
805

Approximation Algorithms for Bipartite and Non-Bipartite Matching
in the Plane *

Kasturi R. Varadarajant

Abstract

In the approximate Euclidean min-cost perfect matching
problem, we are a given a set V of 2n points in the plane, and
a real number E > 0, and we want to pair up the points (into
n pairs) so that the sum of the distances between the paired
points is within a multiplicative factor of (1 + E) of the opti-
mal. We present a Monte-Carlo algorithm that returns, with
probability at least l/2, a solution within (1 + E) of the op-
timal; the running time of our algorithm is O((n/s3) log6 n).

In the bipartite version of this problem, we are given a set
R of n red points, a set B of n blue points in the plane, and
a real number E > 0. We want to match each red point with
a blue point so that the sum of the distances between paired
points is within (1 + E) times that of an optimal match-
ing. We present au algorithm for this problem that runs in
O((~/E)~/* log5 n) time.

1 Introduction

In the approximate (Euclidean) min-cost matching
problem, we are given a set V of 271 points in the plane,
and a real number E > 0. A matching of V is a collec-
tion M of unordered pairs of V so that no point in V is
incident on more than one pair in M. A perfect match-
ing of V is a matching M in which every point in V is
incident on ezactly one pair of M; a perfect matching
of V has n pairs. We define the cost of a matching M
to be the sum of the Euclidean distances between the
paired points. The problem is to find a perfect match-
ing whose cost is at most (1 + E) times the cost of a
mm-cost perfect matching.

In the approximate (Euclidean) bipartite min-cost
matching problem, we are given a set R of n red points
and a set B of n blue points in the plane, and a real
number E > 0. Here, the pairs of the matching are re-
stricted to be red-blue pairs. The problem is to find

* Work on this paper was done when the first author was at
Duke University. This work has been supported by National Sci-
ence Foundation research grants CCR-9732287 and EIA-9870724,
by Army Research Office MUFU grant DAAH04-98-l-0013, by a
Sloan fellowship, by a National Science Foundation NYI award,
and by a grant from the U.S.-Israeli Binational Science Founda-
tion. National Science Foundation

tDIMACS, Rutgers University, Piscateway, NJ 08854 Email:
luv8dimacs .rutgers .edu

tCenter for Geometric Computing, Department of Com-
puter Science, Duke University, Durham, NC 27708. Email:
pankajecs.duke.edu

Pankaj K. Agarwalt

a perfect red-blue matching of R U B whose cost is at
most (1 +E) times the cost of a min-cost perfect red-blue
matching.

These problems have applications in operations re-
search, pattern recognition, shape matching, statistics,
and VLSI. The first polynomial time algorithm (on gen-
eral graphs) for (exact) min-cost bipartite matching is
due to Kuhn [9], and for min-cost non-bipartite match-
ing is due to Edmonds [4]. The fastest known imple-
mentations of these algorithms run in O(lV13) time on
dense graphs (see Lawler [lo]) and roughly O(lEjlVl)
time on sparse graphs [S]. For the Euclidean (planar)
versions of these problems, Vaidya [13] showed that ge-
ometry can be exploited to get algorithms runhing in
O(n5/* log’(‘) n) time for both the bipartite and non-
bipartite versions. Agarwal et al. [l] improved the run-
&ng time for the bipartite case to O(n2+6), for any
6 > 0. Very recently, Varadarajan [14] gave a divide-
and-conquer algorithm for lanar non-bipartite match-
ing that runs in O(n312 log ‘(l) n) time.

There has been considerable amount of work on
hueristics for Euclidean matching; see the survey by
Avis [3], and the references therein. Much of this work
considers the csse in which the points are in a unit
square, and aims at producing a matching whose ab-
solute cost is small. In contrast, Vaidya [12] gave an
algorithm for approximate m&cost matching in the
plane that runs in roughly O(~Z~/*/E~) time. Recently,
Arora [2] gave a Monte-Carlo algorithm for this prob-
lem that runs in O(nlog”(‘/E) n) time and returns a
correct solution with high probability. Building on his
approach, Rae and Smith [ll] give a Monte-Carlo algo-
rithm that runs in O(n log n) time and produces (with
probability at least l/2) a matching whose cost is within
a constant factor of the optimal. We are not aware of
any previous work on approximation algorithms for min-
cost bipartite matching in the plane.

Our results. This paper contains two main results.
First, we present a Monte Carlo algorithm for com-
puting an approximate mm-cost non-bipartite matching
that runs in O((n/c3) log6 n) time; the algorithm re-
turns a matching that whose cost is within (1 +E) times
that of of an optimal, with probability at least l/2. Of
course, the probability of success can be increased by

806

iterating the algorithm and taking the smallest match-
ing returned. Arora’s algorithm [2] achieves the same
result, but with a running of O(nlog”(“E) n). Unlike
Arora’s algorithm, the running time of our algorithm
is polynomial in l/s. We achieve this improvement by
combining the divide-and-conquer approach developed
in [14] for computing an optimal Euclidean matching
in the plane along with the the partitioning scheme of
Arora.

The techniques used by Vaidya [12] and Arora [2] for
approximate min-cost non-bipartite matching do not ex-
tend to the bipartite case. No subquadratic algorithm is
known even for a constant-factor approximate bipartite
min-cost matching. We present a determinsitic algo-
rithm for computing an (1 + s)-approximate Euclidean
bipartite matching that runs in O((rz/~)~/* log’ n) time.
The crux of our algorithm is an efficient implementa-
tion in geometry of the scaling algorihm of Gabow and
Tarjan

1
71. For this, we partition the red-blue edges

into O(y) 1 c asses depending on their (approximate)
length, and work with clique covers [S] of these classes
rather than with each red-blue pair explicitly.

In Section 2, we describe our algorithm for approxi-
mate non-bipartite matching, and in Section 3, we de-
scribe our algorithm for approximate bipartite match-
ing. We offer our conclusions in Section 4. Throughout
the paper, we will make the assumption the .s > l/n;
this will simplify our running time expressions. The jus-
tification is that for E < l/n, the exact algorithms are
anyway faster than our approximation algorithms.

2 Approximating non-bipartite match-
ing

We are given a set V of 2n points in the plane, and
a real number E > 0, and we want to fmd a match-
ing of V whose cost is withii a multiplicative factor of
(1 + E) of the min-cost perfect matching. We first de-
scribe the partitioning scheme of Arora [Z], based on
which we define a graph G whose vertices are V and
some additional ‘Steiner’ points. We then describe our
divide-and-conquer algorithm for computing a mm-cost
matching on E.

IL.Ll
,., :. b-- .'.L.. ,: :::-,
,, i .; : sy..
\. ., ,.. ,(,, ',? ;'

,2 ;.'

2L-bl

(-a.-bl

Figure 1: Original square and the expanded square.

Using standard techniques, such as the ones described
by Arora [2] or Rae-Smith [ll], we can assume that the
minimum distance between any two points in V is 8,
and V lies in an L x L square, where L 5 n3. We
also assume, without loss of generality, that L = 2k, for
some integer k 2 0, and that the square is aligned with
the integer grid, i.e., the bottom-left corner is at the
origin and the top-right corner is (L, L). We expand the
square to a 2L x 2L square as follows. We choose random
integers a, b E (0, L]. We move the bottom-left comer
to (--a, -b) and the top-right corner to (2L - a, 2L - b);
see Figure 1.

We construct a quad-tree on the resulting square us-
ing the following recursive procedure. Any stage of the
recursion begins with a square K. If K contains at most
one point in V, it is a leaf of the quad-tree; the recursion
terminates and we return. Otherwise, K is a non-leaf
square of the quad-tree. We divide K into four equal
squares KI , . . . , K4 using a verticaI median line and a
horizontal median lime. We place O((logn)/s) evenly
spaced portals on the vertical and horizontal ‘lines, as
in Arora’s algorithm. We then recursively construct the
quadtrees for K1 , . . . , K4.

Figure 2: A quadtree for the points indicated in bold. The
empty circles are the portals. The two kids of edges in S
corresponding to the shaded leaf of the quadtree are shown.

We now construct a graph E whose vertices are the
points in V, called sites, and the portals, also called
Steiner points, that we have placed. For each leaf square
K of the quad-tree, we add an edge between every pair
of portals on the boundary of K. In addition, if the
leaf square K contains a point v E V, we add an edge
between v and each portal on the boundary of K. See
Figure 2 for an illustration. Since the quad-tree has
depth O(log n), it has O(n log n) leaf squares overall, so
the total number of vertices in B is 0(3 log2 n), and
the total numer of edges is O(s log3 n). We defme the
length of an edge (p, q) in this graph to be the Euclidean
distance between p and q. The distance between any two
vertices p and q of E, denoted by a@, q), is the length of
the shortest path between p and q in 9. In this section,

we use the word edge to denote an actual edge in the
graph and the word pair to denote any unordered pair
(u,v) E V x V. The cost of a matching M of V in G is
the sum Ccu,vJEM 6(r~, v). (Note that the matching is
a collection of pairs in V x V.) The following lemma is
an easy consequence of Arora’s charging scheme:

Lemma 2.1 With a probability of at least l/2, the
graph G produced by the above scheme has the property
that the min-cost matching of V in G is within (1 + E)
of the min-cost matching of V.

Our algorithm computes a min-cost matching of V
in E. Unlike the Arora algorithm, which uses dynamic
programming to compute all possible solutions at each
node of the quad-tree, our algorithm is a divide-and-
conquer variant of Edmonds’ matching algorithm. It
is because of this alternative approach that we obtain a
running time that is polynomial in l/s, whereas Arora’s
algorithm is exponential in l/s. Our algorithm can
be viewed as an implementation on the graph 0 of
the divide-and-conquer scheme that was developed by
Varadarajan [14] for exact matching in the plane.

2.1 ,Min-cost matching of V in the graph G

We take the view that an edge (u-,v) of the graph Q
is an actual link whose length is d(u, v), the Euclidean
distance between u and 21. We define the distance be-
tween a vertex w and a point t on a link (u,v), de-
noted by a(w, z), as the length of the shortest path along
the links, i.e., b(w, z) = min{6(w, u) + d(u, z), b(w, v) +
d(w, .a)}. We define the disk of radius T centered at a
site v to be the set of all vertices and all portions on
the edges of G whose distance (in G) from v is at most
T. In other words, a disk is a one-dimensional network
consisting of vertices and portions of edges of Q. By
definition of 6, if a portion of an edge is in the disk,
then at least one of its endpoints is also in the disk.

We say that a subset Q E V of V is an odd subset or
an odd-set if IQ] is odd and IQ] > 3. For Q E V, let e(Q)
denote the subset of pairs with exactly one endpoint in
Q, that is, t(Q) = ((21, v) E V x V : I{u,v} n &I = 1).

Edmonds’ algorithm is motivated by duality theory
for linear programs; see [4], [lo] for a discussion of linear
programming duality. I-Iis algorithm associates a “dual”
variable w,, for each v E V and a dual variable WQ for
each odd set Q. Sometimes, it will be convenient to
denote w, by ~(~1. Corresponding to the pair (u, v), let
x,, = w, + w,, + c u,v)ec(Q) WQ. horn duality theory,
it follows that a pe d ect matching M is optimal if there
exist values wv, for each v E V, and WQ, for each odd
subset Q, such that the following conditions hold:

EDGE-FEASIBILITY: 7ruv 5 b(u, v) for each (‘(1,~) E
v x v.

807

POSITIVE-DUAL: WQ 2 ‘0 for each odd subset Q.

MATCHING-ADMISSIBILITY: (u,v) E M a rIT,v =
a(% VI-

MAXIMALITY: For each odd subset Q, if WQ > 0,
then the matching M is maximal within Q,
that is, the number of pairs in M both of
whose endpoints are in Q is (IQ] - 1)/2. Since
M is a perfect matching, this is equivalent to
MnJ(Q)= 1.

Like Edmonds’ algorithm, our approach also com-
putes a perfect matching and a corresponding set of
dual variables such that EDGE-FEASIBILITY, POSITIVE-

DUAL, MATCHING-ADMISSIBILITY, and MAXIMALITY are
satisfied. The difference is that unlike in Edmonds’ algo-
rithm, we use divide-and-conquer for doing this. Before
describing our approach, we describe the important no-
tion of blossoms that was introduced by Edmonds. Our
description of blossoms and other standard components
of the matching algorithm are based on the presentation
of Galil et al.[8].

Definition 2.2 For any vertex v E V, let X(v) =
w, + xvEQ WQ- A pair (21, v) is feasible if 7ruuv 5 b(r~, v).
It is admissible if ‘IT,, = 6(u,v).

2.2 Blossoms and alternating paths

During the course of our algorithm, certain odd subsets
of V are designated as blossoms. The algorithm main-
tains the property that WQ > 0 for an odd subset Q
only if Q is a blossom. The set of blossoms at any stage
have the following nested structure: For any two distinct
blossoms B and B’, either B II B’ = 0, or B c B’, or
B’ c B. Each v E V is a trivial blossom of size one. A
non-trivial blossom B is given by a sequence of blossoms

,..., B,,wherer=21c,forkll,andasequenceof
E&i.ssilQz pairs ei = (ui-1, vi), for i = 1,. . . , r + 1,

1. W,Vi E Bi mod tt+l)-

2. For 1 < i 5 r + 1, (ui-r,Vi) E M if i is even and
(Ui-1) vi) +%I M if i is odd.

The blossoms Bo, . . . , B, are referred to as the sub-
blossoms of B. (See Figure 3 for an illustration of a
blossom.) A blossom that is not a subblossom of any
other blossom is called an outermost blossom. Clearly,
the outermost blossoms induce a partition of V. It can
be shown from the properties above that any blossom
B contains an odd number of vertices, and that the
matching M is maximal within B. The unique vertex of
B that is not matched to any other vertex of B is called
its base. The base can also be defined by induction
on the structure of blossoms as follows. The base of

808

a trivial blossom v is the vertex v itself. The base of a
blossom B whose subblossoms are given by the sequence
Bo,... , B, (as above) is the base of Bo .

BI

B2

4 =uz
I

v2

4vg = II.3

B4
B3

Figure 3: A blossom with sub-blossoms Bo, . . . , Bq.
The solid edges represent pairs in the matching and
the dashed edges represent the other admissible pairs
making up the blossom.

An alternating path between vertices vc and v, is a
sequence of admissible pairs ei = (vi-r, vi), for i =
1 r such that for i = l,...,r-1, ei E M if 7’” , 7
and only if ei+r 6 M. In other words, it is a path
in which alternate pairs are in the matching. An alter-
nating path between outermost blossoms BO and B, is
given by a sequence of admissible pairs ei = (u+r , vi),
for i = l,.. . , r, and a sequence of outermost blossoms
Bo,... ,Br, whereui,viEBirandfori=l ,..., r-l,
ei E M if and only if ei+r $2 M. We say that a vertex
v is ezposed if no pair of the matching M is incident
on v; an outermost blossom B is exposed if no pair of
the matching M is incident on the base of B. An alter-
nating path between two exposed vertices is called an
augmenting path.

Lemma 2.3 Let u and v be points in different outer
blossoms. The pair (u,v) is feasible i# X(u) + X(v) 5
b(u, v). The p&r (u, v) is admissible iff X(u) + X(v) =
6(u, VI.

Using the triangle inequality for a(., .), we can show
that throughout our algorithm, X(v) 2 0 for any v E V.
For a site v E V, we use disk(v) to denote the disk
of radius X(v) centered at v, as defined above. Since
X(v) 2 0, disk(v) is well defined. Lemma 2.3 implies
that if u and v are vertices in different blossoms, feasibil-
ity of (u, v) means that disk(u) and disk(v) do not over-
lap (although they can touch), i.e., no point on a link
lies in the relative interior of both disk(u) and disk(v);
admissibility of (u, v) means disk(u) and disk(v) do not
overlap but touch.

In the rest of this section, we will sometimes refer
to an outermost blossom as simply a blossom, and use
the term ‘sub-blossom’ when specifically referring to a
blossom that is not outermost.

2.3 The divide-and-conquer algorithm

Let K be a square in the quad-tree, and let U E V be
the set of sites lying within K. We will describe our
divide-and-conquer scheme for the set U. Let P be the
set of portals on the boundary of Q. Let G(K) denote
the sub-graph of G induced by U and the portals lying
inside or on the boundary of K. Let m (resp. q) denote
the number of vertices (resp. edges) in G(K). The goal
in the subproblem for U is to compute a (not necessarily
perfect) matching M of U, a set of blossoms in U, and a
set of dual variables w, for each u E U, and WQ for each
blossom Q, so that the conditions EDGE-FEASIBILITY,
POSITIVE-DUAL, MATCHING-ADMISSIBILITY, and MAXI-
MALITY hold for U, and in addition, the following two
conditions are also satisfied:

RADIUS-CONSTRAINT: For each u E U and each por-
tal p f P, X(u) 5 d(u,p).

EXPOSED-CONSTRAINT: For every exposed blossom Q
ofU,thereisaqEQandaportalpEPsuch
that X(q) = &u).

We say that a blossom Q of U is constrained at a por-
tal p E P if Q is an exposed blossom, and there is a
q E Q such that X(q) = b(q,p). We say that Q is un-
constrained otherwise. We emphasize that only an ex-
posed blossom can be constrained; a blossom that is not
exposed is by definition unconstrained. The EXPOSED-
CONSTRAINT condition is that every exposed blossom
of U is constrained. We remark that the RADIUS-
CCiNsTRAINT allows us to restrict our attention to G(K)
for solving the subproblem for U, because it restricts
the disks of points in U to within E(K).

If K is not a leaf of the quad-tree, our algorithm recur-
sively solves the subproblems for Kl, . . . , K4, the four
children of Q. Let Vi c U be the set of sites lying in
Ki. Suppose that the recursive calls return a matching,
blossoms, and dual variables for Vi satisfying the six
conditions for Vi. To begin the conquer step for U, we
obtain an initial matching, dual variables, and blossoms
by combining the matching, dual variables, and blos-
somsfor VI,... , U4. At this stage, it is easy to see that
all the six conditions except the EXPOSED-CONSTRAINT
are satisfied for U. (Here, we use the fact that the por-
tals on the boundary of a square Ki “separate” the ver-
tices of G(Ki) from the vertices of G lying outside Kim)

Observe that the EXPOSED-CONSTRAINT condition
may be violated for a blossom Q of U. The conquer
stage of the divide-and-conquer algorithm for U elimi-
nates the violations of the EXPOSED-CONSTRAINT, thus
solving the subproblem for U. The ‘conquer’ stage con-
sists of a series of phases; in each phase the number
of unconstrained exposed blossoms is reduced by either
one or two.

809

2.4 The conquer stage

As we indicated, the conquer stage consists of phases.
Each phase begins with the current matching M, a set
of dual variables, and a set of blossoms. The algorithm
always maintains the five conditions EDGE-FEASIBILITY,
POSITIVE-DUAL, MATCHING-ADMISSIBILITY, MAXIMAL-
ITY, and RADIUS-CONSTRAINT. In each phase,the num-
ber of unconstrained exposed blossoms is decreased by
one or two. Thus, each phase decreases the number of
violations of the sixth condition EXPOSED-CONSTRAINT,
and so the algorithm terminates after a finite number
of phases.

For brevity, we will call a constrained blossom a c-
blossom. During a phase, some unconstrained outer
blossoms are labelled as s-blossoms and t-blossoms. (An
outer blossom is labelled as either an s-blossom or a
t-blossom, but not both.) An unconstrained outer blos-
som which is not labelled is called a free blossom or
f-blossom. (s-, t-, and f- prefixes are only for uncon-
strained blossoms.) A vertex is called an s-vertex, t-
vertex, f-vertex, or c-vertex according to whether it
belongs, respectively, to an s-blossom, t-blossom, f-
blossom, or c-blossom. We let S, T, and F denote,
respectively, the set of s-vertices, t-vertices, and f-
vertices. For any TJ E V, let b(v) denote the outermost
blossom containing V.

A phase is divided into O(m) subphases. At the end of
each subphase, the following invariants hold. An uncon-
strained exposed blossom is always an s-blossom. For
every s- or t- blossom B, there is an alternating path
o(B’, B) between an unconstrained exposed blossom B’
and B. If B is an s-blossom (resp. t-blossom), a(B’, B)
has even (resp. odd) length, that is, there are an even
(resp. odd) number of edges in the alternating path.
The s- and t-blossoms, together with the corresponding
alternating paths, induce a forest of rooted trees, a tree
being rooted at each unconstrained exposed blossom.
The trees are called alternating trees, and the forest is
called an alternating forest. (The c-blossoms are not in
the alternating forest.) The leaves of the alternating
trees are always s-blossoms.

For every f-blossom B, there is another f-blossom
C so that bases of B and C are matched in M, i.e.,
(base(C), base(C)) E M. Therefore, M induces a per-
fect matching on the bases of all the f-blossoms.

At the start of a phase, we label each unconstrained
exposed blossom as an s-blossom; every other uncon-
strained outer blossom is an f-blossom. A subphase
consists of the following loop, which is repeated until a
termination condition for the phase is met. The above
invariants hold at the end of each iteration of the loop.
Let

61 = min
Q a nontrivial t-blossom

WQ>

Dual change: Let WQ be the dual variable correspond-
ing to the blossom Q. (If Q is a trivial blossom consist-
ing of a Vertex v, then WQ = w,.) For each s-blossom
Q, we increase WQ by 6, and for each t-blossom Q, we
decrease WQ by 6. After the dual change, one of br , 62,
63, 64, or 6s becomes zero. In case of a tie, we pick an
arbitarary 6i that is zero. For technical reasons, 64 gets
precedence over c&. We will be terse about some of the
following cases, which are standard; see [S].

61 = 0: In this case, the dual variable Wg correspond-
ing to a (non-trivial) t-blossom B becomes zero. We ex-
pand B, that is, we stop regarding it as a blossom and
make its subblossoms outer blossoms. Some of these
new outer blossoms become s-blossoms, some become
t-blossoms, and some f-blossoms.

62 = 0: In thii case, a pair (u, v), which is now ad-
missible, has been discovered; u is an s-vertex and v an
f-vertex. Two f-blossoms are added to the alternating
forest, one as a t-blossom and the other as an s-blossom.

(53 = 0: A pair (u,v) which is now admissible has
been discovered, where u and v axe s-vertices. Either a
new s-blossom is formed, or an alternating path between
two unconstraned exposed blossoms is discovered. The
latter subcase ends the phase and is handled in a manner
similar to the case where & = 0.

64 = 0: A pair (u,v), which is now admissible, has
been discovered; u is an s-vertex and v a c-vertex. Let
A (resp. B) be the s-blossom (rasp. c-blossom) contain-
ing u (resp. v). Let A’ be the unconstrained exposed
blossom which is the root of the alternating tree con-
taining A, and let o(A’,A) denote the corresponding
even-length alternating path between A’ and A. Note
that a(A’,A), the edge (u,v), and the blossom B te

gether constitute an alternating path between the ex-
posed blossoms A’ and B. We expand this to an aug-
menting path x between the exposed bases of A’ and
B. We augment the current matching M by excluding
all pairs of M belonging to x and including the other
pairs of ?r. Note that the cardinal&y of the matching
M increases by one, and the number of unconstrained
exposed blossoms reduces by one since A’ is now no
longer exposed. We also change appropriately the bases

810

of all the blossoms through which the augmenting path
passes. This ends the current phase of the algorithm.

65 = 0: In this case, X(u) has increased to b(u,p),
where ‘1~ is an s-vertex and p a portal on the boundary
of &. Let A be the s-blossom containing 2~. Let A’ be
the unconstrained exposed blossom which is the root
of the alternating tree containing A, and let o(A’, A)
denote the corresponding even-length alternating path
between A’ and A. We expand a(A’,A) to an even-
length alternating path K between the bases of A’ and A.
We alter the current matching M by excluding all pairs
of M belonging to 7r and including the other pairs of T.
We change appropriately the bases of all the blossoms
through which the augmenting path passes. This ends
the current phase of the algorithm. This event reduces
the number of unconstrained exposed blossoms by one
without changing the cardinality of M. Note that in
the next phase, A will be constrained.

This completes the description of a phase. At the end
of the phase, we (recursively) expand all outer blossoms
whose dual variable is zero.

This also completes our description of the overall
divide-and-conquer scheme for min-cost perfect match-
ing of V in E. The following observation is useful in
bounding the number of phases in the conquer stage.

Lenqna 2.4 The following invariant holds after each
phase of the conquer stage for U = K rl V: At each
portal p E P at the boundary of the square K, at most
one exposed blossom of U is constrained.

The proof uses the observation that when a second
blossom is about to be constrained at a portal, we will
be in the case & = 0 (which we give precedence over
65 = 0).

Lemma 2.5 The number of phases in the conquer step
for u is O((logn)/&)-

Proof: Let & denote the number of unconstrained ex-
posed blossoms at the beginning of the conquer step.
Since each phase decreases the total number of uncon-
strained exposed blossoms by one or two, the number
of phases is at most]E]. Hence it sufhces to show
]E[= O(logn/c). Let Q E E, and assume, without loss
of generality, that Q E Vi. After the recursive call to
Vi, Q must be constrained at a portal on the boundary
of K,; since it is unconstrained with respect to U, this
cannot be a portal on the boundary of K. The number
of portals on WI \ XI is O((logn)/s). By Lemma 2.4,
this bounds]E]. Cl

For a fast implementation of one phase of the con-
quer algorithm for U, we need a mechanism to quickly
compute when & becomes zero. The following theorem
results from a careful implementation of a phase such
as the one described by Galil et al. [8] or Vaidya [13].

Theorem 2.6 Suppose the total time spent in detecting
when bi becomes zero, over an entire phase for the subset
U of sites, is O(r). Then, one phase can be implemented
in O(lUl log IUI + r) time.

We describe below the main ideas of an implementa-
tion that detects when & becomes zero at a total cost
of O(nlogm) per phase, where m (resp. 17) denotes the
number of vertices (resp. edges) in Q(K). Since there
are O((logn)/e) phases in the conquer step, this gives a
running time of 0(+ .q . log m) for the conquer step.
Putting everything together, we conclude with the main
result of this section:

Theorem 2.7 Given a set V of 2n points in the plane,
and a real number E > 0, we can compute a perfect
matching of V whose cost is at most (1 + s) times the
optimal using an algorithm that runs in 0((n/e3) log6 n)
time.

2.5 Implementing a phase

We show below that detecting when 6i becomes zero es-
sentially reduces to detecting events when an inequality
of one of the following forms becomes tight:

1. WQ 10, for a t-blossom Q.

2. X(u) 5 cl, for an s-vertex u and a real number cl.

3. X(u) 1 cl, for an f- or t-vertex u and a real number
Cl.

4. X(u) + X(v) 5 cl, for a real number cl, where ei-
ther (i) u and v are s-vertices in different outermost
blossoms, (ii) u is an s-vertex and v is a t-vertex,
and (iii) u is an s-vertex and v is a c-vertex.

We will refer to these as events of the f&t, second,
third, and fourth type, respectively. The total number
of such events that we need to detect per phase is only
O(q). We will also need a data-structure which will al-
low us to compute the value of X(U), for any site u. This
data-structure is queried O(q) times. With straightfor-
ward mod&cations, the priority queues of Galil et al. [8]
will let us implement the above data structures using a
total of O(q log m) time per phase.

To detect when 61 becomes zero, we need to detect
O(m) events of the first type. For 65, we precompute
b(u,p), the distance in O(K) between each vertex u E U
and portal p E P, and then the closest portal to each
vertex in U. To detect when ~5s becomes zero, we now
need to detect events of the second type. Again, there
are only O(m) such events. The cost of precomputing
the distances 6(u,p) is absorbed in the running time of
the conquer phase.

811

For detecting when & becomes zero, for 2 5 i 5’ 4,
we need to detect when disk(u) and disk(v) touch, for
sites u and v of W in diflerent outer blossoms of U. For
this, we first need to establish certain simple but useful
properties of disks.

Lemma 2.8 If u and v are sites in the same outer blos-
som, X(u) and X(v) change at the same rate.

The following observation depends on the fact that
the algorithm increases the dual variables correspond-
ing to the s-blossoms, decreases the dual variables cor-
responding to the t-blossoms, and does not change the
dual variables corresponding to the f-blossoms. It also
expresses a property of the algorithm’s labelling scheme.

Lemma 2.9 During a phase, a site u E U may change
its status from an f -vertez to a t-vertex (and vice versa)
a number of times. In this part of the phase, X(u) can
only decrease. However, once u becomes an .s-vertex, it
remains an s-vertex until the end of the phase. In this
part of the phase, X(u) can only increase. If u belongs
to a c-blossom, X(u) does not change at all during the
phase.

In view of the above lemma we refer to an s-vertex
(resp. f/t-vertex) as a growing (resp. shrinking) vertex,
and its disk as a growing (resp. shrinking) disk. The
following lemma can be derived from Lemma 2.3 and
the fact that X(u) 1 0 for any vertex u E U.

Lemma 2.10 For any two distinct sites u,v E U,
X(u) 5 X(v) + b(u,?J).

For any vertex p of G(K), we define the nearest site vP
of p to be u E U that minimizes b(u,p) - X(u); we refer
to disk(+) as the nearest disk to p. We say that vP (or
disk(vp)) ozl~s p if disk(r+,) contains p, i.e., a(v,,p) 2
X(%>-

For simplifying the discussion, assume that +, is al-
ways unique for every vertex p. By Lemma 2.10, we can
assume that, for any site u E U, v, = u always holds.
Furthermore, since X(u) 1 0, we can assume that u al-
ways owns itself.

For any portal p, if a site u E U owns p at a par-
ticular time, then u continues to own p as long as
X(u) 2 b(u,p). Indeed, this follows from the fact the
disks of sites in different outer blossoms do not over-
lap (Lemma 2.3) and the fact that disks of sites in the
same blossom grow at the same rate (Lemma 2.8). By
Lemma 2.9, the owner of a Steiner-point p can change
only a constant number of times during a phase. To
maintain the owner of a Steiner point p during a phase,
we mainly need to keep track of two kinds of informa-
tion:

1 ,.

2.

If a shrinking vertex u currently owns p, when does
disk(u) stop containing p? This is an event of the
third type, and there are O(m) such events.

If p is currently without an owner, when does the
disk of an s-vertex first hit p? For maintaining
this information, we need to ‘propogate’ the disks
of sites along the edges of the graph. This can be
achieved using O(Q) events of the second type.

Finally, we are ready to describe how we can detect
collisions between two disks of vertices in different outer
blossoms of U. Suppose the point of contact of such
a collision lies in the interior of an edge (p, q). Using
Lemma 2.3 and Lemma 2.8, we can conclude that the
disks that touch must be the owners of p and q. There-
fore, to detect such a collision, we need to keep track of
the event ‘When do the disks that own p and q collide
along the edge (p,q)‘? This is an event of the fourth
type. It is easy to see from the above discussion that
there are only a constant number of such events for each
edge in a phase.

3 Bipartite Matching

We are given a set R of n “red” points and a set B of n
“blue” points in the plane, and a real number E > 0; we
wish to compute a perfect red-blue matching whose cost
is at most (1 + E) times that of an optimal matching.
We first “clean up” the given instance of the problem.
We then partition the red-blue edges into O(logn/&)
“classes,n and compute a clique cover of the edges in
each class. We then use the clique covers to implement
the scaling algorithm of Gabow and Tarjan efficiently
on an appropriately defined graph.

3.1 The clean-up phase

Let OPT be the cost of a min-cost red-blue matching of
V = RU B. We first compute a rough approximation Q
to OPT such that Q 5 OPT 5 nQ. Using the algorithm
by Efrat and Itai [5], we compute in O(n3i2 logn) time a
bottleneck matching of R and J3, which is a perfect red-
blue matching that minimizes the m&mum length red-
blue pair in the matching, under the &-metric. Let a
be the largest distance among all pairs in the matching.
Since an optimal mm-cost matching must use a pair
whose length is at least a and the cost of the optimal
bottleneck matching is at most no, we have Q 5 OPT 5
n - a.

We draw a grid in the plane of the form
{(icr/n2,ja/n2) 1 i, j E Z}, move each point in R U B
to the nearest grid point, and compute a matching of
the resulting points. The cost of the optimal matching
of perturbed points differs from the original one by at
most 2n.0PT/n2 = OPT/2n. Since .s > I/n, it suffices

812

to compute an (1 + E/2)-approximate matching for the
new set of points. If a red point r and a blue point b
are moved to the same grid point, we match r with b
and discard r and b. We thus assume that no grid point,
contains both red and blue points. Scaling the grid by
factor n2/a, we can assume that the minimum red-blue
distance is 1 and that the cost of the optimal red-blue
matching is at most n3. We can ignore from considera-
tion red-blue pairs that are more than n3 apart.

3.2 CIique covers of interesting pairs

Instead of the Euclidean metric, it will be convenient
to measure distances between points using a polygonal
metric, dp (., .) , defined by a centrally-symmetric regular
convex polygon with O(l/&) edges.’ Such a metric
approximates the Euclidean metric to within a factor
of (1 + E). Let us call the red-blue pairs whose length,
under dp-metric, is between 1 and n3 the interesting
pairs.

For 1 < j <.k = [3 Iogl+E nl, define 1j to be the
interval [(l-t E) ‘-‘,(l+&)‘]. Let Cj = ((~,b) E RX B 1
dp(r,b) E Ij}. Cl,.*. ,Ck partition the set of interestng
red-blue pairs. We define a bipartite clique cover, or
simply a clique cover for brevity, for the set of pairs in
&SS Ci to be a family 3i = {(RI, Bl), . . . , (Rr, Bl))
with the following properties:

1. Rj C R and Bj C B, for 1 5 j < I,

2. every pair in Rj x Bj belonds to the &SS Ci, and

3. for every pair (r, b) in CRASS Ci, there is il~l (Rj, Bj)
SU& that (r, b) E Rj x Bj.

The size of the clique cover is Cj (I.& 1 + 1 Bj I)- The
size bounds the space needed to compactly represent
the pairs in class Ci using a clique cover. using
standard range searching structures, we can compute,
in O((n/&) log2 n) time, a clique cover of Ci of size
O((n/&) log2 n) [15]. Set 3 = Ui 3;. The total time
spent in computing 3 is O((n/c3/2) log3 n).

3.3 The scaling algorithm

We approximate the lengths of all the pairs belonging to
a class Ci by a single number ni = (1 + E)~-’ (1 + ~/2),
the middle-point of the subinterval Ii. By scaling all
the numbers, we assume that all the ni’s are integers.
Define 0 = (R U B, Ui Ci); the cost of the edge (r, b) is
set to ni if (r, b) E C+

We use the scaling algorithm of Gabow and Tarjan [7]
to compute a m&cost perfect matching in the graph E.

‘For a centrally symmetric polygon P, the convex polygonal
distance, dp , between two point& p, q E R* is defined as dp (p, q) =
inf{X 1 q E XP + p}.

Clearly, this will yield a solution to our overall goal.
However, we cannot afford to run the scaling algorithm
on the graph E explicitly as the graph may have Q(n2)
edges. Instead, we will show how the clique covers can
be used to implement the scaling algorithm efficiently.
We begin by giving a brief description of the scaling
algorithm on the bipartite graph E.

The algorithm associates a dual variable w, with each
vertex w E R U B. Let c(e) denote the cost of an edge
e. The costs on edges are integers; we will let N denote
the largest cost. In our case, N = O(n3/&).

A l-feasible matching consists of a matching M and
dual variables U, so that for any pair (u,v) E R x B,

WV +-al 5 C(%V) + 1, V(u,v) E Rx B,
wu+wv = cbL,v), V(u, v) E M.

A l-optimal matching is a perfect matching that is l-
feasible. If the +l term is omitted from the first in-
equality, these are the usual complementary slackness
conditions for a minimum perfect matching [lo].

The scaling algorithm begins by computing a new cost
E(e) for each edge e, equal to n+ 1 times the given cost.
Consider each E(e) to be a binary number bib . - . bk hav-
ing k = [log((n -t 1) N) J + 1 bits. The scaling algorithm
runs in k scales. It maintains a variable c(e) for each
edge e, equal to its cost in the current scale. At the
beginning each c(e) and each w, is set to 0. Then the
following loop is executed with the loop index s going
from 1 to k.

1. For each edge e,

c(e) t 2c(e) + bit b, of ‘Z(e).

Basically, c(e) is set to the binary number repre-
sented by the the first s bits of Z(e). For each vertex
v, Y(V) + 2Y(V) - 1.

2. Call the procedure MATCH to find a l-optimal
matching with the current costs.

Each iteration. of the above lodp is called a scale.
Thus, there are O(log(nN)) scales. Gabow and Tar-
jan show that the l-optimal matching computed at the
end of the last scale is the m&cost perfect matching in
E. Before describing the procedure MATCH, we need a
few definitions. Given a matching M, we call an edge
(u, v) eZigibZe if (1) (IL, v) E M and w,, + wV = c(u,v),
or (2) (u,v) 6 M and w,, + w,, = C(U,V) + 1. In other
words, an eligible edge is one for which the l-feasibility
constraint holds with equality.

procedure MATCH

I. Initialize M = 0. (We throw away the l-optimal
matching computed at the previous scale.)

II. Repeat the following steps until Step 1 halts with
a perfect matching.

Step 1. Find a maximal set A of vertex-disjoint aug-
menting paths of eligible edges. For each path
P E A, augment the matching along P, and
for each vertex v E B n P, decrease w, by 1.
(This makes the new matching l-feasible.) If
the new matching is perfect, halt.

Step 2. Do a Hungarian search to adjust the duals
(maintaining l-feasibility) until there is an
augmenting path of eligible edges.

Gabow and Tarjan show that Steps 1 and 2 can be
implemented in O(m) time, where m is the number of
edges in g, and that they are repeated 0(&i) times at
each scale. Since there are O(log(nN)) scales, the total
running time is O(J;imlog(niV)). We show below that
Steps 1 and 2 of procedure match can be performed in
O((~/E~/~) log4 n) time using clique covers. We there-
fore conclude the following:

Theorem 3.1 Given a set R of n red points and a set
B of n blue points in the plane, and a real number E > 0,
we can compute a perfect red-blue matching whose cost
is at most (1 + E) times the cost of the optimal perfect
red-blue matching in time O((n/E)3f2 log’n).

3.4 Implementing Step 1

Step 1 of procedure MATCH begins with the current
matching M and set of dual variables w,, for each v E
RUB. The matching or dual variables are not changed
in the middle of this step. Let us call a vertex free if it
is not incident on any edge of M. Step 1 finds a max-
imal set A of vertex disjoint augmenting paths, one by
one, using a depth-first search. In the process, it marks
every vertex reached during the search. The procedure
terminates after no unmarked free vertex is left in R.
The procedure begins by growing a path II from some
free unmarked vertex of R, and marks the vertex. Sup-
pose it is growing a path II = (~1, bl, 9, * - . , bi-1, ri).
To grow II from vi, it asks the following query: Is there
an eligible edge from ri to an unmarked vertex in B ?
There are two cases:

(i)

64

There is SUCK a vertex bi. If bi is free, II = (rl* * * bi)
is an augmenting path. We add Ii to A, mark bi,
and start growing a new path from a different un-
marked free vertex of R. If bi is matched to another
vertex Tifl, set II = (rl +*.ri,b;,ri+l), mark bi a.nd
ri+l, a.nd SOW JX at Ti+l.

There is no such a vertez. If i = 1, we start growing
a new path from a different unmarked free vertex
of R. If i > 1, ri and bi-1 are deleted from II and
we grow II at ri-1.

813

If we had all the m edges of &?, the above queries
could be answer in a total of O(m) time (summed over
all queries). Since we only have a clique cover of the
edges of 6, we preprocess them into a data structure so
that the queries can be answered efficiently. For each
T E R, we maintain a subset Jr of indices of pairs in
7. Initially, we set J, = {j 1 r E Rj}. For each Bj,
we maintain the unmarked vertices of Bj in a red-black
tree with the values of their dual varaible as the key.
Since all interesting pairs in a class Ci have the same
cost nt, determining whether there is an eligible edge
from r E Rj to an unmarked vertex in Bj is equiva-
lent to determining whether there is a vertex b E Bj
in the red-black tree with Wb = n: + 1 - wr. Using
our data structure, we can search for such a vertex b in
O(logn) time. Hence, to answer a query for a vertex
r E R, we choose the first index j in the list J,, and
search in Bj with the appropriate value. If a vertex b
is found, we mark b and delete it from all the red-black
trees. Otherwise, we delete j from J, and repeat the
same procedure with the next index in the list. If no
index in Jr is left and we have not found a desired ver-
tex, we conclude that there is no eligible edge from r
to an unmarked vertex in B. Since at each step we ei-
ther delete an index from J, or delete a vertex b from
all trees, the total time spent in answer all queries is
Cj O((IRjj + IBjl) logn) = O((n/E3j2) log4 n).

Lemma 3.2 A single iteration of Step 1 takes
0((n/-53/2) log4 92).

3.5 Implementing Step 2

Step 2 of procedure MATCH is the Hungarian search.
It is well known [13] that the key component of the
Hungarian search is the following problem of maintain-
ing bichromatic closest pairs. We want to maintain a
R’ E R and a B’ C B. Initially, R’ = 0 and B’ = B,
and vertex each v in B’ is assigned a weight a,,. The
operations allowed on R’ and B’ are the following: A
vertex u may be inserted into R’ with a weight Q,,; a
vertex v may be deleted from B’. The problem is to
maintain the bichromatic closest pair, which is the pair
(u,v) E R’ x B’ that minimizes C(U,V) - u,, - oV.

We will show how to maintain the bichromatic clos-
est pair over edges in a single class Ci, whose clique
cover is {(Rl,Bl),... , (Rl, Bl)}. Since all the edges
in class Ci have the same cost, this reduces to simply
maintaining the pair that maximizes o, + crV over all
(u,v)~CinR’xB’. Foran(Rj,Bj),letR~=RjnR’,
and B; = Bj I-I B’. We simply maintain the largest a,
over all u E J?:, and the largest o,, over all v E Bi.
This gives us the pair that maximizes (T, + u,, over
all (u,v) E Ri x Bj; we maintain the maximum over
4 the (Rj, Bj) in the clique co%r by using a prior-
ity queue. It can now be shown that inserts in R’,

814

deletes in B’, and maintaining the bichromatic closest
pair for class Ci takes O(n log3 n/&) time, and over all
classes takes O((n/e3j2) log4 n) time. We conclude that
step 2 of the procedure MATCH can be implemented in
O((n/E3/2) log4 n) time.

Lemma 3.3 A single iteration of Step 2 takes
0((n/E3j2) log4 n).

4 Conclusions

We have presented a Monte-Carlo algorithm for ap-
proximate planar min-cost matching that runs in
O((n/E3) log6 n) time and returns a matching whose
cost is within (1 + E) of the optimaI. For the bipar-
tite version of the problem, we presented a deterministic
algorithm that runs in O((n/&)3/2 log’ n) time.

We conclude by mentioning two interesting open
problems.

Is there an algorithm for approximate planar bipar-
tite matching whose running time dependence on n
is near-linear?

Is there a sub-quadratic time algorithm for exact
planar bipartite matching?

References

[l] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical de-
composition of shallow levels in 3-dimensional arrange-
ments and its applications. In Proc. 11 th Annu. ACM
Sympos. Comput. Gwm., 1995, 39-50.

[2] S. Arora. Nearly linear time approximation schemes for
Euclidean TSP and other geometric problems. In Proc.
38th Annu. IEEE Sympos. Found. Comput. Sci., 1997,
554-563.

[3] D. Avis. A survey of heuristics for the weighted match-
ing problem. Networks, 13 (1983), 475493.

[4] J. Edmonds. Maximum matching and a polyhedron
with (0,l) vertices. J. Res. National Bureau of Stan-
dards, 69B (1965), 125-130.

[5] A. Efrat and A. Itai. Improvements on bottleneck
matching and related problems using geometry. In
Proc. 12th Annu. ACM Sympos. Comput. Gwm., 1996,
301-310.

[S] T. Feder and R. Motwani. Clique partitions, graph
compression, and speeding up algoithms. In Proc. 27th
Annu. ACM Sympos. Theory Cornput., 1991, 123-133.

[7] H. Gabow and R Tarjan. Faster scaling algorithms
for network problems. SIAM J. Cornput., 18 (1989),
1013-1036.

181

PI

[101

PI

D21

1131

(141

(151

Z. Galil, S. Micah, and H. N. Gabow. Priority queues
with variable priority and an o(ev log v) algorithm for
finding a maximal weighted matching in general graphs.
In Proc. 28nd Annual IEEE Symposium on Founda-
tions of Computer Science, 1982, 255-261.

H. Kuhn. The Hungarian method for the assignment
problem. Naval Res. Logist. Q., 2 (1955), 83-97.

E. Lawler. Combinatorial Optimization: Networks and
Matroids. Holt, Rinehart & Winston, New York, 1976.

S. B. Ra.o and W. D. Smith. Improved approximation
schemes for traveling salesman tours. In Proc. 30th
Annu. ACM Sympos. Theory Cornput., 1998, 540-550

P. M. Vaidya. Approximate minimum weight match-
ing on points in k-dimensional space. Algorithmicu, 4
(1989), 569-583.

P. M. Vaidya. Geometry helps in matching. SIAM J.
Comput. 18 (1989), 1201-1225.

K. R. Varadarajan. A divide-and-conquer algorithm for
min-cost perfect matching in the plane. In Proc. 38th
Annual IEEE Symposium on Foundations of Computer
Science, 1998.

K. R. Varadarajan and P. K. Agarwal. Algorithms for
polygonal chain simplification. Tech. Rept. CS-98-15,
Dept. Computer Science, Duke University, 1998.

