21] for more details on the connection between matrices and sequences.

Lemma 3.3. At orders s = 1 and s = 2, the extremal functions λs, λ
dbl
s ,Λr,s, and

Λdbl
r,s obey the following:

λ1(n) = n, λ1(n,m) = n+m− 1,
λ2(n) = 2n− 1, λ2(n,m) = 2n+m− 2 [4],

λdbl
1 (n) = 3n− 2, λdbl

1 (n,m) = 2n+m− 2 [5, 13],
λdbl
2 (n) < 8n, λdbl

2 (n,m) < 5n+m [11, 7],
Λr,1(n) = Λdbl

r,1(n) < rn, Λr,1(n,m) = Λdbl
r,1(n,m) < n+ (r − 1)m [10],

Λr,2(n) < 2rn, Λr,2(n,m) < 2n+ (r − 1)m [10],
Λdbl
r,2(n) < 6rrn, Λdbl

r,2(n,m) < 2 · 6r−1(n+m/3) [21].

Proof. Davenport and Schinzel [4] noted the bounds on λ1(n) and λ2(n); their
extension to blocked sequences is trivial. In an overlooked note Davenport and
Schinzel [4] observed without proof that λdbl

1 (n) = 3n− 2, which was formally proved
by Klazar [13]. Its extension to blocked sequences is also trivial. Adamec, Klazar, and
Valtr [1] proved that λdbl

2 (n) = O(n) and Klazar [11] bounded the leading constant
between 7 and 8. A blocked sequence S can be represented as a 0-1 incidence matrix
AS whose rows correspond to symbols and columns to blocks, where AS(i, j) = 1 if
and only if symbol i appears in block j. A forbidden sequence becomes a forbidden
0-1 pattern. The bound on λdbl

2 (n,m) follows from Füredi and Hajnal’s [7] analysis
of a certain 0-1 pattern. The bounds on Λr,1 and Λr,2 were noted by Klazar [10] and
Nivasch [16]. They are straightforward to prove.

Since the N -shaped sequence 12 · · · rr(r−1) · · · 112 · · · r over r letters is contained
in Form(r, 3), the linear upper bound on Ex(dbl(12 · · · r r(r−1) · · · 1 12 · · · r), n) due to
Klazar and Valtr [14] (see also [21]) immediately extends to Λdbl

r,2(n). With some care
the leading constants of Λdbl

r,2(n) and Λdbl
r,2(n,m) can be made reasonably small using

the 0-1 matrix representation of (forbidden) sequences from [21]. Consider an m-
block, dblForm(r, 3)-free sequence S. Without loss of generality assume the alphabet
Σ(S) = {1, . . . , n} is ordered according to their first appearance in S. Let AS be an
n ×m 0-1 matrix where AS(i, j) = 1 if and only if symbol i appears in block j. By
virtue of being dblForm(r, 3)-free, AS does not contain P as a submatrix,17 where P

17In this context a submatrix is obtained by deleting rows and columns from AS , and possibly
flipping some 1s to 0s.
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is defined below. Following convention [27, 19] we use bullets for 1s and blanks for 0s.

P =

⎛
⎜⎜⎜⎜⎜⎝

• • •
• • •

...
. . .

• • •
• • • •

⎞
⎟⎟⎟⎟⎟⎠

&⏐⏐⏐⏐⏐⏐⏐⏐⏐(
r.

The vertical bars are not part of the pattern; they mark the boundaries of the three
components of a dblForm(r, 3) sequence. The results of [21] imply Λdbl

r,2(n,m) ≤
Ex(P, n,m) ≤ 2 · 6r−1(n + m/3), where Ex(P, n,m) is the maximum number of 1s
in P -free n × m matrix. To get a bound on Λdbl

r,2(n) we will show how to convert
an r-sparse, dblForm(r, 3)-free sequence S into a blocked one. Greedily partition
S = S1a1S2a2 · · ·Sm into maximal Form(r, 3)-free sequences S1, . . . , Sm, separated
by single symbols a1, . . . , am. That is, S1 is Form(r, 3)-free but S1a1 is not; S2 is
Form(r, 3)-free but S2a2 is not; and so on. Each interval Sk must contain the last
occurrence of some symbol, hence m ≤ n. If this were not the case, then S neces-
sarily contains a Form(r, 4) pattern, each of which is also a dblForm(r, 3) pattern,
contradicting the dblForm(r, 3)-freeness of S. Obtain S′ by discarding a1, . . . , am
and contracting each Sk to a single block containing its alphabet Σ(Sk). Since
|Sk| ≤ Λr,2(‖Sk‖) < 2r‖Sk‖, we have |S| ≤ 2r|S′| + n. Being an n-block sequence,
|S′| ≤ Λdbl

r,2(n, n) < 2 · 6r−1(4n/3), so |S| < 6rrn.
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