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The expected costs of the matchings found by various divideand-conquer heuristic 
algorithms are calculated, under the assumption that the vertices to be matched are 
uniformly distributed in the unit square. The expected times of the algorithms are 
calculated as well, 

1. INTRODUCTION 

Let n be an even integer, andP a set of n points in the unit square [0, 112. Amatch- 
ing M of P is a set of i n  edges such that each point of P is an endpoint of exactly one 
edge of M .  If M is a matching of P, then the cost of M ,  denoted cost(M), is the sum of 
the lengths of the edges of M ,  where the length of an edge is defined by the Euclidean 
L2 metric, unless otherwise stated. 

The fastest known optimizing algorithm for this problem runs in q n ’ )  time [4,81, 
which is too slow to be of use for some applications [9]. Therefore, fast heuristics for 
Euclidean matching are of interest. Some have been analyzed in [ l ,  5 ,  12, 131 for 
their worst-case cost. The expected cost of several linear-time heuristics is discussed 
in [S], together with extensive empirical results, but no closed-form or asymptotic 
results are given. In [7], Papadimitriou analyzed a heuristic for its expected cost; in 
particular, he showed that the expected cost of the matching produced by his heuristic 
for n points independently and uniformly distributed on [0, 112 is bounded above by 
0.402fi + O(fi). 

In this article, we analyze the expected cost of the matchings produced by several of 
the divide-and-conquer matching heuristics of [13] (see also [12]), as well as their 
expected time. We find this analysis interesting for two reasons: (i) The rectangle 
heuristic can be implemented to run in O(n) time. (In this paper, unless otherwise 
specified we use “time” to  denote the worst-case time complexity using the real RAM 
with the floor function available at unit cost; this model of computation is described 
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in [ 111.) It seems that @(n log n) time is required for the heuristic of [7]. Therefore, 
although the rectangle heuristic has a slightly worse expected cost than does Papadi- 
mitriou’s heuristic, its greater speed may make it more desirable. (ii) As we shall see, 
the expected cost analysis provides important information on how best to implement 
the heuristics; this infomation is not obtainable from the worst-case analysis [ 131. 

In Sec. I1 we describe the basic heuristic and in Sec. 111 we prove a lemma and its 
corollary that allow us to analyze the expected behavior of the heuristic. Section IV 
derives a recurrence relation for the expected cost of the matching found by the 
heuristic and outlines the solution of the recurrence, but Sec. V derives the expected 
behavior in a different, more useful way. In Sec. VI we show how the analysis of 
Sec. V can be applied to related heuristics. Among the results of Sec. VI are some con- 
cerning the matching problem under the L, metric, which is important when consider- 
ing certain applications to plotter pen movement [9]. In Sec. VII we outline the 
analysis of the average time requirements of the heuristics. 

II. THE RECTANGLE HEURISTIC 

The rectangle heuristic as defined in [13] works as follows: n points are given in the 
unit square [0, 112. Consider the rectangle [ O , f i ]  X [0, 11, which contains the unit 
square. If n 2 2 then this rectangle is bisected to form two congruent subrectangles, 
each with ratio fi: 1 between the long and the short sides. The heuristic is applied 
recursively to each of the two subrectangles. In general, when applied to a rectangle 
R ,  the heuristic does as specified in Algorithm 1. We call this the -version of the 
rectangle heuristic. 

Algorithm 1. The -version of the rectangle heuristic. 
i f R  contains at least two points 

then 
1. bisect R to form rectangles R1 and R2, each having the r a t io f i :  1 between 

the long and short sides 
2. apply the heuristic to R 
3. apply the heuristic to R2 
4. i f R  and R 2  each contain an odd number of points 

add the edge (p 1, p 2 )  to the matching, where p is the point in R not 
matched in step 2, andp, is that o f R 2  not matched in step 3. 

then 

As an example, in Figure 1, n = 4. The first split is on the solid line and the left half 
is then split along the dashed line. The matching produced is shown as jagged line 
segments. 

In order to make the rectangle heuristic run in time bounded by a function of n, a 
modification of the rectangle heuristic is specified in [ 131 : the level of recursion is not 
allowed to go beyond [lg n\. More precisely, define a rectangle to be either the orig- 
inal \/z by 1 region, or one of two rectangular subregions with sides having ratio 
fi: 1 into which a rectangle can be split. We define the level of a rectangle R ,  de- 
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FIG. 1. Rectangle heuristic performed on four points. 

noted level(R), as follows: level(R) = 0, if R is the original fi by 1 rectangle; other- 
wise, level(R) = level(R’) t 1, where R’ is the rectangle which was bisected to form R 
and its mate. 

The X-version of the rectangle heuristic is given in Algorithm 2. Of special interest is 
the case when h = [lg n] because the [lg nl-version can be implemented in e(n) time 
[ 131. Also, it is proved in [ 131 that the [lg n]-version has the same worst-case cost as 
the oo-version. More precisely, if P [0, a] X [0, 13 is a finite set of points andM 
is the matching produced by the oo-version on P, then there exists a set of points 
Q E [0, a] X [0, 11 such that lQl= IPI and cost(M) <cosc(M’), where M’ is the 
matching produced by the [lg n]-version on Q. 

Algorithm 2. The X-version of the rectangle heuristic. 
if level (R) < X 

then 
ifR contains at least two points 

then do steps 1-4 as described in Algorithm 1. 
else 

arbitrarily match the points in R until at most one is left unmatched. 

Our strategy in analyzing the X-version of the rectangle heuristic for various A is 
first to analyze the expected cost on n points randomly distributed in [0, fi] X 
[0, 11, and then to use that result to analyze the expected cost on n points randomly 
distributed in the unit square. 

111. UNIFORMITY OF THE STRANDED POINT 

Let P = {pl ,  p z ,  . . . , p, }  be a set of n independent random variables, each uni- 
formly distributed over [0, a] X [0,1]. Let C, be the expected cost of the match- 
ing produced by the =-version on P. In order to analyze the C,, we need the following 
result. 
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Uniformity Lemma. Let R be a rectangle (as defined above). Let m be an odd integer, 
and let Q = { q l ,  q2,  . . . , q m }  be a set of independent random variables each uni- 
formly distributed over R.  Let z be the random variable over R whose value represents 
the point stranded (i.e., not matched) by the oo-version on Q. Then z is uniformly dis- 
tributed over R .  

Proof: Assume for notational convenience that level(R)=O. We claim that for 
every 12 0, each level 1 rectangle R, R satisfies 

Pr(z E R,) = area(Ri)/area(R). (1) 

Since for every measurable subset S R there exists a countable set of rectangles 
whose union is contained in S and which differs from S by a set of measure zero, it 
follows that (1) implies the uniform distribution of z over R . To verify (l) ,  let R 
R,, . . . , R,I denote thelevel-l rectangles; thus R =U,,i<2,R,-. From the independence 
and uniformity of the qj over R ,  it is straightforward to show that 

P~(ZER,)=P~(ZER~)=~~~=P~(~ER~~); 

hence Pr(z E Ri) = 2-' = area(Ri)/area(R) for all i, 1 Q i < 2'. 

Cordary. Let X be a positive integer, and let R be a rectangle such that level(R) Q A. 
Let m and Q be defined as in the Uniformity Lemma. Let z be the random variable 
over R whose value represents the point stranded by the A-version on Q. Then z is 
uniformly distributed over R .  

Proof: Let R'  be a rectangle such that R '  R .  As in the proof of the lemma, it 
suffices to show that 

Pr(z ER' )  = area(R')/area(R). 

If level(R') < X then the same argument as in the proof of the lemma applies, so 
assume level(R') > X. Let R" denote the level-X rectangle such that R '  C R" C R. As 
in the lemma, we have 

Pr(z E R") = area(R")/area(R). 

The point stranded by a random matching of the points in R" is uniformly distributed 
over R n, hence 

Pr(z ER'lz ER") = area(R')/area(R"). 

Thus 

Pr(z E R')  = Pr(z E R'lz ER")  X Pr(z E R") = area(R')/area(R). 
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IV. ANALYSIS OF THE -VERSION 

Let n 2 0 be an integer (not necessarily even), and let P = (p i ,  p 2 ,  . . . , p n )  a set of 
independent random variables each uniformly distributed over the rectangle R = 
[0, fi] X [0, 11. Let C, be the expected cost of the matching produced by the m- 
version of the rectangle heuristic on R.  (We need the C, for odd n in order to analyze 
the C, for even n, which are our chief concern.) We have 

co = 0, 

where D is the expected distance between two randomly chosen points one in each of 
the two halves of the rectangle R, and Pr(odd-odd split) is the probability that the 
two halves of R each contain an odd number of points of P. This recurrence is de- 
rived from the facts that ( ~ ) ( ~ ) k ( ~ ) n - k  is the probability of a split of k points in the 
left half of R and n - k in the right half ofR,  C k @  and C n - k / f i  are the expected 
costs of the matchings in the left and right halves, respectively, and D Pr(odd-odd 
split) is the expected cost of the edge-matching the stranded points, if any. The factor 
D is derived from the Uniformity Lemma; that is, the two stranded points are each uni- 
formly distributed in their respective halves of R. If n is odd, Pr(odd-odd split) = 0. 
If n is even, that probability is 

Thus 

co =o, 

For the fi X 1 rectangle, D can be calculated by (tedious) elementary calculus to be 

GS 0.8 199606 15. 
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Rewriting the recurrence relation for C,, more generally as 

xo = 0 ,  

we have C,, = Dx, when OL = fi and 

0 (n odd or n = 0) 

+ (n even, n > 2 ) .  

Although a closed-form solution is not known for the recurrence (2), it is possible to 
derive asymptotic estimates. Knuth [6] presents a general technique for handling such 
recurrences in the course of analyzing the average behavior of the radix exchange sort 
(when the inputs are uniformly distributed random real numbers). Saxe [ 101 used an 
ad hoc technique for the case a = 1, a,, = 1 in order to analyze a certain coin tossing 
problem (n coins are given, all initially heads up; at each stage, all heads-up coins are 
flipped-what is the expected number of stages until all of the coins are tails up?). 

The general technique of Knuth is t o  use the binomial transform (3,) of the se- 
quence (a,), 

a, = k=O 2 ( ; ) ( - l ) k a k ;  

it can be shown that 

Following a suggestion of de Bruijn, Knuth observes that 

and interchanging the order of summation gives 

In the various cases of interest, (&) turns out to be Simple enough to allow the inner 
summation to be evaluated in closed form, and the infinite sum that results can be 
approximated by gamma-function integrals. 
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Applying this technique to C,, we get 

where f ( n )  is negligible and is defined below. (We do not go into the details of this 
derivation of C,, because we get the same result by a more useful level-by-level ap- 
proach in the next section.) 

Recall that we are interested in the rectangle heuristic applied to points in the unit 
square. The argument of [ 131 can be applied here to show that the expected cost of 
the matching on n points independently and uniformly distributed on [0, 11' is 

- C,, = 0.516410fi, 
1 

m 
a bit larger than the upper bound of 0.402fi found by Papadimitriou for the mini- 
mum matching of n random points in the unit square.* 

V. ANALYSIS OF THE A-VERSION 

Fix some A E {I ,  2,3, . . .} U {m}. To analyze the A-version of the algorithm we pro- 
ceed as follows. Let ail be the expected number of level-l rectangles containing exactly 
i points. The probability that a level-l rectangle contains exactly i points is 

t) (1 - ;)n-i(;), 

where L = 2' is the number of level-l rectangles. The expected number of level-l rect- 
angles with exactly i points is this probability times the number of level-l rectangles; 
thus 

ui1= ($(1 - 2-9n-i(2-')i2' 

(with 0' taken as 1). 

*More precisely, the argument of [ 131 says that 

1 1 
( 1  - €)- C,, + S (€1 Q expected cost Q (1 + e) - a 

for all E > 0, where S1(e) and S2(e) do not depend on n. 
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Let el be the expected number of nonempry level-1 rectangles with an even number 
of points: 

el = c ail 
i > o  

This can be evaluated by elementary techniques to yield 

By the corollary to the Uniformity Lemma, each nonempty level-Z rectangle containing 
an even number of points contributes D/@ to the cost of the matching, if it splits 
odd-odd (this happens with probability 3, as calculated above), and 0 if it splits even- 
even. Thus the contribution of the Zth level to the expected cost of the matching is 
+ D e , / f i .  Define 

h 

111 
= c a[ 1 + ( 1  - 2-1+1)" - 2( 1 - 2-')"] ; 

the contribution of levels 1,2,  . . . , X is then $DS(X). Our cost C,, from above is 

C,, = iD t fDS(-),  

and we are interested in the expected cost of the first A levels, 

C,, (A) = iD + SDS(h). 

We now use the de Bruijn-Knuth gamma-function integral method to develop an 
asymptotic estimate of S(X) in order to estimate C,(h). Define 

Knuth proves that 

(see Sec. 5.2.2, pp. 131, 132 and exercises 46 and 47 of [6 ] ) .  From this it follows 
directly that 
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Furthermore, since 

(see, e.g., p. 132 of [6 ] ) ,  

and we can write 

Following Knuth, we observe that the convergence is uniform and so we can bring 
the summation under the integral: 

For Re@) > 0 we have 

1 - (1/2"W W 

(+) =(2n)w 2 w - 1  ' 

and hence also 

c A ($) =nw 1 - (1/2"W 
2 w - 1  * I=1 

Thus 

the two cases of interest are X = [lg nl and X = m, we consider them separately, fust, 
x = a. 
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I 
FIG. 2. Contour of integration C. 

We need to evaluate 

Let F(z )  be the integrand. Integrating on the contour C as shown in Figure 2 we 
have 

-31 2 - iN' 

F ( z )dz  + - 

F(z)  dz + j F(z)  dz 
M+ iN M-iN'  

2ni -3 /2 - iN'  

= Z residues of F ( z )  in C 

by the Cauchy residue theorem. As in Knuth, the last three integrals (corresponding 
to the .top, right, and bottom lines of C) are negligible as N , N ' , M  + 00, so that 

S(=) = -n1I2 [Z residues of F(z )  in C] + O(1). 

The poles of F ( z )  in C as N,", M + are z = 0 andz  = - 1 [for r ( z ) ]  andz  = - 3  + 
(2ni/ln2)k, k = 0, 1, 2, . . . . The residue of r ( z )  at the pole z = - j  is (- l)j/j!, The 
residues of F(z )  in C are thus 

z = 0: 

residue = [(- 1)0/0!]n-0-'12 (2-o - 2)/(2-0-'/2 - 1) = (2 - *)/fi, 
z = - 1 :  

residue = [(- 1)' / I  !] n'-1/2 (2' - 2)/(2'-'12 - 1) = 0, 



DIVIDE AND CONQUER MATCHING 59 

z = - + :  
residue = lim (z t i )F(z)  

= -r(- ;)(a -,2)/ln 2 

= - 2(2 - fi) &/In 2, 

z - + - 1 / 2  

(by L'Hospital's rule) 

z = - t (274111 2) k, k 3 1 : 

1 2ni 
residue = lim z + - - - k  F(z )  

z+-1/2+(2ni/ln2)k ( 2 In2 ) 
- 
In 2 + &&) e2ni{k lg n} (by L'Hospital's rule), - -- 

where {x} is the fractional part of x 
Thus 

where 

To bound the effect off(n), note that le2ni{k .}I < 1 for all n and k, so 

Since r(z t 1 )  = zr(z) and lr(4 + &)I = (dcosh n~)l/~, 

Ir(- i t &)I = [8r/(l t 4y2)(eny + e-*y)]1/2.  

Thus 

IF(- 3 t 2ni/ln 2)l< 1.81 X lo-', 

and 

It follows easily that 
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so that 

f(n) < 1.54 x lo-’. 

The behavior of the eversion is thus determined: 

C, = aD [2(2 - fi)&/ln2 - f (n) ] f i  + O(1) 

0.6141 1 8 6 .  

For the [lg nl-version we need to analyze S([lg nl). Unfortunately, the gamma- 
function integral technique cannot be used in this case since the values of the integrals 
for the top, right, and bottom boundaries are not negligible unless n/2h -+ = as n -+ =. 

Let 0 = [lgnl - lgn, 0 ( 8  < 1 .  Then 

S([lg nl) = S(6 + lg n) 

= S(=) - 6 5 g ( 2 - 9  + O(1). 
i= 1 

Define 

h (6) = g(2-i-6). 
i=l 

We have 

Finally, we must take into consideration the cost of the edges chosen randomly at 
level X = I t [lg nl . In a level-X rectangle with i points, ii random edges are picked if 
i is even, and ( 3 i  - 1)  if i is odd. Thus the randomly chosen edges contribute 
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which is evaluated without difficulty to be 

For X = 1 t [lg nl = 1 t 8 t lg n this gives 

iD(f i l -e  - a1+' t fll+' ~?-~*)fi t O(1). 

Let 

the expected total cost of the matching produced by the [lg n)-version of the algo- 
rithm on a set of n random points in the fl X 1 rectangle is thus 

and is 

for all e > 0, if the points all lie in the unit square, by the technique of [13].* The 
function r(8) - h(8) is strictly decreasing on [0, 11, with r(0) - h(0) = 0.141375671 
and r(1) - h(1) = 0.053122782. Thus, for example, when n is a power of 2 we have 
8=Oand  

M(n)  = 0.540779 6. 
When n = t 2 , 8  + 1 asn+-and we have 

M(n)  = 0.5255676.  

The =-version would give C , / m  = 0.5164106, so the truncation at level [lg nl 
increases the expected cost of the matching by between 2.2 and 4.7%, depending on 
the value of 8.  That the truncation does not increase the cost of the matching in the 
worst case was demonstrated in [ 131. 

VI. RELATED ANALYSES 

All of the above analysis can be applied with little effort to the L ,  distance norm 
and/or to the triangle heuristic of [ 131 -all that changes is the constant D. In the case 
of the L ,  norm, we observe that distances in a level-(Z t 1) rectangle are just l / f i  

*See the footnote top. 55 .  
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times those in a level4 rectangle, exactly as with the L z  norm, D, however, changes to 

60 

= 0.572588984. 

To apply the analysis to the triangle heuristic we begin with a brief summary of that 
heuristic. The triangle heuristic does a divide-and-conquer approach identical with 
that of the rectangle heuristic except that it works directly on the unit square: The 
first bisection divides the square diagonally into two 45"-45"-90" triangles and later 
bisections divide the triangles into similar 45"-45"-90" triangles. An example parallel 
to that of Figure 1 is shown in Figure 3. 

Let T,, be the expected cost of the matching produced by the m-version of the tri- 
angle heuristic when n uniformly distributed points are chosen in a 45"-45"-90" tri- 
angle with hypotenuse a. Except for the particular value of D, T, satisfies precisely 
the same recurrence relation as C,, does and we have 

T, = ~ D T  [2(2 - a ) f i / l n 2  - f(n)]fi + 0(1), 

where 

and d [ ( x , ,  y,),  ( x ~ ,  y2)] is either the L2 distance or the L ,  distance between the 

The determination of S,, the expected cost of the matching on the unit square 
points (X1,Yl) and (XZ,YZ). 

FIG. 3. Triangle heuristic performed on four points. 
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found by the -version of the triangle heuristic, proceeds by observing that 

S, = 2 (") (Lr (+r-k(Tk + Tn-k)  t Ds Pr(odd-odd split) 
ktO 

=LA ([I)Tk+O(l), 
2n  k=O 

where Ds is the expected distance between two randomly chosen points, one in each 
of the two triangles formed by bisecting the square diagonally. We know from the 
results of Sec. V that T, = K 6  t O(1), so that 

s, = 2K (;) fi + O(1). 
2n k=O 

k t  & = (,",)/2", v = in. We have the well-known approximations 

Pk q j 0 e - k Z l v  

Po = 1 / f i  

(see, e.g., [3]). Thus 

The straightforward application of Euler's summation formula (see, eg., [2]) gives 

1 5 (2) fi = (+p t O(n-"Z), 
2n  k=O 

so that 

For the L z  norm, LIT F* 0.54 so that S, = 0 . 5 7 6  and the triangle heuristic is inferior 
to  the rectangle heuristic on the average as well as in the worst case (see [13]). 

The analysis of the [lg n1-version of the triangle heuristic is the same as that for the 
rectangle heuristic, except (again) for the constant D and the factoring down from the 
fi X 1 rectangle to the unit square: The expected cost of the matching isM(n) with 
D ~ / ( 2 z )  in place Of 0 / ( 4 a ) .  
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VII. AVERAGE TIME OF THE -VERSION 

We have already observed above that the [lgnl-version (of either the rectangle 
heuristic or the triangle heuristic) can be implemented in Q(n)  worst-case time using 
the real RAM model with the floor function available at unit cost. For the =-version, 
the worst-case time is not bounded by any function of n because the points can be 
clustered arbitrarily close together. However, the -version can be implemented in 
@(n) expected time, and even the (naive) implementation of the =-version in Algo- 
rithm l requires only 8 ( n  log n) expected time. 

The expected time of the naive eversion (Algorithm 1) on a set of n points uni- 
formly distributed over the region is proportional to z, satisfying 

zo = z *  = 1, 

where the O(n) term represents the time to partition the points into the two sub- 
regions. This can be rewritten in the form of Eq. ( 2 )  and estimated by the techniques 
described earlier. The result is z, = S(n log n). 

A more subtle implementation has S(n) expected time: Partition the region into the 
2Ilg nl subregion of level Ilg n] and apply this recursively to any subregion with three 
or more points. The expected time of this implementation satisfies 

where ail is given by Eq. (3). Elementary manipulations and mathematical induction 
show that 2, = 0 ( n ) .  

VIII. SUMMARY 

The results of Secs. V and VI for the L 2  and the L ,  metrics are summarized in 
Table 1. 

Table I1 contains the dominant term of the expected cost of the matching produced 
by the A-version of the rectangle heuristic when X = Ilg nl - I ,  [lg nl - 6 ,  * - - , [lg n] + 7 
on n points in the unit square, for the L 2  metric. We assume n is a power of 2; re- 
call from Section V that the costs are maximized when n is a power of 2, hence the 

TABLE I. Expected costs of matching for various versions of 
rectangle heuristic for L2 and L ,  metrics 

-version 0.516410fi 0 . 4 2 8 8 4 6 6  
[lg nl-version, n = 2k Q.54Q119 fi 0.449084.\/;; 
Ilg n1-version, n = 2k + 2 0 . 5 2 5 5 6 7 6  0.43645 1 6  
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TABLE 11. Expected cost of matching produced by 
various versions of rectangle heuristic for n a power of 
2 points uniformly distributed in the unit square. 

A 

~ ~~~ 

Expected cost 
of matching 

2 . 7 8 8 5 6  

1 . 4 3 9 9 6  
1 . 0 6 1 3 6  
0.81 1 4 6  
0 . 6 5 9 0 6  

0 . 5 4 0 8 6  
0 . 5 2 5 6 6  
0 . 5 1 9 8 6  
0 . 5 1 7 6 6  
0.5 1 6 8 6  
0.5 1 6 6 6  
0 . 5 1 6 5 6  
0.5 1 6 4 f i  

1 . 9 9 3 3 6  

0 . 5 7 7 9 6  

expressions in Table I1 are upper bounds for all  values of n. These expressions were 
calculated from the formulas of Section V. 

Recall that for finite X, the X-version can be implemented in U(2’ t n) time [ 131. 
Hence, for fixed k, the ([lg nl + k)-version can be implemented in O(n) time. There- 
fore, for some purposes it may be best to use the ([lg nl + 1)- or the ([lg nl + 2)- 
version, since their expected costs are only 1.77 and 0.6% worse, respe’ctively, than 
that of the oo-version, whereas for the [lg n]-version the expected cost is 4.77% worse 
than that of the oo-version. It is interesting to note that from the worst-case analysis 
[13] alone, one could not justify the use of the h-version for A >  [lgn], since the 
worst-case cost of the [lg n]-version equals that of the --version. 

The authors are grateful to L. Monier and D. S. Watanabe for their helpful remarks 
and to J. Purtilo for wrestling with MACSYMA in the evaluation of the quadruple 
integrals. 
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