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Approximation Algorithms for Bipartite and Non-Bipartite Matching 
in the Plane * 

Kasturi R. Varadarajant 

Abstract 

In the approximate Euclidean min-cost perfect matching 
problem, we are a given a set V of 2n points in the plane, and 
a real number E > 0, and we want to pair up the points (into 
n pairs) so that the sum of the distances between the paired 
points is within a multiplicative factor of (1 + E) of the opti- 
mal. We present a Monte-Carlo algorithm that returns, with 
probability at least l/2, a solution within (1 + E) of the op- 
timal; the running time of our algorithm is O((n/s3) log6 n). 

In the bipartite version of this problem, we are given a set 
R of n red points, a set B of n blue points in the plane, and 
a real number E > 0. We want to match each red point with 
a blue point so that the sum of the distances between paired 
points is within (1 + E) times that of an optimal match- 
ing. We present au algorithm for this problem that runs in 
O((~/E)~/* log5 n) time. 

1 Introduction 

In the approximate (Euclidean) min-cost matching 
problem, we are given a set V of 271 points in the plane, 
and a real number E > 0. A matching of V is a collec- 
tion M of unordered pairs of V so that no point in V is 
incident on more than one pair in M. A perfect match- 
ing of V is a matching M in which every point in V is 
incident on ezactly one pair of M; a perfect matching 
of V has n pairs. We define the cost of a matching M 
to be the sum of the Euclidean distances between the 
paired points. The problem is to find a perfect match- 
ing whose cost is at most (1 + E) times the cost of a 
mm-cost perfect matching. 

In the approximate (Euclidean) bipartite min-cost 
matching problem, we are given a set R of n red points 
and a set B of n blue points in the plane, and a real 
number E > 0. Here, the pairs of the matching are re- 
stricted to be red-blue pairs. The problem is to find 
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a perfect red-blue matching of R U B whose cost is at 
most (1 +E) times the cost of a min-cost perfect red-blue 
matching. 

These problems have applications in operations re- 
search, pattern recognition, shape matching, statistics, 
and VLSI. The first polynomial time algorithm (on gen- 
eral graphs) for (exact) min-cost bipartite matching is 
due to Kuhn [9], and for min-cost non-bipartite match- 
ing is due to Edmonds [4]. The fastest known imple- 
mentations of these algorithms run in O(lV13) time on 
dense graphs (see Lawler [lo]) and roughly O(lEjlVl) 
time on sparse graphs [S]. For the Euclidean (planar) 
versions of these problems, Vaidya [13] showed that ge- 
ometry can be exploited to get algorithms runhing in 
O(n5/* log’(‘) n) time for both the bipartite and non- 
bipartite versions. Agarwal et al. [l] improved the run- 
&ng time for the bipartite case to O(n2+6), for any 
6 > 0. Very recently, Varadarajan [14] gave a divide- 
and-conquer algorithm for lanar non-bipartite match- 
ing that runs in O(n312 log ‘(l) n) time. 

There has been considerable amount of work on 
hueristics for Euclidean matching; see the survey by 
Avis [3], and the references therein. Much of this work 
considers the csse in which the points are in a unit 
square, and aims at producing a matching whose ab- 
solute cost is small. In contrast, Vaidya [12] gave an 
algorithm for approximate m&cost matching in the 
plane that runs in roughly O(~Z~/*/E~) time. Recently, 
Arora [2] gave a Monte-Carlo algorithm for this prob- 
lem that runs in O(nlog”(‘/E) n) time and returns a 
correct solution with high probability. Building on his 
approach, Rae and Smith [ll] give a Monte-Carlo algo- 
rithm that runs in O(n log n) time and produces (with 
probability at least l/2) a matching whose cost is within 
a constant factor of the optimal. We are not aware of 
any previous work on approximation algorithms for min- 
cost bipartite matching in the plane. 

Our results. This paper contains two main results. 
First, we present a Monte Carlo algorithm for com- 
puting an approximate mm-cost non-bipartite matching 
that runs in O((n/c3) log6 n) time; the algorithm re- 
turns a matching that whose cost is within (1 +E) times 
that of of an optimal, with probability at least l/2. Of 
course, the probability of success can be increased by 
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iterating the algorithm and taking the smallest match- 
ing returned. Arora’s algorithm [2] achieves the same 
result, but with a running of O(nlog”(“E) n). Unlike 
Arora’s algorithm, the running time of our algorithm 
is polynomial in l/s. We achieve this improvement by 
combining the divide-and-conquer approach developed 
in [14] for computing an optimal Euclidean matching 
in the plane along with the the partitioning scheme of 
Arora. 

The techniques used by Vaidya [12] and Arora [2] for 
approximate min-cost non-bipartite matching do not ex- 
tend to the bipartite case. No subquadratic algorithm is 
known even for a constant-factor approximate bipartite 
min-cost matching. We present a determinsitic algo- 
rithm for computing an (1 + s)-approximate Euclidean 
bipartite matching that runs in O((rz/~)~/* log’ n) time. 
The crux of our algorithm is an efficient implementa- 
tion in geometry of the scaling algorihm of Gabow and 
Tarjan 

1 
71. For this, we partition the red-blue edges 

into O(y) 1 c asses depending on their (approximate) 
length, and work with clique covers [S] of these classes 
rather than with each red-blue pair explicitly. 

In Section 2, we describe our algorithm for approxi- 
mate non-bipartite matching, and in Section 3, we de- 
scribe our algorithm for approximate bipartite match- 
ing. We offer our conclusions in Section 4. Throughout 
the paper, we will make the assumption the .s > l/n; 
this will simplify our running time expressions. The jus- 
tification is that for E < l/n, the exact algorithms are 
anyway faster than our approximation algorithms. 

2 Approximating non-bipartite match- 
ing 

We are given a set V of 2n points in the plane, and 
a real number E > 0, and we want to fmd a match- 
ing of V whose cost is withii a multiplicative factor of 
(1 + E) of the min-cost perfect matching. We first de- 
scribe the partitioning scheme of Arora [Z], based on 
which we define a graph G whose vertices are V and 
some additional ‘Steiner’ points. We then describe our 
divide-and-conquer algorithm for computing a mm-cost 
matching on E. 
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Figure 1: Original square and the expanded square. 

Using standard techniques, such as the ones described 
by Arora [2] or Rae-Smith [ll], we can assume that the 
minimum distance between any two points in V is 8, 
and V lies in an L x L square, where L 5 n3. We 
also assume, without loss of generality, that L = 2k, for 
some integer k 2 0, and that the square is aligned with 
the integer grid, i.e., the bottom-left corner is at the 
origin and the top-right corner is (L, L). We expand the 
square to a 2L x 2L square as follows. We choose random 
integers a, b E (0, L]. We move the bottom-left comer 
to (--a, -b) and the top-right corner to (2L - a, 2L - b); 
see Figure 1. 

We construct a quad-tree on the resulting square us- 
ing the following recursive procedure. Any stage of the 
recursion begins with a square K. If K contains at most 
one point in V, it is a leaf of the quad-tree; the recursion 
terminates and we return. Otherwise, K is a non-leaf 
square of the quad-tree. We divide K into four equal 
squares KI , . . . , K4 using a verticaI median line and a 
horizontal median lime. We place O((logn)/s) evenly 
spaced portals on the vertical and horizontal ‘lines, as 
in Arora’s algorithm. We then recursively construct the 
quadtrees for K1 , . . . , K4. 

Figure 2: A quadtree for the points indicated in bold. The 
empty circles are the portals. The two kids of edges in S 
corresponding to the shaded leaf of the quadtree are shown. 

We now construct a graph E whose vertices are the 
points in V, called sites, and the portals, also called 
Steiner points, that we have placed. For each leaf square 
K of the quad-tree, we add an edge between every pair 
of portals on the boundary of K. In addition, if the 
leaf square K contains a point v E V, we add an edge 
between v and each portal on the boundary of K. See 
Figure 2 for an illustration. Since the quad-tree has 
depth O(log n), it has O(n log n) leaf squares overall, so 
the total number of vertices in B is 0( 3 log2 n), and 
the total numer of edges is O(s log3 n). We defme the 
length of an edge (p, q) in this graph to be the Euclidean 
distance between p and q. The distance between any two 
vertices p and q of E, denoted by a@, q), is the length of 
the shortest path between p and q in 9. In this section, 



we use the word edge to denote an actual edge in the 
graph and the word pair to denote any unordered pair 
(u,v) E V x V. The cost of a matching M of V in G is 
the sum Ccu,vJEM 6(r~, v). (Note that the matching is 
a collection of pairs in V x V.) The following lemma is 
an easy consequence of Arora’s charging scheme: 

Lemma 2.1 With a probability of at least l/2, the 
graph G produced by the above scheme has the property 
that the min-cost matching of V in G is within (1 + E) 
of the min-cost matching of V. 

Our algorithm computes a min-cost matching of V 
in E. Unlike the Arora algorithm, which uses dynamic 
programming to compute all possible solutions at each 
node of the quad-tree, our algorithm is a divide-and- 
conquer variant of Edmonds’ matching algorithm. It 
is because of this alternative approach that we obtain a 
running time that is polynomial in l/s, whereas Arora’s 
algorithm is exponential in l/s. Our algorithm can 
be viewed as an implementation on the graph 0 of 
the divide-and-conquer scheme that was developed by 
Varadarajan [14] for exact matching in the plane. 

2.1 ,Min-cost matching of V in the graph G 

We take the view that an edge (u-,v) of the graph Q 
is an actual link whose length is d(u, v), the Euclidean 
distance between u and 21. We define the distance be- 
tween a vertex w and a point t on a link (u,v), de- 
noted by a(w, z), as the length of the shortest path along 
the links, i.e., b(w, z) = min{6(w, u) + d(u, z), b(w, v) + 
d(w, .a)}. We define the disk of radius T centered at a 
site v to be the set of all vertices and all portions on 
the edges of G whose distance (in G) from v is at most 
T. In other words, a disk is a one-dimensional network 
consisting of vertices and portions of edges of Q. By 
definition of 6, if a portion of an edge is in the disk, 
then at least one of its endpoints is also in the disk. 

We say that a subset Q E V of V is an odd subset or 
an odd-set if IQ] is odd and IQ] > 3. For Q E V, let e(Q) 
denote the subset of pairs with exactly one endpoint in 
Q, that is, t(Q) = ((21, v) E V x V : I{u,v} n &I = 1). 

Edmonds’ algorithm is motivated by duality theory 
for linear programs; see [4], [lo] for a discussion of linear 
programming duality. I-Iis algorithm associates a “dual” 
variable w,, for each v E V and a dual variable WQ for 
each odd set Q. Sometimes, it will be convenient to 
denote w, by ~(~1. Corresponding to the pair (u, v), let 
x,, = w, + w,, + c u,v)ec(Q) WQ. horn duality theory, 
it follows that a pe d ect matching M is optimal if there 
exist values wv, for each v E V, and WQ, for each odd 
subset Q, such that the following conditions hold: 

EDGE-FEASIBILITY: 7ruv 5 b(u, v) for each (‘(1,~) E 
v x v. 

807 

POSITIVE-DUAL: WQ 2 ‘0 for each odd subset Q. 

MATCHING-ADMISSIBILITY: (u,v) E M a rIT,v = 
a(% VI- 

MAXIMALITY: For each odd subset Q, if WQ > 0, 
then the matching M is maximal within Q, 
that is, the number of pairs in M both of 
whose endpoints are in Q is (IQ] - 1)/2. Since 
M is a perfect matching, this is equivalent to 
MnJ(Q)= 1. 

Like Edmonds’ algorithm, our approach also com- 
putes a perfect matching and a corresponding set of 
dual variables such that EDGE-FEASIBILITY, POSITIVE- 

DUAL, MATCHING-ADMISSIBILITY, and MAXIMALITY are 
satisfied. The difference is that unlike in Edmonds’ algo- 
rithm, we use divide-and-conquer for doing this. Before 
describing our approach, we describe the important no- 
tion of blossoms that was introduced by Edmonds. Our 
description of blossoms and other standard components 
of the matching algorithm are based on the presentation 
of Galil et al.[8]. 

Definition 2.2 For any vertex v E V, let X(v) = 
w, + xvEQ WQ- A pair (21, v) is feasible if 7ruuv 5 b(r~, v). 
It is admissible if ‘IT,, = 6(u,v). 

2.2 Blossoms and alternating paths 

During the course of our algorithm, certain odd subsets 
of V are designated as blossoms. The algorithm main- 
tains the property that WQ > 0 for an odd subset Q 
only if Q is a blossom. The set of blossoms at any stage 
have the following nested structure: For any two distinct 
blossoms B and B’, either B II B’ = 0, or B c B’, or 
B’ c B. Each v E V is a trivial blossom of size one. A 
non-trivial blossom B is given by a sequence of blossoms 

,..., B,,wherer=21c,forkll,andasequenceof 
E&i.ssilQz pairs ei = (ui-1, vi), for i = 1,. . . , r + 1, 

1. W,Vi E Bi mod tt+l)- 

2. For 1 < i 5 r + 1, (ui-r,Vi) E M if i is even and 
(Ui-1) vi) +%I M if i is odd. 

The blossoms Bo, . . . , B, are referred to as the sub- 
blossoms of B. (See Figure 3 for an illustration of a 
blossom.) A blossom that is not a subblossom of any 
other blossom is called an outermost blossom. Clearly, 
the outermost blossoms induce a partition of V. It can 
be shown from the properties above that any blossom 
B contains an odd number of vertices, and that the 
matching M is maximal within B. The unique vertex of 
B that is not matched to any other vertex of B is called 
its base. The base can also be defined by induction 
on the structure of blossoms as follows. The base of 
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a trivial blossom v is the vertex v itself. The base of a 
blossom B whose subblossoms are given by the sequence 
Bo,... , B, (as above) is the base of Bo . 

BI 

B2 

4 =uz 
I 

v2 

4vg = II.3 

B4 
B3 

Figure 3: A blossom with sub-blossoms Bo, . . . , Bq. 
The solid edges represent pairs in the matching and 
the dashed edges represent the other admissible pairs 
making up the blossom. 

An alternating path between vertices vc and v, is a 
sequence of admissible pairs ei = (vi-r, vi), for i = 
1 r such that for i = l,...,r-1, ei E M if 7’” , 7 
and only if ei+r 6 M. In other words, it is a path 
in which alternate pairs are in the matching. An alter- 
nating path between outermost blossoms BO and B, is 
given by a sequence of admissible pairs ei = (u+r , vi), 
for i = l,.. . , r, and a sequence of outermost blossoms 
Bo,... ,Br, whereui,viEBirandfori=l ,..., r-l, 
ei E M if and only if ei+r $2 M. We say that a vertex 
v is ezposed if no pair of the matching M is incident 
on v; an outermost blossom B is exposed if no pair of 
the matching M is incident on the base of B. An alter- 
nating path between two exposed vertices is called an 
augmenting path. 

Lemma 2.3 Let u and v be points in different outer 
blossoms. The pair (u,v) is feasible i# X(u) + X(v) 5 
b(u, v). The p&r (u, v) is admissible iff X(u) + X(v) = 
6(u, VI. 

Using the triangle inequality for a(., .), we can show 
that throughout our algorithm, X(v) 2 0 for any v E V. 
For a site v E V, we use disk(v) to denote the disk 
of radius X(v) centered at v, as defined above. Since 
X(v) 2 0, disk(v) is well defined. Lemma 2.3 implies 
that if u and v are vertices in different blossoms, feasibil- 
ity of (u, v) means that disk(u) and disk(v) do not over- 
lap (although they can touch), i.e., no point on a link 
lies in the relative interior of both disk(u) and disk(v); 
admissibility of (u, v) means disk(u) and disk(v) do not 
overlap but touch. 

In the rest of this section, we will sometimes refer 
to an outermost blossom as simply a blossom, and use 
the term ‘sub-blossom’ when specifically referring to a 
blossom that is not outermost. 

2.3 The divide-and-conquer algorithm 

Let K be a square in the quad-tree, and let U E V be 
the set of sites lying within K. We will describe our 
divide-and-conquer scheme for the set U. Let P be the 
set of portals on the boundary of Q. Let G(K) denote 
the sub-graph of G induced by U and the portals lying 
inside or on the boundary of K. Let m (resp. q) denote 
the number of vertices (resp. edges) in G(K). The goal 
in the subproblem for U is to compute a (not necessarily 
perfect) matching M of U, a set of blossoms in U, and a 
set of dual variables w, for each u E U, and WQ for each 
blossom Q, so that the conditions EDGE-FEASIBILITY, 
POSITIVE-DUAL, MATCHING-ADMISSIBILITY, and MAXI- 
MALITY hold for U, and in addition, the following two 
conditions are also satisfied: 

RADIUS-CONSTRAINT: For each u E U and each por- 
tal p f P, X(u) 5 d(u,p). 

EXPOSED-CONSTRAINT: For every exposed blossom Q 
ofU,thereisaqEQandaportalpEPsuch 
that X(q) = &u). 

We say that a blossom Q of U is constrained at a por- 
tal p E P if Q is an exposed blossom, and there is a 
q E Q such that X(q) = b(q,p). We say that Q is un- 
constrained otherwise. We emphasize that only an ex- 
posed blossom can be constrained; a blossom that is not 
exposed is by definition unconstrained. The EXPOSED- 
CONSTRAINT condition is that every exposed blossom 
of U is constrained. We remark that the RADIUS- 
CCiNsTRAINT allows us to restrict our attention to G(K) 
for solving the subproblem for U, because it restricts 
the disks of points in U to within E(K). 

If K is not a leaf of the quad-tree, our algorithm recur- 
sively solves the subproblems for Kl, . . . , K4, the four 
children of Q. Let Vi c U be the set of sites lying in 
Ki. Suppose that the recursive calls return a matching, 
blossoms, and dual variables for Vi satisfying the six 
conditions for Vi. To begin the conquer step for U, we 
obtain an initial matching, dual variables, and blossoms 
by combining the matching, dual variables, and blos- 
somsfor VI,... , U4. At this stage, it is easy to see that 
all the six conditions except the EXPOSED-CONSTRAINT 
are satisfied for U. (Here, we use the fact that the por- 
tals on the boundary of a square Ki “separate” the ver- 
tices of G(Ki) from the vertices of G lying outside Kim) 

Observe that the EXPOSED-CONSTRAINT condition 
may be violated for a blossom Q of U. The conquer 
stage of the divide-and-conquer algorithm for U elimi- 
nates the violations of the EXPOSED-CONSTRAINT, thus 
solving the subproblem for U. The ‘conquer’ stage con- 
sists of a series of phases; in each phase the number 
of unconstrained exposed blossoms is reduced by either 
one or two. 
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2.4 The conquer stage 

As we indicated, the conquer stage consists of phases. 
Each phase begins with the current matching M, a set 
of dual variables, and a set of blossoms. The algorithm 
always maintains the five conditions EDGE-FEASIBILITY, 
POSITIVE-DUAL, MATCHING-ADMISSIBILITY, MAXIMAL- 
ITY, and RADIUS-CONSTRAINT. In each phase,the num- 
ber of unconstrained exposed blossoms is decreased by 
one or two. Thus, each phase decreases the number of 
violations of the sixth condition EXPOSED-CONSTRAINT, 
and so the algorithm terminates after a finite number 
of phases. 

For brevity, we will call a constrained blossom a c- 
blossom. During a phase, some unconstrained outer 
blossoms are labelled as s-blossoms and t-blossoms. (An 
outer blossom is labelled as either an s-blossom or a 
t-blossom, but not both.) An unconstrained outer blos- 
som which is not labelled is called a free blossom or 
f-blossom. (s-, t-, and f- prefixes are only for uncon- 
strained blossoms.) A vertex is called an s-vertex, t- 
vertex, f-vertex, or c-vertex according to whether it 
belongs, respectively, to an s-blossom, t-blossom, f- 
blossom, or c-blossom. We let S, T, and F denote, 
respectively, the set of s-vertices, t-vertices, and f- 
vertices. For any TJ E V, let b(v) denote the outermost 
blossom containing V. 

A phase is divided into O(m) subphases. At the end of 
each subphase, the following invariants hold. An uncon- 
strained exposed blossom is always an s-blossom. For 
every s- or t- blossom B, there is an alternating path 
o(B’, B) between an unconstrained exposed blossom B’ 
and B. If B is an s-blossom (resp. t-blossom), a(B’, B) 
has even (resp. odd) length, that is, there are an even 
(resp. odd) number of edges in the alternating path. 
The s- and t-blossoms, together with the corresponding 
alternating paths, induce a forest of rooted trees, a tree 
being rooted at each unconstrained exposed blossom. 
The trees are called alternating trees, and the forest is 
called an alternating forest. (The c-blossoms are not in 
the alternating forest.) The leaves of the alternating 
trees are always s-blossoms. 

For every f-blossom B, there is another f-blossom 
C so that bases of B and C are matched in M, i.e., 
(base(C), base(C)) E M. Therefore, M induces a per- 
fect matching on the bases of all the f-blossoms. 

At the start of a phase, we label each unconstrained 
exposed blossom as an s-blossom; every other uncon- 
strained outer blossom is an f-blossom. A subphase 
consists of the following loop, which is repeated until a 
termination condition for the phase is met. The above 
invariants hold at the end of each iteration of the loop. 
Let 

61 = min 
Q a nontrivial t-blossom 

WQ> 

Dual change: Let WQ be the dual variable correspond- 
ing to the blossom Q. (If Q is a trivial blossom consist- 
ing of a Vertex v, then WQ = w,.) For each s-blossom 
Q, we increase WQ by 6, and for each t-blossom Q, we 
decrease WQ by 6. After the dual change, one of br , 62, 
63, 64, or 6s becomes zero. In case of a tie, we pick an 
arbitarary 6i that is zero. For technical reasons, 64 gets 
precedence over c&. We will be terse about some of the 
following cases, which are standard; see [S]. 

61 = 0: In this case, the dual variable Wg correspond- 
ing to a (non-trivial) t-blossom B becomes zero. We ex- 
pand B, that is, we stop regarding it as a blossom and 
make its subblossoms outer blossoms. Some of these 
new outer blossoms become s-blossoms, some become 
t-blossoms, and some f-blossoms. 

62 = 0: In thii case, a pair (u, v), which is now ad- 
missible, has been discovered; u is an s-vertex and v an 
f-vertex. Two f-blossoms are added to the alternating 
forest, one as a t-blossom and the other as an s-blossom. 

(53 = 0: A pair (u,v) which is now admissible has 
been discovered, where u and v axe s-vertices. Either a 
new s-blossom is formed, or an alternating path between 
two unconstraned exposed blossoms is discovered. The 
latter subcase ends the phase and is handled in a manner 
similar to the case where & = 0. 

64 = 0: A pair (u,v), which is now admissible, has 
been discovered; u is an s-vertex and v a c-vertex. Let 
A (resp. B) be the s-blossom (rasp. c-blossom) contain- 
ing u (resp. v). Let A’ be the unconstrained exposed 
blossom which is the root of the alternating tree con- 
taining A, and let o(A’,A) denote the corresponding 
even-length alternating path between A’ and A. Note 
that a(A’,A), the edge (u,v), and the blossom B te 

gether constitute an alternating path between the ex- 
posed blossoms A’ and B. We expand this to an aug- 
menting path x between the exposed bases of A’ and 
B. We augment the current matching M by excluding 
all pairs of M belonging to x and including the other 
pairs of ?r. Note that the cardinal&y of the matching 
M increases by one, and the number of unconstrained 
exposed blossoms reduces by one since A’ is now no 
longer exposed. We also change appropriately the bases 
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of all the blossoms through which the augmenting path 
passes. This ends the current phase of the algorithm. 

65 = 0: In this case, X(u) has increased to b(u,p), 
where ‘1~ is an s-vertex and p a portal on the boundary 
of &. Let A be the s-blossom containing 2~. Let A’ be 
the unconstrained exposed blossom which is the root 
of the alternating tree containing A, and let o(A’, A) 
denote the corresponding even-length alternating path 
between A’ and A. We expand a(A’,A) to an even- 
length alternating path K between the bases of A’ and A. 
We alter the current matching M by excluding all pairs 
of M belonging to 7r and including the other pairs of T. 
We change appropriately the bases of all the blossoms 
through which the augmenting path passes. This ends 
the current phase of the algorithm. This event reduces 
the number of unconstrained exposed blossoms by one 
without changing the cardinality of M. Note that in 
the next phase, A will be constrained. 

This completes the description of a phase. At the end 
of the phase, we (recursively) expand all outer blossoms 
whose dual variable is zero. 

This also completes our description of the overall 
divide-and-conquer scheme for min-cost perfect match- 
ing of V in E. The following observation is useful in 
bounding the number of phases in the conquer stage. 

Lenqna 2.4 The following invariant holds after each 
phase of the conquer stage for U = K rl V: At each 
portal p E P at the boundary of the square K, at most 
one exposed blossom of U is constrained. 

The proof uses the observation that when a second 
blossom is about to be constrained at a portal, we will 
be in the case & = 0 (which we give precedence over 
65 = 0). 

Lemma 2.5 The number of phases in the conquer step 
for u is O((logn)/&)- 

Proof: Let & denote the number of unconstrained ex- 
posed blossoms at the beginning of the conquer step. 
Since each phase decreases the total number of uncon- 
strained exposed blossoms by one or two, the number 
of phases is at most ]E]. Hence it sufhces to show 
]E[ = O(logn/c). Let Q E E, and assume, without loss 
of generality, that Q E Vi. After the recursive call to 
Vi, Q must be constrained at a portal on the boundary 
of K,; since it is unconstrained with respect to U, this 
cannot be a portal on the boundary of K. The number 
of portals on WI \ XI is O((logn)/s). By Lemma 2.4, 
this bounds ]E]. Cl 

For a fast implementation of one phase of the con- 
quer algorithm for U, we need a mechanism to quickly 
compute when & becomes zero. The following theorem 
results from a careful implementation of a phase such 
as the one described by Galil et al. [8] or Vaidya [13]. 

Theorem 2.6 Suppose the total time spent in detecting 
when bi becomes zero, over an entire phase for the subset 
U of sites, is O(r). Then, one phase can be implemented 
in O(lUl log IUI + r) time. 

We describe below the main ideas of an implementa- 
tion that detects when & becomes zero at a total cost 
of O(nlogm) per phase, where m (resp. 17) denotes the 
number of vertices (resp. edges) in Q(K). Since there 
are O((logn)/e) phases in the conquer step, this gives a 
running time of 0( + .q . log m) for the conquer step. 
Putting everything together, we conclude with the main 
result of this section: 

Theorem 2.7 Given a set V of 2n points in the plane, 
and a real number E > 0, we can compute a perfect 
matching of V whose cost is at most (1 + s) times the 
optimal using an algorithm that runs in 0( (n/e3) log6 n) 
time. 

2.5 Implementing a phase 

We show below that detecting when 6i becomes zero es- 
sentially reduces to detecting events when an inequality 
of one of the following forms becomes tight: 

1. WQ 10, for a t-blossom Q. 

2. X(u) 5 cl, for an s-vertex u and a real number cl. 

3. X(u) 1 cl, for an f- or t-vertex u and a real number 
Cl. 

4. X(u) + X(v) 5 cl, for a real number cl, where ei- 
ther (i) u and v are s-vertices in different outermost 
blossoms, (ii) u is an s-vertex and v is a t-vertex, 
and (iii) u is an s-vertex and v is a c-vertex. 

We will refer to these as events of the f&t, second, 
third, and fourth type, respectively. The total number 
of such events that we need to detect per phase is only 
O(q). We will also need a data-structure which will al- 
low us to compute the value of X(U), for any site u. This 
data-structure is queried O(q) times. With straightfor- 
ward mod&cations, the priority queues of Galil et al. [8] 
will let us implement the above data structures using a 
total of O(q log m) time per phase. 

To detect when 61 becomes zero, we need to detect 
O(m) events of the first type. For 65, we precompute 
b(u,p), the distance in O(K) between each vertex u E U 
and portal p E P, and then the closest portal to each 
vertex in U. To detect when ~5s becomes zero, we now 
need to detect events of the second type. Again, there 
are only O(m) such events. The cost of precomputing 
the distances 6(u,p) is absorbed in the running time of 
the conquer phase. 
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For detecting when & becomes zero, for 2 5 i 5’ 4, 
we need to detect when disk(u) and disk(v) touch, for 
sites u and v of W in diflerent outer blossoms of U. For 
this, we first need to establish certain simple but useful 
properties of disks. 

Lemma 2.8 If u and v are sites in the same outer blos- 
som, X(u) and X(v) change at the same rate. 

The following observation depends on the fact that 
the algorithm increases the dual variables correspond- 
ing to the s-blossoms, decreases the dual variables cor- 
responding to the t-blossoms, and does not change the 
dual variables corresponding to the f-blossoms. It also 
expresses a property of the algorithm’s labelling scheme. 

Lemma 2.9 During a phase, a site u E U may change 
its status from an f -vertez to a t-vertex (and vice versa) 
a number of times. In this part of the phase, X(u) can 
only decrease. However, once u becomes an .s-vertex, it 
remains an s-vertex until the end of the phase. In this 
part of the phase, X(u) can only increase. If u belongs 
to a c-blossom, X(u) does not change at all during the 
phase. 

In view of the above lemma we refer to an s-vertex 
(resp. f/t-vertex) as a growing (resp. shrinking) vertex, 
and its disk as a growing (resp. shrinking) disk. The 
following lemma can be derived from Lemma 2.3 and 
the fact that X(u) 1 0 for any vertex u E U. 

Lemma 2.10 For any two distinct sites u,v E U, 
X(u) 5 X(v) + b(u,?J). 

For any vertex p of G(K), we define the nearest site vP 
of p to be u E U that minimizes b(u,p) - X(u); we refer 
to disk(+) as the nearest disk to p. We say that vP (or 
disk(vp)) ozl~s p if disk(r+,) contains p, i.e., a(v,,p) 2 
X(%>- 

For simplifying the discussion, assume that +, is al- 
ways unique for every vertex p. By Lemma 2.10, we can 
assume that, for any site u E U, v, = u always holds. 
Furthermore, since X(u) 1 0, we can assume that u al- 
ways owns itself. 

For any portal p, if a site u E U owns p at a par- 
ticular time, then u continues to own p as long as 
X(u) 2 b(u,p). Indeed, this follows from the fact the 
disks of sites in different outer blossoms do not over- 
lap (Lemma 2.3) and the fact that disks of sites in the 
same blossom grow at the same rate (Lemma 2.8). By 
Lemma 2.9, the owner of a Steiner-point p can change 
only a constant number of times during a phase. To 
maintain the owner of a Steiner point p during a phase, 
we mainly need to keep track of two kinds of informa- 
tion: 

1 ,. 

2. 

If a shrinking vertex u currently owns p, when does 
disk(u) stop containing p? This is an event of the 
third type, and there are O(m) such events. 

If p is currently without an owner, when does the 
disk of an s-vertex first hit p? For maintaining 
this information, we need to ‘propogate’ the disks 
of sites along the edges of the graph. This can be 
achieved using O(Q) events of the second type. 

Finally, we are ready to describe how we can detect 
collisions between two disks of vertices in different outer 
blossoms of U. Suppose the point of contact of such 
a collision lies in the interior of an edge (p, q). Using 
Lemma 2.3 and Lemma 2.8, we can conclude that the 
disks that touch must be the owners of p and q. There- 
fore, to detect such a collision, we need to keep track of 
the event ‘When do the disks that own p and q collide 
along the edge (p,q)‘? This is an event of the fourth 
type. It is easy to see from the above discussion that 
there are only a constant number of such events for each 
edge in a phase. 

3 Bipartite Matching 

We are given a set R of n “red” points and a set B of n 
“blue” points in the plane, and a real number E > 0; we 
wish to compute a perfect red-blue matching whose cost 
is at most (1 + E) times that of an optimal matching. 
We first “clean up” the given instance of the problem. 
We then partition the red-blue edges into O(logn/&) 
“classes,n and compute a clique cover of the edges in 
each class. We then use the clique covers to implement 
the scaling algorithm of Gabow and Tarjan efficiently 
on an appropriately defined graph. 

3.1 The clean-up phase 

Let OPT be the cost of a min-cost red-blue matching of 
V = RU B. We first compute a rough approximation Q 
to OPT such that Q 5 OPT 5 nQ. Using the algorithm 
by Efrat and Itai [5], we compute in O(n3i2 logn) time a 
bottleneck matching of R and J3, which is a perfect red- 
blue matching that minimizes the m&mum length red- 
blue pair in the matching, under the &-metric. Let a 
be the largest distance among all pairs in the matching. 
Since an optimal mm-cost matching must use a pair 
whose length is at least a and the cost of the optimal 
bottleneck matching is at most no, we have Q 5 OPT 5 
n - a. 

We draw a grid in the plane of the form 
{(icr/n2,ja/n2) 1 i, j E Z}, move each point in R U B 
to the nearest grid point, and compute a matching of 
the resulting points. The cost of the optimal matching 
of perturbed points differs from the original one by at 
most 2n.0PT/n2 = OPT/2n. Since .s > I/n, it suffices 
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to compute an (1 + E/2)-approximate matching for the 
new set of points. If a red point r and a blue point b 
are moved to the same grid point, we match r with b 
and discard r and b. We thus assume that no grid point, 
contains both red and blue points. Scaling the grid by 
factor n2/a, we can assume that the minimum red-blue 
distance is 1 and that the cost of the optimal red-blue 
matching is at most n3. We can ignore from considera- 
tion red-blue pairs that are more than n3 apart. 

3.2 CIique covers of interesting pairs 

Instead of the Euclidean metric, it will be convenient 
to measure distances between points using a polygonal 
metric, dp (., .) , defined by a centrally-symmetric regular 
convex polygon with O(l/&) edges.’ Such a metric 
approximates the Euclidean metric to within a factor 
of (1 + E). Let us call the red-blue pairs whose length, 
under dp-metric, is between 1 and n3 the interesting 
pairs. 

For 1 < j <.k = [3 Iogl+E nl, define 1j to be the 
interval [(l-t E) ‘-‘,(l+&)‘]. Let Cj = ((~,b) E RX B 1 
dp(r,b) E Ij}. Cl,.*. ,Ck partition the set of interestng 
red-blue pairs. We define a bipartite clique cover, or 
simply a clique cover for brevity, for the set of pairs in 
&SS Ci to be a family 3i = {(RI, Bl), . . . , (Rr, Bl)) 
with the following properties: 

1. Rj C R and Bj C B, for 1 5 j < I, 

2. every pair in Rj x Bj belonds to the &SS Ci, and 

3. for every pair (r, b) in CRASS Ci, there is il~l (Rj, Bj) 
SU& that (r, b) E Rj x Bj. 

The size of the clique cover is Cj (I.& 1 + 1 Bj I)- The 
size bounds the space needed to compactly represent 
the pairs in class Ci using a clique cover. using 
standard range searching structures, we can compute, 
in O((n/&) log2 n) time, a clique cover of Ci of size 
O((n/&) log2 n) [15]. Set 3 = Ui 3;. The total time 
spent in computing 3 is O((n/c3/2) log3 n). 

3.3 The scaling algorithm 

We approximate the lengths of all the pairs belonging to 
a class Ci by a single number ni = (1 + E)~-’ (1 + ~/2), 
the middle-point of the subinterval Ii. By scaling all 
the numbers, we assume that all the ni’s are integers. 
Define 0 = (R U B, Ui Ci); the cost of the edge (r, b) is 
set to ni if (r, b) E C+ 

We use the scaling algorithm of Gabow and Tarjan [7] 
to compute a m&cost perfect matching in the graph E. 

‘For a centrally symmetric polygon P, the convex polygonal 
distance, dp , between two point& p, q E R* is defined as dp (p, q) = 
inf{X 1 q E XP + p}. 

Clearly, this will yield a solution to our overall goal. 
However, we cannot afford to run the scaling algorithm 
on the graph E explicitly as the graph may have Q(n2) 
edges. Instead, we will show how the clique covers can 
be used to implement the scaling algorithm efficiently. 
We begin by giving a brief description of the scaling 
algorithm on the bipartite graph E. 

The algorithm associates a dual variable w, with each 
vertex w E R U B. Let c(e) denote the cost of an edge 
e. The costs on edges are integers; we will let N denote 
the largest cost. In our case, N = O(n3/&). 

A l-feasible matching consists of a matching M and 
dual variables U, so that for any pair (u,v) E R x B, 

WV +-al 5 C(%V) + 1, V(u,v) E Rx B, 
wu+wv = cbL,v), V(u, v) E M. 

A l-optimal matching is a perfect matching that is l- 
feasible. If the +l term is omitted from the first in- 
equality, these are the usual complementary slackness 
conditions for a minimum perfect matching [lo]. 

The scaling algorithm begins by computing a new cost 
E(e) for each edge e, equal to n+ 1 times the given cost. 
Consider each E(e) to be a binary number bib . - . bk hav- 
ing k = [log( (n -t 1) N) J + 1 bits. The scaling algorithm 
runs in k scales. It maintains a variable c(e) for each 
edge e, equal to its cost in the current scale. At the 
beginning each c(e) and each w, is set to 0. Then the 
following loop is executed with the loop index s going 
from 1 to k. 

1. For each edge e, 

c(e) t 2c(e) + bit b, of ‘Z(e). 

Basically, c(e) is set to the binary number repre- 
sented by the the first s bits of Z(e). For each vertex 
v, Y(V) + 2Y(V) - 1. 

2. Call the procedure MATCH to find a l-optimal 
matching with the current costs. 

Each iteration. of the above lodp is called a scale. 
Thus, there are O(log(nN)) scales. Gabow and Tar- 
jan show that the l-optimal matching computed at the 
end of the last scale is the m&cost perfect matching in 
E. Before describing the procedure MATCH, we need a 
few definitions. Given a matching M, we call an edge 
(u, v) eZigibZe if (1) (IL, v) E M and w,, + wV = c(u,v), 
or (2) (u,v) 6 M and w,, + w,, = C(U,V) + 1. In other 
words, an eligible edge is one for which the l-feasibility 
constraint holds with equality. 

procedure MATCH 

I. Initialize M = 0. (We throw away the l-optimal 
matching computed at the previous scale.) 



II. Repeat the following steps until Step 1 halts with 
a perfect matching. 

Step 1. Find a maximal set A of vertex-disjoint aug- 
menting paths of eligible edges. For each path 
P E A, augment the matching along P, and 
for each vertex v E B n P, decrease w, by 1. 
(This makes the new matching l-feasible.) If 
the new matching is perfect, halt. 

Step 2. Do a Hungarian search to adjust the duals 
(maintaining l-feasibility) until there is an 
augmenting path of eligible edges. 

Gabow and Tarjan show that Steps 1 and 2 can be 
implemented in O(m) time, where m is the number of 
edges in g, and that they are repeated 0(&i) times at 
each scale. Since there are O(log(nN)) scales, the total 
running time is O(J;imlog(niV)). We show below that 
Steps 1 and 2 of procedure match can be performed in 
O((~/E~/~) log4 n) time using clique covers. We there- 
fore conclude the following: 

Theorem 3.1 Given a set R of n red points and a set 
B of n blue points in the plane, and a real number E > 0, 
we can compute a perfect red-blue matching whose cost 
is at most (1 + E) times the cost of the optimal perfect 
red-blue matching in time O((n/E)3f2 log’n). 

3.4 Implementing Step 1 

Step 1 of procedure MATCH begins with the current 
matching M and set of dual variables w,, for each v E 
RUB. The matching or dual variables are not changed 
in the middle of this step. Let us call a vertex free if it 
is not incident on any edge of M. Step 1 finds a max- 
imal set A of vertex disjoint augmenting paths, one by 
one, using a depth-first search. In the process, it marks 
every vertex reached during the search. The procedure 
terminates after no unmarked free vertex is left in R. 
The procedure begins by growing a path II from some 
free unmarked vertex of R, and marks the vertex. Sup- 
pose it is growing a path II = (~1, bl, 9, * - . , bi-1, ri). 
To grow II from vi, it asks the following query: Is there 
an eligible edge from ri to an unmarked vertex in B ? 
There are two cases: 

(i) 

64 

There is SUCK a vertex bi. If bi is free, II = (rl* * * bi) 
is an augmenting path. We add Ii to A, mark bi, 
and start growing a new path from a different un- 
marked free vertex of R. If bi is matched to another 
vertex Tifl, set II = (rl +*.ri,b;,ri+l), mark bi a.nd 
ri+l, a.nd SOW JX at Ti+l. 

There is no such a vertez. If i = 1, we start growing 
a new path from a different unmarked free vertex 
of R. If i > 1, ri and bi-1 are deleted from II and 
we grow II at ri-1. 
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If we had all the m edges of &?, the above queries 
could be answer in a total of O(m) time (summed over 
all queries). Since we only have a clique cover of the 
edges of 6, we preprocess them into a data structure so 
that the queries can be answered efficiently. For each 
T E R, we maintain a subset Jr of indices of pairs in 
7. Initially, we set J, = {j 1 r E Rj}. For each Bj, 
we maintain the unmarked vertices of Bj in a red-black 
tree with the values of their dual varaible as the key. 
Since all interesting pairs in a class Ci have the same 
cost nt, determining whether there is an eligible edge 
from r E Rj to an unmarked vertex in Bj is equiva- 
lent to determining whether there is a vertex b E Bj 
in the red-black tree with Wb = n: + 1 - wr. Using 
our data structure, we can search for such a vertex b in 
O(logn) time. Hence, to answer a query for a vertex 
r E R, we choose the first index j in the list J,, and 
search in Bj with the appropriate value. If a vertex b 
is found, we mark b and delete it from all the red-black 
trees. Otherwise, we delete j from J, and repeat the 
same procedure with the next index in the list. If no 
index in Jr is left and we have not found a desired ver- 
tex, we conclude that there is no eligible edge from r 
to an unmarked vertex in B. Since at each step we ei- 
ther delete an index from J, or delete a vertex b from 
all trees, the total time spent in answer all queries is 
Cj O((IRjj + IBjl) logn) = O((n/E3j2) log4 n). 

Lemma 3.2 A single iteration of Step 1 takes 
0( (n/-53/2) log4 92). 

3.5 Implementing Step 2 

Step 2 of procedure MATCH is the Hungarian search. 
It is well known [13] that the key component of the 
Hungarian search is the following problem of maintain- 
ing bichromatic closest pairs. We want to maintain a 
R’ E R and a B’ C B. Initially, R’ = 0 and B’ = B, 
and vertex each v in B’ is assigned a weight a,,. The 
operations allowed on R’ and B’ are the following: A 
vertex u may be inserted into R’ with a weight Q,,; a 
vertex v may be deleted from B’. The problem is to 
maintain the bichromatic closest pair, which is the pair 
(u,v) E R’ x B’ that minimizes C(U,V) - u,, - oV. 

We will show how to maintain the bichromatic clos- 
est pair over edges in a single class Ci, whose clique 
cover is {(Rl,Bl),... , (Rl, Bl)}. Since all the edges 
in class Ci have the same cost, this reduces to simply 
maintaining the pair that maximizes o, + crV over all 
(u,v)~CinR’xB’. Foran(Rj,Bj),letR~=RjnR’, 
and B; = Bj I-I B’. We simply maintain the largest a, 
over all u E J?:, and the largest o,, over all v E Bi. 
This gives us the pair that maximizes (T, + u,, over 
all (u,v) E Ri x Bj; we maintain the maximum over 
4 the (Rj, Bj) in the clique co%r by using a prior- 
ity queue. It can now be shown that inserts in R’, 
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deletes in B’, and maintaining the bichromatic closest 
pair for class Ci takes O(n log3 n/&) time, and over all 
classes takes O((n/e3j2) log4 n) time. We conclude that 
step 2 of the procedure MATCH can be implemented in 
O((n/E3/2) log4 n) time. 

Lemma 3.3 A single iteration of Step 2 takes 
0( (n/E3j2) log4 n). 

4 Conclusions 

We have presented a Monte-Carlo algorithm for ap- 
proximate planar min-cost matching that runs in 
O((n/E3) log6 n) time and returns a matching whose 
cost is within (1 + E) of the optimaI. For the bipar- 
tite version of the problem, we presented a deterministic 
algorithm that runs in O((n/&)3/2 log’ n) time. 

We conclude by mentioning two interesting open 
problems. 

Is there an algorithm for approximate planar bipar- 
tite matching whose running time dependence on n 
is near-linear? 

Is there a sub-quadratic time algorithm for exact 
planar bipartite matching? 
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