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Abstract

This paper gives the first complete proof of correctness of the Micali-Vazirani [MV80]
general graph maximum cardinality matching algorithm. Our emphasis is on arriving at
the simplest possible proof; graph-theoretic machinery developed for this purpose also helps
simplify the description of this algorithm. For all practical purposes, this is still the most
efficient known algorithm for the problem.

1 Introduction

The process of proving correctness of the Micali-Vazirani [MV80] general graph maximum cardi-
nality matching algorithm was started in [Vaz94]; however, as detailed in Section 1.2, the paper
had deficiencies. The purpose of this paper is to provide a complete proof of this algorithm in the
simplest possible terms; graph-theoretic machinery developed for this purpose also helps simplify
the description of this algorithm. Barring the case of very dense graphs, for which a slightly
better running time is known (though only of theoretical importance), this is still the most ef-
ficient known algorithm for the problem; see Section 1.1 for precise details. This paper is fully
self-contained so as to be suitable for pedagogical and archival purposes.

Matching occupies a central place in the theory of algorithms as detailed below. From the view-
point of efficient algorithms, bipartite and non-bipartite matching problems are qualitatively
different. First consider the process of finding a maximum matching by repeatedly finding aug-
menting paths. Whereas the in former case, the lengths of all alternating paths from an unmatched
vertex f to a matched vertex v must have the same parity, even or odd, in the latter they can
be of both parities. Edmonds defined the key notion of blossoms and finessed this difficulty in
non-bipartite graphs by “shrinking” blossoms.

The most efficient known maximum matching algorithms in both bipartite and non-bipartite
graphs resort to finding minimum length augmenting paths w.r.t. the current matching. How-
ever, from this perspective, the difference between the two classes of graphs becomes even more
pronounced. Unlike the bipartite case, in non-bipartite graphs minimum length alternating paths
do not possess an elementary property, called breadth first search honesty1 in Section 2. Indeed,
in the face of this debilitating shortcoming, the problem of finding minimum length alternating

∗Supported by NSF Grants CCF-0914732 and CCF-1216019, and a Guggenheim Fellowship. College of Com-
puting, Georgia Institute of Technology, Atlanta, GA 30332–0280, E-mail: vazirani@cc.gatech.edu.

1Intuitively, it states that in order to find shortest alternating paths from an unmatched vertex f to all other
vertices, there is never a need to find a longer path to any vertex v.
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paths appears to be intractable. It is a testament to the remarkable structural properties of
matching that despite this, a near-linear time algorithm is possible.

Edmonds’ blossoms are not adequate for the task of finding minimum length augmenting paths
since by “shrinking” these blossoms, length information is completely lost. What is needed is
a definition of blossoms2 from the perspective of minimum length alternating paths, as given in
[Vaz94] and simplified in the current paper.

Matching has had a long and distinguished history spanning more than a century. The following
quote from Lovasz and Plummer’s classic book [LP86], pg. 409, is most revealing:

Matching theory serves as an archetypal example of how a “well-solvable” problem
can be studied. ... [It] is a central part of graph theory, not only because of its
applications, but also because it is the source of important ideas developed during the
rapid growth of combinatorics during the last several decades.

Interestingly enough, matching has played an equally central role in the development of the theory
of algorithms: time and again, its study has not only yielded powerful tools that have benefited
other problems but also quintessential paradigms for the entire field. Examples of the latter include
the primal-dual paradigm [Kuh55], the definitions of the classes P [Edm65b] and # P [Val79],
and the equivalence of random generation and approximate counting for self-reducible problems
[JVV86]. Examples of the former include the notion of an augmenting path [Kon31, Ege31], a
method for determining the defining inequalities of the convex hull of solutions to a combinatorial
problem [Edm65a], the canonical paths argument for showing expansion of the underlying graph
of a Markov chain [JS89], and the Isolating Lemma [MVV87]. And at the interface of algorithms
and economics lies another highly influential matching algorithm: the stable matching algorithm
of Gale and Shapley [GS62] which was mentioned prominently in Shapely’s citation for the 2012
Nobel Prize in Economics.

1.1 Running time and related papers

The MV algorithm finds minimum length augmenting paths in phases; each phase finds a maximal
set of disjoint such paths and augments the matching along all paths. O(

√
n) such phases suffice

for finding a maximum matching [HK73, Kar73]. The MV algorithm executes a phase in almost
linear time. Its precise running time is O(m

√
n · α(m,n)) in the pointer model, and O(m

√
n) in

the RAM model (see Theorem 8.5 for details). As is standard, n denotes the number of vertices
and m the number of edges in the given graph.

We note that small theoretical improvements to the running time, for the case of very dense graphs,
have been given in recent years: O(m

√
nlog(n2/m)/log n) [GK04] and O(nw) [MS04], where w is

the best exponent of n for multiplication of two n× n matrices. The former improves on MV for
m = n2−o(1) and the latter for m = ω(n1.85); additionally, the latter algorithm involves a large
multiplicative constant in its running time which comes from the use of fast matrix multiplication
as a subroutine in this algorithm.

Prior to [MV80], Even and Kariv [EK75] had used the idea of finding augmenting paths in phases
to obtain an O(n2.5) maximum matching algorithm. However, the algorithm is very extensive,
there is no journal version of the result, and its correctness is hard to ascertain.

2To immediately get a feel for the difference in definitions, see Figure 18 and its explanation.
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Subsequent to [MV80], [Blu90] and [GT91] have claimed algorithms having the same running
time as MV, and we need to clarify the status of these works. It is easy to reduce the problem
of finding an augmenting path in a bipartite graph to the problem of finding an s − t path in
a certain directed graph. [Blu90] attempts an analogous approach for general graphs. Given G,
he defines a certain directed graph which has two vertices [v,A] and [v,B] corresponding to each
vertex v in G . He shows that the problem of finding an augmenting path in G is equivalent to
finding a “strongly simple” path in the directed graph; such a path is not allowed to contain [v,B]
if is contains [v,A]. He then claims that a certain procedure, called MBFS finds the latter path
in linear time. A proof is not offered in [Blu90] and there is no journal version. Furthermore,
the requirements on the directed path are such that even a quadratic time implementation is not
clear.

The second paper [GT91] gives an efficient scaling algorithm for finding a minimum weight match-
ing in a general graph with integral edge weights and it claims that the unit weight version of
their algorithm achieves the same running time as MV. However is loss of simplicity and crucial
structural insights, which are of independent interest, in solving cardinality matching by reducing
it to the harder problem of weighted matching. The rest of the history of matching algorithms is
very well documented and will not be repeated here, e.g., see [LP86, Vaz94].

1.2 Overview and contributions of this paper

The MV algorithm involves two main ideas: a new search procedure called double depth first
search (DDFS) and the precise synchronization of events. The former is described in Section 4,
and the latter in Section 3 and via Figures 23 and 24. The potential of finding other applications for
DDFS, as well as exploring variants and generalizations, remains unexplored so far. To facilitate
wide dissemination, we have made Section 4 fully self-contained.

To point out the contributions of this paper, we compare it to [MV80] and [Vaz94]. [MV80] stated
the matching algorithm in pseudocode; in retrospect, this description is complete and error-free.
However, the paper did not provide a proof of correctness and running time.

The main contribution of [Vaz94] was to identify purely graph-theoretic notions that are critically
needed for proving correctness of the algorithm. Additionally, these notions are also crucial for
giving a conceptual description of the algorithm. These notions include BFS-honesty, base of a
vertex, a definition of blossoms from the perspective of minimum length alternating paths, and
a classification of edges into props and bridges. Structural facts about these notions were stated
in seven theorems. Although the statements of these theorems were largely correct, their proofs,
which involved low level arguments about individual paths and their complicated intersections
with other paths and other structures, were, in retrospect, incorrect. Additionally, the paper
failed to take full advantage of these structural notions to arrive at the simplest and cleanest
description of the algorithm.

The following ideas are central to our new proof:

• A key property of blossoms – that they contain all minimum length alternating paths from
the base to all vertices in the blossom – is exploited to simplify the picture considerably.
An elaborate induction, carried out on the parameter “tenacity” in Theorem 6.12, is used
to not only prove this property and other structural facts but also to define some key
notions, including base of a vertex and blossom. Because of this property, the complicated
intersections of lower tenacity paths get encapsulated inside a blossom, which offers, to the
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rest of the graph, a surprisingly simple interface.

• A simpler definition of blossoms is given. This definition is recursive and it fits naturally into
the proof by induction described above. The definition is equivalent to the one in [Vaz94],
and their equivalence is established in Section 9.

• The work-horse in Theorem 6.12 turns out to be the procedure of DDFS; as described above,
this procedure is central to the algorithm as well. The information output by this procedure,
as summarized in DDFS Certificate in Section 4, is the reason for its use in Theorem 6.12.

It is difficult to overemphasize the importance of well-chosen examples for understanding this
result; indeed, most of the intuition lies in them and we have included several. Furthermore, they
have been drawn in such a way that they easily reveal their structural properties (this involves
drawing vertices in layers, according to their minlevel).

An implementation of this algorithm, due to Bruno Loff, is available on the web [Lof14]. This
promises to be a valuable pedagogical tool since it provides a complete post-mortem of the run
of the algorithm on the graph input by the user.

2 Basic definitions

A matching M in an undirected graph G = (V,E) is a set of edges no two of which meet at
a vertex. Our problem is to find a matching of maximum cardinality in the given graph. All
definitions henceforth are w.r.t. a fixed matching M in G. Edges in M will be said to be matched
and those in E −M will be said to be unmatched. Vertex v will be said to be matched if it has a
matched edge incident at it and unmatched otherwise.

An alternating path is a simple path whose edges alternate between M and E −M , i.e., matched
and unmatched. An alternating path that starts and ends at unmatched vertices is called an
augmenting path. Clearly the number of unmatched edges on such a path exceeds the number of
matched edges on it by one3. Its significance lies in that flipping matched and unmatched edges
on such a path leads to a valid matching of one higher cardinality. Edmonds’ matching algorithm
operates by iteratively finding an augmenting path w.r.t. the current matching, which initially is
assumed to be empty, and augmenting the matching. When there are no more augmenting paths
w.r.t. the current matching, it can be shown to be maximum.

The MV algorithm finds augmenting paths in phases as proposed in [HK73, Kar73]. In each phase,
it finds a maximal set of disjoint minimum length augmenting paths w.r.t. the current matching
and it augments along all paths. [HK73, Kar73] show that only O(

√
n) such phases suffice for

finding a maximum matching in general graphs. The remaining task is designing an efficient
algorithm for a phase. Throughout, lm will denote the length of a minimum length augmenting
path in G; if G has no augmenting paths, we will assume that lm =∞.

Definition 2.1 (Evenlevel and oddlevel of vertices) The evenlevel (oddlevel) of a vertex
v, denoted evenlevel(v) (oddlevel(v)), is defined to be the length of a minimum even (odd) length
alternating path from an unmatched vertex to v; moreover, each such path will be called an
evenlevel(v) (oddlevel(v)) path. If there is no such path, evenlevel(v) (oddlevel(v)) is defined to
be ∞.

3Observe that if M = ∅, then any edge is an augmenting path, of length one.
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In this paper, we will typically denote an unmatched vertex by f . Clearly, the evenlevel of each
unmatched vertex, say f , will be zero and its oddlevel will be the length of the shortest augmenting
path starting at f ; if f is in no augmenting path, oddlevel(f) = ∞. The length of a minimum
length augmenting paths w.r.t. M is clearly the smallest oddlevel of an unmatched vertex. In all
the figures, matched edges are drawn dotted, unmatched edges solid, and unmatched vertices are
drawn with a small circle. In Figure 1, evenlevels and oddlevels of vertices are indicated; missing
levels are ∞.

Figure 1: Evenlevels and oddlevels of vertices
are indicated; missing levels are ∞.

Figure 2: Vertex v is not BFS-honest on
oddlevel(a) and evenlevel(c) paths.

Definition 2.2 (Maxlevel and minlevel of vertices) For a vertex v such that at least
one of evenlevel(v) and oddlevel(v) is finite, maxlevel(v) (minlevel(v)) is defined to be the bigger
(smaller) of the two.

Definition 2.3 (Outer and inner vertices) A vertex v is said to be outer if evenlevel(v) <
oddlevel(v) and inner otherwise.

Let p is an alternating path from unmatched vertex f to v and let u lie on p. Then p[f to u will
denote the part of p from f to u. Similarly p[f to u) denotes the part of p from f to the vertex
just before u, etc.
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Breadth first search (BFS) is a natural way of finding minimum length paths in unweighted
graphs. For finding minimum length augmenting paths in bipartite graphs, a slight extension
to an alternating breadth first search suffices, e.g., see Section 3 (for a complete description, see
Section 2.1 in [Vaz94]). The property of minimum length alternating paths that enables this
simple search scheme to work will be called breadth first search honesty: If p is a minimum length
alternating path from f to v and u lies on p then p[f to u] is a minimum length alternating path
from f to u. As a consequence of this property, having obtained a minimum length alternating
path from f to u, one just has to extend it in a minimal way to v, respecting its alternating
nature, to find a minimum length alternating path from f to v.

This elementary property does not hold in non-bipartite graphs, e.g., if v lies on p[f to u] but
with the opposite parity. In this case, extending p to v will lead to a non-simple path4 This is
precisely the reason that the task of finding minimum length augmenting paths is considerably
more difficult in non-bipartite graphs than in bipartite graphs.

In Figure 2, v is not BFS-honest w.r.t. the oddlevel(a), oddlevel(b) and evenlevel(c) paths; it
occurs at length 9 on the first and at length 11 on the other two, even though oddlevel(v) = 7.
Thus shortest paths to a, b and c, of appropriate parity, involve odd length alternating paths
from f to v which are longer than oddlevel(v). Furthermore, this is not just an academic exercise:
Suppose this graph had another edge (c, d), where d is a new unmatched vertex. Then the only
augmenting path uses the evenlevel(c) path.

Intuitively, whereas short paths are easy to find in a graph, finding long paths is intractable, e.g.
Hamiltonian path. Hence, as stated in the Introduction, the problem of finding minimum length
augmenting paths in general graphs, which may involve paths to certain vertices that are much
longer than the shortest path, is so efficiently solvable.

Definition 2.4 (Tenacity of vertices and edges) Define the tenacity of vertex v, tenacity(v) =
evenlevel(v)+oddlevel(v). If (u, v) is an unmatched edge, its tenacity, tenacity(u, v) = evenlevel(u)+
evenlevel(v) + 1, and if it is matched, tenacity(u, v) = oddlevel(u) + oddlevel(v) + 1. Throughout,
tm will denote the tenacity of a minimum tenacity vertex in G.

In Figure 1, the tenacity of each edge in the 5-cycle is 9 and the tenacity of the rest of the edges
is ∞. Figures 3 and 4 give the tenacity of vertices and edges, respectively, in a more interesting
graph. The notion of tenacity of vertices plays a crucial role in Section 5, which uses it to limit
the extent of BFS-dishonesty in minimum length alternating paths. The notion of tenacity of
edges plays a crucial role in Theorem 6.12, Statement 2, which uses it to pinpoint the unique
edge on a maxlevel(v) path that leads to finding the maxlevel of v, namely a bridge (see below
for definition) whose tenacity is the same as tenacity(v),

Definition 2.5 (Predecessor, prop and bridge) Consider a minlevel(v) path and let (u, v)
be the last edge on it; clearly, (u, v) is matched if v is outer and unmatched otherwise. In either
case, we will say that u is a predecessor of v and that edge (u, v) is a prop. An edge that is not a
prop will be defined to be a bridge.

In Figure 2, the two horizontal edges and the oblique unmatched edge at the top are bridges and
the rest of the edges of this graph are props. In Figure 5, (w,w′) and (v, v′) are bridges, and in
Figure 6, (w,w′) and (u, v) are bridges; the rest of the edges in these two graphs are props.

Definition 2.6 (The support of a bridge) Let (u, v) be a bridge of tenacity t ≤ lm. Then,

4Recall that in a bipartite graph, all alternating paths from f to v must have the same parity, either even or
odd. In general graphs, paths of both parity may exist.
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Figure 3: The tenacity of vertices is indicated;
here α = 13, κ = 15, τ = 17 and ω =∞.

Figure 4: The tenacity of each edge is indicated;
here α = 13, κ = 15 and τ = 17.

its support is defined to be {w | tenacity(w) = t and ∃ a maxlevel(w) path containing (u, v)}.
In the graph of Figures 2, 3 and 4, the supports of the bridges of tenacity α, κ and τ are the
set of vertices of tenacity α, κ and τ , respectively. In the graph of Figure 5, edges (w,w′) and
(v, v′) are bridges of tenacity 7 and 13, respectively. Unmatched vertex f is not in the support of
either bridge. The support of bridge (v, v′) is {u, v} and the support of bridge (w,w′) is all the
remaining vertices other than f .

3 The algorithm

The first part of the MV algorithm for a phase finds the evenlevels and oddlevels of vertices.
This part is organized in search levels, the first one being search level 0. Let jm = (lm − 1)/2,
where lm is the length of a minimum length augmenting path in G. Then during search level
jm, a maximal set of augmenting paths of length lm is found and the current phase terminates.
If lm = ∞, i.e., there are no augmenting paths, the algorithm will reach a search level at which
it has found the minlevels and maxlevels of all vertices reachable via alternating paths from the
unmatched vertices. At this point it will halt and output the current matching, which will be
maximum.
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Figure 5: Edges (w,w′) and (v, v′) are
bridges.

Figure 6: Edges (w,w′) and (u, v) are
bridges.

3.1 Procedures MIN and MAX

At the beginning of a phase, all unmatched vertices are assigned a minlevel of 0, and the rest are
assigned a temporary minlevel of ∞; no maxlevels are assigned at this stage. During search level
i procedure MIN finds all vertices, v, having minlevel(v) = i + 1 and assigns these vertices their
minlevels. For each edge MIN scans, it also determines whether it is a prop or a bridge.

After MIN is done, procedure MAX uses the procedure DDFS, described in Section 4, to find
all vertices, v, having tenacity(v) = 2i + 1 and assigns these vertices their maxlevels. Their
minlevels are at most i and are already known and hence maxlevel(v) = 2i+ 1−minlevel(v) can
be computed. The precise synchronization of events stated above is an essential aspect of the
algorithm and will be explained further below. See Algorithm 1 for a summary of the main steps;
observe that the algorithm can be viewed as an intertwining of an alternating BFS (similar to the
one used for bipartite graphs) with calls to the procedure DDFS.

Observe that in procedure MIN, if the predicate “minlevel(v) ≥ i + 1” is true, then either the
minlevel of v is still ∞ or it has already been found to be i+ 1; even in the latter case, u is made
a predecessor of v.
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Algorithm 1 At search level i:

1. MIN:
For each level i vertex, u, search along appropriate parity edges incident at u.

For each such edge (u, v), if (u, v) has not been scanned before then

If minlevel(v) ≥ i+ 1 then

minlevel(v)← i+ 1

Insert u in the list of predecessors of v.

Declare edge (u, v) a prop.

Else declare (u, v) a bridge, and if tenacity(u, v) is known,
insert (u, v) in Br(tenacity(u, v)).

End For

End For

2. MAX:
For each edge in Br(2i+ 1):

Find its support using DDFS.

For each vertex v in the support:

maxlevel(v)← 2i+ 1−minlevel(v)

If v is an inner vertex, then

For each edge e incident at v which is not prop, if its tenacity is known,
insert e in Br(tenacity(e)).

End For

End For

End For

End For

In each search level, procedure MIN executes one step of alternating BFS as follows. If i is even
(odd), it searches from all vertices, u, having an evenlevel (oddlevel) of i along incident unmatched
(matched) edges, say (u, v). If edge (u, v) has not been scanned before, MIN will determine if it
is a prop or a bridge. If v already been assigned a minlevel of at most i, then (u, v) is a bridge.
Otherwise, v is assigned a minlevel of i + 1, u is declared a predecessor of v and edge (u, v) is
declared a prop. Note that if i is odd, v will have only one predecessor – its matched neighbor.
But if i is even, v may have one or more predecessors.

MIN is able to classify every edge as a prop or a bridge: this is natural, since a prop assigns
minlevel to one of its endoints and a bridge doesn’t. The algorithm also determines for each odd
number t, the set of bridges of tenacity t; all these edges are inserted in the list Br(t). Once
an edge is identified as a bridge, if MIN is able to ascertain its tenacity, say t, then the edge is
inserted in the list Br(t). MIN is able to ascertain the tenacity of a bridge in all but one case.
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This case is described next, together with an example.

Consider the edge (u, v) in Figure 6. At search level 4, MIN searches from vertex u along edge (u, v)
and realizes that v already has a minlevel of 3 assigned to it. Moreover, u got its minlevel from
its matched neighbor. Therefore, MIN correctly identifies edge (u, v) to be a bridge. However, it
is not able to ascertain tenacity(u, v) since evenlevel(v) is not known at this time. At search level
5, after conducting DDFS on bridge (w,w′) (of tenacity 11), MAX will assign maxlevel(v) = 8,
which is also evenlevel(v). Therefore, at this time, tenacity(u, v) can be ascertained to be 13, and
edge (u, v) is inserted in Br(13).

To summarize, this case happens if (u, v) is an unmatched bridge such that the evenlevel of one
of the endpoints, say v, has not been determined at the point when MIN realizes that (u, v) is
a bridge. The evenlevel of v will be determined by MAX (observe that v is an inner vertex) at
search level (tenacity(v) − 1)/2 and at this point, tenacity(u, v) is ascertained and the edge is
inserted in Br(tenacity(u, v)). The reader can verify that for each bridge in the first five figures,
its tenacity gets ascertained by MIN (including the bridge (v, v′) in Figure 5).

An important point to note in Figure 6, and in the case described above, is that tenacity(v) <
tenacity(u, v), thereby ensuring that bridge (u, v) will be processed by MAX at search level
(tenacity(u, v) − 1)/2. Indeed, Task 2 in Theorem 8.2 proves that by the end of execution of
procedure MIN at search level i, the algorithm would have identified, and determined the tenac-
ity of, every bridge of tenacity 2i+ 1. Hence all such edges would be in the list Br(2i+ 1) at this
point. At this time, procedure MAX gets executed. It uses DDFS to find the support of each
of these bridges. This yields all vertices of tenacity 2i + 1 and their maxlevels are calculated as
indicated in Algorithm 1. If such a vertex, v is inner and has in incident unmatched bridge, say
(u, v), then its tenacity is determined and it is inserted in Br(tenacity(u, v)).

Next, let us explain a subtle point which will also lead to further insights into the idea of synchro-
nization of events. This point is raised again in Theorem 8.2 and is illustrated via an example.
For certain bridges, of tenacity 2i + 1 say, the algorithm is able to classify them and determine
their tenacity even before search level i. If so, why not conduct DDFS on such a bridge right
away instead of waiting until search level i? In the example following Theorem 8.2, we have
illustrated how doing so may lead to assigning wrong tenacity to certain vertices. Indeed, the
steps of Algorithm 1 have been very precisely synchronized to ensure correct operation. This is
also a key new idea underlying the MV algorithm.

3.2 Running DDFS on G

We now describe how DDFS is executed on the given graph, G. For this purpose, the reader
is advised to read Section 4 in detail. This section describes DDFS using the layered, directed
graph H which is a considerably simplified version of G. The mapping from G to H is specified
gradually below. For graph H, we need to specify its vertices, including a layer for each vertex,
and its edges. A specific set of vertices of G will form the vertices of H; the layer of any vertex
in H will be its minlevel in G.

In the graph of Figure 7, MAX will perform DDFS on bridge (r1, r2), of tenacity 9, during search
level 4, by starting two DFSs at vertices r1 and r2, respectively. We first state a preliminary rule
for determining the edges of the corresponding graph H – the preliminary rule will suffice for this
first DDFS. If the center of activity of a DFS is at u then it must search along all edges (u, v)
where v is a predecessor of u.

10



Figure 7: A new petal-node is created after
DDFS on bridge (r1, r2).

Figure 8: Vertices u and v are in the support of
both bridges of tenacity of 11.

Clearly, this DDFS will terminate with the bottleneck b. It will visit the four vertices which
constitute the support of bridge (r1, r2); observe that b is not in the support of bridge (r1, r2).
These four vertices form a structure called a petal; each call to DDFS ends either with the creation
of a new petal or an augmenting path.

The formation of a petal entails the following steps: The algorithm creates a new node, called a
petal-node; this has the shape of a doughnut in Figure 7. The four vertices of the new petal point
to the petal-node; to avoid cluttering Figure 7, only one vertex is pointing to the petal-node. The
bottleneck, b, is called the bud of the petal. The new petal-node points to the two endpoints of
its bridge, r1 and r2, and to its bud, b; the reason for the former will be clarified in Section 3.3
and for the latter below.

Petals are intimately connected to the central notion of blossom defined in Section 6; this con-
nection is formalized in Lemma 6.13. We will make several comments below in order to clarify
further this key connection. The reader will be able to follow these comments only after going
over Section 6. For this reason, we will enclose these comments in square brackets. On a first
reading these can be skipped; however, after acquiring the definition of blossoms, the reader is
advised to review these comments.

[Observe that the petal created after performing DDFS on bridge (r1, r2) is also the blossom Bb,9.
In general, DDFS may not find an entire blossom but only a part of it. This part has been defined
as a petal. As stated in Lemma 6.13, a blossom, in general, is a union of petals.]

Definition 3.1 (The bud of a vertex) If vertex v is in a petal and the bud of this petal
is b then will say that the bud of v is b, written as bud(v) = b; bud(v) is undefined if v is not
in a petal. Next we define the function bud∗(v). If v is not in any petal, bud∗(v) = v else
bud∗(v) = bud∗(bud(v)). The bud of a petal is always an outer vertex.

[A crucial difference between blossom vs petal and base(v) vs bud(v) is that whereas the former
notions are defined graph-theoretically and independent of the run of the algorithm, the latter
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Figure 9: DDFS is performed on the left bridge
first, then right.

Figure 10: DDFS is performed on the right
bridge first, then left.

depend on the manner in which the algorithm breaks ties. Several examples below clarify this.
Additionally, bud∗(v) not only depends on the particular run of the algorithm, it keeps changing
as the algorithm proceeds. At any point, the algorithm uses its latest value.]

In Figure 7, a second DDFS is performed on bridge (l1, l2), of tenacity 11, during search level 5.
To describe this DDFS, we need to state the complete rule for defining edges of the corresponding
graph H: if the center of activity of a DFS is at u and it searches along edge (u, v), where v
is a predecessor of u, then DFS must move the center of activity to bud∗(v). Thus, when the
DFS which starts at l2 searches along edge (l2, r1), it moves the center of activity to b. It does
so by following the pointer from r1 to its petal-node and from the petal-node to the bud of this
petal-node. In the process, the center of activity has jumped down more than one layer. The
edges of H were allowed to jump down an arbitrary number of layers in order to model this.

This DDFS will end with bottleneck f . The new petal is precisely the support of bridge (l1, l2)
and consists of the eight vertices of tenacity 11 in Figure 7, which includes b. Once again, a
new petal-node is created and these eight vertices point to it. In addition, the petal-node points
to l1, l2 and to f . [Observe that the blossom Bf,11 consists of these eight vertices and the four
vertices of blossom Bb,9.]
Next consider the graph of Figure 8 which has two bridges of tenacity 11, (l1, l2) and (r1, r2).
Observe that vertices u and v are in the support of both these bridges. Hence, the support of
bridges need not be disjoint. Observe also that the base of these vertices is not a but b; note that
tenacity(a) = 11. [There is only one blossom in this graph, i.e., Bb,11.]
MAX will perform DDFS on these two bridges in arbitrary order during search level 5. Figure
9 shows the result of performing DDFS on (l1, l2) before (r1, r2). The first DDFS will end with
bottleneck a. The new petal is precisely the support of (l1, l2), consisting of six vertices of tenacity
11, including u and v. The second DDFS, performed on (r1, r2), will end with bottleneck b and
the new petal is precisely the difference of supports of (r1, r2) and (l1, l2), i.e., the remaining eight
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vertices of tenacity 11, including a. During this DDFS, when the DFS starting at r1 searches
along edge (r1, u), it realizes that u is already in a petal and it jumps to a, the bud of this petal.
This ensures that a vertex is included in at most one petal. In general, at the end of DDFS
on bridge (u, v), the new petal will be the support of (u, v) minus the supports of all bridges
processed thus far in this search level.

Figure 10 shows the result of performing DDFS on (r1, r2) before (l1, l2). The first petal is the
support of (r1, r2), i.e., 10 vertices of tenacity 11, including a, u and v. The second petal is the
difference of supports of (l1, l2) and (r1, r2), i.e., 4 vertices of tenacity 11. [In both cases, the
union of the petals found is the blossom Bb,11.]
Figure 11 illustrates the second way in which DDFS may end, i.e., instead of a bottleneck, it finds
two unmatched vertices; this happens when DDFS is performed on bridge (u, v) of tenacity 11.

Figure 11: DDFS on the bridge of tenacity 11
ends with the two unmatched vertices.

Figure 12: DDFS performed on bridge (u, v)
starts the two DFSs at a and b, respectively.

We need to point out one final rule: if DDFS is performed on bridge (u, v), the centers of activity
of the two DFSs must start at bud∗(u) and bud∗(v). This rule was vacuous so far, but will
be applicable while processing bridge (u, v) in Figure 12. The tenacity of this bridge is 19 and
it will be processed by MAX in search level 9. At that point in the algorithm, the bridges
of tenacity 15 and 13 would already be processed and u and v will already be in petals, with
bud(u) = bud∗(u) = a and bud(v) = bud∗(v) = b. Hence the centers of activity of the two DFSs
will start at a and b, respectively. Similarly, in Figure 24, when DDFS is performed on bridge
(u, v) of tenacity 15, bud∗(u) = u and bud∗(v) will be the unmatched vertex.

All bridges considered so far had non-empty supports; however, this will not be the case in a
typical graph. As an example, consider the edge of tenacity 17 in Figure 12. Since it does not
assign minlevels to either of its endpoints, it is not a prop and is therefore a bridge. Clearly
the support of this bridge is ∅. DDFS will discover this right away since the bud∗ of both of
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its endpoints is a. Clearly, DDFS needs to be run on all bridges, since that is the only way of
determining whether the support of a given bridge is empty.

Figure 13: tenacity(u, u′) = tenacity(v, v′) = 7 = lm.

3.3 Finding the augmenting paths

As stated at the beginning of this Section, during search level jm, where lm = 2jm+1 is the length
of a minimum length augmenting path in G, a maximal set of such paths is found; observe that
lm is also the minimum oddlevel of an unmatched vertex. However, not every bridge of tenacity
lm leads to finding an augmenting path, e.g., in Figure 13, suppose DDFS is called with bridge
(u, u′) before bridge (v, v′). The first DDFS results in finding the bottleneck f . At this point a
new petal node, with bud f , is created. In the second DDFS, the DFS started at v goes to its
predecessor w, realizes that w is in a petal and jumps to bud∗(w) = f . The DFS started at v′

follows predecessors and eventually reaches f ′. Hence this DDFS terminates with two unmatched
vertices and an augmenting path connecting them, of length lm = 7, needs to be found next. This
process is described in Section 3.3.1.

Note that besides the above-stated event, i.e., at a certain search level, DDFS ends in two un-
matched vertices, another possibility is that G contains two or more unmatched vertices but it
has no augmenting paths, i.e., the current matching is maximum (if so, no unmatched vertex
will have a finite oddlevel). The algorithm will recognize this when it is done assigning minlevels
and maxlevels to as many vertices as it could, i.e., it has explored the unmatched edges incident
at all vertices having a finite evenlevel, the matched edge incident at all vertices having a finite
oddlevel, and has performed DDFS on all bridges of finite tenacity that it has identified.

3.3.1 Finding one augmenting path

In Figure 14, minlevel(u) > minlevel(v) and hence edge (u, v) is a bridge. DDFS on this bridge
terminates with the two unmatched vertices, f1 and f2. At this point, the stack of the DFS
starting at u (v) contains all the vertices of tenacity lm that lie on the part of the augmenting
path from u to f1 (v to f2); observe that the bottom of the latter stack will contain b = bud(v).
All vertices of tenacity less than lm that constitute such an augmenting path are missing; they
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Figure 14: Constructing a minimum length augmenting path between unmatched vertices f1
and f2.

lie in petals whose bud∗s, which are of tenacity lm, sit on the two stacks. The procedure given
below will find one such complete augmenting path by recursively “opening” the nested petals.

Let us show how to construct the path from v to f2. Since bud(v) = b, we first need to find an
evenlevel(b; v) path from v to b. The actions are different depending on whether v is outer or
inner; in this case v is inner. Therefore, evenlevel(b; v) = maxlevel(b; v), i.e., the path must use
the bridge of this petal, which is (c, d). By jumping from v to its petal-node, the algorithm can
get to the endpoints of this bridge. The “red” and “green” colors on the vertices of this petal, as
assigned by DDFS (see Section 4), indicate that v was found via the DFS starting at c, say this is
the red tree. The algorithm does a DFS on the red edges of this petal, starting from c, and finds
a red path to v. Also, it does a DFS from d on the green edges to find a green path to b.

By the rules set above, the DFS that started at d must have skipped to a = bud(w) while searching
along edge (d,w). Therefore, the green tree yields the “path” d, a, b. At this point, we need to
recursively “open” the petal whose bud is a and find an evenlevel(a;w) path in it. Again, we
ask whether w is outer or inner. This time the answer is “outer” and so we simply keep picking
predecessors of vertices until we get from w to a. This path is inserted in the right place in the
“path” from d to b. The path from b to f2 is obtained via the same process: following down
predecessors and recursively finding paths through any petals that are encountered on the way.

We note that if enough pointers had been kept around, in principle we could have found a path
from v to c and a disjoint path from b to d by going “up” the petal. The main difficulty arises
when a nested petal is encountered: which edge should be taken out of the nested petal? This
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issue is finessed completely by the procedure suggested above, i.e., using the petal node, jump to
the endpoints, c and d, of the bridge of this petal and find the two paths by going “down” the
petal. In this case, if a nested petal is encountered, we simply jump to its unique bud by using
the petal node of this nested petal.

3.3.2 Finding a maximal set of paths

Next, we show how to find a maximal set of disjoint minimum length augmenting paths, thereby
accomplishing the objective of a phase. After the first path, say p, is found, the next task is to
identify the set of vertices that cannot be part of an augmenting path that is disjoint from p, and
removing them from the graph. Clearly, the vertices of p will be removed, together with all edges
incident at them. As a result, some of the left-over vertices may have no more predecessors. We
will prove that such a vertex cannot be on an augmenting path that is disjoint from p. Recursively
remove all such vertices until every remaining matched vertex that was assigned a minlevel has a
predecessor; of course, unmatched vertices don’t have predecessors.

At this point MAX will proceed processing bridges of tenacity lm. When it encounters another
bridge which makes DDFS end with two unmatched vertices, it finds another augmenting path.
This continues until all bridges of tenacity lm are processed. Lemma 8.4 shows that this will result
in a maximal set of paths of length lm.

4 Double depth first search

In order to facilitate wide dissemination, the procedure of double depth first search (DDFS) is
expounded in a fully self-contained manner in this section. To make the exposition simpler, we
will describe it in the simplified setting of a directed, layered graph H; the MV algorithm executes
DDFS on the given graph, as described in Section 3. Additionally, the procedure of DDFS run
on the layered graph H, together with its properties derived in this section, will also be used in a
crucial way to give constructive proofs of certain facts in the central theorem, Theorem 6.12. As
the name indicates, DDFS consists of two highly coordinated depth first searches.

The layered graph: The vertices of H are partitioned into h+ 1 layers, lh, . . . l0, with lh being
the highest and l0 the lowest layer. Each directed edge runs from a higher to a lower layer, not
necessarily consecutive. Graph H contains two special vertices, r and g, for red and green, not
necessarily at the same layer. Furthermore, H satisfies:

DDFS Requirement: Starting from every vertex v in H, there is a path to a vertex in layer l0.

A vertex v will be called a bottleneck if every path from r to l0 and every path from g to l0 contains
v; v is allowed to be r or g or a vertex in layer l0. Among the bottlenecks, if there are any, the
one having highest level will be called the highest bottleneck. If so, we will denote it by b. Let
Vb (Eb) be the set of all vertices (edges) that lie on all paths from r and g to b. If there are no
bottlenecks, there must be distinct vertices r0 and g0 in layer l0 and disjoint paths from r to r0
and g to g0. If so, let Ep be the set of all edges that lie on all paths starting from r or g and
ending at r0 or g0.

The objective of DDFS: The purpose of DDFS is to find the highest bottleneck if one exists.
If so, DDFS needs to partition the vertices in Vb − {b} into two sets R and G, with r ∈ R and
g ∈ G. Furthermore it needs to find two trees, Tr and Tg, rooted at r and g, and spanning the
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vertices of R ∪ {b} and G ∪ {b}, respectively. If there is no bottleneck, DDFS needs to find the
distinct vertices r0 and g0 in layer l0, and vertex disjoint paths from r to r0 and from g to g0.

In summary, DDFS yields the following.

DDFS Certificate: In the first case, for every vertex v ∈ Vb − {b}, DDFS gives vertex disjoint
paths from one of r, g to v and from the other of r, g to b. In the second case, it gives vertex
disjoint paths from r to r0 and from g to g0, where r0 and g0 are distinct vertices in layer l0.

Finally, the running time of DDFS needs to be a function of the output in the following manner:
in the former case, DDFS needs to run in time O(|Eb|) and in the latter case, it needs to run in
time O(|Ep|).
The two DFSs and their coordination: The two DFSs maintain their own stacks, Sr and Sg,
which start with r and g, respectively. At any point in the search, each stack contains the vertices
that have been visited by the corresponding DFS but have not yet backtracked from. Each DFS
performs the usual operations, with one important modification. The latter is described below
when we give the rules for coordinating the two DFSs. Because edges in H go from higher to lower
levels, neither DFS will encounter back edges. The two DFSs start with their center of activity
at r and g, respectively. Assume that the center of activity of a DFS is at u and it searches along
edge (u, v). If v is not yet visited by either search, it pushes v onto its stack and moves its center
of activity to v. In this case, u is declared parent of v. If v is already visited by either search,
it considers the next unsearched edge incident at u – see below an exception, which is also the
important modification mentioned above. If all edges incident at u have already been searched,
it pops u from its stack and moves the center of activity to the parent of u.

We next give the rules for coordinating the two DFSs. To meet the running time requirement, we
posit that if b is the highest bottleneck in H, then neither DFS will search along any edges below
b. This gives our first rule: as soon as the center of activities of the two DFSs are at different
levels, the one that is higher must move to catch up. If both are at the same level, we adopt the
convention that red moves first. The exception mentioned above happens when one DFS searches
along edge (u, v) and v happens to be the center of activity of the other DFS. In this case, v could
potentially be a bottleneck and the two DFSs first need to determine whether it is. Furthermore,
if v is not a bottleneck, the two DFSs need to determine which tree gets v.

When the two DFSs meet at a vertex: The procedure followed by the two DFSs at this
point is the following, independent of which one got to v first. Let us assume that the red and
green DFSs reached v via edges (vr, v) and (vg, v), respectively. First the green DFS backtracks
from v and tries to reach a vertex, say w, with w 6= v and level(w) ≤ level(v). If green succeeds,
red moves its center of activity to v and it adds v to R and edge (vr, v) to Tr, and DDFS proceeds.
If the green fails, its stack, Sg, must be empty. Next, the red DFS backtracks from v and tries
to reach a vertex, say w, with w 6= v and level(w) ≤ level(v). If red succeeds, green moves its
center of activity to v; however, it does not push v onto Sg, since it has already backtracked from
v. In addition, it adds v to G and edge (vg, v) to Tg, and DDFS proceeds. If red also fails, then
its stack also must be empty and v is indeed the required bottleneck. If so, v is added to both
R and G and edges (vr, v) and (vg, v) are added to Tr and Tg, respectively, and DDFS halts. If
DDFS does not find a bottleneck, then eventually the two DFSs must find distinct vertices in l0.

Theorem 4.1 DDFS accomplishes the objectives stated above in the required time.

Proof : The main difference between a usual DFS and the two DFSs implemented in DDFS
arises when the two DFSs meet at a vertex, say v at layer lj . Observe that once one DFS reaches
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a vertex at layer l, say, at every future point, the center of activity of at least one DFS will be at
level l or lower. Therefore, since both DFSs just moved from higher layers to layer lj , no other
vertices at layer lj or lower have yet been explored. Therefore, if v is not a bottleneck, there is an
alternative path that reaches layer lj or lower and which has not been explored so far. Since at
this point both DFSs will consider all ways of finding such an alternative, they will find one and
DDFS will proceed. On the other hand, if v is a bottleneck, there is no such alternative, and after
considering all possibilities, both stacks will become empty and v will be declared the bottleneck.

If there is no bottleneck in H, by the arguments given above, the two DFSs will not get stuck
at any vertex. Hence, one of them must reach a vertex at layer l0, say v. Since v is also not a
bottleneck, even if the two DFSs meet at v, one of them will find a way of reaching another vertex
at layer l0.

Clearly, the only edges searched by DDFS are those in Eb in the first case and Ep in the second.
Furthermore, each such edge is examined at most twice, once in the forward search and once
during backtrack. Hence DDFS accomplishes the stated objectives in the required time. �

5 Limited BFS-honesty

In the next four sections, we introduce some crucial graph-theoretic notions and establish struc-
tural facts about them; these will be used in the proof of correctness given in Section 8.

Definition 5.1 (Limited BFS-honesty) Let p be an evenlevel(v) or oddlevel(v) path starting
at unmatched vertex f and let u lie on p. Then |p[f to u]| will denote the length of this path
from f to u, and if it is even (odd) we will say that u is even (odd) w.r.t. p. We will say that u
is BFS-honest w.r.t. p if |p[f to u]| = evenlevel(u) (oddlevel(u)) if u is even (odd) w.r.t. p.

Observe that in the graph of Figures 2 and 3, the vertices a, b and c are BFS-honest on all
evenlevel and oddlevel paths to the vertices of tenacity α. (However, the vertices of tenacity α are
not BFS-honest on oddlevel(a) and oddlevel(b) paths.) Theorem 5.3 uses the notion of tenacity
of vertices to establishes limited BFS-honesty of minimum length alternating paths.

Lemma 5.2 If (u, v) is a matched edge, then tenacity(u) = tenacity(v) = tenacity(u, v).

Proof : If (u, v) is a matched edge, evenlevel(v) = oddlevel(u) + 1 and evenlevel(u) =
oddlevel(v) + 1. The lemma follows. �

As a result of Lemma 5.2, in several proofs given in this paper, it will suffice to restrict attention
to only one of the end points of a matched edge.

Theorem 5.3 Let p be an evenlevel(v) or oddlevel(v) path starting at unmatched vertex f and
let vertex u ∈ p with tenacity(u) ≥ tenacity(v). Then u is BFS-honest w.r.t. p. Furthermore, if
tenacity(u) > tenacity(v) then |p[f to u]| = minlevel(u).

Proof : Assume w.l.o.g. that p is an evenlevel(v) path and that u is even w.r.t. p (by Lemma
5.2). Suppose u is not BFS-honest w.r.t. p, and let q be an evenlevel(u) path, i.e., |q| < |p[f to u]|.
First consider the case that evenlevel(v) = maxlevel(v), and let r be a minlevel(v) path. Let u′
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be the matched neighbor of u. Consider the first vertex of r that lies on p[u′ to v]. If this vertex
is even w.r.t. p then oddlevel(u) ≤ |r|+ |p[u to v]|. Additionally, evenlevel(u) < |p[f to u]|, hence
tenacity(u) < tenacity(v), leading to a contradiction. On the other hand, if this vertex is odd
w.r.t. p then minlevel(v) = |r| > evenlevel(u), because otherwise there is a shorter even path
from f to v than evenlevel(v). We combine the remaining argument along with the case that
evenlevel(v) = minlevel(v) below.

Consider the first vertex, say w, of q that lies on p(u to v] – there must be such a vertex because
otherwise there is a shorter even path from f to v than evenlevel(v). If w is odd w.r.t. p then
we get an even path to v that is shorter than evenlevel(v). Hence w must be even w.r.t. p.
Then, q[f to w] ◦ p[w to u] is an odd path to u with length less than evenlevel(v). Again we get
tenacity(u) < tenacity(v), leading to a contradiction.

We next prove the second claim. The claim is obvious if evenlevel(v) = minlevel(v), so let us
assume that evenlevel(v) = maxlevel(v). As before, let r be a minlevel(v) path, and consider
the first vertex of r that lies on p[u′ to v]. If this vertex is even w.r.t. p then oddlevel(u) ≤
|r| + |p[u to v]|. Hence tenacity(u) ≤ tenacity(v), which leads to a contradiction. On the other
hand, if this vertex is odd w.r.t. p then minlevel(v) = |r| > evenlevel(u), because otherwise there
is a shorter even path from f to v than evenlevel(v). Now the claim follows because otherwise
tenacity(u) < tenacity(v). �

As a consequence of Theorem 5.3, if a vertex u on path p fails to satisfy BFS-honesty, then it
must have strictly smaller tenacity than tenacity(v). In Theorem 6.12 Statement 5 we will show
that even such a vertex needs to satisfy certain other properties.

6 Base, blossom and bridge

A marked difference in the structure of the proof given in [Vaz94] and the current paper is the
following. [Vaz94] first proved the existence of base of a vertex and used it to define blossoms.
It then established properties of minimum length alternating paths as they traverse through
the blossoms. Using these properties, it proved the central fact needed for finding maxlevels of
vertices: Every maxlevel(v) path contains a unique bridge having tenacity = tenacity(v). Each
of these proofs involved studying intersections of minimum length alternating paths with each
other and with other structures via complicated case analyses which are, in retrospect, incorrect
at many places.

The key to avoiding this complication, and giving a well-founded proof, is to exploit the fact
that a blossom B contains, for each vertex v ∈ B, all minimum length alternating paths from the
base of B to v. The complicated intersections of these paths are thereby encapsulated inside the
blossom, and the blossom offers, to the rest of the graph, a surprisingly simple interface.

Let v be vertex of tenacity t, with tm ≤ t < lm and p be an evenlevel(v) or oddlevel(v) path.
Assume it starts at unmatched vertex f . If u and w are two vertices on p and if u is further
away from f on p than w, then we will say that u is higher than w. Consider all vertices
of tenacity > t on p; this set is non-empty since, by the choice of t, it contains f . Among
these vertices, define the highest one to be the base of v w.r.t. p, denoted F (p, v). Clearly
F (p, v) must be even w.r.t. p. Therefore, since tenacity(F (p, v)) > tenacity(v), by Theorem 5.3,
minlevel(F (p, v)) = evenlevel(F (p, v)). Hence F (p, v) is an outer vertex. Define the set,

B(v) = {F (p, v) | p is an evenlevel(v) or oddlevel(v) path}.
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Next assume that v has evenlevel(v) and oddlevel(v) paths starting at unmatched vertex f . Define
the set,

Bf (v) = {F (p, v) | p is an evenlevel(v) or oddlevel(v) path starting at f}.

The following claim leads to the central definition of base of a vertex.

Claim 6.1 Let v be vertex of tenacity t, with tm ≤ t < lm. Then the set B(v) is a singleton.

It turns out that the proof of Claim 6.1 requires, for the reason stated above, the notion of
blossoms, On the other hand, blossoms can be defined only after defining the base of a vertex,
which can only be done after this claim is proven. This deadlock is broken via an induction on
tenacity: for each value of tenacity, say t, once Claim 6.1 is proven for vertices of tenacity t,
their base can be defined, following which, blossoms of tenacity t can be defined. Then properties
of these blossoms (laminarity) and properties of paths traversing through these blossoms are
established. All these facts are then used in the next step of the induction.

This elaborate induction is given in Theorem 6.12. Since this theorem 6.12 proves many facts all
at once, and is very long, we will prove its parts separately. Some of these parts are proven con-
ditionally and are called Propositions below and in Section 7. We will also state some conditional
definitions, which are clearly indicated below. We define the condition next.

Definition 6.2 (Claim(t)) For t odd, with tm ≤ t < lm, Claim(t) will denote the assumption
that Claim 6.1 holds for all vertices v such that tm ≤ tenacity(v) ≤ t.
For a particular value of t, once Claim(t) is proven in the appropriate step of the induction
in Theorem 6.12, the conditional lemmas and definitions, for this value of t, will start holding
unconditionally. Once Theorem 6.12 is fully proven, the central definitions of base of a vertex and
blossom will start holding unconditionally and will be used as such in the rest of the paper.

Conditional Definition 6.3 (Base of a vertex)
For t odd, with tm ≤ t < lm, assume Claim(t). Then, for each vertex v of tenacity ≤ t, define
its base to be the singleton vertex in the set B(v). We will denote it by base(v).

As observed above, F (p, v) is always an outer vertex. Hence the base of a vertex is outer. Further-
more, by Theorem 5.3, base(v) is BFS-honest on every evenlevel(v) or oddlevel(v) path. In the
graph of Figures 2 and 3, the base of each vertex of tenacity α is a, tenacity κ is b, and tenacity
τ is f , respectively. In Figure 17, b is the base of v, v′, w and w′. In Figure 16, f is the base of
v, v′, w and w′.

Remark: The condition “t < lm” is essential in Claim 6.1 and in Definition 6.3. Figure 15 gives
a counter-example. In this graph, lm = 3 and the vertices u and v, both of tenacity 3, have no
base, since the evenlevel and oddlevel paths to these vertices do not contain any vertex of tenacity
greater than 3.

Conditional Definition 6.4 (Blossom) For t odd with tm ≤ t < lm, assume Claim(t).
Blossoms will be defined recursively. Let b be an outer vertex with tenacity(b) > t. We will denote
the blossom of tenacity t and base b by Bb,t. Define Bb,1 = ∅. If t ≥ 3, let Sb,t = {v | tenacity(v) =
t and base(v) = b} and define

Bb,t = Sb,t ∪

 ⋃
v∈(Sb,t∪{b}), v outer

Bv,t−2

 .
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Figure 15: Vertices u and v have no
base.

Figure 16: Vertex f is the base of
v, v′, w, w′.

It is obvious from Definition 7.1 that if v ∈ Bb,t then tenacity(v) ≤ t. In particular, observe
that b /∈ Bb,t. We will say that blossom Bb′,t′ is nested in blossom Bb,t if Bb′,t′ ⊂ Bb,t. From the
recursive definition given above, it follows that t′ < t.

In the graph of Figures 2 and 3, the blossom Ba,α consists of vertices of tenacity α, the blossom
Bb,κ consists of vertices of tenacity α and κ, and the blossom Bf,τ consists of vertices of tenacity
α, κ and τ . In Figure 17, blossom Bb,7 = {w,w′} and blossom Bb,11 = {w,w′, v, v′}. In Figure
16, blossom Bf,3 = {w,w′} and blossom Bf,7 = {w,w′, v, v′}; clearly, the former is nested in the
latter.

Lemma 6.5 Let v be vertex with tm ≤ tenacity(v) < lm. There is an evenlevel(v) path starting
at unmatched vertex f if and only if there is an oddlevel(v) path starting at f .

Proof : By Lemma 5.2, it suffices to prove only the forward direction. By the assumption
on tenacity(v), v has paths of both parity. Let p be an evenlevel(v) path starting at unmatched
vertex f and suppose q is an oddlevel(v) path starting at unmatched vertex f ′ 6= f . We will show
that there must also be an oddlevel(v) path starting at unmatched vertex f .

Let u be the lowest vertex w.r.t. q that lies on p as well. If u is even w.r.t. p, then there is
an augmenting path from f ′ to f of length less than tm. Therefore, u is odd w.r.t. p. Since
q[f ′ to u] ◦ p[u to v] is a valid even alternating path, |q[f ′ to u]| ≥ |p[f to u]|, otherwise we can
get a shorter e(v) path than p. If q(u to v] ∩ p[f to u) = ∅, then p[f to u] ◦ q[u to v] is a valid
odd alternating path of length at most |q| and we are done.

Otherwise, let (w′, w) be lowest matched edge of p that is traversed by q, with w even w.r.t. p. If
w is odd w.r.t. q, then again we can get an augmenting path from f ′ to f of length less than tm.
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Figure 17: Vertex b is the
base of v, v′, w, w′.

Figure 18: Blossom Bb,15 is of minimum tenac-
ity. Note that H(v, v′) = b′.

In the remaining case, p[f to w] ◦ q[w to v] is a shorter odd alternating path than q, leading to a
contradiction. This proves the lemma. �

Blossoms, as defined by Edmonds, also form nested structures. Let us point out an important
difference between the two from the viewpoint of nesting. Under Edmonds’ definition, an inner-
most blossom is simply an odd length alternating cycle. In our case, an innermost blossom is, in
general, far more elaborate, Figure 18 gives an example of such a blossom. Clearly, a blossom of
tenacity tm must be the innermost blossom in any nesting. The blossom in Figure 18 is in fact
of tenacity tm. Lemmas 6.7 will establish the base case of Claim 6.1, i.e., for tenacity tm. The
complexity of the proof of Lemma 6.7 is natural in the face of the complexity of the innermost
blossom.

Let f be an unmatched vertex and t be an odd number with tm ≤ t < lm. We will denote by
Vt(f) the set of vertices having tenacity t and having evenlevel and oddlevel paths starting at f .
For such a vertex v ∈ Vt(f), consider all evenlevel(v) and oddlevel(v) paths starting at f , and
consider every vertex of tenacity > t that lies on each of these paths; in particular, f is such a
vertex. Among these vertices, pick the one that is highest and denote it by Af (v).

The proof of the next lemma is straightforward — the idea behind it is essentially the same as
that for Lemma 5.2 — and is omitted.
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Lemma 6.6 Let (u, v) be a matched edge of tenacity t, with tm ≤ t < lm. Then5 u ∈ Vt(f) if
and only if v ∈ Vt(f). Furthermore, if u and v ∈ Vt(f), then Af (u) = Af (v), Bf (u) = Bf (v) and
B(u) = B(v).

The next lemma proves the base case of the first two statements of Theorem 6.12.

Lemma 6.7 For every vertex v of tenacity tm, the following hold:

Statement 1: The set B(v) is a singleton.

Statement 2: Every maxlevel(v) path contains a unique bridge of tenacity tm.

Proof : The proof is quite elaborate and has been split into claims, each one establishing a
basic fact.

Let f be an unmatched vertex such that v ∈ Vtm(f). We will first prove:

Statement 1’: The set Bf (v) is a singleton, and Bf (v) = Af (v).

Claim 1 It suffices to prove Statement 1’ and Statement 2 for inner vertices in Vtm(f).

Proof : From the proof of Lemma 5.2, it is easy to see that the matched neighbor of any
outer vertex, say v, is an inner vertex6, say v′. Furthermore, by Lemma 6.6 if v is in Vtm(f), so
is v′. Next observe that every maxlevel(v′) path yields a maxlevel(v) path by removing the last
edge, i.e, (v, v′), and every maxlevel(v) path yields a maxlevel(v′) path by concatenating the edge
(v, v′). Hence proving Statement 1’ for v′ also proves it for v. For Statement 2, by Lemma 6.6,
proving it for v′ also proves it for v. �

Let v be an inner vertex in Vtm(f). We will next define a graph Gv whose structural properties
will lead to a proof of the lemma. Let Af (v) = b. Consider all evenlevel(v) and oddlevel(v) paths
starting at f , and denote by Gv all the vertices and edges on these paths. Let β = minlevel(b)
and α = (tm − 1)/2; clearly α is the maximum possible minlevel of a vertex of tenacity tm. By
definition of tm, every vertex on an evenlevel(v) or oddlevel(v) path is BFS-honest on it. Graph
Gv is a layered graph, similar to graph H defined in Section 4, with one exception (made for the
sake of convenient notation), namely it will have edges running between pairs of vertices at layer
α. Gv has α+ 1 layers numbered 0 to α.

The layer of each vertex in Gv is defined to be its minlevel. Thus layer 0 has only f in it. Clearly,
all the props run between adjacent layers of Gv. Furthermore, Gv satisfies the DDFS Requirement
(stated in Section 4), that starting from any vertex, there is a path to the lowest layer, i.e., vertex
f .

Claim 2 Let p be an evenlevel(v) path in Gv. Then p contains a bridge of tenacity t.

5Observe that by Lemma 5.2, tenacity(u) = tenacity(v) = t.
6Observe that the reverse is not true, since both endpoints of a matched edge could be inner vertices.
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Proof : Clearly, p will contain an edge (u, u′) such that minlevel(u) = minlevel(u′) = α.
We will show that (u, u′) is a bridge of tenacity t. Any minlevel(u) path concatenated with the
edge (u, u′) gives a maxlevel(u′) path and vice versa. Hence tenacity(u) = tenacity(u′) = tm.
Furthermore, the predecessors of u and u′ are vertices at with minlevel α− 1. Hence (u, u′) is a
bridge. �

We will prove Statement 1’ by induction on minlevel(v), for v ∈ Vtm(f). We will show that
for each l ∈ [β + 1,α], all vertices in Gv that have minlevel l must have tenacity tm, thereby
proving that Bf (v) = {b}. Before proceeding with the induction, let us establish some structural
properties which will be used both by the induction basis and the induction step.

Let (u, u′) be a bridge of tenacity tm in Gv. Consider all possible minlevel(u) and minlevel(u′)
paths and say that vertex w is a bottleneck if it lies on all such paths. Denote the highest (in
minlevel) bottleneck by H(u, u′); clearly, this will be an outer vertex.

Claim 3 H(u, u′) lies on every oddlevel(v) path.

Proof : Suppose not, and consider an oddlevel(v) path that does not use w. This path can be
extended to a minlevel(u) or minlevel(u′) path, thereby contradicting the fact that H(u, u′) is a
bottleneck for all such paths. �

Define the set S(u, u′) as follows. For each minlevel(u) and minlevel(u′) path, include in S(u, u′)
all vertices that are higher than H(u, u′).

Claim 4 For each vertex w ∈ S(u, u′), tenacity(w) = tm.

Proof : Clearly, DDFS run on Gv with bridge (u, u′) must end with the bottleneck H(u, u′),
and it will visit each vertex in S(u, u′). Therefore, for each w ∈ S(u, u′), the concatenation of
the two paths established by the DDFS Certificate, together an evenlevel(H(u, u′)) path and the
edge (u, u′), yields a maxlevel(w) path, which shows that tenacity(w) = tm. �

Induction basis: Let v be a vertex of minimum minlevel in Vtm(f); clearly v is inner. Let
Af (v) = b. defined above.

Claim 5 Let p be an oddlevel(v) path. Then last edge of p is (b, v). Furthermore, there is a
bridge (u, u′) in Gv such that H(u, u′) = b.

Proof : Suppose not, and let the last edge of p be (w, v). Now, an evenlevel(v) path concate-
nated with edge (v, w) gives an odd alternating path to w thereby proving that tenacity(w) = tm.
However, minlevel(w) < minlevel(v), which contradicts the choice of v, thereby proving that the
last edge of p is (b, v).

Let (u, u′) be a bridge on any evenlevel(v) path, say q. Since p[b to v] is simply the edge (b, v),
the only bottleneck on q[b to v] is b. Hence H(u, u′) = b. �

By Claim 5, for any evenlevel(v) path p, every vertex on p(b to v] has tenacity tm. Therefore
Bf (v) = Af (v) = {b}, hence proving the induction basis.
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Induction step: Let v be an inner vertex in Vtm(f) with minlevel(v) = l, where l ∈ (β + 1,α],
and assume that Statement 2 holds for every vertex in Vtm(f) having minlevel < l. Consider
all bridges of tenacity tm that lie on evenlevel(v) paths. For each one, say (u, u′), consider the
bottleneck H(u, u′). Among these bottlenecks, let w be one having lowest minlevel. As shown in
Claim 3, w lies on all oddlevel(v) paths.

Claim 6 w lies on every evenlevel(v) path.

Proof : Suppose p is an evenlevel(v) path that does not contain w, and let (u, u′) be the
bridge on this path. Now there are two cases: either there is an oddlevel(v) path q such that p
shares a matched edge (y, y′) on q(w to v) or there is no such oddlevel(v) path. In the first case,
p[f to y] ◦ q[y to v] is an oddlevel(v) path not using w. In the second case, H(u, u′) is below w.
Both cases lead to contradictions. �

Since w is the highest bottleneck for all oddlevel(v) and evenlevel(v) paths, any vertex z ∈ Gv
with minlevel(z) > minlevel(w), z ∈ S(u, u′) for some bridge (u, u′) of tenacity tm that lies on an
evenlevel(v) path. Therefore, by Claim 4, tenacity(z) = tm. Now there are two cases: w = b and
w 6= b. In the first case, we have established that Bf (v) = Af (v) = b.

Claim 7 If w 6= b, then tenacity(w) = tm and Bf (w) = Af (w) = b.

Proof : If tenacity(w) > tm, Af (v) = w, leading to a contradiction. Furthermore, since
mn(w) < minlevel(v), the induction hypothesis applies to w, and Bf (w) = Af (w).

We next establish that Af (w) = b. Every evenlevel(w) path, p, can be extended to an oddlevel(v)
path and therefore F (p, w) = b. Suppose there is an oddlevel(w) path q with F (q, w) 6= b. Then
either there is an evenlevel(w) path p such that q shares a matched edge (y, y′) on p(b to w) or
there is no such evenlevel(w) path. In the first case, r = q[f to y] ◦ p[y to w] is an evenlevel(w)
path such that F (r, w) 6= b. In the second case, q ◦ p[w to b] is an oddlevel(b) path showing that
tenacity(b) = tm; here p is any evenlevel(w) path. Both cases lead to contradictions. Therefore
F (q, w) = b, and hence Af (w) = b. �

Claim 8 If w 6= b, then for every evenlevel(v) and oddlevel(v) path p, every vertex on p(b to w)
is of tenacity tm.

Proof : Since w occurs on every evenlevel(v) and oddlevel(v) path p and is BFS-honest on
it, p consists of an evenlevel(w) path concatenated with a appropriate path from w to v. Since
Bf (w) = b, for any evenlevel(w) path q, every vertex on q(b to w) is of tenacity tm. Hence every
vertex on p(b to w) is of tenacity tm. �

Therefore we have established that Bf (v) = Af (v) = {b} in second case as well, i.e., w 6= b. This
completes the proof of Statement 1’. The next claim will enable us to prove Statement 1.

Claim 9 Let f and f ′ be unmatched vertices. For every vertex v ∈ Vtm(f)∩Vtm(f ′), the following
holds: Bf (v) = Bf ′(v).
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Proof : Suppose Bf (v) 6= Bf ′(v), and let b = Bf (v) and b′ = Bf ′(v), with minlevel(b) ≤
minlevel(b′). All evenlevel(v) and oddlevel(v) paths from f use b and not b′, and those from f ′

use b′ and not b. In particular, any evenlevel(b) path is vertex disjoint from any evenlevel(b′)
path.

Let S1 ⊆ Vtm(f) be the set of vertices7 whose evenlevel and oddlevel paths contain b, and S2 ⊆
Vtm(f ′) be the set of vertices whose evenlevel and oddlevel paths contain b′. Let S be the set of
vertices of minimum minlevel in S1 ∩ S2; clearly they are all inner. First consider the case that
there is v ∈ S that is adjacent to b or b′, say the former. Then an oddlevel(v) path containing b
concatenated with an evenlevel(v) path containing b′ will be a simple alternating path and hence
an augmenting path from f to f ′ of length tm, contradicting the assumption tm < lm.

Pick any v ∈ S and let (w, v) be the last edge on an oddlevel(v) path that contains b. Let p
be an evenlevel(v) path that contains b′. Then p concatenated with the edge (v, w) yields an
oddlevel(w) path that contains b′. Now applying Lemma 6.5 we get that w ∈ S1 ∩ S2. Since
minlevel(w) < minlevel(v), we get a contradiction. Hence Bf (v) = Bf ′(v). �

Claim 9 immediately implies that B(v) is a singleton, thereby proving Statement 1. It further
implies that S1 = S2 and hence Statement 2 follows from Claim 2. �

Remark: It is easy to construct an example in which u, v ∈ Vtm(f) and Bf (u) 6= Bf (v).

Figure 19: Bb,11 is a proper subset of V11(f).

Conditional Definition 6.8 (Iterated bases of a vertex)
For t odd, with tm ≤ t < lm, assume Claim(t).

Let v be a vertex such that tenacity(v) = t′ ≤ t. The following are the iterated bases of v:
Define base1(v) = base(v), and for k ≥ 1, if tenacity(basek(v)) ≤ t, then define basek+1(v) =
base(basek(v)).

In the graph of Figures 2 and 3, base1(v) = a,base2(v) = b and base3(v) = f .

Conditional Definition 6.9 (Shortest path from an iterated base to vertex)
For t odd, with tm ≤ t < lm, assume Claim(t).
Let v be a vertex such that tenacity(v) ≤ t, and let k ∈ Z+ such that tenacity(basek(v)) ≤ t. Let

7As shown in Figure 19, S1 ⊂ Vtm(f) is possible.
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basek+1(v) = b. Then by an evenlevel(b; v) (oddlevel(b; v)) path we mean a minimum even (odd)
length alternating path from b to v that starts with an unmatched edge.

Proposition 6.10 For t odd with tm ≤ t < lm, assume Claim(t).
Let v be a vertex such that tenacity(v) = t and base(v) = b. Then every evenlevel(v) (oddlevel(v))
path consists of an evenlevel(b) path concatenated with an evenlevel(b; v) (oddlevel(b; v)) path.

Proof : Let p be an evenlevel(b) path starting at unmatched vertex f and q be an evenlevel(b; v)
path. If their concatenation is longer than evenlevel(v) then q must intersect p below b. Let
(w,w′) be the lowest matched edge of p used by q, where w′ is even w.r.t. p. Now, using the same
arguments as those in the proof of Theorem 5.3, one can show that if w is odd w.r.t. q then there
is an even path from f to v that is shorter than evenlevel(v) and if w′ is odd w.r.t. q then there
is a short enough odd path from f to b which gives tenacity(b) ≤ t. �

The next lemma can be proven unconditionally and will be needed critically in Theorem 6.12.

Lemma 6.11 Let v be vertex of tenacity t, with tm ≤ t < lm, let p be a minlevel(v) path, and let
b = F (p, v). Let u be a vertex on p[b to v] satisfying tenacity(u) < t, edge (u,w) lies on p with w
higher than u, and tenacity(w) = t. Then u is BFS-honest w.r.t. p.

Proof : Assume w.l.o.g. that p is an evenlevel(v) path (by Lemma 5.2). Clearly, u is even
w.r.t. p and w is odd w.r.t. p. Suppose u is not BFS-honest w.r.t. p, and let q be an evenlevel(u)
path, i.e., |q| < |p[f to u]|.
Consider the first vertex, say z, of q that lies on p(u to v] – there must be such a vertex because
otherwise there is a shorter even path from f to v than evenlevel(v). If z is odd w.r.t. p then
again we get an even path to v that is shorter than evenlevel(v). Hence z must be even w.r.t. p.
Then, q[f to z] ◦ p[z to w] is an even path to w with length less than minlevel(v). Furthermore,
since w is odd w.r.t. p, oddlevel(w) < minlevel(v). Hence tenacity(w) < tenacity(v), leading to a
contradiction. �

Theorem 6.12 Let t be an odd number with tm ≤ t < lm, and let v be a vertex of tenacity t.
The following hold:

Statement 1: The set B(v) is a singleton.

Statement 2: Every maxlevel(v) path contains a unique bridge of tenacity t.

Statement 3: The blossoms of tenacity at most t form a laminar family.

Statement 4: Let base(v) = b and u ∈ Bb,t. Then every evenlevel(u) (oddlevel(u)) path consists
of an evenlevel(b) path concatenated with an evenlevel(b;u) (oddlevel(b;u)) path. Moreover,
every evenlevel(b;u) and oddlevel(b;u) path lies in Bb,t ∪ {b}. Furthermore, every edge on
every evenlevel(b;u) and oddlevel(b;u) path is of tenacity ≤ t.

Statement 5: Let base(v) = b, p be an evenlevel(v) or oddlevel(v) path, and u lie on p(b to v].
Then base(u) lies on p[b to v].
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Additionally, for every vertex v of tenacity lm, every maxlevel(v) path contains a unique bridge
of tenacity lm.

Proof :
Induction basis: Statements 1 and 2 are proven in Lemma 6.7. As a result base(v) = b, say,
and blossom Bb,tm are unconditionally defined. If d and d′ are distinct vertices of tenacity > tm
then the blossoms Bd,tm and Bd′,tm are disjoint sets, since a vertex cannot have both d and d′ as
its base, leading to a proof of Statement 3 holds. Observe that vertex u in Statement 4 must have
tenacity tm. The first part of this statement follows from Proposition 6.10. For the second part,
by Lemma 6.7, every vertex w 6= b on an evenlevel(b;u) or oddlevel(b;u) path has tenacity tm
and base b, i.e., lies in Bb,tm . The third part is easy to see from the structural properties of graph
Gv established in Lemma 6.7. Hence Statement 4 holds. Vertex u in Statement 5 must also have
tenacity tm, and hence its proof follows from Statement 4.

Induction step: Let t be an odd number with tm < t < lm, and assume that the theorem holds
for tenacity < t.

Claim 1 Statement 2 holds.

Proof : Let p be a maxlevel(v) = evenlevel(v) path and q be a minlevel(v) path; clearly
|p|+ |q| = t. By Theorem 5.3, each vertex u of tenacity ≥ t on p is BFS-honest w.r.t. p. Among
these let us partition the vertices having minlevel ≥ β into two sets: T1 (T2) consists of vertices
u such that |p[f to u]| = minlevel(u) (= maxlevel(u)). Clearly b ∈ T1 and v ∈ T2, hence both sets
are non-empty. Let a be the vertex in T1 having the largest minlevel and c be the vertex in T2
having the smallest maxlevel. Now there are three cases.

Case 1: a and c are adjacent on p and (a, c) is a matched edge. Since a ∈ T1 and c ∈ T2,
tenacity(a) ≥ t and tenacity(c) ≥ t. The concatenation of p and q can be viewed as the con-
catenation of an even and an odd path from f to a, giving tenacity(a) ≤ t. Combined with the
previous statement we get tenacity(a) = t. By Lemma 5.2 we get tenacity(a) = tenacity(c) =
tenacity(a, c) = t. Since p assigns minlevel to a and maxlevel to c, it must be the case that
minlevel(a) = α and maxlevel(c) = α + 1. Furthermore, since tenacity(a) = tenacity(c) = t, we
get minlevel(c) = α and maxlevel(a) = α+ 1, i.e., a and c are both inner. Therefore (a, c) is not
a prop, and hence it is a bridge of tenacity t.

Case 2: a and c are adjacent on p and (a, c) is an unmatched edge. By arguments analogous to
the previous case, it is easy to see that tenacity(a) = tenacity(c) = tenacity(a, c) = t, and that a
and c are both outer. Therefore (a, c) is not a prop, and hence it is a bridge of tenacity t.

Case 3: In the remaining case, a and c are not adjacent on p, i.e., there are vertices of tenacity
< t between a and c on p. Let (c, c′) be the unmatched edge on p. There are two cases:

Case 3a: (c, c′) is a prop. If so, c′ lies in the blossom Bc,t−2. Let (d, d′) be the first edge on
p[c to f ] that “comes out of this blossom,” i.e., d ∈ Bc,t−2 and d′ /∈ Bc,t−2. Clearly (d, d′) is
unmatched. Now there are two cases. If d′ = a, then (d, a) must be a bridge. The reason is that
a, which gets its minlevel from p must be outer, and all predecessors of d lie inside Bc,t−2 ∪ {c}.
Now, the concatenation of p and q can be viewed as the concatenation of an evenlevel(d) path,
an evenlevel(a) path and the edge (d, a) – the only aspect requiring justification is the first path,
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which follows from Statement 5 of the induction hypothesis applied to vertex d ∈ Bc,t−2. Hence
(a, d) is a bridge of tenacity t.

If d′ 6= a, tenacity(d′) < t and so d′ lies in a blossom of tenacity t− 2, say Be,t−2, having base e.
Now, by Statement 5 of the induction hypothesis applied to d′ ∈ Be,t−2 we get that every shortest
even path from d′ to f must use e. Hence the e lies on p[d′ to a]. Furthermore, tenacity(e) ≥ t.
Therefore e = a. Finally, by analogous arguments to the previous case, the concatenation of p
and q can be viewed as the concatenation of an evenlevel(d) path, an evenlevel(d′) path and the
edge (d, d′), which shows that (d, d′) is a bridge of tenacity t.

Case 3b: (c, c′) is a bridge. By similar arguments to the previous case we get that c′ ∈ Ba,t−2
and that (c, c′) is a bridge of tenacity t.

Finally, we show that none of the remaining edges on p is a bridge of tenacity t. Consider an edge
(d, e) on p[f to a], with d below e on p. If tenacity(e) ≥ t then e is BFS-honest on p and (d, e)
is a prop. If t(d) < t then d lies in a blossom of tenacity t − 2 and hence by Statement 5 of the
induction hypothesis, tenacity(d, e) < t. A similar argument holds for the edges on p[c to v]. This
completes the proof of Statement 2. �

Let f be an unmatched vertex such that v ∈ Vt(f). The structure of the proof of the next Claim
is along the lines of the proof of Statement 1’ in Lemma 6.7. Therefore, in the proof given below,
our emphasis is on providing only the new ideas needed.

Claim 2 The following holds:

Statement 1’: The set Bf (v) is a singleton, and Bf (v) = Af (v).

Proof : Once again it suffices to consider inner vertices only, see Claim 1. Let v be an inner
vertex in Vt(f). We will define a graph Gv whose structural properties will lead to a proof of
Statement 1’. Let Af (v) = b. Let β = minlevel(b) and α = (tm− 1)/2; clearly α is the maximum
possible minlevel of a vertex of tenacity t. Gv is a layered graph, similar to graph H defined in
Section 4, which was used for defining the procedure of DDFS.

The edges of Gv go from higher layers to lower layers and are not distinguished as matched or
unmatched. Graph Gv has α+ 1 layers, which are numbered from 0 to α, with not necessarily all
layers having vertices. As in Lemma 6.7, we will make one exception to edges not running within
the same layer: the two end points of certain bridges of tenacity t may both lie in layer α. Even
so, we will add an edge connecting them.

The manner in which Gv is obtained from the original graph G = (V,E) is specified below.
Its vertices will be a suitably chosen subset of V . The layer number of each vertex w ∈ Gv is
minlevel(w); in particular, layer 0 will contain only f . Each edge also has a specified length; for
edges not having layer α as one of the end points, the length of the edge is the difference of the
layer numbers of its end points.

We will show that Gv satisfies the DDFS Requirement (stated in Section 4), namely starting
from any vertex, there is a path to the lowest layer. Additionally, we will prove the following
correspondence between paths in Gv and alternating paths in G = (V,E).

Correspondence of paths between Gv and G: Corresponding to each simple path in Gv from
u in layer l to w in layer l′, with l > l′, such that each edge of the path goes from a higher to a
lower layer, there is a simple alternating path of the same length in G = (V,E). Furthermore, if
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the DDFS Guarantee gives disjoint paths from a to u and c to w, for some bridge (a, c) of tenacity
t, then there are vertex-disjoint simple alternating paths from a to u and c to w in G = (V,E) of
the same lengths.

Consider all evenlevel(v) and oddlevel(v) paths starting at f . By Theorem 5.3, every vertex of
tenacity ≥ t on such a path is BFS-honest on it. Let S denote all such vertices. The vertex set of
Gv is S∪S′, where S′ will be defined below. Its edge set is E′∪E′′, where E′ is a specially chosen
subset of E, and E′′ are additional edges defined below. The length of each edge in E′ is unit and
for edges in E′′, the length is specified below. For each pair of vertices u,w ∈ S, if (u, v) ∈ E and
minlevel(u) 6= minlevel(v), then (u, v) is included in E′. In addition E′ will contain all bridges of
tenacity t, as pointed out below.

Next we define the edges of E′′. Intuitively, these edges will replace “sub-paths that lie inside
blossoms of tenacity t− 2.” Let w ∈ S and let p be a minlevel(w) path that starts at f ; clearly p
is part of an evenlevel(v) or oddlevel(v) path. Let a and c be vertices of tenacity < t on p, with
a lower than c. Let a′ immediately precede a and c′ immediately succeed c on p. We will say
that p[a to c] is a maximal contiguous stretch of vertices of tenacity < t on p if tenacity(a′) ≥ t,
tenacity(c′) ≥ t and all vertices on p[a to c] are of tenacity < t. By Lemma 6.11, c is BFS-honest
w.r.t. p and by Lemma 5.2, |p[f to c]| must be even. Hence by Statement 4 of the induction
hypothesis, p[a′ to c] = evenlevel(a′; c) and it lies in Ba′,t−2 ∪ {a′}.
Now, in lieu of the path p[a′ to c′], the direct edge (a′, c′) is added to E′′, and its length is defined
to be |p[a′ to c′]|. Observe that the length equals the difference in the layer numbers of c′ and
a′. Thus edge (a′, c′) of graph Gv represents the path evenlevel(a′; c) ◦ (c, c′) in the original graph
G = (V,E). This operation is performed on every relevant sub-path of every evenlevel(v) and
oddlevel(v) path.

Finally we add vertices and edges to Gv corresponding to each bridge of tenacity t; the precise
addition depends on the case in Claim 1 satisfied by this bridge. In Case 1 and 2, we only need
to add the edge (a, c).

In the first case within Case 3a, we add vertex d to S′ and assign it layer α. We also add edge
(c, d) to E′′ and (d, a) to E′. The length of (c, d) is |p[c to d]| = evenlevel(c; d) and it corresponds
to an evenlevel(c; d) path in G = (V,E).

In the second case within Case 3a, we add d and d′ to S′, both at layer α and we add (d, d′) to
E′. We also add edges (c, d) and (d′a) to E′′. These correspond to an evenlevel(c; d) path and an
evenlevel(a; d′) path in G = (V,E), respectively, and their lengths are defined to be the lengths
of these paths.

In case 3b, we add c′ to S′, at layer α, together with edge (c, c′) in E′. We also add edge (c′, a)
to E′′; it corresponds to an evenlevel(a; c′) path in G = (V,E) and its length is defined to be the
length of this path.

This completes the description of graph Gv. It is easy to verify that Gv satisfies the DDFS
Requirement (stated in Section 4), namely starting from any vertex, there is a path to the lowest
layer, i.e., vertex f . We now prove that the correspondence of paths between Gv and G = (V,E)
holds. For this, observe that if (a, c) and (d, e) are edges in E′′ on four distinct vertices, then they
correspond to two paths that lie in two distinct blossoms of tenacity t− 2. By Statement 3 of the
induction hypothesis, i.e., laminarity of blossoms, these two blossoms are vertex disjoint, thereby
implying that the required paths through them are also vertex disjoint.

We note that the remaining ideas needed to complete the proof of Statement 1’ are identical to
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those used for proving Statement 1’ in Lemma 6.7. �

Again, Claim 9 extends Statement 1’ to Statement 1. At this point, the base of every vertex
of tenacity t, and blossoms of tenacity t are unconditionally defined. Hence Statement 3 follows
from Proposition 7.6.

The first part of Statement 4 follows from Proposition 6.10. The second part follows from the fact
that all vertices of tenacity < t on evenlevel(v) and oddlevel(v) paths lie in blossoms of tenacity
t−2, which by the definition of blossoms will be nested inside Bb,t. The additional vertices referred
to in the third part are those of tenacity < t in Bb,t. Such a vertex u lies in a blossom Bd,t−2,
where d is either b or d is a vertex of tenacity t in Bb,t. The first case, following by Statement 4 of
the induction hypothesis, and in the second case, b is an iterated base of u and an evenlevel(b; d)
path concatenated with an appropriate path in Bd,t−2, which is guaranteed by Statement 4 of the
induction hypothesis, yields the required path. The structure of Gv readily implies the third part
of Statement 4, hence proving this statement fully.

If tenacity(u) = t, Statement 5 is obvious. Next assume tenacity(u) < t. Let w be the first
vertex on p[u to v] having tenacity t and let w′ be the preceding vertex on this path; clearly
tenacity(w′) < t. Also, let a be the last vertex on p[b to u] of tenacity ≥ t. By Lemma 6.11, w′ is
BFS-honest on p and by Statement 4 of the induction hypothesis, p[a to w′] is an e(a;w′) path.
Now, by Statement 5 of the induction hypothesis, base(u) lies on p[a to w′], thereby completing
the proof of Statement 5. This also completes the proof of the induction step.

To establish the last claim made in the theorem, let v be a vertex of tenacity lm. Observe that
the arguments made in Claim 1 for proving Statement 2 do not hinge on proving any of the
subsequent statements for that value of tenacity. Hence the proof of this claim will work for
vertices of tenacity lm as well. �

As stated in Section 3.2, petals are intimately connected to blossoms. This relationship is formally
established in Lemma 6.13. At the end of search level i = (t − 1)/2, i.e., once MAX is done
processing all bridges of tenacity t, all blossoms of tenacity t can be identified as follows. The
proof of this lemma is straightforward and is omitted.

Lemma 6.13 Let tenacity(v) = t, and at the end of search level i = (t − 1)/2, assume that
bud∗(v) is b. Then base(v) = b and the set Sb,t defined in Definition 7.1, for blossom Bb,t is
precisely {u | tenacity(u) = t and bud∗(u) = b}. Furthermore, blossom Bb,t consists of the union
of all petals whose bud∗ is b at the end of search level i = (t− 1)/2, together with each blossom of
tenacity (t− 2) whose base is b or any of the vertices of these petals.

Observe that if bud∗(v) is computed at the end of search level j > i, then it may not be b anymore.
However, it will be an iterated base of v.

7 Blossoms form a laminar family

In this section, we will assume that Claim(t) holds for t odd and tm ≤ t < lm, and we will show
that the set of blossoms of tenacity at most t forms a laminar family. This will prove Statement 3
in the induction step in Theorem 6.12. Of course, once Theorem 6.12 is established, the laminarity
of all blossoms will hold unconditionally.
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Figure 20: Bb,11 ⊂ Bb′,13 Figure 21: Bb,11 ⊂ Bb,13

First let us present an attempt at constructing a counter-example. The subtlety of reason due
to which the counter-example fails should indicate that the proof will be non-trivial. In Figure
20, Bb,11 ⊂ Bb′,13 and in Figure 21, Bb,11 ⊂ Bb,13. In Figure 22, we have tried to “combine” the
blossoms so that Bb,11 is contained in both Bb,13 and Bb′,13 thereby giving a counter-example to
laminarity. However, observe that in the process of “combining” the blossoms, the tenacity of b
reduces from ∞ to 13, so that Bb,13 is not a valid blossom anymore.

Definition 7.1 (Nesting depth of blossoms) Since blossoms were defined recursively, so is
their nesting depth. Let b be an outer vertex and t be an odd number such that tenacity(b) > t
and t < lm. Define the nesting depth of blossom Bb,1 to be N(Bb,1) = 0. Define the nesting depth
of blossom Bb,t to be

N(Bb,t) = 1 +

(
max

v∈(St∪{b}), v outer
N(Bv,t−2)

)
if Sb,t 6= ∅ and N(Bb,t−2) otherwise.

In the graph of Figures 2 and 3, the nesting depths of these blossoms Ba,α, Bb,κ and Bf,τ are 1, 2
and 3, respectively.

Lemma 7.2 Let v ∈ Bb,t. Then ∃k such that 1 ≤ k ≤ N(Bb,t) and b = basek(v). Furthermore,
all the vertices base(v), . . . ,basek−1(v) belong to Bb,t.

Proof : By induction on the nesting depth of blossom Bb,t. If N(Bb,t) = 1, by definition,
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Figure 22: Observe that tenacity(b) = 13.

b = base(v). To prove the induction step, suppose N(Bb,t) = l + 1. Now, if v ∈ Sb,t, i.e.,
tenacity(v) = t, then base(v) = b and we are done.

Otherwise, ∃u ∈ Sb,t ∪ {b} such that v ∈ Bu,t−2. Clearly N(Bu,t−2) ≤ l and either u = b or
base(u) = b. By the induction hypothesis, ∃!k such that l ≥ k ≥ 1 and u = basek(v). If u = b,
b = basek(v), and by the induction hypothesis, base(v), . . . ,basek−1(v) belong to Bb,t−2 and hence
also to Bb,t.
If u 6= b, b = basek+1(v) and k + 1 ≤ l + 1. Now, by the induction hypothesis, base(v),
. . . ,basek−1(v) belong to Bu,t−2. Hence base(v), . . . , basek(v) belong to Bb,t. �

Lemma 7.3 Let t ≤ t′ < tenacity(b) and t′ < lm, and let Bb,t and Bb,t′ be two blossoms with the
same base b. Then Bb,t ⊆ Bb,t′.

Proof : The proof is by induction on t′ − t. The base case, i.e., t = t′, is obvious. Assume
the induction hypothesis that Bb,t ⊆ Bb,t′−2. Now, by Definition 7.1 it is straightforward that
Bb,t′−2 ⊆ Bb,t′ . Hence Bb,t ⊆ Bb,t′ . �

Lemma 7.4 Let Bb,t be a blossom with base b and tenacity t < lm, and v be a vertex satisfying
basek(v) = b for some k ≥ 1. If t ≥ tenacity(basek−1(v)) then v ∈ Bb,t.

Proof : The proof is by induction on k. In the base case, i.e., k = 1, base(v) = b. Let
tenacity(v) = r, clearly r ≤ t. By Definition 7.1, v ∈ Bb,r and by Lemma 7.3, Bb,r ⊆ Bb,t. Hence
v ∈ Bb,t.
For the induction step, let basek−1(v) = u, tenacity(u) = r ≤ t. By the induction hypothesis,
v ∈ Bu,r−2. Since base(u) = b, by Definition 7.1, Bu,r−2 ⊆ Bb,r and by Lemma 7.3, Bb,r ⊆ Bb,t.
Hence v ∈ Bb,t. �
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Lemma 7.5 Let Bb,t and Bb′,t′ be two blossoms such that b ∈ Bb′,t′. Then Bb,t ⊂ Bb′,t′.

Proof : By Lemma 7.2, there is a k ≥ 1 such that b′ = basek(b) and base1(b), . . . ,basek−1(b) ∈
Bb′,t′ . Clearly, t′ ≥ tenacity(basek−1(b)). To prove the statement, we will apply induction on k.

For the base case, i.e., k = 1, let tenacity(b) = r. Clearly, t < r ≤ t′ and Bb,t ⊂ Bb,r−2. By
Definition 7.1, Bb,r−2 ⊂ Bb′,r, where the containment is proper since b is not in the first blossom
but it is in the second one. By Lemma 7.3, Bb′,r ⊆ Bb′,t′ . Hence Bb,t ⊂ Bb′,t′ .
For the induction step assume basek+1(b) = b′. Let basek(b) = v, and let tenacity(v) = r. Since
v ∈ Bb′,t′ , r ≤ t′. Clearly, tenacity(basek−1(b)) ≤ r − 2. Therefore, by Lemma 7.4, b ∈ Bv,r−2.
Furthermore, since basek(b) = v, by the induction hypothesis, Bb,t ⊂ Bv,r−2.
Since base(v) = b′, by Definition 7.1, Bv,r−2 ⊆ Bb′,r. Since r ≤ t′, Bb′,r ⊆ Bb′,t′ . Hence, Bb,t ⊂
Bb′,t′ . �

Proposition 7.6 For t odd with tm ≤ t < lm, assume Claim(t).
The set of blossoms of tenacity at most t forms a laminar family, i.e., two such blossoms are
either disjoint or one is contained in the other.

Proof : Let t′ ≤ t and t′′ ≤ t. Suppose v lies in blossoms Bb,t′ and Bb′,t′′ . If b = b′, we are done
by Lemma 7.3. Next assume that b 6= b′. Then by the first claim in Lemma 7.2, b = basek(v) and
b′ = basel(v), for some k and l. Since b 6= b′, k 6= l. Let us assume k < l. By the second claim
in Lemma 7.2, b = basek(v) ∈ Bb′,t′′ . Finally, by Lemma 7.5, Bb,t′ ⊂ Bb′,t′′ . Observe that none of
the lemmas used assumed existence of blossoms of tenacity > t, hence the proposition follows. �

8 Proof of correctness and running time

We first need to prove that vertex will be assigned its correct minlevel and maxlevel. This is done
by an induction on the search level in Theorem 8.2. The proof for minlevels is straightforward.

Lemma 8.1 Let (u, v) be a bridge with tenacity(u, v) ≤ lm. Then the following hold.

• If (u, v) is matched then u and v are both inner vertices.

• If (u, v) is unmatched then if u is outer, tenacity(u) ≤ tenacity(u, v), and if u is inner,
tenacity(u) < tenacity(u, v).

Proof : First assume that (u, v) is matched. Since (u, v) is not a prop, neither endpoint of
this edge assigns a minlevel (of even parity) to the other. Therefore, the minlevel of both u and
v must be odd, and hence they are inner vertices.

Next assume that (u, v) is unmatched. Now, there are three cases:

Case 1: u and v are both outer vertices.
We will first establish that evenlevel(u) = evenlevel(v). Suppose evenlevel(u) < evenlevel(v).
Then evenlevel(u) + 1 < evenlevel(v). Since an evenlevel(u) path concatenated with edge (u, v)
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gives an odd alternating path to v, we get that oddlevel(v) ≤ evenlevel(u) + 1 < evenlevel(v),
thereby contradicting the assumption that v is outer.

Hence evenlevel(u) = evenlevel(v) = i, say. Clearly, oddlevel(v) ≥ i+1. Since an evenlevel(u) path
concatenated with edge (u, v) gives an odd alternating path to v of length i+1, oddlevel(v) = i+1.
Similarly, oddlevel(u) = i+ 1. Hence tenacity(u) = tenacity(v) = tenacity(u, v) = 2i+ 1.

Case 2: u and v are both inner vertices.
Since minlevel(u) is odd and since (u, v) is not a prop, evenlevel(v) + 1 > oddlevel(u). Therefore
evenlevel(u)+evenlevel(v)+1 > evenlevel(u)+oddlevel(u) and hence tenacity(u) < tenacity(u, v).
Similarly tenacity(v) < tenacity(u, v).

Case 3: u is outer and v is inner.
Since minlevel(v) is odd and since (u, v) is not a prop, evenlevel(u) + 1 > oddlevel(v). This
implies that evenlevel(u) + evenlevel(v) + 1 > evenlevel(v) + oddlevel(v) and hence tenacity(v) <
tenacity(u, v). Since an evenlevel(v) path concatenated with edge (u, v) gives an odd alternating
path to u, we get that oddlevel(v) ≤ evenlevel(v) + 1, and hence tenacity(u) ≤ tenacity(u, v). �

Remark: : In the proof of Lemma 8.1, Case 3, if oddlevel(v) = evenlevel(v) + 1 (and hence
tenacity(u) = tenacity(u, v)), the bridge (u, v) will have non-empty support; in particular, it
contains u and its matched neighbor. However, if oddlevel(v) < evenlevel(v) + 1, bridge (u, v)
will have empty support.

Theorem 8.2 For each vertex v such that tenacity(v) < lm, Algorithm 1 assigns minlevel(v) and
maxlevel(v) correctly.

Proof : The case lm = 1 is straightforward and involves finding a maximal matching in G.
Henceforth we will assume that lm ≥ 3. We will show, by strong induction on i, for i = 0 to
(lm − 1)/2 that at search level i, Algorithm 1 will accomplish:

Task 1: Procedure MIN assigns a minlevel of i + 1 to exactly the set of vertices having this
minlevel. It also identifies all props that assign a minlevel of i.

Task 2: By the end of execution of procedure MIN at this search level, Br(2i+ 1) is the set of
all bridges of tenacity 2i+ 1.

Task 3: Procedure MAX assigns correct maxlevels to all vertices having tenacity 2i+ 1.

The base case, i = 0, is obvious: MIN will assign an oddlevel of 1 to each neighbor of each
unmatched vertex. Clearly, no edge can have tenacity 1.

Next we assume the induction hypothesis for all search levels less than i, and prove that Algorithm
1 will accomplish the three tasks at search level i.

Task 1: By the induction hypothesis, the minlevel assigned to vertex v at the beginning of
execution of MIN at search level i is ∞ if and only if minlevel(v) ≥ i + 1. Since MIN searches
from all vertices having level i along the correct parity edges and assigns a minlevel to a vertex
only if its currently assigned minlevel is ≥ i + 1, any vertex v that is assigned a minlevel in this
search level must indeed satisfy minlevel(v) = i+ 1, and the edge that reaches v will be correctly
classified as a prop.

We next prove that every vertex v with minlevel(v) = i + 1 will be assigned its minlevel in
this search level, and every prop that assigns a minlevel of i will be classified as a prop. Let
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minlevel(v) = i+ 1, let p be a minlevel(v) path, and let (u, v) be the last edge on p. Clearly (u, v)
is a prop, and every prop that assigns a minlevel of i is of this type. Now, u must be BFS-honest
w.r.t. p: If not, then v must occur on a shorter path to u, contradicting minlevel(v) < i+1. Now,
if |p[f to u]| = i = maxlevel(u) then tenacity(u) < 2i+1. Otherwise, |p[f to u]| = i = minlevel(u).

In either case, by the induction hypothesis, u has already been assigned a level of i. Therefore,
at search level i, MIN will search from u along edge (u, v) and will find v. By the induction
hypothesis, at this point, either the minlevel of v is set to either∞ or i+ 18. In either case, v will
be assigned a minlevel of i+ 1, u will be declared a predecessor of v and (u, v) will be declared a
prop.

Task 2: Let (u, v) be a matched bridge with tenacity(u, v) = 2i+1. By Lemma 5.2, tenacity(u) =
tenacity(v) = tenacity(u, v), and by Lemma 8.1, u and v are both inner. Therefore, oddlevel(u) =
oddlevel(v) = i. Hence during search level i, MIN will determine that (u, v) is a bridge, that its
tenacity is 2i+ 1, and will insert it in Br(2i+ 1).

Next assume that (u, v) is an unmatched bridge with tenacity(u, v) = 2i + 1. We will consider
the three cases given in Lemma 8.1. In Case 1, at search level i, MIN will determine that (u, v)
is a bridge of tenacity 2i+ 1.

In Case 2, assume that tenacity(u) ≥ tenacity(v); of course tenacity(u) < tenacity(u, v). At search
level (tenacity(v)−1)/2, MAX will assign evenlevel(v), and at search level (tenacity(u)−1)/2 < i,
while assigning evenlevel(u), MAX will be able to determine that (u, v) is a bridge of tenacity
2i+ 1.

In Case 3, since u is outer, tenacity(u) ≤ tenacity(u, v) = 2i + 1. Therefore evenlevel(u) =
minlevel(u) ≤ i, and hence it will be assigned by MIN at search level ≤ i. MIN will also determine
that (u, v) is a bridge. Since v is inner, tenacity(v) < tenacity(u, v) = 2i+1. Hence evenlevel(v) =
maxlevel(v) will be assigned by MAX at search level (tenacity(v) − 1)/2 < i. Of these two
operations, the one that happens later will determine the tenacity of bridge (u, v) and will insert
it in Br(2i + 1). Clearly, in either case, this will happen by the end of execution of procedure
MIN at search level i.

Task 3: Theorem 6.12 Statement 2 shows that every vertex of tenacity 2i+ 1 lies in the support
of a bridge of tenacity 2i + 1, and by Task 2, all such bridges are in Br(2i + 1) at the start of
MAX in search level i. These two facts together with the following gives a proof for the current
task.

In a run of MAX, consider the point at which DDFS is called with bridge (u, v) ∈ Br(2i+ 1). Let
S be the set of vertices of tenacity 2i+ 1 found by MAX so far. We next prove:

Claim 8.3 The set of vertices found by DDFS at this point is support(u, v)− S.

By the induction hypothesis, every vertex of tenacity < 2i+ 1 is already in a petal. Therefore, as
DDFS follows down predecessor edges starting from u and v, if any such vertex is encountered,
DDFS will skip to the bud∗ of this petal 9. Every vertex in S is also in a petal, hence the same
applies to it.

Let w ∈ support(u, v) − S. Then there is a maxlevel(w) path containing (u, v), say p; assume p
starts at unmatched vertex f . Assume v is higher than u on p. Then w is reachable from v by

8The latter case happens if evenlevel(u) = i and v has been reached earlier in this search level while searching
along an edge (u′, v) with evenlevel(u′) = i.

9The importance of this subtle point, which is related to the idea of “precise synchronization of events” is
explained below with the help of Figures 23 and 24.
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following predecessor edges and skipping currently formed petals on the way. The path p[f to u]
gives DDFS a disjoint way of reaching “below” w. Hence DDFS will find w. �

Figure 23: Can DDFS be performed on bridge
(u, v) at search level 6?

Figure 24: If so, vertices a and b will get wrong
tenacities.

In Figure 23, the algorithm determines that (u, v) is a bridge of tenacity 15 at search level 6.
However, according to Algorithm 1, DDFS has to be performed on (u, v) at search level 7. The
question arises, “Why wait till search level 7; why not perform DDFS on (u, v) when procedure
MAX is run at search level 6?” To clarify this, let us change the algorithm so it runs DDFS on
an edge as soon as its tenacity and its status as a bridge have been determined. Assume further
that among the various bridges ready for processing, ties are broken arbitrarily10.

Now consider the enhanced graph of Figure 24, in which vertices a and b are clearly in the support
of the bridge of tenacity 13 and hence have tenacity 13. Assume that when MAX is run at search
level 6 the bridge of tenacity 15 is processed first. Since the tenacities of vertices a and b are
not set yet, DDFS will visit them and assign them a of tenacity 15, which would be incorrect.
Observe that the correctness of MAX crucially depends on assigning tenacities to each edge of
tenacity less than 2i + 1 before processing bridges of tenacity 2i + 1, i.e., the precise manner in
which events are synchronized in Algorithm 1.

Lemma 8.4 The procedures given in Section 3.3 will find a maximal set of disjoint minimum
length augmenting paths in G.

Proof : If at search level i, DDFS ends with two unmatched vertices, it must be the case that
lm = 2i+ 1. Since in each blossom the alternating path found by the procedure given in Section

10By making the example given in Figure 24 slightly bigger, one can easily ensure that there are no such ties.
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3.3.1 satisfies the properties established in Theorem 6.12, in particular in Statement 4, it finds a
minimum length augmenting path, p, between the two unmatched vertices.

It should be easy to see that the vertices identified by the procedure of Section 3.3.2 cannot be
part of a minimum length augmenting path that is disjoint from p and removing them is valid.
However, in removing these vertices, the procedure may have left the graph in such a state that
the next path cannot be found. This remark applies primarily to blossoms that have lost some of
their vertices: does DDFS Guarantee still hold despite this loss?

The structural properties established in Theorem 6.12 render the answer to this question surpris-
ingly simple. Assume that vertex v ∈ p is in a blossom and let B be the maximal such blossom,
with base b. Clearly b will be removed from the graph and the iterative procedure that removes
all vertices having no predecessors will end up removing all of B. �

Theorem 8.5 The MV algorithm finds a maximum matching in general graphs in time O(m
√
n)

on the RAM model and O(m
√
n ·α(m,n)) on the pointer model, where α is the inverse Ackerman

function.

Proof : Through arguments made so far, it should be clear that each of the procedures
of MIN, MAX, finding augmenting paths, and removing vertices after each augmentation will
examine each edge a constant number of times in each phase. The only operation that remains
is that of computing bud∗ during DDFS. This can either be implemented on the pointer model
by using Tarjan’s set union algorithm [Tar75], which will take O(m · α(m,n)) time per phase, or
on the RAM model by using Gabow and Tarjan’s linear time algorithm for a special case of set
union [GT85]11, which will take O(m) time per phase. Since O(

√
n) phases suffice for finding a

maximum matching [HK73, Kar73], the theorem follows. �

A question arising from Theorem 8.5 is whether there is a linear time implementation of bud∗ in
the pointer model. [MV80] had claimed that path compression suffices to achieve this. They had
claimed, without proof, that because of the special structure of blossoms, a charging argument
could be given that assigns a constant cost to each edge. This claim could not be verified at
the time of writing [Vaz94], so it was left as an open problem in that paper. This problem has
recently been resolved in the negative. [PV14] give an infinite family of graphs on which path
compression in a phase takes time Ω(mα(m,n)).

Next, let us consider the question, “What is the best way of implementing bud∗ computations in
practice?” To answer this, let us compare an implementation based on the set union datastructure
[Tar75] and an implementation that uses only path compression. In the latter case, there is no
need to build and maintain a separate datastructure on the side: each bud simply maintains and
updates a pointer to the lowest bud it has reached. In the former case, not only is a separate
datastructure needed, but the “trees” obtained in it will, in general, destroy the natural tree
structure of nesting of petals. Additionally, in the latter case, one would expect the unions to be
close to balanced anyway in practice. Considering the implementation effort and computational
overhead of the former approach, we believe the latter one is superior. Using [TL84], the worst
case running time for path compression in a phase in the second case is bounded by O(m log(n)).

11Since [GT85] does not give a detailed explanation of how the idea is applicable to the MV algorithm, a new
paper clarifying this has been recently written [Gab13]. Observe that [GT85] appeared after [MV80].
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9 Equivalence of definitions

Below we establish equivalence of the two definitions of blossoms. Let us start by providing the
definition of blossom as given in [Vaz94]; we will denote such a blossom of tenacity t < lm and
base b by Bb,to. Let v be a vertex with tenacity(v) ≤ t. We will say that an outer vertex b is
base>t(v) if for some positive k, basek(v) = b, tenacity(b) > t, and tenacity(basek−1(v)) ≤ t.
Then

Bb,to = {v | tenacity(v) ≤ t and base>t(v) = b}.

Theorem 9.1 The two definitions of blossom are equivalent, i.e., Bb,t = Bb,to.

Proof : Let v ∈ Bb,t. We will show that v ∈ Bb,to by considering the following three cases. The
set Sb,t is defined in Definition 7.1.

1. v ∈ Sb,t. In this case, tenacity(v) = t and base(v) = b, and therefore base>t(v)) = b. Hence
v ∈ Bb,to.

2. v ∈ Bb,t−2. In this case, tenacity(v) < t and for some k ≥ 1, basek(v) = b. Clearly,
basek−1(v) ∈ Bb,t−2 and therefore base>t(v) = b. Hence v ∈ Bb,to.

3. v ∈ Bu,t−2 and u ∈ Sb,t. In this case, tenacity(v) < t, tenacity(u) = t, base(u) = b, and for
some k ≥ 1, basek(v) = u. Therefore, basek+1(v) = b and base>t(v)) = b. Hence v ∈ Bb,to.

Next, let v ∈ Bb,to. Once again we will consider three cases to show that v ∈ Bb,t.

1. tenacity(v) = t. In this case, base(v) = b and therefore v ∈ Sb,t. Hence v ∈ Bb,t.

2. tenacity(v) < t, for some k ≥ 1, basek(v) = b and tenacity(basek−1(v)) < t. In this case,
v ∈ Bb,t−2. Hence v ∈ Bb,t.

3. tenacity(v) < t, for some k ≥ 1, basek(v) = b and tenacity(basek−1(v)) = t. Let basek−1(v) =
u. Then, tenacity(u) = t and base(u) = b. Therefore, u ∈ Sb,t and v ∈ Bu,t−2. Hence
v ∈ Bb,t.

�

10 Epilogue

In summary, the main new task to be accomplished in non-bipartite graphs, beyond bipartite
graphs, is finding maxlevels of vertices. Procedure MIN finds minlevels of vertices via an alter-
nating BFS. This procedure and its proof of correctness are just as straightforward as finding
minimum length alternating paths in bipartite graphs; in particular, the “agent” that is respon-
sible for assigning a vertex its minlevel is one of its neighbors.

What is the “agent” that is responsible for assigning a vertex its maxlevel? The answer is far from
straightforward and is established in Statement 2 of Theorem 6.12. In a sense, our motivation
for arriving at the definitions of base of a vertex and blossom, and establishing structural facts
about them, was precisely to prove this theorem; observe that the algorithm can be stated without
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these definitions. However, once these structural facts were found, it became clear that the MV
algorithm was “walking” on precisely this structure — and it was also the key to a conceptual
description of the algorithm. We hope this viewpoint will help with a better understanding of the
paper.
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