
THE FACTORS OF GRAPHS 

W. T. TUTTE 

1. Introduction. A graph G consists of a non-null set V of objects called 
vertices together with a set E of objects called edges, the two sets having no 
common element. With each edge there are associated just two vertices, called 
its ends. Two or more edges may have the same pair of ends. 

G is finite if both F and E are finite, and infinite otherwise. 

The degree dG{a) of a vertex a of G is the number of edges of G which have a 
as an end. G is locally finite if the degree of each vertex of G is finite. Thus the 
locally finite graphs include the finite graphs as special cases. 

A subgraph H of G is a graph contained in G. That is, the vertices and edges 
of H are vertices and edges of G, and an edge of H has the same ends in H as in G. 
A restriction of G is a subgraph of G which includes all the vertices of G. 

A graph is said to be regular of order n if the degree of each of its vertices is n. 
An n-factor of a graph G is a restriction of G which is regular of order n. 

The problem of finding conditions for the existence of an w-factor of a given 
graph has been studied by various authors [3; 4; 5]. It has been solved, in part, 
by Petersen for the case in which the given graph is regular. The author has 
given a necessary and sufficient condition that a given locally finite graph shall 
have a 1-factor [6; 7]. In this paper we establish a necessary and sufficient con
dition that a given locally finite graph shall have an w-factor, where n is any 
positive integer. Actually we obtain a more general result. We suppose given a 
function / which associates with each vertex a of a given locally finite graph G 
a positive integer f(a), and obtain a necessary and sufficient condition that G 
shall have a restriction H such that dH{a) = f{a) for each vertex a of G. The 
discussion is based on the method of alternating paths introduced by Petersen [4]. 

We also consider the problem of associating a non-negative integer with each 
edge of G so that for each vertex c of G the numbers assigned to the edges 
having c as an end sum to f(c). We obtain a necessary and sufficient condition 
for the solubility of this problem. 

My attention has been drawn to two other papers in which similar theories 
of factorization have been put forward. In one of these papers, Gallai [2] 
gives a valuable unified theory of factors and gives some new results on the 
factorization of regular graphs. He also claims to have obtained a necessary and 
sufficient condition for the existence of a 2-factor in a general locally finite 
graph, but leaves the discussion of this for another occasion. In the other paper 
Belck [1] establishes a necessary and sufficient condition for the existence of 
an w-factor in a general finite graph, where n is any positive integer. Prominent 
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in his theory is the hyper-n-prime graph, a generalization of the hyper prime 
graph introduced in [6]. 

2. Recalcitrance. A path in a graph G is a finite sequence 

(1) P = (fli, Au a2, A2, . . . , Ar-i, ar) 

satisfying the following conditions : 
(i) The members of P are alternately vertices and edges of G, the terms 

au #2, . . . , ar being vertices. 
(ii) If 1 < i < r, then at and ai+i are the two ends of At. 

We say that P is a path from a\ to ar, and that its length is r — 1. We note 
that the terms of P need not be all distinct. We admit the case in which P has 
length 0. Then P has just one term, a vertex of G. 

The vertices x and y of G are connected in G if a path from x to y in G exists. 
If this is so for each pair {x> y] of vertices of G, then G is connected. The relation 
of being connected in G is evidently an equivalence relation. It therefore parti
tions G into a set {Ga} of connected graphs such that each edge or vertex of G 
belongs to some Ga and no two of the Ga have any edge or vertex in common. 
We call the graphs Ga the components of G. 

If 5 is any proper subset of the set of vertices of a given graph G, we denote 
by G (S) the subgraph of G obtained by suppressing the members of S and all 
edges of G having one or both ends in S. 

Suppose now that G is locally finite and that 5 is a finite set of vertices of G. 
If S does not include all the vertices of G the graph G(S) is defined. Then if 

H is any finite component of G (S) we denote the number of edges which have 
one end in S and the other a vertex of H by v (H). We have 

(2) v(H) + 2 Me) s 0 (mod 2), 
ctH 

for the expression on the left is equal to twice the number of edges of G having 
an end which is a vertex of H. (We have used the symbol c(zHto denote that c 
is a vertex of H.) 

We denote by K(G, S) the set of all finite components H of G (S) which satisfy 

(3) v(H)+ £ / ( c ) ^ l (mod 2). 
ctH 

If K(G, S) is finite we denote the number of its elements by k(G, S). If S includes 
all the vertices of G we write k(G, S) = 0. In either case we write 

(4) r(G, S) = k{G, S) + 2 (f(c) - da(c)). 
ccS 

We call r(G, S) the recalcitrance of G with respect to 5. If K(GyS) is infinite 
we say that r(G, 5) is infinite. 

THEOREM h If G is finite, r(G, S) is even or odd according as 

ctG 

is even or odd. 
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Proof. By (2), (3), and (4), 

r(G, S) s £ da(c) + £ / ( c ) (mod 2). 
c e G ceG 

But the sum of the degrees of the vertices of G is even, since it is twice the 
number of edges of G. The theorem follows. 

The locally finite graph G is constricted with respect t o / if there exist disjoint 
finite sets 5 and T of vertices of G such that 

(5) Zf(c)<r(G(T),S). 

As an example, G is constricted if it has a vertex a such that dG(a) < f(a). In 
this case (5) is satisfied if T is null and 5 has the single element a. Again, G is 
constricted if r(G, S) > 0 for any set 5 of vertices of G, for then (5) is satisfied 
with T null. So by Theorem I a finite graph G is constricted if the sum of the 
numbers/(c), for all the vertices c of G, is odd. In this case (5) is satisfied if 
5 and T are both null. 

We define an f-factor of the given locally finite graph G as a restriction F of G 
such that dF(c) = f(c) for each vertex c of G. Similarly, a restriction F of a 
subgraph X of G is an /-factor of X if C£F (C) = f(c) for each vertex c o( X. A 
restriction F of a subgraph X of G is an incomplete f'-factor of X if dF(c) K f(c) 
for each vertex c of X, and dF(c) = f(c) for all but a finite number of the vertices 
of X. The deficiency of such an incomplete /-factor is the sum 

Z (/(c) - d„(c)), 

taken over all vertices c of X for which dF(c) < /(c). 
Our object in this paper is to show that G has no /-factor if and only if G is 

constricted with respect to / . 

THEOREM II. Let F be an incomplete f-factor of G, and let S be any finite set of 
vertices of G. Then the deficiency of F is not less than r(G, S). 

Proof. H H is any member of K (G, 5), let w(H) be the number of edges of F 
which have one end in 5 and the other a vertex of H. Analogously with (2) we 
have 

(6) T,Mc) = w(H) (mod 2). 
ctH 

Let P be the set of all elements H of K(G, S) such that dF(c) = f(c) for 
each vertex c of H. Let Q be the set of all other members of K(G, S). Let the 
numbers of members of P and Q be p and q respectively; q must be finite. 

The sum of the numbers/(c) — dF(c) taken over all vertices of G not in S 
which satisfy dF(c) < f(c) is at least q. 

If H f P , then by (3) and (6), v(H) ^ w(H). Hence at least p of the edges 
of G having just one end in ,S are not edges nf F. It follows that 



THE FACTORS OF GRAPHS ? > i : 

T,Mc) < T,dG(c) - p, 
ceS ceS 

S (f(c) ~ dr(c)) >P+Z (KO ~ dG(r)). 
ceS ceS 

Hence if D is the deficiency of F we have 

D > P + q + E (f(c) - dG{c)) = r(Ct $). 
ceS 

THEOREM III. If G is constricted with respect to f, it has no /-factor. 

Proof. Suppose G is constricted. Then there are disjoin 1; finite subsets S and T 
of the set of vertices of G such that (5) is satisfied. Assume (7 his an /-lu lor F. 
Then F(T) is an incomplete /-factor of G(T). Its deficiency D is equal to the 
number n of edges of F having one end in T and the other not: in T. Hence, by 
Theorem II, 

T,f(c)>n = D>r(G(T)}S). 
ceT 

This contradicts the definition of S and T. 

3. Alternating paths. An f-subgraph of G is a restriction / of G having the 
following properties: 

(i) The number of edges of / is finite, 
(ii) dj(c) < / ( c ) for each vertex c of G. 

A vertex c of G is deficient in J if dj(c) < f(c). 
Let us suppose that we are given an/-subgraph J of G and that a is a vertex 

of G which is deficient in J". Following a long-established tradition we refer to 
an edge of G as blue or red according as it is or is not an edge of / . 

An alternating path based on a is a path P in G which satisfies the following 
conditions : 

(i) The first term of P is a. 
(ii) No edge of G occurs twice as a term of P. 

(iii) If P has more than one term the edges of G which occur in P are 
alternately red and blue, the first one being red. 

If P includes the subsequence (c, C, d) where C is an edge of G, we s-y that P 
passes through c and then C, or P passes through C and then d. 

Let n(a) be the set of alternating paths based on a; 11(a) is not null since it 
has one member whose only term is a. 

Let C be an edge of G, with ends c and d. If no member of 11(a) has C as a 
term, C is acursal. If some member of II (a) passes through C and then d, C is 
describable to d or from c. If C is describable to d but not to c, C is unicursal to d 
or from c. If C is describable both to c and to d, C is bicursal. 

A vertex of G is accessible from a if it is a term of some member of Il(a). 
The vertex a is singular if no deficient vertex of G} other than a itself, is 

accessible from a. 

THEOREM IV. Only a finite number of vertices of G are accessible f rem a. 
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If & is a vertex of G accessible from a, then either b = a, or b is an end of a 
blue edge, or b is an end of an edge B whose other end is either a or an end of a 
blue edge. Since the number of blue edges and the degree of each vertex of G are 
finite, the theorem follows. 

THEOREM V. Let A and B be edges of G which are of different colours and have a 
common end x. Suppose A is unicursal to x. Then B is describable from x. 

There is a member P of 11(a) which passes through A and then x. If B is not a 
term of P preceding A there is evidently a member of II (a) which agrees with P 
as far as A and continues (x, B, . . .). Then B is describable from x. 

If B precedes A in P , either the theorem is satisfied or P passes through B 
and then x. In the latter case there is a member of II (a) which agrees with P as 
far as B and continues (x,A,...). Then A is not unicursal to x, contrary to 
hypothesis. 

4. Bicursal components. Let us suppose that G has at least one bicursal edge. 
The bicursal edges of G, with their ends, define a subgraph of G. We refer to 

the components of this subgraph as the bicursal components. 

THEOREM VI. The bicursal components are finite graphs. 

This follows from Theorem IV, since the vertices of a bicursal component are 
all accessible from a and G is locally finite. 

Let L denote any bicursal component. An entrant of L is any member of II (a) 
which has a vertex of L as a term. If P is an entrant of L we denote by e(P) 
the vertex of L which occurs first as a term of P. We then say that P enters L 
at e(P). A vertex of L at which some entrant of L enters L is an entrance of L. 

Let P be an entrant of L. Let A be the first edge of G in P after the first 
occurrence of e(P) which is not in L, if such an edge exists. The section of P by L 
is defined as follows. If the edge A exists, the section is the part of P extending 
from the first occurrence of e(P) to the term immediately preceding A. Otherwise, 
the section is the part of P extending from the first occurrence of e(P) to the 
last term of P. In either case the section is an alternating path based on e(P) 
and having only edges and vertices of L as terms (except that its first edge may 
be blue). 

If e is any entrance of L we denote by A(e) the set of sections by L of those 
members of n(a) which enter L at e. 

Since the edges of L are not acursal, L has at least one entrance. If a is a 
vertex of L then a is an entrance of L. 

In the following series of theorems (VII—XI)) we suppose that some entrance 
e of L is specified, with the proviso that e is a if a is a vertex of L. 

THEOREM VII. There exists an edge of L which is a term of some member 
ofA(e). 

Proof. Suppose first that e is a. Any red edge of L having a as an end is 
clearly a term of a member of A (a). Suppose therefore that the edges of L 
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having a as an end are all blue. Each of these is describable from a, and no one is 
the first edge of a member of 11(a). Hence some red edge C having a as an end 
is describable to a. But all red edges having a as an end are describable from a. 
Hence C is bicursal and therefore an edge of L, contrary to supposition. 

Now consider the case in which a is not a vertex of L. Let P be an entrant of L 
such that e(P) — e. Let C be the edge of G which immediately precedes the first 
occurrence of e in P. Then C is unicursal to e. Any edge of L having e as an 
end and differing in colour from C is clearly a term of a member of À (e). Suppose 
therefore that the edges of L having e as an end all have the same colour as C. 
Since they are all describable from e, some edge E of G differing in colour from 
C is describable to e. But E is describable from e, by Theorem V. Hence E is 
bicursal and therefore an edge of L, contrary to supposition. 

THEOREM VIII. If A is an edge of L with ends x and y, and if some member Pr 

of A (e) passes through x and then A, then some other member of A (e) passes through 
y and then A. 

Proof. Since A is bicursal there exists a member Q of n(a) which passes 
through y and then A. It may happen that every term of Q which precedes A 
is an edge or vertex of L. Then a is a vertex of L and therefore e — a by the 
definition of e. Hence the section of Q by L is a member of A(e) which passes 
through y and then A. 

In the remaining case, let B be the last term of Q preceding A which is an 
edge of G but not an edge of L. Let b be the immediately succeeding term of Q. 
Then b is a vertex of L. Let C be the first edge of G in P' which succeeds B in Q 
but does not succeed A in Q. Such an edge exists since A is an edge both of P' 
and of Q. Let the ends of C be r and s. We may suppose that P' passes through 
r and then C. 

Suppose Q passes through r and then C. Then there is a member of A (e) which 
agrees with P' as far as C and then continues with the terms of Q from C to A. 
This member of A (e) passes through y and then A. 

Alternatively, suppose Q passes through 5 and then C. There is a member Q\ 
of II (a) which enters L at e> then agrees with P' as far as C, and continues with 
the terms of Q in reverse order from C to b. Let D be the edge of Qi immed
iately preceding the first occurrence of e. If B 9e D it follows that B is describable 
from b. But Q passes through B and then b. So B is bicursal and therefore an 
edge of L, contrary to its definition. We conclude that B = D and therefore 
b — e. Hence there is a member of II (a) which agrees with Qi as far as B and 
agrees with Q from B to A. The section of this path by L is a member of A (e) 
which passes through y and then A. 

THEOREM IX. Let A be an edge of L which is a term of some member of A(e). 
Let x be an end of A distinct from e. Then there is an edge B of L which differs 
in colour from A, which has x as an end, and which is a term of some member of 
He). 



320 W. T. TUTTE 

Proof. By Theorem VIII there is a member of A(e) which passes through x 
and then A. The last edge preceding A in this member of A (e) has the required 
properties. 

THEOREM X. If A is any edge of L and x is any end of A, then there is a member 
of A (e) which passes through x and then A. 

Proof. Let U be the set of all edges of L occurring as terms in the members of 
A(e) ; U is non-null, by Theorem VII. Let V be the set of all other edges of L. 

Assume that V is non-null. Since L is connected there is a vertex z of L which 
is an end of a member B of U and a member C of V. If z is not e we may suppose 
that B and C differ in colour, by Theorem IX. By Theorem VIII there is a 
member of A(e) which passes through B and then z. C is not a term of this 
member of A(e). Hence there is a member of A(e) which agrees with this one as 
far as B and then continues with z and C. This contradicts the definition of C. 

Suppose now that z is e. If B and C differ in colour we obtain a contradiction 
as before. We deduce that all the edges of L having e as an end have the same 
colour. If e — a it follows from Theorem VII that e is an end of some red edge 
of L. Then C is red. Hence there is a member of A(e) which has C as its first 
edge, contrary to assumption. If e is not a it follows from Theorem VII that 
there is a member P of II (a) entering L at e in which the first occurrence of e is 
immediately succeeded by an edge of L. We may take this edge to be B. Since 
B and C have the same colour there is a member of 11(a) which agrees with P 
as far as the first occurrence of e and then continues with C. Hence C is a member 
of U, contrary to assumption. 

We conclude that V is null. The theorem now follows from Theorem VIII. 

Let G\ denote any subgraph of G. An edge A of G is said to touch Gi if A is not 
an edge of G\ and just one end, say x, of A is a vertex of G\. Such an edge A is 
unicursal to or from G\ if it is unicursal to or from x respectively. 

THEOREM XL If a is a vertex of L then all edges of G which touch L are uni
cursal from L. If a is not a vertex of L then there exists just one edge of G which 
touches L and is unicursal to L, and all other edges of G which touch L are unicursal 
from L. 

Proof. Let A be an edge of G which touches L. Let x be the end of A which is a 
vertex of L. Assume that A is not unicursal from x. We recall that a = e if a 
is a vertex of L. 

If x is not e there is an edge C of L differing in colour from A and having x as 
a:: end, by Theorem IX. This is true also if x = e — a. For then A is blue since 
it is not unicursal from a and not bicursal, and Theorem VII shows that some 
red edge of L has a as an end. In either of these cases it follows from Theorem X 
that there is a member of 11(a) which enters L at e, whose section by L passes 
through C and then x, and which continues from C with the terms x and A. 
But A is not bicursal since it is not an edge of L. Hence A is unicursal from xy 

contrary to assumption. 
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Now suppose that x = e and e is not a. By Theorem VII, there is a member 
P of II (a) which enters L at e and in which the first occurrence of e is immediately 
succeeded by an edge C of L. Let the edge of G which immediately precedes the 
first occurrence of e in P be B. Clearly B touches L and is unicursal to L. 

Suppose that A and B are distinct. If A differs in colour from B it is describ-
able from x = e, by Theorem V. If A and 5 have the same colour this differs 
from that of C. By Theorem X there is a member Q of n(a) which enters L 
at e, and whose section by L passes through C and then e. It is clear that A 
and B cannot both precede C in Q. Hence there is a member Q' of 11(a) which 
agrees with Q as far as C and then continues with e and one of the edges A 
and B. Actually, it continues with e and A since B is unicursal to e. Hence if 
A and 5 are distinct, A is unicursal from x. 

This completes the proof of the theorem. 

5. Bicursal units. Let T be the set of all vertices of G which are ends of bi-
cursal edges. Let T' be the set of all edges of G having both ends in T. Then T 
and T' define a subgraph G' of G. We refer to the components of G' as bicursal 
units. Evidently a bicursal component having a given vertex b is a subgraph of 
the bicursal unit having the vertex b. By Theorem IV the bicursal units are 
finite graphs. 

THEOREM XII. Let M be any bicursal unit. If a is a vertex of M then all edges 
of G which touch M are unicursal from M.Ifa is not a vertex of M then there exists 
just one edge of G which touches M and is unicursal to M, and all other edges of G 
which touch M are unicursal from M. 

Proof. Since some edges of M are bicursal there exists a member P of n(a) 
having a vertex of M as a term. Let e be the first vertex of M to occur in P. 
If a is not a vertex of M there is an edge EolG which immediately precedes the 
first occurrence of e in P. Then E touches M and is unicursal to e and M. We 
denote the bicursal component of which e is a vertex by L. If instead a is a 
vertex of M we denote the bicursal component of which a is a vertex by L. 

A subgraph L' of M which is a bicursal component distinct from L is supplied 
from L if there exists a sequence (Li, L2 , . . . , Lt) of bicursal components and a 
sequence (Au A2, . . . , A ,-i) of edges of M such that 

(i) L\ = L and Lt = L', 
(ii) the Li are subgraphs of M, 

(iii) for each integer i in the range 1 < i < t, At is unicursal from Lt and 
to Li+u 

We can show that any subgraph of M which is a bicursal component distinct 
from L is supplied from L. For suppose it is not. Then since M is connected there 
is an edge B of M with ends b and c belonging to bicursal components L' amd Lh\ 
where V is L or is supplied from L, and V is not L and is not supplied from L. 
Now 5 is not bicursal by the definition of a bicursal component, and is not 
acursal, by Theorem XL It is not unicursal to L", since L" is not supplied from 
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L. Hence B is unicursal to 11. But this is contrary to Theorem XI since V is 
either L or is supplied from L. 

The Theorem now follows by the application of Theorem XI to each of the 
bicursal components which are subgraphs of M. 

If a is not a vertex of the bicursal unit M\ we call the edge of G which touches 
M and is unicursal to M the entrance-edge of M. We classify such bicursal units 
as red-entrant and blue-entrant according as their entrance-edges are red or blue. 
A bicursal unit having a as a vertex is a-entrant. 

6. Singular vertices. In this section we suppose that a is a singular vertex. 
We denote the numbers of red-entrant and blue-entrant bicursal units by kr 

and kb respectively. These numbers are finite, by Theorem IV. 
Let U denote the set of all vertices of G which are not vertices of Gf. Thus no 

bicursal edge has an end in U. Let V be the set of all members of U to which some 
red edge is unicursal. Let W be the set of all members of U from which some red 
edge is unicursal or to which some blue edge is unicursal. Clearly, 

(9) a i V. 

Suppose c € V. Any blue edge of G having c as an end is unicursal from c, 
by Theorem V. Hence, by (9), no red edge of G can be unicursal from c. There 
are just f(c) blue edges of G which have c as an end and are therefore unicursal 
from c since c is accessible from, but distinct from, the singular vertex a. 

Now suppose i £ W. If some red edge is unicursal from i then either a = i or 
there is a blue edge unicursal to i. Ha = i or there is a blue edge unicursal to i, 
then each red edge having i as an end is unicursal from i, by Theorem V and 
the definition of 11(a). Hence any red edge having i as an end is unicursal from i. 
Consequently no blue edge of G can be unicursal from i. 

It is clear from these results that V and W are disjoint sets. By Theorem IV 
they are finite sets. 

If i Ç W, let y(i) be the number of red edges of G unicursal from i which are 
entrance-edges of red-entrant bicursal units. Let z(i) be the number of blue 
edges of G which are unicursal to i from members of V. 

Let H denote the graph G(V). If i Ç W, any red edge unicursal from i is 
unicursal to a vertex p distinct from a. For no red edge is unicursal to a. So by 
Theorem V, p is either a vertex of G' or a member of V. Hence in the graph H, 
the number of edges having i as an end is y(i) + (dj(i) — z(i)). Thus we have 

(10) z(i) = y(i) + (dj(i) - dH(i)). 

By the definition of a bicursal unit the entrance-edge of any bicursal unit 
which is not a-entrant is unicursal either from a member of V or from a member 
ofW. 

Let X be the number of blue edges of G unicursal from a member of F to a 
member of W. It is equal to the total number of blue edges unicursal from 
members of V less the number of the entrance-edges of the blue-entrant bicursal 
units. The latter number is kb, by Theorem XII . But X is also equal to the sum 
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of the numbers z{i) taken over all i Ç W. The corresponding sum of the y(i) 
is kr, by Theorem XII. Hence we have 

(H) E/(<0 = kb + kr + £ (<*,(*) - <**(*)). 
ceV itW 

The bicursal units, if any, are connected finite graphs. By Theorem XII, they 
are components of (G(V))(W) = H(W). 

Let M be any bicursal unit. Write q (M) = 0 or 1 according as M is or is not 
a-entrant. Let u(M) be the number of blue edges of G which touch M and let 
v (M) be the number of edges of G which touch M and have an end in W. 

Using Theorem XII we readily obtain the following results: if M is blue-
entrant q(M) = 1 and u(M) = v(M) + 1, if M is red-entrant q(M) = 1 and 
u(M) = v(M) — 1, and if M is a-entrant q (M) = 0 and u(M) = v(M). In 
each case we have 

(12) u(M) s v{M) + q(M) (mod 2). 

The sum of u(M) and the degrees in / of the vertices of M is even, since it is 
twice the number of blue edges of G having vertices of M as ends. Moreover, if c 
is a vertex of M, we have dj(c) = f(c) unless c = a; and a is a vertex of M if 
and only if q(M) = 0. It follows from (12) that 

(13) v{M) + 2 / ( c ) + (q(M) + l)(dj(a) - / ( a ) ) + q(M) s 0 (mod 2). 
c « Af 

Referring to the definitions of §2 we see that M is a member of K(G(V), W) 
if and only if (q(M) + 1) (dj(a) - / ( a ) ) + g(Af) = 1 (mod 2). Hence M is 
not a member of K(G(V), W) if and only if M is a-entrant (q(M) = 0) and the 
deficiency/(a) — dj(a) of a in J is even. 

THEOREM XIII . If G is not constricted there exists an a-entrant bicursal unit, 
and the deficiency of a in J is even. 

Proof. Suppose, first, that a is a member of U but not of W. Then no red 
edge of G has a as an end. Hence d0(a) = dj(a) < f{a). But then G is constricted, 
contrary to hypothesis, for (5) is satisfied if we take T to be null and 5 to have 
the single element a. We conclude that either a G W or there exists an a-entrant 
bicursal unit. 

Applying formula (4) we have 

(14) r(G(V), W) = k(G(V), W) + £ (/(*) - dB(i)). 
i c W 

If a e W then k(G(V)f W) > kb + kr, and /(a) > dj(a). If there exists an 
a-entrant bicursal unit and the deficiency of a in / is odd we have 

k(G(V),W)>kb + kr+l. 

Here we have used the results proved above concerning the membership of 
bicursal units in K(G(V), W). In each of these cases it follows that the ex
pression on the right of (11) is less than r(G(V), W). Then G is constricted, 
contrary to hypothesis. The theorem follows. 
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7. Augmentation. In this section we no longer assume that the deficient 
vertex a is singular. 

Suppose P is a member of 11(a) which has more than one term, and whose 
last term is a vertex i of G deficient in / . To transform J by P is to replace / 
by a restriction K of G, defined as follows. The edges of K consist of the blue 
edges of G which are not terms of P , together with the red edges of G which are 
terms of P . 

We say the/-subgraph / is augmentable at the deficient vertex a if there is an 
/-subgraph K of G satisfying the following conditions: 

(i) dK(a) > dj(a). 
(ii) lid Ac) = /(c), then dK{c) =f(c). 

Suppose a is not singular. Then there is a member P of 11(a) whose last term 
is a deficient vertex i of G distinct from a. Let K be the restriction of G obtained 
by transforming J by P . By the definition of 11(a) we have 

dK(a) = dj(a) + 1, dK(i) = dj(i) ± 1, 

and dK(c) = dj(c) if c is not a or i. Hence K is an /-subgraph of G, and / is 
augmentable at a. 

Suppose next that a is singular and that G is not constricted. The deficiency 
of a in / is at least 2, by Theorem XIII . Also by Theorem XIII , a is the entrance 
of a bicursal unit Mo- By Theorem VII there is a red edge A of MQ having a as 
an end. Since A is bicursal there is a member P of 11(a) including at least two 
edges, whose last term is a and whose last edge is A. Let K be the restriction of G 
obtained by transforming / by P . By the definition of 11(a) we have 

dK(a)=dAa)+2<f(a), 

and dK{c) = dj(c) if c is not a. Hence K is an /-subgraph of G, and / is augmen
table at a. 

Thus we have the following 

THEOREM XIV. Let J be any f subgraph of G, and let a be any vertex of G which 
is deficient in J. Then either G is constricted with respect to f or J is augmentable at a. 

8. Condition for an /-factor. 

THEOREM XV. G has no f-factor if and only if it is constricted with respect to / . 

Proof, Suppose first that the locally finite graph G is constricted with respect 
t o / . Then G has no/-factor, by Theorem III. 

Suppose next that G is not constricted with respect to / . Let J 0 be the 
restriction of G which has no edges. Then Jo is an /-subgraph of G. 

If a vertex a of G is deficient in a given/-subgraph / of G, we can, by Theorem 
XIV, replace / by an /-subgraph K in which the degree of a is increased and no 
vertex of G which is not deficient in / is deficient in K. By repeating this process 
sufficiently often we can obtain an /-subgraph K' of G in which a and those 
vertices of G not deficient in / are not deficient. 
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It follows that if 5 is- any finite set of vertices of G, we can, by the above 
process, build from J0 an/-subgraph / of G in which no member of S is deficient. 

The theorem follows at once in the case in which G is finite. Then we can take 
5 to be the set of all vertices of G, and the corresponding /-subgraph / must be 
an /-factor of G. 

If G is infinite and connected we use the following non-constructive argument. 
(I have replaced my original proof by a shorter one for which I am indebted to 
the referee.) 

Let x be any vertex of G. The number of paths in G whose first term is x and 
which have just 2n + 1 terms, where n is any given non-negative integer, is 
finite since G is locally finite. Hence the set of paths in G having x as first term 
is denumerable. Since G is connected it follows that the set of vertices of G is 
denumerable, say {#i, a2, . . . }. By the foregoing argument, to every positive 
integer n there is an /-subgraph Jn such that 

dJn(ar) =f(ar), r < n. 

The set of edges of G is at most denumerable, say equal to {A\, A2, . . •}. Put 
Fn(s) — 1 if As is an edge of Jn and Fn(s) — 0 otherwise. Then by the diagonal 
process, there is an increasing sequence #i, «2, . . . . such that 

lim Fnk(s) = F(s) 

exists for all s. Let J be the restriction of G whose edges are those A s for which 
F(s) = 1. Then dj(ar) = f(aT) for all r, and / is an/-factor of G. 

Lastly, we must consider the case in which G is infinite and not connected. 
We can show that no component of G is constricted with respect to / . For if this 
is not so, there is a component Ga of G such that for some disjoint finite subsets 
S and T of the set of vertices of G, 

(15) £ / ( < ) < HGa(T), S) + Z (f(c) - do.(r>(c)). 
ctT ctS 

Clearly each component of Ga(T) is a component of G(T). Hence (15) holds 
with Ga(T) replaced by G(T), so that 

j:f(c)<r(G(T),S). 
ceT 

Thus G is constricted with respect to / , contrary to hypothesis. 
Since the theorem has been proved for connected graphs it follows that each 

component of G has an /-factor. Hence (assuming the multiplicative axiom) 
there is a set Z of/-factors of components of G which contains just one/-factor 
of each component of G. The restriction of G whose edges are the edges of the 
members of Z is an /-factor of G. 

9. «-factors. A necessary and sufficient condition for the existence of an 
«-factor of G, where n is a given positive integer, can be obtained by applying 
Theorem XV to the special case in which the value of f(c) is n for each vertex 
c of G. 
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It is convenient to denote the number of elements of a finite set U by a(U). 
We then obtain the following 

THEOREM XVI. G has no n-factor if and only if there exist disjoint finite sets 
S and T of vertices of G such that 

(16) na(T). < k(G(T), S) - £ (domic) - n). 
ceS 

Here k(G(T), S) is the number of finite components H of (G(T)) (S) = G(S^JT) 
for which n times the number of vertices differs in parity from the number of 
edges of G which have one end in 5 and the other end a vertex of H. 

A necessary and sufficient condition for the existence of a 1-factor of a given 
locally finite graph G has been given in previous papers [6; 7]. It is simpler in 
form than the expression obtained by writing n = 1 in (16). In the next section, 
this simpler formula is deduced from Theorem XV. The argument suggests no 
analogous simplification in the case n > 1. 

10. An allied problem. Suppose that we are given a locally finite graph G, 
and a function / which associates with each vertex c of G a positive integer/(c). 
We consider the problem of associating with each edge A of G a non-negative 
integer h (A) so that for each vertex c of G the sum of the numbers h (A), taken 
over all edges A of G having c as an end, is f(c). If such a set of non-negative 
integers h (A) exists we say that G is f-soluble. 

We note that if f(c) = 1 for each vertex of G, then G is /-soluble if and only 
if it has a 1-factor. 

Let T be any finite set of vertices of G. We denote by S(T) the set of all 
vertices c of G having the following properties: 

(i) c is not an element of T. 
(ii) Each edge of G having c as an end has its other end in T. 

If T does not include every vertex of G we denote by k{T) the number of 
finite components H of G(T) having the following properties: 

(i) H has more than one vertex. 
(ii) The sum of the numbers/(a), taken over all vertices of H, is odd. 

If T is the set of all vertices of G we write k(T) — 0. 

THEOREM XVII. G is not f-soluble if and only if there exists a finite set T of 
vertices of G such that 

(17) Hf(c)<k(T)+ 2/W-
c*T ceS(T) 

Proof. By adjoining new edges to G we can obtain a graph G' having the 
following properties: 

(i) The vertices of G' are the vertices of G. 
(ii) Two vertices are joined by an edge in G' if and only if they are joined 

by an edge in G. 
(iii) If two vertices a and b are joined by an edge in G', the number of 

distinct edges of G' which join thenx is finite and not less than dG (a) + f(a). 
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Clearly G' is locally finite. 
If 5 and 7" are disjoint finite sets of vertices of G such that 5 is contained in 

5(7") it follows from the definition of G that 

(18) k(G'(T),S) = k(G(T),S). 

It is clear that G is /-soluble if and only if G' has an /-factor. Hence, by 
Theorem XV, G is not /-soluble if and only if there exist disjoint finite sets 
5 and T of vertices of G such that 

(19) Z / t o < k(G\T), S) - £ (do>ir>(c) -f(c)). 
ctT ceS 

Suppose first that (17) is satisfied for some finite T. If 5(7") is not finite then 
all but a finite number of its elements have degree 0 in G, since G is locally 
finite. Hence G is not/-soluble since it has a vertex of degree 0. If 5(7") is finite 
it follows from (17) and (18) that (19) will be satisfied if we put 5 = 5(7"). 
Hence G is not/-soluble. 

Conversely, suppose that G is not /-soluble. Then (19) is satisfied for some 
disjoint finite sets 5 and 7". If possible let a be any member of 5 not in 5(7"). 
Consider the effect of replacing 5 by 5 ' = 5 — {a}. Clearly the replacement 
diminishes 

E(<W)(<0 - / (*)) 
C€S 

by dGr(T)(a) — /(a) , that is, by at least d0(a), from (iii). 
The replacement diminishes k{G,{T)1S) by not more than dG(T)(a), the 

maximum number of finite components of G'(S W 7") joined to a by an edge of 
G'. But d0(T)(a) < d0(a). Hence, if a is not an element of 5(7"), formula (19) 
remains valid when 5 is replaced by 5' . 

If 5 ' has an element not in 5(7") we repeat the argument with 5 ' replacing 5, 
and so on. Since 5 is finite we find, eventually, 

(20) Zm<HG\T),u) + Hm, 
ceT ctU 

where U is the intersection of 5 and 5(7"). But, by (18), k(G'(T), U) is equal 
to k(T) plus the number of components of G(T \J U) which consist of a single 
vertex, the value of/ for this vertex being odd. Hence 

(21) k(G'(T)tU)<k(T)+ D f(c). 
ctS(T)-U 

Now (20) and (21) imply (17). This completes the proof of the theorem. 

If/(c) = 1 for each vertex c of G it is clear that G is/-soluble if and only if it 
has a 1-factor. Applying Theorem XVII to this case we find that G has no 1-
factor if and only if there exists a finite set 7" of vertices of G such that 

a{T) < hu(T), 

where hu(T) is the number of finite components of G(T) having an odd number 
of vertices. This is the simple criterion for the existence of a 1-factor mentioned 
in §9. 
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