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1. Introduction and terminology 

Let G be a finite undirected graph without loops or multiple lines. A set of 
lines M c E(G) is a matching if no two share a common endpoint. A matching is 
said to be perfect if it covers all points of G. One can take the point of view that a 
perfect matching is a special case of a more general concept in graph theory-an 
n-factor. An n-factor of graph G is a spanning subgraph which is regular of 
degree n; that is, each point has degree it. So a perfect matching is a l-factor. But 
we can generalize even more. Let f denote a function which assigns to each point 
u in V(G) a nonnegative integer f(v). Then an f-factor is any subgraph F of G in 
which deg F2r =f(v). The existence of these increasingly more general concepts 
for a fixed graph G are all instances of what have come to be called 
degree-constrained subgraph problems. 

The reader of these Proceedings may see in Mulder’s article [126] that these 
ideas were of great interest to Julius Petersen and in fact Petersen enjoyed some 
considerable success in his studies of such problems. Probably the most widely 
known Petersen results in these areas are two. 

(a) In [133], he proved that any connected cubic graph with no more than two 
cutlines has a perfect matching and hence decomposes into the union of a line 
disjoint perfect matching and a 2-factor. 

It was in this paper that Petersen displayed a cubic graph (actually a 
multigraph) with three cutlines and no perfect matching, thus showing that in a 
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sense his ‘2 cutline’ theorem was best possible. Incidently, the cubic graph so 
displayed was attributed by Petersen to his mathematical colleague and friend, 
Sylvester, and is shown as Fig. 4 of Mulder’s paper [126]. 

(b) In [134], Petersen offered the now famous ten-point cubic graph, which has 
come to be known as the Petersen graph, as an example of a cubic graph which 
cannot be expressed as the union of three line-disjoint perfect matchings. 

Of course, we do not want to imply that Petersen’s reputation in graph theory 
rests upon the existence of two particular graphs! These two examples arose out 
of his ground breaking studies in the area of graph factorization. These studies 
having been well delineated in the paper of Mulder. 

It was but a short time after the appearance of Petersen’s work in print, that 
the work of the young Hungarian mathematician D&es Kijnig began to appear 
on the scene. It was Konig who gave the next strong impetus to the study of 
graph factorization after Petersen’s ground-breaking work, and it is Konig with 
whom we are charged to begin our summary of the history of matching theory. 

It is a formidable task to undertake such a charge! Indeed, hundreds of papers 
and a book have been published on the topic of matching theory and there seem 
to be no signs that the study of matchings is in any immediate danger of 
‘withering on the vine’! Indeed, throughout this paper, we mention quite a 
number of problems which remain unsolved as we go to press. 

Fortunately, matching theory serves well as an historical thread extending from 
the time of Konig (and before) up to the present, wending its way through graph 
theory and intersecting many of the most important new ideas which have sprung 
forth in our discipline. In particular, after the close of World War II this 
intertwining of matching theory with the study of graphs as a whole became even 
more inextricable, as graph theory as a mathematical discipline unto itself rapidly 
began to receive more and more attention. 

Although it is ‘jumping the gun’ somewhat with respect to the organization of 
this paper, we can mention three major areas which have joined with graph 
theory to give rise to many new and deep results. These are: (1) linear 
programming and polyhedral combinatorics; (2) the linking of graphs and 
probability theory in the area of random graphs and finally (3) the theory of 
algorithms and computational complexity. (The three areas are far from mutually 
exclusive; but more about that later.) 

But having tried to claim that our task is impossible, let us get to it. Please note 
that the word ‘survey’ was intentionally avoided in our title and the word 
‘sampler’ used instead. We make no claim in this summary to be comprehensive 
or complete, but instead readily plead guilty to having selected some of our own 
favorite branches of matching for more extensive discussion. 

Our general plan, then, will be as follows. We present first a Chronology in 
tabular form of many of the most important events in the history of matching 
theory. We will then deal with much of this in narrative fashion, hopefully 
supplying enough references as we go to enable the interested reader to take the 
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various forks in the road offered in order to study more deeply certain of the 
topics we mention only superficially. As a much more comprehensive guide to 
matching in general and to a large-but by no means exhaustive-list of 
references we refer the reader to the book [ 114). A less comprehensive-but 
more up to date-survey of matching theory is the excellent chapter written by 
Pulleyblank for the forthcoming Handbook of Combinatorics [145]. 

A chronology of events in matching theory 

1912 
1914,1916 

1915 
1927 
1931,1933 
1931 
1935 
1936 
1947 
1950 

1952 
1955 
1956 

1956 

1958 
1958 

1958 
1960 
1959-60 

1959-61 
1962 
1961,1963 

1964-65 

Frobenius’ reducible determinant theorem 
I&rig proves that every regular bipartite graph has a perfect 
matching. 
K&rig’s Line Coloring Theorem 
K&rig’s proves Frobenius’ theorem in a graph theoretic setting 
Menger’s Theorem (almost!) 
Kiinig’s Minimax Theorem 
Egerva’ry’s Weighted Miriimax Theorem 
P. Hall’s SDR Theorem 
K&rig’s book appears 
Tutte’s l-factor Theorem 
Gallai’s new proof of Tutte’s l-factor Theorem; new results on 
regular factors of regular graphs; extensions to infinite graphs 
Tutte’s f-factor Theorem 
Ore’s minimax defect version of Hall’s Theorem 
Kuhn formulates bipartite matching as a linear programming 
problem 
The Max-flow Min-cut Theorem (Ford and Fulkerson; Dantzig and 
Fulkerson; Elias, Feinstein and Shannon) 
Berge’s minimax defect version of Tutte’s Theorem 
Gallai uses LP duality and total unimodularity to derive the 
Max-flow Min-cut Theorem, Menger’s Theorem, Dilworth’s 
Theorem and the K&rig-Egervary Theorem 
Berge’s book appears (in French) 
Ore’s book appears 
Kotzig’s three ‘lost Slovak papers’ on the structure of graphs with 
perfect matchings 
Erd& and RCnyi publish first papers on random graphs 
Berge’s book appears in English 
Kasteleyn gives a polynomial algorithm for the number of perfect 
matchings in a planar graph 
Gallai and Edmonds obtain a canonical decomposition for any graph 
in terms of its maximum matchings 
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1965 

1966 

1971 

1972 

1972 

1972-73 

1979 

1979 

1979 

1982 

1984 

1985 

1986 

1986 

1986-88 

Edrnonds develops first polynomial matching algorithm for 

nonbipartite graphs and characterizes associated polytope 

Erdos and RCnyi discover threshold function for a random graph to 

have a perfect matching 

Cook finds the first ‘NP-complete’ problem 

Karp publishes the first list of NP-complete graph problems 

Lovasz, building upon the ideas of Kotzig (1959-60), begins an as 

yet incomplete extension of the structure of graphs with a perfect 

matching 

Edmonds and Pulleyblank characterize the facets of the matching 

polytope 

Khachian develops the first polynomial algorithm for LP-the 

Ellipsoid Algorithm 

Pippenger introduces the parallel complexity class ‘NC’ 

Valiant proves that computing the number of perfect matchings is 

# P-complete (and thus NP-hard) 

Naddef and Edmonds, Lovasz and Pulleyblank obtain two structural 

characterizations of the dimension of the perfect matching polytope 

Bollobas book on random graphs appears 

Razborov obtains his superpolynomial monotone complexity bound 

for the perfect matching decision problem 

Lovasz-Plummer book on matching theory appears 

Karp, Upfal and Wigderson give an RNC (parallel) algorithm for 

finding a perfect matching 

Broder, Jerrum and Sinclair relate approximate counting of perfect 

matchings to random generation of a perfect matching thereby 

introducing new probabilistic techniques 

2. Our narrative begins 

In 1912, Frobenius [55] published a paper in which he dealt with determinants 

of square matrices in which the nonzero entries were all distinct variables. The 

question was: when could such a determinant (i.e., a polynomial) be factored? 

Frobenius showed that this is possible if and only if one can permute the rows and 

columns of the matrix so as to display a rectangular block of zero entries. Some 

three years later, KBnig [91] gave a somewhat shorter proof and showed that this 

problem could be modeled in terms of the perfect matchings of a certain bipartite 

graph. 

In the following year, K&rig published twin papers-ne in Hungarian [93], the 

other in German [92]-in which he proved that every regular bipartite graph has 

a perfect matching. (Actually, this result had been announced some two years 

earlier in a 1914 communication to the Congres de Philosophie Mathematique in 



Matching theory 181 

Paris. However, this communication was not published until some nine years 
later! See [90].) Others treated this theorem in differing contexts; we refer the 
interested reader to the chapter notes of Konig’s book in either its original 
German version [96] or the new English translation (971. 

In 1927, Menger published the first proof of his now celebrated minimax 
theorem on connectivity in graphs [121]. The version published in this paper was 
the ‘undirected point version’ known to any student of graph theory. Informally, 
the result says that in any undirected graph with two distinguished non-adjacent 
points s and t, the maximum number of point-disjoint paths joining s and t is 
equal to the minimum size of any set of points in G -s - t the deletion of which 
separates points s and t. (There are now four principal versions of Menger’s 
Theorem which one may obtain by taking all combinations of the concepts 
‘undirected graph’, ‘directed graph’, ‘point-disjoint paths’ and ‘line-disjoint 
paths’. All are really equivalent and derivations of each from the others can be 
found throughout the literature. See, for example, the textbook by Bondy and 
Murty [ 191.) 

Unfortunately, there was a hole in Menger’s 1927 proof. First, let us hasten to 
point out that Menger himself [122] repaired the gap and published a complete 
proof. But in the meantime, K&rig had discovered the flaw in the 1927 proof; 
Menger had neglected the case when the graph involved was bipartite. 

This realization by Kiinig led to the proof of what was to become a very 
influential theorem in graph theory-his minimax theorem. (See [94] and [95] for 
the Hungarian and German language treatments of this landmark result respec- 
tively.) The statement of the minimax theorem is easy to grasp. Let G be a 
bipartite graph. Then the minimum size of any set of points which collectively 
cover (i.e., touch) each line of G equals the maximum size of any matching in G. 
Also in 1931, Egervary [38] published a more general version of the minimax 
version in which the lines were assigned nonnegative weights. 

The importance of minimax theorems can hardly be overestimated, especially 
today, now that such ideas and results as the Max-flow Min-cut Theorem, the 
duality theorem of linear programming, so-called ‘good characterizations’, etc., 
have emerged. 

But why are minimax results so important? Because they often tell us when a 
candidate for a solution we have in hand, in fact truly is a solution. Consider the 
simple case of bipartite matching and K&rig’s Minimax Theorem. Suppose we 
have a matching in hand and wish to know if it is indeed a maximum matching. 

If, somehow we can find a point cover for G the cardinality of which is also k, 

then by Konig we know that our matching is indeed maximum. We must be 
honest here and point out that how one obtained such a point cover has been 
ignored. Indeed, we have already met the crux of the idea of a good 

characterization, a concept generality attributed to Edmonds in the 1960s. 
Let us stick to the setting of our paradigm problem-bipartite matching. We 

say that the matching number k of a bipartite graph is well-characterized for the 
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following reason. If we want to convince someone that the matching number is at 
least k, we need only exhibit a matching of cardinality at least k. On the other 
hand, if we wish to show that the matching number is at most k, we need only 
exhibit a point cover of size k. In the modern terminology of complexity theory, 
we say that a graph property is in NP if, given any graph for which the property 
holds, there is a ‘short’ proof-or certi.cate-that it holds. (For the definition of 
NP, it has been agreed upon that ‘short’ means a number of steps polynomial in 
the size of the input graph.) 

We have already been a bit cavalier about just how the problem of bipartite 
matching is to be posed. Is the problem to obtain a number or is it to be some 
kind of ‘yes of no’ question? The class NP is normally defined as a class of ‘yes or 
no’, i.e., decision problems. But it is easy to convert the problem of determining 
the size of a maximum matching into such a decision problem. Let k be any 
integer such that 1 c k C ]V(G)//2. Then for each such k, ask the question: ‘is the 
size of a maximum matching in the graph G at least k?’ We then need at most 
IV(G)1/2 certificates to determine the size of any largest matching in G. But if the 
task of verifying one certificate can be done in time polynomial in the size of the 
input graph, then, trivially, so can the compound task of verifying (V(G)l/2 such 
certificates, for the sum of a polynomial number of polynomials is again a 
polynomial. 

It is important to emphasize that for the purposes of defining NP, it is of no 
consequence how we ‘happened upon’ the fact that the property holds, in other 
words, how we obtained our certificate. 

In contrast to the class NP, however, if given any graph for which a property 
does not hold, there is a certificate showing that it does not hold, we say that the 
property is in the class co-NP. It is immediate by Konig’s Minimax Theorem that 
bipartite matching is in NP fl co-NP. (For the cognoscenti of complexity theory, 
one can say more-namely, that bipartite matching is in class P. That is to say, 
we have an algorithm, which not only certifies that a given matching is maximum, 
but actually obtains the certificate-in fact, the maximum matching itself-in 
polynomial time.) 

Surely, class P must be a proper subset of class NP. But is it? This is the 
outstanding open question in the area of complexity theory today. More 
particularly, it is clear by the definition that we have P s NP n co - NP c NP. It is 
unknown whether ‘ E ’ can be replaced by ‘=’ at either location. 

We shall return to other complexity results and questions later in this paper. 
For much more comprehensive treatments of minimax theorems in graph 

theory and combinatorics, we refer the reader to the surveys of Woodall [172], 
Schrijver [153] and [144]. As for us, we shall return to several matching-specific 
minimax theorems below. 

But we have strayed from our timeline. 
In 1935, P. Hall [73] published his famous theorem on systems of distinct 

representatives. Although cast in the language of set theory, it was soon realized 
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by K&rig [96] that Hall’s theorem could be simply stated in terms of bipartite 

graphs as follows. Let G = (A, B) be a bipartite graph with point bipartition 

A U B with IAl = 1 B 1 and if X c A, let T(X) denote the set of points in B each of 

which is adjacent to at least one point of X. In other words, let T(X) denote the 

set of neighbors of set X. Hall proved that a bipartite graph G has a perfect 

matching if and only if IF(X)1 2 IX] f or every X E A. In this form, Philip Hall’s 

Theorem was to prove one of the most famous in all of matching theory. It is 

interesting to note that Hall was quite aware of the contents of Konig’s 1916 

papers and in his paper, Hall begins by referring to the German version thereof. 

In the following year, Konig published the first book on graph theory [96]. For 

the first time, graph theory was set down as an organized body of mathematical 

results derived from a set of axioms in a precise manner. The book was written in 

German. For all intents and purposes, up to that time the discipline of graph 

theory had been ignored by the English-speaking mathematical communities in 

Great Britain and the United States. 

During the dark days of World War II, little, if any, graph theory was done, as 

was more or less the case with mathematics in general. However, significant 

exceptions to that statement are to be found in such areas-for the most part kept 

highly secret-as cryptography, ballistic trajectories, computer development, 

nuclear physics and navigation and communications. But the seminal ideas of a 

new and tremendously important branch of mathematics were also to arise in 

reaction to very ‘applied’ wartime issues such as deployment and logistical supply. 

Soon to be born was the discipline of linear programming. (See Section 3 below.) 

One of the most influential graph theory theorems of the post-war era appeared 

in 1947 when Tutte [159] published his celebrated l-factor Theorem. This result 

set forth the first characterization of general graphs with perfect matchings. 

Let G denote any graph, bipartite or non-bipartite, and let S be any set of 

points in G. Finally, let c,(G - S) denote the number of odd components of 

G - S. Then Tutte’s result states that the graph G has a perfect matching if and 

only if c,(G -S) c ISI for every set S c V(G). We would point out that 

similarities in form are apparent between Hall’s theorem for bipartite graphs and 

Tutte’s theorem for general graphs. Another interesting parallel lies in the proofs. 

In Hall’s formulation, let us call a set S c A a barrier if ISI > IF(s Similarly, in 

Tutte’s formulation, let a barrier be any set S for which ISI < c,(G - S). Then in 

each of the two theorems, half of the proof is trivial. Namely, if there exists a 

barrier, then a perfect matching cannot exist. The nontrivial part of each theorem 

lies in proving the converse. 

One more remark is in order. Tutte’s original proof of his l-factor theorem 

involved computations with the so-called Pfufian of a matrix. It was not long 

before other proofs were found which involved only truly graph-theoretic 

techniques. However, the notion of a Pfaffian matrix associated with a graph was 

to reappear much later in the work of Kasteleyn and is still being investigated at 

the time of this writing. (See for example, Vazirani [89-901.) 
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In 1950, one of the truly ‘unsung heroes’ of graph theory, Gallai published a 

paper [61] in which, among other things, he gave a proof of Tutte’s theorem using 

the method of alternating paths. The idea of using alternating paths, to be sure, 

did not originate with Gallai. In fact, Gallai himself in his two fascinating 

biographies of Kijnig [64,97] points out that such methods were used by Kiinig as 

early as 1915 [91] and indeed, Mulder [126] has pointed out that the idea was 

even used by Petersen [133]! The concept of an alternating path is simple indeed. 

Suppose one has a fixed matching M in a graph G. Let us agree to call the lines of 

graph G red if they belong to the matching M and blue otherwise. Then a path P 
in G is said to be alternating with respect to M (or simply M-alternating) if the 

lines of P alternate in color. An M-alternating path P is said to be M-augmenting 
if it is M-alternating and begins and ends with blue lines. Clearly, if one can find 

an M-augmenting path in the graph G which joins two lines not covered by M, 
then one can find a matching larger than M simply by exchanging the lines of P. 

It was proved by Berge [5,9], but probably known to Petersen (see Mulder 

[126]), that a matching M is of maximum cardinality, or simply maximum, if and 

only if there exists no augmenting path with respect of M. This fundamental idea 

has proved to be the basis for the best known and most efficient combinatorial 

algorithms for finding maximum matchings known today. But more about that 

below. 

In addition to his new proof of Tutte’s Theorem, Gallai also extended the 

theory of regular factors of regular graphs first started by Petersen. (See Section 1 

of the present paper.) Indeed, gradual improvements on the general question of 

the existence of regular factors in regular graphs had been made by BBbler [3], 

Rado [148], Belck [4] and others. Although this is an interesting and important 

branch of graph factorization, we have chosen not to treat it in detail. Instead, we 

refer the interested reader to the paper of Bollobas, Saito and Wormald [17] for a 

concise summary of the status of the problem, leading up to their own result 

which is, to the best of the author’s knowledge, the latest word on this subject in 

the following sense. Given integers r - > 3, and 1s A < r, the authors determine 

precisely for which values of k, every r-regular graph G with line-connectivity A 

has a k-factor. 

At this point, we refer back to the Introduction to this paper where the concept 

of an f-factor was defined. Recall that a perfect matching is just a special case of 

an f-factor when the function f has the value 1 on each point of the graph. In 

1952, Tutte [160] published his f-factor Theorem in which he gave a characteriza- 

tion of those graphs which have an f-factor. Unfortunately, the characterization is 

somewhat complicated and not easy to apply. Tutte also formulated a beautifully 

symmetric version of his f-factor theorem by defining what he called an f-barrier 
and then showing that an abitrary graph has an f-factor if and only if it has no 

f-barrier. This approach is much in the spirit of the classical theorems of P. Hall 

and Tutte’s own on the existence of a l-factor. 

Soon after, in 1954, Tutte showed that his f-factor Theorem could be derived 
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from his earlier l-factor Theorem [161]. Although this served the double purpose 
of unifying his l-factor Theorem and his f-factor Theorem and provided a much 
more accessible proof of the latter, it still did not help one to use the f-factor 
result. Indeed, Tutte himself was quite aware of this difficulty and some twenty 
years later published a paper in which he attempted to simplify matters by the 
introduction of maximal barriers [162]. Even so, it seems fair to say that despite 
these attempts, the f-factor theorem remains one of the most challenging results 
for graph theorists to assimilate and to use in their own work. 

The interested reader will find the most comprehensive treatments of the 
f-factor Theorem in the three books [163,10,114]. 

But the story about f-factors did not end here. All of the above-mentioned 
treatments of the problem deal with the exidence of an f-factor. It is another 
matter indeed to actually find one! This leads us immediately to the area of 
algorithms. Note that Tutte’s transformation of the f-factor problem into a 
perfect matching problem results in a larger graph, but a graph the size of which 
is a polynomial function in the size of the original graph. Therefore, polyno- 
miality of the f-factor problem follows from the polynomiality of perfect 
matching. (See Section 6.) However, since the f-factor Theorem will not be a 
central issue in this survey, we omit an algorithmic discussion from Section 6. 
Other more direct algorithms also exist. (See Edmonds, Johnson and Lockhart 
[35], Gabow [58] and Anstee [2].) 

In 1955, Ore [128] published his minimax version of Hall’s Theorem and 
thereby focused attention on a more general problem: in a graph with no perfect 
matching, what is the size of a largest matching? We call such a matching a 
maximum matching. 

All mathematicians are aware of the difference between the concepts of a 
maximal structure (i.e., inclusion-wise maximal) and a maximum structure (i.e., a 
structure having largest cardinality). A maximum matching, for example, is 
certainly maximal, but the converse implication seldom holds. Just how different 
the two concepts are vis-a-vis matchings will be made more apparent when we 
discuss algorithmic questions in Section 6. Incidently, although it is not at all clear 
in which graphs all maximal matchings are indeed maximum (in other words, 
those graphs in which all maximal matchings have the same cardinality), such 
graphs have been characterized in such a way that they can be polynomially 
recognized. (See [106].) 

Now let us return to Ore’s result. Henceforth we will denote the size of a 
maximum matching in graph G by v(G). Now let G = (A, B) denote an arbitrary 
bipartite graph. Define now the parameter v’(G) as the minimum taken over all 
subsets X E A of the quantity IAJ + II’(X)1 - 1x1. Then Ore’s minimax theorem- 
also called Ore’s Deficiency Theorem-says that v(G) = v’(G). (See [128].) 

Two years later, Berge [6] generalized this result to all graphs. Let us modify 
Ore’s parameter v’(G) as follows. Let G be any graph; that is, no longer 
necessarily bipartite. As in the statement of Tutte’s l-factor Theorem above, for 
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any subset S E V(G), let c,(G -S) denote the number of odd components of 
G - S. Now let v”(G) be one half the minimum over all subsets S s V(G) of the 
quantity IV(G)1 - c,(G - S) + ISI. Then Berge’s minimax theorem for 
matchings-also called Berge’s Deficiency Theorem-says that v(G) = v”(G). 

It is of interest to note here that the Theorem of P. Hall, Tutte’s l-factor 
Theorem and their respective deficiency versions discussed above belong to a 
category of theorems called ‘self-refining results’. The idea is this. Although the 
deficiency versions sound more general than the two l-factor theorems to which 
they correspond (and to be sure the l-factor versions are indeed immediate 
corollaries of the deficiency versions), it is somewhat surprising to discover that in 
fact the deficiency versions are really equivalent to the l-factor results. 

This business of equivalent theorems which we have already mentioned in our 
discussion of Menger’ Theorems in their various forms, and which we meet here 
again in these two deficiency results, extends even further in the area of our 
narrative. Indeed, most of the main theorems we state are equivalent! That 
includes such results as Kijnig’s minimax theorem, Menger’s Theorem, Hall’s 
Theorem, Tutte’s l-factor Theorem, Tutte’s f-factor theorem, the deficiency 
theorems of Ore and Berge, Dilworth’s Theorem on partially ordered sets [31], 
and the Max-flow Min-cut Theorem which we will discuss next. Those who relish 
‘circles of proofs’ are referred to [114], to the thesis of Magagnosc [120], to 
Hoffman [74] and to a monograph devoted entirely to this subject [151]. 

At this point we will diverge from our heretofore ‘linear’ treatment of the 
Chronology of matching theory to treat in somewhat more detail four ‘branches’ 

of the subject. 

3. The Max-flow Min-cut Theorem and linear programming 

In the immediate post-World War II years, George Dantzig, who had, by his 
own admission, ‘become an expert on programming planning methods using desk 
calculators’ [29, p. 781, was still in the employ of the U.S. Air Force. In 1947, 
based upon a family of logistical supply programs with which he had worked, 
Dantzig formulated the archetype of what we call today a linear programming 
problem. The idea was-and is-to optimize (i.e., to either maximize or 
minimize) a linear objective function subject to a set of linear constraints (linear 
equations and inequalities). Moreover, Dantzig developed a method for 
efficiently solving such problems; a method which remains the favorite in practice 
today--the Simplex Method. Later in the same year, Dantzig met John von 
Neumann for the first time in order to consult with him on his new idea. It seems 
that, although no evidence existed in print, the seminal ideas of linear 
programming had also occurred to von Neumann, apparently during his work 
with Morgenstern on the theory of games. According to Dantzig, it was at this 
time that he (Dantzig) first learned about the now-fundamental concept of duality 
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from von Neumann. The history seems muddy here, but Dantzig claims that as 
far as he is concerned, the famous Duality Theorem was known to von Neumann, 
although it was Gale, Kuhn and Tucker [59] who published the first rigorous 
proof. 

The idea of the Duality Theorem is that for every linear program which, let us 
say, seeks the maximum of a certain linear objective function subject to a 
collection of linear constraints, there is a second linear program-the dual- 

definable in terms of the parameters of the first program--called the primal- 

such that the dual program is a minimization problem and that as long as both the 
primal and dual programs have solutions, they have equivalent objective values. 
Or stated more formally, in the following. 

Theorem 2.1 (The Duality Theorem of Linear Programming). Let A be any 

matrix and b and c be vectors. Then 

max{cx 1 Ax G b} = min{ yb ( y 2 0; yA = c} 

(provided these sets are non-empty). 

In this succinct representation, cx represents the (primal) objective function 

and yb the dual objective function. The linear constraints of the primal are 
represented as the matrix inequality Ax 6 b, while those of the dual are stored in 
the expressions y 2 0 and yA = c. 

So here again we have a minimax theorem. 
From the huge number of references on linear programming (or ‘LP’ for short) 

which exist in book and paper form, in addition to the historical article by 
Dantzig [29] already referred to, we suggest the books by Chvatal [23] and 
Schrijver [155]. For our part, we shall attempt to stick only to those aspects of LP 
which directly affect matching theory. (See also [114, Chapt. 71.) 

But before continuing any discussion of linear programming and its applications 
to matching, let us introduce one more minimax theorem which will turn out to 
be important for our purposes. This theorem sounds strikingly like the Menger 
Theorem(s) discussed above and first proved in the 1927-32 era. But, similar 
though it is, our next theorem remained undiscovered for another twenty years 
until proved first by Ford and Fulkerson in 1956 [48] not long after the birth of LP 
described above. It is commonly called the Max-flow Min-cut Theorem. 

First we need a bit of terminology. Let D be a digraph with two distinguished 
points s and t called the source and sink respectively. As usual, we will denote the 
line directed from point u to point v by (u, v). In addition, let each line (u, v) be 
assigned a nonnegative real number c(u, v) called its capacity. The resulting 
line-weighted digraph is often called a transportation network, or simply, a 
network. Let V(D) = S U 3 denote a partition of the point set V(D) such that the 
source s lies in S and the sink t in s. Then the ordered pair (5, s) (or sometimes 
the set of lines directed from set S to set s) is called an s - t-cut in D. The sum 



188 M.D. Plummer 

c(u,v),ucs, ucs c(u, V) is called the capacity of the cut (S, s) and is denoted by 
c(S, S). 

Next, let @ denote another function from the lines of D to the real numbers 
satisfying the following two conditions: 

(i) for each line (u, v), C#J(U, V) G c(u, v), and 
(ii) for each point u E V(D), u 4 {s, t}, 

,W,.Lq @(w, u) = (u,&W) @(u, v). 

Such a function $ is called a flow in digraph D. We call the quantity 
CCS,IoEVCD) $(s, u) the value of the flow $ and denote it by \$I. 

We are now prepared to state the next result. 

Theorem 2.2 (The Max-flow Min-cut Theorem). Let D be a network with source s 

and sink c. Then: max Ic$I = min c(S, s), where the maximum is taken over all s - t 

flows 4 and the minimum is taken over all s - c cuts (S, s). 

This extremely useful theorem sounds like a direct generalization of Menger’s 
Theorem (directed line version) and in fact it is! But it is also yet another 
example of a self-refining result in that it can be derived from Menger’s result and 
hence by the above discussion can be added to the circle of proofs already 
containing Kiinig’s Theorem, Hall’s Theorem, Tutte’s Theorem, etc. The first 
proof of the Max-flow Min-cut Theorem is due to Ford and Fulkerson [48], 
followed hot on the heels by independent proofs by Elias, Feinstein and Shannon 
[41], a second due to Ford and Fulkerson [49] (this one containing the 
now-familiar labeling algorithm for constructing a maximum flow) and yet 
another due to Dantzig and Fulkerson [30] using the duality theorem of LP. 
Thus flow theory and linear programming were essentially ‘joined from 
birth’! (Hoffman [75] claims that Kotzig had independently proved the theorem 
during World War II as well. Indeed, at least a line-version of Menger’s Theorem 
appears in the Slovakian reference [98] which, because of its inaccessibility due to 
language among other things, has remained largely ignored. This unfortunate 
linguistic problem was to also rob Kotzig of credit well-deserved in the theory of 
graphs with perfect matchings, but more about that in Section 4 below.) One 
finds a nice historical treatment of the early days of the Max-flow Min-cut 
Theorem in the book by Ford and Fulkerson [50] including a derivation of the 
Kiinig Minimax Theorem from Max-flow Min-cut. 

Kuhn [103-1041 at nearly the same time as the above, published an algorithm 
for the Assignment Problem (line-weighted bipartite matching) which makes use 
of the primal-dual approach of LP. Kuhn seems to have been the first to refer to 
this procedure as the Hungarian Method and pays fulsome tribute to K6nig and 
EgervAry for having developed the essence of the method in their classic papers 
of some twenty-five years before. Henceforth, matchings, flows and linear 
programming were to be inextricably bound together. 
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We now describe what might be called-for want of a better term-the 
polyhedral approach to matching. This approach originated with methods for 
solving weighted matching problems. In this case, each line has a weight and we 
seek a perfect matching of maximum total weight. The treatment of weighted 
problems goes beyond the scope of this paper. So here we treat only the case in 
which all such line weights are 1. 

Let us agree that our task is to find a maximum matching, using LP. In order to 
do this, consider each matching A4 in a given graph G as a binary vector of length 
IE(G)I = m, indexed by the lines of G, in which one finds a 1 in the ith slot if and 
only if the ith line is found in matching M. Such a binary vector will be called a 
matching vector. One can then define the matching polytope of a graph G, 
denoted by M(G), as the convex hull of all these matching vectors. 

But the usual approach to solving a linear programming problem-as we have 
already seen in the brief description of the duality theorem above-is to optimize 
(in this case maximize) a linear function subject to a set of linear constraints. Let 
us set about formulating the problem this way. We shall begin by stating the 
following abstract linear program: 

maximize 1 - n (3.1) 

subject to X20 (3.2) 

Ax< 1, (3.3) 

where A is a matrix of (nonnegative) real numbers. 
Now let us begin to specialize. Let A = (a,,) denote the point-Zinc incidence 

matrix of graph G; that is, 

I 

1, 
a 

if r~ is an endpoint of line e, 
ue = 

0, otherwise. 

So now A has become an integer-in fact, (0, l)-matrix. 
The solutions of the above linear program will be called fractional matchings; 

the reason why will become clear in just a moment. 
Now let us suppose that among the vectors x yielding an optimum solution to 

the above LP, one has as its components only O’s and 1’s. Then the constraints 
(3.2) and (3.3) g uarantee that vector x is a matching and hence 1. x is just the 
number of lines in this matching. Thus our maximized objective function is just 
the cardinal@ of a maximum matching! 

Moreover, in the special case when graph G is bipartite, it can be proved that 
such an optimum solution vector x which is 0 - 1 valued always exists. 

But let us return to the inequalities (3.2) and (3.3) for a moment. The solutions 
to these inequalities form a polytope (or bounded polyhedron), called the 
fractional matching polytope. (In fact, a system of inequalities-or half spaces- 

like those above is one of IWO equivalent methods of defining a polytope; the 
other, via a classical result of Minkowski [125] and Weyl [170] is as the convex 
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hull of a finite number of vectors.) It is a well-known fact from LP that at least 
one optimum value of 1 *x will occur at a vertex of this polytope. But when G is 
bipartite, all such vertices are integral! This follows from the fact that when G 
is bipartite, every square submatrix of the constraint matrix A has determinant 0 
or f 1 [114]. A matrix possessing this property for each of its square submatrices is 
is called totally unimodulur. The result we seek then follows from a more general 
result due to Hoffman and Kruskal [76] which in our setting says that the 
constraint matrix is totally unimodular if and only if the corresponding polyh- 
edron has all integral vertices, for all integral right hand sides. 

But let us now drop the assumption that our graph is bipartite and return to the 
LP having constraints (3.2) and (3.3). By linear programming duality, we have a 
minimax result which in turn offers a ‘good characterization’, but a good 
characterization of what? The answer is: a good characterization of the value of a 
maximum fractional matching. But, sadly, we can no longer necessarily conclude 
that among the vectors x which maximize the objective function, i.e., that 
correspond to maximum (fractional) matchings, there is any at all which is 
integral! So what are we to do? 

Let us once again return to our paradigm LP above with constraints (3.2) and 
(3.3). To be sure, there are only a polynomial number of constraints given- 
namely (VG( + 1. Let us simply replace the constraint (3.2) with the stronger 
demand that: 

x is a 0 - 1 vector. (3.2)’ 

The resulting new integer LP has exactly the same number of constraints, but 
duality theory no longer applies and our minimax result is gone. (For example, if 
G = K3 then the optimal solution to this integer program is 1, but the solution to 
the linear program without the integrality constraint is 3/2.) Where can we turn? 

Fortunately, there is an alternative approach. It can be shown that if the 
integrality constraint is dropped, an integral minimax result is still obtainable, by 
adding more linear constraints! 

But what kind of constraints can we add to accomplish this and how many of 
them will do the job? To this end, let us define the matchingpolytope of graph G, 
denoted M(G), as the convex hull of all matchings in G. We know that such a 
polytope has an alternative definition in terms of a system of linear inequalities. 
We now seek to find such a system. Of course, it is natural to want to add as few 
additional constraints as possible in order to accomplish this task as well. 

Such an alternative description of the matching polytope in terms of constraints 
(3.2) and (3.3) and a set of additional constraints has been accomplished by 
Edmonds [34]. 

From this point on, details become quite a bit more difficult to deal with and 
we refer the reader to [114] or [143-1441 as just three possible sources. First, let 
us define the co-boundary of a point v of graph G denoted 6(v), as the set of 
lines incident with point V. (With a slight abuse of our LP terminology, for any 
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subset .I E E(G), we will also let J denote the characteristic JE(G))-vector of such 
a line set.) Using this notation, we can now replace each of the IV(G)1 constraint 
inequalities in (3.3) with the inequality: 

x - 6(v) s 1, for each point v E V(G). (3.3)’ 

Now let us define an entirely new set of inequalities called the blossom 
inequalities: 

x - E(S) s i((Sl - l), for all S c V(G), such that ISI 2 3 and odd. (3.4) 

Edmonds [34] proved that the matching polytope M(G) is equal to the set of 
vectors x satisfying (3.2), (3.3)’ and (3.4). 

In the case of the matching polytope, let us call a linear inequality essential if it 
is valid and is not a nonnegative combination of other valid inequalities. The set 
of feasible points in the polytope which satisfy an essential inequality with 
equality is called a facet. (We may say equivalently that a valid inequality ‘ * ’ 

induces a facet if and only if every valid inequality which holds with equality 
whenever * does, is a positive multiple of *.) Edmonds showed that the facets of 
the matching polytope are found among (3.2), (3.3)’ and (3.4). Somewhat later, 
Pulleyblank [142] in his Ph.D. Thesis (see also Pulleyblank and Edmonds [146]) 
showed precisely which of these facets are necessary for a unique minimal linear 
system sufficient to define M(G). 

The situation is even more complex when one passes from the matching 
polytope M(G) to the perfect matching polytope, PM(G), defined as the convex 
hull of perfect matchings of graph G. Clearly this polytope lies inside the 
matching polytope in general. In fact, a linear description for PM(G) can be 
obtained from that given above for PM(G) by appending one more linear 
constraint, namely: 1 -x = (V(G)(/2. H owever, one runs into trouble when 
seeking a unique minimal description of this polytope! (See [37, 1141.) 

But let us stop here and summarize a bit. We find that one can obtain integral 
minimax theorems for both maximum matching and perfect matching. But the 
catch is that in order to find descriptions of the corresponding polytopes, one is 
saddled with an exponential number of facets! This puts a crimp in our style if we 
want to design a polynomial algorithm for the maximum matching or perfect 
matching problems based on a general linear programming algorithm ! In fact, a 
polynomial LP algorithm was unknown until the development of the so-called 
Ellipsoid Algorithm due to Khachian [89]. Even then, one requires a polynomial 
time subroutine for testing whether an arbitrary point violates any constraint. 
Fortunately, such a subroutine algorithm has been developed. (See 11301 and also 
[71]. See also Remark 1 at the end of this paper.) 

But it remains an open question to decide which graphs G have the property 
that their perfect matching polytope PM(G) possesses only a polynomially 
bounded number of facets. Gamble [65] has constructed a family of planar graphs 
G for which PM(G) have exponentially many facets. On the other hand, he has 
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shown that a rather widely studied family of planar graphs called Hulin graphs 
always do have a polynomial number of facets. Hence the perfect matching 
problem can be solved on Halin graphs without further ado simply by applying 
any polynomial LP algorithm. At this time, that would be either the Ellipsoid 
method of Khachian or the more recent algorithm of Karmarkar [81]. 

In ending this section, we hasten to point out that there are in fact polynomial 
algorithms for maximum (and therefore also perfect) matching which are based 
upon ideas of linear programming other than algorithmic ideas. The most famous 
of these is undoubtedly Edmonds Blossom Algorithm. (See [33] and also [114].) 
We shall return to algorithmic questions in the final section of this paper. 

Returning briefly to our Chronology, it should be noted that 1958 saw the 
appearance of Berge’s first book on graph theory [7]. This was the first book 
dealing with the discipline to have appeared since that of K&rig some twenty-two 
years before. The Berge book was published first in French, but two years later, 
the year 1960 saw, for the first time, a graph theory book in English-Ore’s AMS 
Colloquium volume [129]. Then in 1962, Berge’s volume appeared in English 
translation [8]. With the appearance of these two books, graph theory began to 
be much more widely studied by students outside continental Europe. 

4. On the number of perfect matchings 

Suppose a graph G has at least one perfect matching. Exactly how many does it 
have? Is there a polynomial algorithm to count them? 

Such questions have application in the real world. For example, this question 
arises in a problem in crystal physics-ounting the number of dimers on a 
rectangular lattice. We shall return to this application below. 

But first, some bad news. In 1979, Valiant proved that counting the number of 
perfect matchings in a graph, even if it is bipartite, is #P-complete. (See [164] for 
the definition here.) Any problem in the class #P is at least as hard as any 
NP-hard problem. Hence it is highly unlikely that a polynomial algorithm exists 
for this exact counting problem. 

So what can be done? We will explore three main avenues of research in this 
regard. Let us denote the number of perfect matchings in any graph G by (P(G). 

The first direction of investigation has been to determine interesting subclasses 
of graphs for which Q(G) can be polynomialfy determined. The second area of 
research deals with bounding e(G). Finally, the third deals with finding eficient 
approximations for Q(G). We will deal with the first two areas in this section and 
defer treatment of the third to Section 6 on algorithms. 

Motivated by the dimer counting problem mentioned above, Kasteleyn [87-881 
developed an algorithm for determining @(G) for planar graphs. He discovered 
that one can always orient the lines of an (undirected) planar graph in a certain 
way, so that this orientation can then be used to polynomially determine the 
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number of perfect matchings. For a rather complete treatment of Kasteleyn’s 
method, we refer the reader to [114]. For both Kasteleyn’s method and more 
recent extensions thereof, here we will follow the excellent summary of Vazirani 
and Yannakakis [167-1681. 

Our discussion now reverts back to general (i.e., not necessarily planar) 
graphs. If G is any graph and C a cycle in G, call C good if it has even length and 
G - V(C) has a perfect matching. Orient G arbitrarily to obtain a directed graph 
G, An even cycle is said to be oddly oriented (with respect to the given 
orientation) if when one traverses the cycle (in either direction) an odd number of 
lines are traversed in the direction of the orientation. Orientation G of graph G is 
then called a Pfaffian orientation if every good cycle in G is oddly oriented. Note 
that not all graphs have Pfaffian orientations. 

Now how does such an orientation help one to determine G(G)? Let G be a 
Pfaffian orientation of graph G and let A(G) denote the symmetric it x n 

adjacency matrix of G. Modify A(G) to obtain a second matrix A,(@, the 
so-called skew adjacency matrix of G as follows: 

{ 

+l, if (21i, Vj) E E(G), 

As(e),j = -1, if (Vj, Vi) E E(G), 

0, otherwise. 

It can then be shown that if the orientation is Pfaffian, 

Q(G) = Vdet(A,(G)). 

Since evaluation of a determinant is well known to be polynomial, we have a 
polynomial scheme for computing a(G). 

The problem, of course, lies in finding a Pfaffian orientation. As we mentioned 
above, Kasteleyn gave a polynomial procedure for finding one in any planar 
graph. Let us call a graph KS,,-free if it contains no subdivision of the complete 
bipartite graph K3,3. By the classical theorem of Euler, we know that all planar 
graphs are X,,,-free. Little [108] extended Kasteleyn’s result for planar graphs by 
showing that every K 3,3-free graph has a Pfaffian orientation. His proof implicitly 
also gives a polynomial procedure for obtaining such an orientation. More 
recently, V.V. Vazirani has in turn extended Little’s result by showing that, in 
fact, there is even an NC algorithm for obtaining a Pfaffian orientation in a 
Ks3-free graph. (For more about NC algorithms, see Section 6 below.) 

Let us return once more to Pfaffians and graphs in general. In fact, one can 
pose three (at least formally) different questions here: 

(1) Does a given graph G have a Pfaffian orientation? 
(2) Given an orientation 6, is it Pfaffian? 
(3) Given a graph G, find a Pfaffian orientation 6. 
Observe that the first two questions are decision questions, while the third is a 

search question. The complexity of all three questions is presently unknown. 
Problem (2) is in co-NP because we can show that an orientation is not Pfaffian by 
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exhibiting a good cycle which is not oddly oriented. Moreover, recently it has 
been shown [167-1681 that by a basic idea of Lov&z [112] problems (1) and (2) 
are polynomial-time equivalent. Hence problem (1) is also in co-NP. 

In the case when the graph G is biparrire, there is an interesting connection 
between problems (1) and (2) and a fourth problem which has been studied by 
Seymour and Thomassen [156,158], among others. 

(4) Given a directed graph G’, does it contain a directed cycle of even length? 
Vazirani and Yannakakis [167-1681 have proved that problem (4) is 

polynomial-time equivalent to problems (1) and (2). 
We will now turn our attention to the second area of investigation mentioned at 

the beginning of this section--bounding the number of perfect matchings. 
In the special case of regular bipartite graphs, we have some interesting 

bounds-both upper and lower-on @D(G). Suppose G is a k-regular bipartite 
graph on 2n points. We state the bounds in the following combined form: 

n!(k/n)” c Q(G) < (k!)“‘! 

The lower bound follows from the famous ‘conjecture’ of van der Waerden 
[169] about doubly stochastic matrices which was proved nearly simultaneously, 
but independently, by Falikman [47] and EgoryEev [39-401. The upper bound 
follows from another more general permanent inequality conjectured by Mint 
[124] and proved by Bregman [21]. 

For a brief discussion of each of these inequalities, see [114] and for a much 
more thorough one, see Schrijver [154]. 

The balance of this section will report on results to date on lower bounds for 
Q(G) for general graphs. In connection with this, we should mention that over 
the years, several methods for decomposing graphs in terms of their maximum, or 
perfect, matchings have been developed. The first of these due independently to 
Edmonds [33] and Gallai [62-631 described a decomposition in terms of the 
maximum matchings. The procedure can be executed in polynomial time; that is a 
corollary of Edmonds’ Blossom Algorithm to be discussed in more detail in 
Section 6. The problem with the Gallai-Edmonds decomposition, if one may say 
so, is that gives no information in the case when the graph in question has a 
perfect matching. But others were already at work on this case. Indeed Kotzig 
[99-1011 had already begun work on a decomposition of graphs with perfect 
matchings; unfortunately his work remained largely unknown due to the fact that 
the results appeared in Slovak. In [109], Lovasz, then working on his Ph.D., 
extended the work of Kotzig in this area. Subsequently, Lovasz and Plummer 
[113] and Edmonds, Lov&z and Pulleyblank [37] further developed this 
decomposition. It had now come to be called the brick decomposition theory for 
graphs with perfect matchings. A somewhat simpler approach leading to the same 
terminal decomposition was begun in [37] and developed more fully in [112] now 
bears the name tight set decomposition theory. We will now proceed to describe 
how to obtain lower bounds on Q(G) via the tight set decomposition approach. 
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Unless otherwise specified, let us assume that the graph G in question has an 
even number of points. Also, since we seek a lower bound on a(G), we will lose 
nothing by assuming that our graph G has the property that every line lies in a 
perfect matching. Such graphs are called 1-extendable or matching covered. 

Let us begin by recalling the description of the matching polytope M(G) in 
Section 3. In particular, we saw that one could obtain a description of the perfect 
matching polytope PM(G) from constraints (3.2), (3.3)‘, (3.4) and one additional 
linear constraint, namely, 1 -x = IV(G)1/2. It turns out that there is alternate 
description of this polytope which lends transition to our discussion in the rest of 
this section. 

A cutset of lines C in a graph G is called an odd cut if C is a line cutset 
separating two point sets of odd cardinality. The two odd sets separated by cut C 
are called the shores of the cut. An odd cut is said to be trivial if one of its shores 
is a singleton. It can be shown (see Edmonds [34]) that the perfect matching 
polytope can be described by the following constraints involving odd cuts: 

X’,O (4.1) 

X - C = 1 for C a trivial odd cut (4.2) 

x - C 3 1 for C a non-trivial odd cut (4.3) 

We still need several more definitions. A cut is tight if every perfect matching 
contains exactly one line of the cut. Clearly, then, every tight cut is odd and 
trivial tight cuts are just the stars at each point of G. 

Now let graph G be called bicriticul if for every choice of distinct points u and v 
in G, graph G - u - v has a perfect matching. A 3-connected bicritical graph is 
called a brick. Bricks form one of two basic classes of ‘building blocks’ which we 
are about to develop for a canonical decomposition procedure for every 
1-extendable graph. 

Our second class of building blocks are the so-called braces of G. A bipartite 
graph G =A U B is a brace if for every subset X CA with 0 < (Xl < /A( - 1, 
Ir(x)] 3 lx]+ 2. 

Note that by definition, no bicritical graph can be bipartite, and hence bricks 
and braces form disjoint classes of 1-extendable graphs. The close connection 
with tight cuts lies in the fact that a 1-extendable graph is a brick or a brace if and 
only if it has no non-trivial tight cuts. This result is far from trivial. The 
left-to-right proof is to be found in a paper of Edmonds, Lovasz and Pulleyblank 
[37] and, in fact, forms one of the key results of that paper. It depends heavily on 
the polyhedral approach and the details will be omitted here. The converse is 
proved in 111121. 

Now suppose that C is any nontrivial tight cut in a 1-extendable graph G. If the 
two shores relative to cut C are .S, and S,, then denote by G1 and Gz the two 
(strictly smaller) graphs obtained from G by contracting S, and S, to single points 
respectively. It can be proved that both Gi’S are 1-extendable. Hence this 
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procedure can be repeated. We are only forced to stop when one of the 
contracted graphs we produce is either a brick or a brace. Keep a list of the bricks 
and braces so formed. Lovasz calls this procedure a tight cut decomposition 

procedure and the list of bricks and braces obtained, the result of the procedure. 
The reader will recognize immediately that in general one has quite a bit of 

freedom in this procedure, depending upon the sequence of tight cuts chosen. 
The truly amazing thing about this routine is that the final list of bricks and braces 
is independent of the sequence of tight cuts chosen! This deep result was really 
proven in two stages. In [37], the number of such terminal graphs was shown to 
be invariant. Then five years later, Lovasz [112] proved that actually the terminal 
graphs themselves were invariant. 

Where is all this leading, you may well ask? Let r(G) denote the maximum 
number of perfect matchings (perfect matching vectors) in G which are linearly 
independent over R , the real numbers. Then it can be shown [37] that, if G is any 
1-extendable graph with it points, m lines and P(G) bricks in its final list resulting 
from a tight set decomposition procedure, then: 

r(G)=m-n+2-P(G). 

Since Q(G) is at least as great as r(G), we have the lower bound we seek. In 
the special case when the graph G we start with is itself a brick, we obtain the 
bound @(G) 3 m - n + 1. This result can then be used to obtain another bound 
for an arbitrary bicritical graph. In [113] it was proved that if G is bicritical, then 
@(G) 2 n/4 + 2 and conjectured that, in fact a(G) L n/2 + 1 for these graphs. 
This conjectured bound can now be derived from the rank equation for a brick 
and an inductive argument. 

The procedure for computing r(G) can be done in polynomial time since the 
tight set decomposition procedure can be so carried out. (This too is far from 
obvious, based upon our sketchy treatment of the topic.) 

Even more evidence that the study of bricks and braces may well be the secret 
to counting perfect matchings has been provided very recently by V.V. Vazirani 
and Yannakakis [167-1681 who have shown that for an arbitrary (1-extendable) 
graph G, G is Pfaffian if and only if all its bricks and braces are Pfaffian. 

It is probably not surprising to learn that the complexity of the Pfaffian 
orientation problem for bricks remains open. 

Another approach to learning more about bricks has been pursued by the 
author. Motivated by the concept of a 1-extendable graph, we make the following 
definition. Let k be an integer such that 0 < k <n/2. A graph G (with a perfect 
matching) is k-extendable if every set of k independent lines extends (i.e., is a 
subset of) a perfect matching. In [136] it was proved that if G is a 2-extendable 
and not bipartite, then it is bicritical. It was also shown that every k-extendable 
graph is also (k - 1)-extendable as well as (k + 1)-connected. It then follows that 
every 2-extendable graph is either a brick or a brace. In addition, it also follows 
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immediately that as k increases, the k-extendable graphs form a nested sequence 
of graph families. 

We have studied the interaction of k-extendability with a number of other 
graph parameters, for example, toughness [139] and genus [137-1381, to name 
but two. A survey of results in this area can be found in [140]. 

In bringing this section on bounds to a close, we would like to mention some 
lower bound results which can be obtained by more elementary means than those 
of the tight set decomposition. On the other hand, they do follow, for the most 
part, from the tight set approach. 

Let us now agree to seek a lower bound for @(G) depending upon the 
connectivity of G. Again, as above, we will assume that G has a perfect matching. 

One of the early results in this direction was obtained by Lovbz [109]. He 
proved that if a graph G with a perfect matching is k-connected and not bicritical, 
then (P(G) 2 k!. At the time, the result piqued the fancy of several investigators, 
who found it rather counterintuitive that the bicritical graphs should be those with 
‘few’ perfect matchings. After all, trivially, bicritical graphs are 1-extendable. 
But, we digress. 

Following Bollobas [lo, p. 621, define f(k) to be the minimum value of @(G) 
taken over all k-connected graphs G having at least one perfect matching. One 
can show that the Lovasz result above can be used to obtain a lower bound on 
f(k) due to Zaks [173-1741. Zaks’ result says that f(k) 2 k!! = k(k - 2) 
(k - 4) . . . . If k is odd, the complete graph Kk+* serves to show that the above 
bound for f(k) is sharp. (In fact, it may be shown that Kk+l is the unique 

extremal graph in this case.) If k is even, however, the situation is less clear, but 
more interesting. In this case, Mader [118] has shown that the extremal graph is 
again unique. These extremal graphs S(k) are obtained by deleting a perfect 
matching from the complete graphs Kk+2. 

Curiously, however, a closed form for f(k) in this case is unknown. But one 
does have a recurrence relation for f(k) for these extremal graphs. (See also 
Bollobas [lo].) 

Later, Mader [119] was able to strengthen the above results by dropping the 
assumption that G be k-connected, and replacing it with the weaker assumption 
that G be 2-connected and have minimum degree at least k. 

Finally, one can combine the tight set bound of n/2 + 1 for bicritical graphs 
with the Lovasz ‘k!’ theorem above to prove that any sufficiently large 
k-connected graph G having a perfect matching must have Q(G) 2 k!. 

5. On matchings in random graphs 

Suppose among all the graphs on an even number of points, we select one ‘at 
random’. How likely is it to contain a perfect matching? Failing that, what is the 
expected size of a maximum matching ? Such statements, though decidedly 
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imprecise at this stage, are nonetheless, intuitively appealing. The idea of selecting 
a graph ‘at random’, or selecting a ‘random’ graph has its mathematical roots well 
back into the 1930’s, according to Bollobas [14], but the concatenation of the two 
concepts of random graph and matching seems to have been first appeared in the 
pioneering series of papers by Erdos and RCnyi [42-461. 

Let it denote a fixed integer; we shall be considering graphs having IZ points. 
There are quite a number of models of random graphs to be found in the 

literature. But among these, two have received the most attention by researchers. 
The first of these two we define as follows. Given a p, 0 <p < 1, let %{n, p} 

denote the set of all graphs with point set V = (1, 2, . . . , n} in which each line is 
present with probability p. Thus if Go denotes any fixed graph with point set V 
having m lines, then in this model, Prob(G,) =p”(l -P)~-~, where N = (y). 

The second model of random graph which we now introduce will be the one 
most often used to state the results of this section. Let %((n, M) denote the set of 
all graphs having point set V = (1, 2, . . . , n}, having M lines in which each graph 
has the same probability. In other words, letting N = (i), we have 0 < M s N, the 
class %((n, M) contains (E) members (labelled graphs) and every member occurs 
with equal probability (;)-I. Normally, M is a function of rr and is thus often 
denoted M = M(n). A typical member of class %(n, M) will be denoted by G,,,. 
For an arbitrary graph property Q we will say that a typical member of our 
probability space has property Q if the probability that a random graph on rz 
points has property Q tends to 1 as n -+ cc). We also say, in this case, that almost 
every (a.e.) graph has property Q. A graph property Q is said to be monotone if 
whenever a graph G1 has property Q and G, is a subgraph of G2, then G2 also has 
property Q. For example, ‘has a perfect matching’ is a monotone property. 
(Remember: the number of points n is fixed.) 

Next we need the concept of a threshold function. Let Q denote a monotone 
property. A function M * (n) is a threshold function for property Q if 

M(n)/M * (n)-, 0 implies that almost no G,,, has Q, 

and 

M(n)/M * (n)-, w implies that almost every G_,, has Q. 

It is a fact, proved surprisingly recently, [Ml, that for every monotone 
property, such a threshold function must exist. 

Erdiis and RCnyi were the first to suggest the following point of view toward 
random graphs. Start with the graph having no lines and add lines, one by one, 
selected at random; then try to determine how the graph ‘evolves’ in doing so. It 
is one of the great accomplishments of random graph theory that so much can be 
said about this process. 

We begin with a graph G,, having n points and no lines. One line is added at 
random to obtain the graph G1, another is added at random to obtain G2, etc. In 
general, for 0 6 t =G N, let G, be the random graph obtained in this way. 
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When one adopts this point of view, it is useful to define another parameter 
closely associated with the threshold function, namely the so-called hitting time of 
monotone property Q. We define the hitting time of property Q as: 

ro=min{t>O(G,hasQ}. 

Then M * (n) is the threshold function of Q if whenever o(n)+ m, the hitting 
time is almost surely between M * (n)/@(n) and M * (n)@(n). In other words, 

Prob{M * (n)/o(n) < ro(n) < M * (n)o(n)} --j 1. 

(Here o(n) is any arbitrary function of n.) 
Although we are mainly interested in matchings, we cannot resist the 

temptation to devote a paragraph to ‘taking a stroll’, so to speak, with our 
random graph as it evolves by this random addition of lines, (Our stroll will be a 
mathematically cavalier one; for more justification and rigor, see [14].) 

Of course, our beginning graph contains no lines and hence has n components. 
As lines are randomly added, components begin to form. Although much can be 
said about what happens in the range 0 s M =S n/2, we will begin our observations 
only at this point. What now begins to happen is one of the great surprises to 
neophytes in random graph theory! One might think that components grow more 
or less at the same rate as we proceed. But quite the opposite is the case. In fact, 
there now begins the emergence of a ‘giant component’ which ultimately swallows 
up all the remaining components. 

When t reaches [n/2 + 2(log n)1’2n2’3], the graph G, has a unique component of 
order at least nz3 and each of the other components has at most ?~*‘~/2 points 
each. As t increases further, i.e., as t 2 c0n/2, where c,, > 1 is a constant, every 
remaining small component contains at most one cycle. Moreover, the order of 
these small components is o(logn). Should it happen that for any function w(n) 
such that o(n)+ cQ, that t 2 o(n)n, then every component of G,, other than the 
giant component, is a tree. 

The next point of interest to us along this evolutionary trail occurs at 
(n/2)logn. When t reaches this point, the giant component has succeeded in 
swallowing up all the other components (largest ones first!) and G, becomes 
connected. This connectivity hitting time was first obtained by Erdiis and RCnyi in 
[42]. But in two subsequent papers ([45-46]), these same two authors were to 
prove two more very surprising results. First they proved that this same hitting 
time marked the point where the evolving graph G, has minimum degree 1 and 
this in turn was the same point where (provided n is even), graph G, has a perfect 
matching! 

Since the beginning of this Chronicle on matching, we have often differentiated 
between the bipartite and nonbipartite cases. We might do the same here. Hence 
one might ask if one changed the probability space to one that was composed 
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solely of random b@rrtite graphs, if the above triple coincidence of hitting times 
might change. The answer is ‘no’! (See [14].) 

If one reflects a bit upon the fact that the hitting times for G, to have a perfect 
matching (when n is even) and that for G, to have minimum degree 1 coincide, it 
seems that the (probabilistic) obstruction to a random graph having a perfect 
matching is that it has points of degree 0. So what if one restricts the random 
graphs G,,M to those having minimum degree at least l? Then it is not too 
surprising that the threshold drops. In fact, roughly speaking, it falls from n/2 
logn to (n/4)(logn) + (n/2)log logn. (See [16].) (Of course, we still assume n 
even here. ) 

Let us pursue this line of enquiry one more step. Let us further restrict the 
minimum degree of our random graphs G,,, to be at least 2. Denote these 

(2) random graphs by G+,. An open problem posed by Frieze [53] is the following. 
Does c > 1 imply that a.e. G,,,, (2) has a matching of size [n/21 ? 
He has subsequently made some progress on this problem by showing that in 

the special case when the graphs are bipartite with minimum degree at least 2, 
have an even number of points, and constant c 2 2, the random graph almost 
surely has a perfect matching [54]. The proof, however, of this result currently 
requires in excess of sixty pages! 

We would also like to note that there is a random graph result akin somewhat 
to the results in Section 4 dealing with the number of perfect matchings in a 
k-connected (respectively, minimum degree = k) graph. Bollobas and Frieze [16] 
proved that as a random graph on an even number of points evolves, the hitting 
time for the minimum degree to be ak is the same as the hitting time for the 
graph to have k line-disjoint perfect matchings. 

Let us move on to yet another probability space-that of r-regular graphs. 
Suppose that r and n are positive integers such that 3 < r <n and that rn = 2m is 
even. Let %(n, r - reg) denote the set of all r-regular graphs on the point set 
v = (1, 2, . . . ) n}. (Since m is even, we know this class is not empty.) Assign 
each member of this class the same probability. It then follows from a result of 
Bollobas [14, Theorem 321 that a.e. r-regular graph is r-connected. But it is also 
known [l-5] that every r-regular r-connected graph on n points contains [n/2] 
independent lines. Combining these results, we see that a.e. Gn,r_reg with an even 
number of points has a perfect matching. 

Our final example of a random graph probability space which has been studied 
with respect to perfect matchings is the so-called k-out model. It is yet another 
attempt to deal with the fact that points of degree 0 seem to be the blocking 
factor for the existence of a perfect matching in our first two random graph 
models studied in this section. 

Once again let V = (1, 2, . . , n} and let 9(n, m) denote the set of directed 
graphs on point set V in which each point v E V has outdegree m. Choose 
@n, m) uniformly at random from 9(n, m) and then form the undirected graph 
D(n, m) by ignoring the orientation of the lines of d(n, m). Frieze [52] proved 
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that when n is even: 

lim Prob(D(n, 1) has a perfect matching) = 0, 
n-m 

while 

lim Prob(D(n, 2) has a perfect matching) = 1. 
n-m 

For most of the terminology and many of the theorems of this section, we have 
depended heavily upon the encyclopedic book of Bollobas [14]. For gentler 
introductions to the subject of random graphs, see [ll, 1311. For survey articles, 
see [12,70,13]. 

6. Matching algorithms 

We will only be interested in polynomial algorithms (at least in the sequential 
machine setting) since the mathematical community has essentially unanimously 
agreed with Edmonds point of view expounded in his ground-breaking paper on 
non-bipartite matching [33] that polynomiality should be the crucial criterion for 
‘goodness’ of algorithms. With this polynomiality criterion in mind, however, it is 
difficult to trace the early history of matching algorithms. 

By far the most fundamental idea in the area of matching algorithms-the 
augmenting path-has already been introduced in Section 2. But augmenting 
paths were known to Petersen, Konig, Egervary and probably others long before 
anyone really cared about algorithms-be they ‘good’ or ‘bad’! 

Historically speaking, as we know, bipartite matching came first. We can say 
that although K&rig’s proof of his Minimax Theorem involved alternating paths, 
it was a proof by contradiction; it contained no algorithm as such. It seems that 
we must wait until the mid-%% for the true beginning of our algorithmic tale. In 
1956, M. Hall [72] published an algorithm for constructing a system of distinct 
representatives, but so far as we know, no one bothered to analize its complexity. 
Shortly before that, Kuhn [104] who had studied carefully the methods of Konig 
and Egervary, developed an algorithm for the Assignment Problem. (The 
Assignment Problem is a generalization of the bipartite matching problem in 
which weights are assigned to the lines of the graph.) His routine was polynomial, 
but neither he nor anyone else, as far as we know, made this observation at that 
time. It was in this paper that the term ‘Hungarian Method’ was first used. To his 
credit, Kuhn attributes the algorithm to the seminal ideal of K&rig and Egervary 
set forth some twenty-five years earlier. In essence, Kuhn showed that a 
primal-dual algorithmic idea of Egervary could be used and termination at 
optimality followed from K&rig’s Minimax Theorem. 

In their book [50], published in 1962, Ford and Fulkerson showed that their 
labeling algorithm for Max-flow Min-cut could be adapted to solve the Assign- 
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ment Problem, among others. Still no mention of polynomiality, but the authors 
did mention that in the case of integral capacities, their labeling method would 
terminate in a number of steps no greater than the maximum of the line 
capacities. They even gave an example of a network with irrational capacities 
such that their labeling process would not even terminate! In this example, the 
labeling algorithm produced an infinite number of flow-augmenting paths which 
did, however, converge. On the other hand, the limit of convergence was far 
from the value of a maximum flow. 

Not until some ten years later, did Edmonds and Karp overcome these 
difficulties [36]. They pointed out that in the Ford-Fulkerson labeling process 
there was a potentially dangerous ambiguity in the labeling and hence in the 
choice of a flow-augmenting path. Using the simple, yet ingenious, method of 
‘first-labeled first-scanned’ in the labeling procedure, Edmonds and Karp were 
able to show that not only did the algorithm converge to a maximum flow for 
arbitrary real capacities, but that the number of steps to termination was 
polynomial only in the number ofpoints of the network. In other words, running 
time was independent of the capacities. 

This, coupled with the fact that Ford and Fulkerson in their book [50] had 
shown that bipartite matching could be done with their labeling algorithm, 
showed explicitly for the first time that there was a bipartite matching algorithm 
which was polynomial in the number of points in the input graph. 

At about the same time that Edmonds and Karp obtained their result, Soviet 
graph theorist, Dinic, published a similar improvement [32]. From that day to the 
present, there has been a stream of successive improvements in efficiency of flow 
algorithms. We will not pursue this further, since flows are not central to our 
mission. Instead, we direct the interested reader to [114, Chapter 21 and to the 
even more recent survey on flow algorithms [67]. 

The flow algorithm of Edmonds and Karp is O(n’). In the year following the 
publication of the Edmonds-Karp flow algorithm, Hopcroft and Karp [77] 
designed an O(mfi) bipartite matching algorithm. This remains the best time 
bound for bipartite matching today. 

But what about nonbipartite matching? It was not until 1965 that we had any 
polynomial algorithm for general (i.e., nonbipartite) matching at all! In that year, 
Jack Edmonds published two papers which were to profoundly affect the study of 
matching theory. In the first [33], he developed the first polynomial algorithm for 
nonbipartite matching, the now-famous blossom algorithm. In the second, he 
developed the polyhedral approach to matching and employed it to develop a 
polynomial algorithm for weighted nonbipartite matching. With the benefit of 
hindsight, it is difficult to overestimate the importance of these papers. In [33], in 
addition to the important development of a polynomial algorithm for general 
matching, Edmonds expounded at some length on ‘efficient’ algorithms and 
offered polynomiality as a measure for such efficiency. Some five years later, 
Cook [24] in an equally monumental work, laid the foundations for modern-day 
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algorithmic complexity with the introduction of the classes P and NP and the 
discovery of the first NP-complete problem. (As the reader undoubtedly knows, 
‘P’ stands for ‘polynomial’, or in contrast to NP, we should really say that class P 
stands for the class of decision problems for which there is a deterministic 
polynomial algorithm. Recall that P and NP were introduced in Section 2 of this 

paper. ) 
The reader may well have noted by this time that we have not treated weighted 

matching so far. In fact, we will not do so. Although it is an important branch of 
matching theory, due to space limitations, we have elected not to treat it in this 
paper. Fortunately, however, there are several sources to which we can direct the 
reader’s attention. See [114,145,144,68,60]. It should be noted, however, that 
we have laid a fair amount of the groundwork for weighted matching in Section 3 
by introducing the concepts of matching polytopes and their facets. 

But let us return to Edmonds’ algorithm. We will give only a superficial 
description of how it works. 

Clearly Edmonds was motivated by the long-standing notion of augmenting 
paths. Suppose we begin the procedure with a given matching M. If M happens to 
be perfect, there is nothing to do, so we halt. So suppose that the set S of points 
not covered by M is not empty. We then construct a forest F such that every 
connected component of F contains exactly one point of S, every point of S 
belongs to exactly one component of F and every line of F which is at an odd 
distance from a point in S belongs to matching M. It follows that every point of F 
which is at an odd distance from S has degree 2 in F. Such points will be called 
inner points and all other points in F will be called outer. (Note that the points of 
S are outer.) Forest F is said to be M-alternating. 

The idea is to try to enlarge F as much as possible. If we find an outer point x 
adjacent to a point y not in F, then y must have a neighbor z such that line yz is 
in M (or else y would have already been in the forest) and we can then enlarge 
forest F to a larger forest F’ = F + xy + yz which is clearly also M-alternating. 

If F has two outer points n and y which belong to different components of F 
and which are adjacent in G, then the roots of these two components are 
connected by an M-augmenting path joining the respective roots of the two 
components and using the line ny. So we can augment M to a matching M’ such 
that IM’1 = IMJ + 1 and we begin again with the new larger matching. 

Suppose that every outer point has only inner points as neighbors. Then we 
claim that the matching M at hand is a maximum matching. For suppose that the 
forest F contains a inner points and b outer points, Clearly, b -a = (SI. 
Moreover, if we delete all the inner points of F from graph G, the remaining 
graph will contain all the outer points of F as isolated points. At this point we 
appeal to Berge’s deficiency version of Tutte’s l-factor Theorem. Let the defect of 
any matching M denote the number of points of G not covered by M. Let d1 
denote the minimum taken over the defects of all matchings in G. On the other 
hand, let d2 = max{cO(G - X) - 1x1 ( X E V(G)}. Then Berge’s result states that 
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dr = d2. Let Xi denote the set of all inner points relative to matching A4 and as 
above, assume that no two outer points are adjacent. Then M is a matching with 
defect =JSJ, so d, c ISJ. On the other hand, ISI sc,(G -X,) - lX;l sd,. Thus 
it follows from Berge’s theorem that M is a maximum matching. 

So far so good, but the careful reader will see that we have omitted treating 
precisely one case. What if forest F has two outer points x and y in the same 
connected component (tree) of the forest which are adjacent in G? Thus an odd 
cycle of a particular type is formed; namely, one rooted at an outer point and 
having the property that all the other points of the cycle are covered by lines of M 
belonging to the cycle. Such an odd cycle is called a blossom. What can we do 
with blossoms? 

Edmonds answer: Shrink them! If blossom B is shrunk to a single point and the 
resulting smaller graph is denoted by G’, and if M’ = M - E(B), then the crucial 
‘Cycle Shrinking Lemma’ says that M’ is a maximum matching in G’ if and only if 
M is a maximum matching in G. 

Thus we have an algorithm which terminates in a maximum matching. 
Moreover, the geometry of the steps is appealingly simple. That’s the good news. 
The bad news is that the data structures necessary to implement Edmonds 
algorithm are somewhat complicated and hence the time bound is not clear. The 
first careful analyses for running time seem to have been carried out by 
Pulleyblank [142], Gabow [N-57] and Lawler [10.5] each of whom obtained an 
implementation of the algorithm which was O(n3). 

Since 1976, a number of successive improvements have been made both in the 
simplicity of the data structures involved and the time bound. At the present 
time, the fastest known cardinality matching algorithm is due to Micali and 
Vazirani [123], and curiously enough, it has the same polynomial time bound as 
that of Hopcroft and Karp for bipartite graphs. Unhappily, they must still deal 
with blossoms. Indeed, it remains to be seen if one can design a polynomial 
matching algorithm which remains competitive with Micali-Vazirani, but some- 
how avoids blossoms and their attendant trouble. It is interesting to note that 
there is an O(n3) maximum cardinality matching algorithm due to Witzgall and 
Zahn [171] which avoids shrinking and its ensuing problems. Lovasz [114] has 
found a different blossom-free matching algorithm which is based upon the 
Gallai-Edmonds decomposition procedure discussed in Section 4. His algorithm 
is 0(n4), but it is unknown to the author whether or not implementation of this 
algorithm has ever been undertaken. 

So far, all our algorithmic discussions have dealt with the sequential approach. 
Although we want to avoid such technicalities as much as possible in this paper, 
one can safely assume that our algorithms have been carried out on a random 
access machine (RAM). For those who are interested in such matters, see [ 11. 

In the last twenty years or so, the world of computing has seen tremendous 
strides in the miniaturization of chips and a steady decrease in the cost of their 
production. Such real world considerations have served to buttress the case for 
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developing parallel computers in which large jobs can be subdivided into smaller 
tasks and farmed out to individual processors. The processors can then perform 
their assigned tasks ‘in parallel’ and communicate their answers to a central 
processor for a final output. 

Formidable problems arise immediately, however. What type of architecture 
should be adopted? In other words, how should the individual processors be 
arranged and linked together in order to achieve ‘optimal’ efficiency? How does 
one avoid network ‘gridlock’? That is, how can the entire parallel computation be 
sychronized? How can a given problem be efficiently subdivided into smaller parts 
which can then be effectively done in parallel and then be combined to produce 
an answer? 

Awesome problems indeed! And, we hasten to add, far from solved in most 
senses of the word. But how does all this intersect with matching theory? 

We will give a rough overview of the present state of affairs vis-a-vis parallel 
matching problems. We shall avoid discussion and comparison of various parallel 
computer models. In this matter, let it suffice to say that we will adopt as our 
model the standard parallel random access machine-or PRAM-and one can 
read about PRAMS in [51] as well as many other places. A particularly nice 
overview of various models of PRAMS from the point of view of the mathe- 
matician can be found in the new survey of parallel algorithms by Karp and 
Ramachandran [84]. In particular, another very important model of parallel 
computation is the Boolean circuit model. It is especially useful for defining 
certain complexity classes for parallel computation. But due to space limitations, 
we shall not deal with it here. Again we refer the reader to [84] and, for the most 
complete and up-to-date treatment of circuit models for parallel computation, to 
[20] in the same volume. 

When switching from sequential to parallel computation, some new philosophi- 
cal questions immediately arise. (Well, philosophical, yes, but also very easily 
translatable into cold hard cash!) 

Of course, any problem which can be solved sequentially can trivially be solved 
in parallel, but the important question is: can it be done faster in parallel? For 
that matter, what should ‘faster’ mean here? And what about the cost of 
achieving such speed-up? How many processors will be needed to achieve a given 
speed-up factor? 

Here is another question which we find particularly intriguing. Are there graph 
problems which are somehow ‘inherently sequential’ in the sense that no parallel 
algorithms can be found which will offer a significant speedup in computation 
time? Although we are being deliberately vague here with the phrase ‘inherently 
sequential’, let us illustrate with a simple problem from matching. Suppose we 
wish to find a maximal matching in a graph. (That’s right; a maximal matching, 
not a maximum matching!) Such a task is a triviality in the sequential sense. 
Choose any line. Delete its endpoints. Choose any line in the remaining graph 
and add it to the first. Delete its endpoints and continue in this manner until there 
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are no lines left to choose, Presto! We have a maximal matching-and in 
polynomial time. But how can one do this (nontrivially) in parallel? 

Before we return to this and other matching questions, we must lay some 
groundwork. The reader will recall our earlier discussion of the sequential 
complexity classes P and NP. We now introduce what has become the most 
widely studied parallel complexity class. It is called NC, the letters corresponding 
to the abbreviation ‘Nick’s Class’ after Nick Pippenger who first studied it [135]. 
Class NC consists of those problems solvable in ‘polylog’ time using a polynomial 
number of processors. (Here ‘polylog’ refers to polylogarithmic time, that is to 
say, in time polynomial in the logarithm of the size of the input.) Clearly, NC lies 
in sequential class P. Could it possibly be that NC = P? This is an open question. 

Actually, a finer classification than just NC has been introduced and studied as 
well. It focuses upon the degree of the polynomial in the polylog time part of the 
definition. More particularly, let us define class NC’ to be the class of problems in 
NC in which the polynomial in the logarithm of input size is of degree i. Then of 
course NC = UT NC’. 

Now let us return to matching. The first result on maximal matching in parallel 
is due to Lev [107]. She showed that the problem was in NC4 for bipartite graphs. 
Maximal matching in general graphs was first shown to be in NC by Karp and 
Wigderson [86] who actually solved the more difficult problem of showing that the 
maximal independent set problem was in NC. Since matchings in a graph G 
correspond to independent sets (of points) in the line graph L(G), the matching 
result follows. 

The Karp and Wigderson result actually showed that maximal matching is in 
NC4. Luby [115] subsequently showed that in fact maximal matching is in NC’. 
Luby’s approach, like that of Karp and Wigderson, was through a speed-up in the 
maximal independent set problem. All of these results are truly eye-openers in 
the sense that these parallel algorithms for doing this sequentially trivial problem 
are quite complex. In particular, Karp and Wigderson appeal to the use of block 
designs, while Luby first obtains a ‘randomized’ version of the algorithm and then 
uses a beautiful probabilistic argument to show that the randomness can be 
eliminated! Luby’s approach seems especially novel and one wonders if it will 
bear further fruit in designing graph algorithms. (See also Luby [116].) 

In view of the above discussion on maximal matching, we approach our old 
friends-finding maximum or perfect matchings-with not a little fear and 

trepidation! 
Let us start by informing the reader that no NC-algorithm for finding a 

maximum or a perfect matching is known. In fact, it is not even known if the 
decision problem ‘does graph G have a perfect matching?’ lies in NC. 

Some interesting special cases of these questions have been settled, however. 
For example, if a bipartite graph has a polynomially-bounded number of perfect 
matchings, then the decision and search problems have been shown to be in 
classes NC* and NC3 respectively by Grigoriev and Karpinski [69].) In contrast, 
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Dahlhaus and Karpinski [28] have shown that if a graph G is dense (and has an 
even number of points), then the search problem is in NC*. (A graph G is dense if 
mindeg(G) 2 n/2. Note that in this class of graphs, the decision problem always 
has the answer ‘yes’ since by a well-known theorem of Dirac, dense graphs all 
have Hamiltonian cycles.) 

In another direction, although no polylog-time matching algorithms are yet 
known, there do exist sub-linear matching algorithms, at least in the bipartite 
case. To the author’s knowledge, the fastest known maximum matching 
algorithm of this type is due to Goldberg, Plotkin and Vaidya [66]. 

In an exciting new direction, however, progress on matching (and many other) 
problems has been made when one allows randomization to creep into one’s 
algorithms. But what do we mean by ‘randomization’? Randomization comes in 
all shapes and sizes and constitutes a subject for study unto itself. For our 
Sampler purposes, we will rely heavily upon the treatments of Karp [83] and 
Johnson [SO]. Randomized algorithms receive, in addition to the input graph, 
some additional bits from some ‘random’ source and then perform their 
computations based upon both types of input. Sometimes, randomized algorithms 
are described as ones which are allowed to flip coins during their execution. Let 
us agree that our output is to be either ‘yes’ or ‘no’. Then one can define various 
types of randomized algorithms and associated complexity classes by the manner 
in which they adher to the truth. For example, a Monte Carlo algorithm behaves 
as follows. If the input problem has ‘yes’ as its answer, the algorithm will answer 
‘yes’ with some probability exceeding l/2. But if the correct answer is ‘no’, the 
algorithm remains silent. Thus if the correct answer is ‘yes’ and one runs the 
algorithm a number of times on this same input and if one gets even one ‘yes’ 
output response from the algorithm, one is certain that the answer is truly ‘yes’. If 
the correct answer is ‘no’, the machine will never lie and tell you that the answer 
is ‘yes’. On the other hand, if after a large number of trials, say k, the machine 
has always answered ‘no’, the probability that the correct answer is ‘yes’ is at 
most 1/2k. Thus it is very likely that the correct answer is ‘no’. 

The class of (sequential) decision problems for which polynomial-time Monte 
Carlo algorithms exist is denoted by RP. The parallel complexity class cor- 
responding to NC in the same way that RP corresponds to P is denoted by RNC. 

An RNC’ algorithm for testing for the existence of a perfect matching was first 
found by Lovasz [llO] (see also [114]) h w o reduced the problem to deciding 
whether or not a given integer matrix is non-singular. This, in turn, is known to 
be in RNC’ by a result of Csanky [25]. But if we know that graph G has a perfect 
matching; how can we find one (in parallel)? Karp, Upfal and Wigderson [85] 
produced a parallel search algorithm for a perfect matching which is RNC3. This 
was later improved by Mulmuley, Vazirani and Vazirani [127] who found an 
RNC2 algorithm. The design of the algorithm is ingenious enough to deserve a 
comment. Remember: the Lovasz-Csanky result stated above can be used to 
decide whether or not G has a perfect matching in RNC2. So suppose we run this 
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algorithm as a subroutine and find that indeed G does have a perfect matching. 
Now assign random integer weights to the lines of G, chosen randomly and 
uniformly from { 1,2, . . . , m}, where m = ]E(G)]. They then show that G will 
have a unique minimum weight perfect matching with probability at least l/2. 
Next they show how to find this minimum weight, and finally how to find the 
perfect matching itself! 

They then show how to extend their algorithm to one for finding a maximum 
matching. The extended algorithm remains in RNC?. In fact, they do even more. 

The exact matching problem can be stated as follows and is credited to 
Papadimitriou and Yannakakis [132]. Given a graph with a distinguished subset 
of lines called ‘red’ and an integer k, does G have a perfect matching containing 
exactly k red lines? Mulmuley, Vazirani and Vazirani extend their methods to 
provide an RNC’ algorithm to decide this problem. This is of special interest, as 
the exact matching problem is of unknown deterministic complexity! One result in 
this direction has been recently obtained by Vazirani, however [165-1661. If 
graph G is K3,,-free (See Section 4) then there is an NC algorithm to decide exact 
matching. 

Before leaving the existence and search problems for matchings, we cannot 
resist stating two more results. Although it remains unknown whether or not the 
existence problem for perfect matchings lies in NC, if the graph in question 
happens to have a unique perfect matching, Kozen, Vazirani and Vazirani [102] 
have developed an NC algorithm for the existence problem. (Although the 
authors do not say so, it appears that their algorithm actually is NC2.) On the 
other hand, if one is given a graph having a unique perfect matching, Rabin and 
Vazirani [147] have recently shown that the search problem for the perfect 
matching is in NC’. The publication dates of these two papers belie the true 
sequence of events. The Rabin-Vazirani paper actually existed in preprint form 
for at least five years before its recent publication and its contents became rather 
widely known to those in the area, including Kozen, Vazirani and Vazirani. Thus 
chronologically speaking, the search problem for the special case of graphs with 
unique perfect matchings was actually shown to be in NC before the decision 
problem was similarly settled. 

We would like to make one final remark before leaving the study of parallel 
matching algorithms per se. The classes NC and RNC by definition place strong 
emphasis on increasing the speed of parallel algorithms at the expense of almost 
ignoring the price to be paid in increased number of processors. Processors may 
be cheap in future parallel computers, but perhaps not that cheap! There are a 
number of papers scattered throughout the parallel algorithm literature, including 
that pertaining to matching, which do deal with such processor penalties. Due to 
our space limitations, however, we will not discuss this matter. 

Now let us once again turn from existence and search problems for matchings 
back to the problem of counting them. The reader will recall from earlier in this 
paper that it is known that exact counting of perfect matchings is known to be 
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#P-complete. From this it follows that the problem is at least as hard as any 
problem in NP. It is unknown if NP = #P, but most mathematicians think it 
unlikely. So what can we hope to do, algorithmically, toward counting perfect 
matchings? 

We do have the lower bounds described in Section 5, but they are not sharp. 
We also have polynomial algorithms for @(G) in certain special cases (see the 
discussion of Pfaffians in Section 4). We will now briefly describe a third approach 
to the problem. 

Quite recently, much excitement has been generated in the area of 
approximating the value of @P(G). But here the approach is quite different from 
those treated in Section 4. It deals with approximating the value of the permanent 
of a matrix, and through that, the value of @(G) for bipartite graphs. 

Let A = (Ai,j) denote any II x n matrix of positive integers. It is easy to define 
the permanent of matrix A as follows. Form all the n! terms that one forms to 
compute the determinant of A, change all those terms having minus signs to plus, 
and add all n! terms together. Despite the simplicity of definition, the permanent 
function has proved to be notoriously hard to handle! (See Mint [124], for a 
general reference on permanents.) Also despite its close resemblance to the 
determinant, whereas the determinant can be polynomially evaluated by any 
student in a first course in linear algebra, the best known algorithm for evaluating 
the permanent has a time bound of O(n2”), [152]. 

Why should we want to have anything to do with such a badly behaved 
function? Because if one confines the entries of the matrix A to either O’s or l’s 
and then considers the resulting binary matrix to be the bi-adjacency matrix of a 
bipartite graph G on 2n points, the permanent of the resulting matrix is exactly 
a(G)! 

But since Valiant proved that evaluating the permanent is #P-complete, what 
good does all this do us? Quite recently, there has been a flurry of activity in 
the area of approximating the permanent. Of course, questions always beget 
questions. What do we mean by ‘approximation’? And then what shall we adopt 
as a measure of ‘good’ approximation? We shall give the briefest of reports on 
this. For a more detailed survey of this topic the reader is directed to the recent 
paper of Luby [117]. 

Let us begin with a few definitions. An (E, S) approximation algorithm for 
per (A) is a probabilistic (Monte Carlo) algorithm which accepts as input the 
matrix A and the two positive real numbers, E and 6. The algorithm then outputs 
a number Y as an estimate of per (A) which satisfies: 

Prob[(l - c)per (A) s Y G (1 + &)per (A)] b 1 - 6. 

An (E, 6) approximation algorithm is said to be a fully-polynomial randomized 
approximation scheme (fpras) (or simply fully polynomial) if its running time is 
polynomial in II, l/& and l/6. 
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It is an open question as to whether or not there exists a fpras for the 
permanent function. 

Very recently, two major lines of research on this question have begun. The 
first of these has resulted in an approximation algorithm which meets the accuracy 
demand of a fpras, but in superpolynomial time. More specifically, Karmarkar, 
Karp, Lipton, Lov&z and Luby [82] have designed a Monte Carlo algorithm 
which yields the desired output in time 2”‘2(1/e2)log(1/6)p(n), where p(n) is a 
polynomial in n. For fixed E and 6 this is about the square root of the time bound 
for Ryser’s algorithm. 

The five authors of this work also pose the following open question: Is there a 
deterministic algorithm with running time o(2”) which accepts as input matrix A, 
positive real E and outputs Y such that 

(1 - .s)per(A) < Y < (1 + .s)per(A)? 

The second approach which seems to have originated with an idea of Broder 
[22] and been completed by Jerrum and Sinclair [78-791. The latter two authors 
succeeded in finding a fpras for dense permanents, that is, for dense bipartite 
graphs. The Jerrum-Sinclair paper (and several other companion papers) are not 
only important for this result, but perhaps even more so for introducing novel 
approaches using such esoteric concepts from probability theory as rapidly mixing 
Markov Chains and conductance. (Broder, too, deals with slightly modified 
versions of same.) In general, their common approach deals with reducing the 
problem of approximately counting perfect matchings to that of generating them 
randomly from an almost uniform distribution. 

Using these ideas, Dagum, Luby, Mihail and U.V. Vazirani [27] (see also 
Dagum and Luby [26]) h ave achieved a polynomial speed up of the algorithm of 
Jerrum and Sinclair and used it to show that there is also a fpras for bipartite 
graphs with Large factor size. The factor size of a bipartite graph G = A U B 
(where still IAl = ) BI = n) is the maximum number of line disjoint perfect 
matchings in G. (Observe that a graph with an an-factor must have minimum 
degree at least an, but not necessarily vice-versa.) In this area, Dagum and Luby 
have shown that there is a fpras for bipartite graphs with factor size at least on for 
any constant 1y > 0. 

These results are even more interesting when compared to some related new 
completeness results. Broder [22] has shown that exact counting in dense graphs is 
as hard as exact counting in general and so is #P-complete. Dagum and Luby [26] 
and Dagum, Luby, Mihail and U.V. Vazirani [27] have shown that exact counting 
in f (a)-regular bipartite graphs is #P-complete for any f (n) such that 3 c f (n) c 
n - 3. In fact they show that for any E > 0, for any function f(n) such that 
3<f(n)~~n’-“, a fpras for f(n)-regular bipartite graphs would imply the 
existence of a fpras for all bipartite graphs! 

Before leaving the subject of algorithms and matching, we would be remiss if 
we did not at least mention the important problem of lower bounds on 
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computational complexity. To this point, our emphasis has been on searching for 
upper bounds in series and parallel for such problems as deciding the existence of 
a perfect matching, searching for maximal and maximum matchings, counting the 
number of perfect matchings, etc. Moreover, the criterion for success normally 
adopted has been the discovery of a polynomial algorithm. Of course, we have 
not always succeeded! The main problem discussed for which success has eluded 
us (at least so far) is the exact determination of e(G). 

On the other hand, we have the P = NP question. Should equality hold here, 
we will instantaneously have polynomial algorithms for literally hundreds of 
problems in graph theory and many other areas of computation; not just those 
problems with which we have dealt in this paper involving matchings. But most 
people involved in computation believe that P ZNP. How can we possibly 
approach a proof that equality does not hold? 

Perhaps someone someday will succeed in proving that certain problems in NP 
cannot possibly have a polynomial algorithm. It would seem at the moment, 
however, that we are very far from accomplishing this. But a first step recently 
taken by Razborov [149-1501 has generated a strong ripple of excitement in the 
world of computational complexity. In order to give a good explanation of 
Razborov’s accomplishments, we must deal with a model for measuring com- 
plexity quite different (at least formally) from the RAM or Turing machine 
models we have dealt with without exception in this paper so far. This is the 
so-called Boolean circuit model. Here, once again, our overview will be very 
superficial, due to space constraints. We direct the reader to Boppana and Sipser 
[20] for an excellent overview of the subject, including the Razborov results we 
are about to describe. 

The circuit model seems to have been first introduced as a measure of 
computational complexity by Shannon [ 1571. A Boolean circuit is essentially an 
acyclic directed graph. The points having indegree 0 are called inputs and those 
having indegree greater than 0 are called gates. Normally these gates act as one of 
the Boolean functions AND, OR or NOT. One of these is distinguished and 
designated as the output gate. The size of the circuit is the number of gates. The 
circuit complexity of a Boolean function f is the size of a smallest Boolean circuit 
which, given binary input to the input points of the circuit, will compute the value 
of fi In particular, a problem (function) has polynomial circuit complexity if its 
circuit complexity is a polynomial in the number of gates in some circuit 
representing5 It would be very nice indeed for our purposes if a problem were in 
P if and only if it had polynomial circuit complexity. This is not quite the case 
unless one inserts the concept of uniformity into the discussion of circuits. We will 
avoid this by simply noting that it is true in general that every problem in P has 
polynomial circuit complexity. In order to approach Razborov’s results, it is 
perhaps better to think in terms of the contrapositive of the preceding fact. 
Namely, if one can show that a problem has superpolynomial circuit complexity, 
then it is not in P. More specifically for our purposes, if one could show that a 
problem in NP has superpolynomial circuit complexity, then P # NP! 
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Clearly, no one has succeeded in accomplishing this to date. But an interesting 
approach has been taken involving the concept of a monotone circuit. Simply put, 
a Boolean circuit is monotone if it contains no NOT gates. Razborov’s result on 
the matching problem can now be simply stated. The decision problem for perfect 

matchings in bipartite graphs has superpolynomial monotone circuit complexity. 

But this matching problem is well-known to be in P, so what is the significance of 
Razborov’s result for us? 

We should mention that Razborov has also shown that the clique problem for 
graphs also has superpolynomial monotone circuit complexity [149]. So the clique 
problem serves as an example of an NP-complete problem with a super- 
polynomial monotone circuit lower bound. The fact that this also can happen for 
the matching problem-a problem in P-may be more of an indication of just 
how much monotone and nonmonotone circuits differ in power, rather than an 
indication of the fundamental differences, if any, between P and NP. Be that as it 
may, whether or not the monotone circuit approach will serve as a useful tool in 
the ultimate resolution of the P = NP conundrum only time will tell, of course. 

This brings us to the end of our Sampler and more or less, up to date in the 
field of matching theory. As we have said several times above, it is truly only a 
Sampler, for a number of important matching topics, such as weighted matching, 
b-matching, matching polynomials, matroid matching, etc., etc, have not been 
addressed. However, a number of other problems on maximal, maximum and 
perfect matchings and their relatives, together with analogous problems for 
independent sets (i.e., vertex packing) will be treated in forthcoming paper [141]. 
The emphasis there will be on complexity. 

It is likely that by the time the present paper appears in print, new and even 
more interesting results will have been discovered which deserve to be included in 
our Chronology and Sampler. We certainly hope so. 
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Postscripts 

Remark 1. After, the completion of this paper, the author became aware of 
two preprints of F. Barahona (See [175-1761). Here Barahona addresses the as 
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yet unsolved problem of formulating the weighted matching problem as a linear 
program with a polynomial number of facets. In [175], he shows that this can be 
done for the weighted matching problem in planar graphs, while in [176], he 
obtains a partial solution to the general problem by showing that the problem of 
weighted matching in general can be solved by a polynomial sequence of linear 
programs each of which has a polynomial number of facets. 
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