
Algorithmica (1988) 3:511-533 Algorithmica
�9 1988 Spfinger-Veda$ New York Inc.

The General Maximum Matching Algorithm
of Micali and Vazirani I

Paul A. Peterson 2'3 and Michael C. Loui 2

Abstract. We give a clear exposition of the algorithm of Micali and Vazirani for computing a
maximum matching in a general graph. This is the most efficient algorithm known for general matching.
On a graph with n vertices and m edges this algorithm runs in O(ni/2m) time.

Key Words. Matching, Graph algorithm, Combinatorial optimization.

1. Introduction. Let G = (V, E) be a finite, undirected graph with vertices V
and edges E. Let n = I Vl and m = IEI. A matching is a set M of edges of G such
that no two edges of M are incident on the same vertex. A maximum matching
is a matching of maximum cardinality.

The computation of maximum matchings is a fundamental problem of com-
binatorial optimation. The classic assignment problem of operations research can
be formulated as a matching problem on bipartite graphs (Bondy and Murty,
1976). The scheduling of tasks of multiprocessor computers (Fujii et al., 1969)
and the scheduling of transmissions on packet radio networks (Hajek, 1984) can
be modeled as matching problems on general graphs.

For bipartite graphs the best maximum matching algorithm, due to Hopcroft
and Karp (1973), runs in O(n~/2m) time. For general graphs a straightforward
implementation of the maximum matching algorithm of Edmonds (1965) runs
in O (n 4) time (Papadimitriou and Steiglitz, 1982). Progressively more efficient
general matching algorithms have been designed with the following running times:

O(n 3) (Gabow, 1976),
O(nm) (Kameda and Munro, 1974),
O(n s/2) (Even and Kariv, 1975),
O(nl/2m) (Micali and Vazirani, 1980).

We give a clear exposition of the important--but extremely complicated--
algorithm of Micali and Vazirani, which is the most efficient known for maximum
matching in general graphs. The efficiency of this algorithm depends on the new
algorithm for incremental tree set union of Gabow and Tarjan (1985). We hope

t Work on this paper has been supported by the Office of Naval Research under Contract N00014-85-K-
0570 and by the Eastman Kodak Company.
2 Department of Electrical and Computer Engineering and Coordinated Science Laboratory, Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
3 Current address: NCR Corporation, 1601 South Main Street, Dayton, OH 45479, USA.

Received June 13, 1986; revised July 9, 1987. Communicated by C. K. Wong.

512 P.A. Peterson and M. C. Loui

that this exposition will reach a wider audience than did the original paper (Micali
and Vazirani, 1980), which appeared only in a conference proceedings.

We assume that the reader understands basic graph theory (Bondy and Murty,
1976) and the breadth-first search and depth-first search techniques. Section 2
reviews basic definitions for matching. Section 3 gives an overview of the algorithm
of Micali and Vazirani. Sections 4-6 describe the principal subroutines of the
algorithm in detail, assuming that they encounter no blossoms. Section 7 modifies
the subroutines to handle blossoms. The presence of blossoms complicates general
matching algorithms. Section 8 establishes that the algorithm runs in O(nl/2m)
time. The appendix presents the entire algorithm formally; it corrects several
minor errors in the original paper of Micali and Vazirani (1980).

2. Basic Definitions. Let M be a matching in a graph. With respect to M we
define the terms matched, free, mate, exposed, alternating path, and augmenting
path.

An edge e is matched if e ~ M, free if e ~ M. A vertex v is matched if some
matched edge is incident on v, exposed if no matched edge is incident on v. If
(v, w) ~ M, then v is the mate of w, and vice versa. (The pairs (v, w) and (w, v)
denote the same edge.)

A blossom is a circuit of odd length, say 2k+ 1, that has k matched edges.
Since bipartite graphs have no circuits of odd length, bipartite matching algorithms
need not handle blossoms.

A path (v~,/)2,.. ") is alternating if the edges (vl, v2), (1)2, ~)3),""" are alternately
in M and not in M. For vertices v and w, let Length(v, w) be the length of the
shortest alternating path from v to w. A path is augmenting if it is alternating,
and the first and last vertices are exposed. An augmenting path always has odd
length. An augmenting path with 2 k + l edges has k matched edges and k + l
free edges.

? ?

() (
(a)

)
(b)

Fig. 1

The General Maximum Matching Algorithm of Micali and Vazirani 513

Let E(P) be the edges of an augmenting path P for M. The symmetric difference

M ' = E (P) O M

comprises the edges in E(P) or in M but not in both. M' is a matching with
one more edge than M. Call M' the result of increasing M along P. In Figure 1
straight lines denote free edges, wavy lines matched edges. Increasing the matching
along augmenting path (C, D, E, F) in Figure l(a) yields the new matching of
Figure l(b).

From this discussion it is apparent that if M has an augmenting path, then M
is not maximum. Conversely, Berge (1957) established that if M has no augment-
ing paths, then M is maximum. Bondy and Murty (1976) and Papadimitriou and
Steiglitz (1982) gave clear proofs of this fundamental fact.

3. Overview of the Algorithm

3.1. Phases. To obtain a maximum matching, the algorithm proceeds in a
sequence of phases. At the beginning of each phase the algorithm has a matching
M. During each phase the algorithm finds a maximal set of vertex-disjoint
minimum length augmenting paths for M and increases the matching along each
of these paths. Hopcroft and Karp (1973) proved that O(n 1/2) of these phases
suffice for finding a maximum matching, even in nonbipartite graphs. Each phase
of the algorithm runs in O(m) time. Consequently, the running time of the
algorithm is O(nl/2m).

3.2. Definitions. Fix a matching M in the graph. The even-level of a vertex v
is the length of the minimum even length alternating path for M from an exposed
vertex to v, if any, +oo otherwise. Write EvenLevel(v) for the even-level of v. The
odd-level of a vertex v is the length of the minimum odd length alternating path
for M from an exposed vertex to v, if any, +oo otherwise. Write OddLevel(v)
for the odd-level of v. Define the level of v to be

Level(v) = min{ EvenLevel(v), OddLevel(v) }.

Vertex v is outer if Level(v) is even, inner if Level(v) is odd. Observe that if
v is exposed, then Level(v)= EvenLevel(v)= 0, hence v is outer. If v is outer
(resp. inner), then the other-level of v is its odd-level (even-level).

An edge (s, t) is a bridge if both EvenLevel(s) and EvenLevel(t) are finite, or
if both OddLevel(s) and OddLevel(t) are finite. (We caution the reader than our
use of the word bridge differs from its use in pure graph theory, namely, an edge
whose removal leaves a disconnected graph.) Since every augmenting path P h a s
odd length, every edge in P is a bridge. Furthermore, if M has no blossoms,
then every bridge lies on an augmenting path. Define

tenacity(s, t) = min{ EvenLevel(s) + EvenLevel(t),

OddLevel(s) + OddLevel(t) } + 1.

514 P.A. Peterson and M. C. Loui

Inner vertices at level 3

Outer vertices at level 2

Inner vertices at level 1

Exposed vertices at level 0

Fig. 2

The length of the minimum length augmenting path containing a bridge (s, t) is
tenacity(s, t).

3.3. Description of Subroutines. To explain the fundamental ideas of the
algorithm clearly, we assume here and in Sections 4-6 that no matching construc-
ted by the algorithm has blossoms. Section 7 presents the modifications to handle
blossoms.

The algorithm has three principal subroutines: SEARCH, BLOSS-AUG, and
FINDPATH. This description will refer to Figure 2.

During each phase SEARCH conducts a breadth-first search for augmenting
paths. It searches simultaneously from all exposed vertices until it discovers a
nonempty set Bridges(i) of bridges at search level i. In Figure 2 SEARCH would
start from the exposed vertices A and D to find the bridge (B, C) at search level
3. For every bridge in Bridges(i), SEARCH calls BLOSS-AUG with the bridge
as the input.

BLOSS-AUG performs a double depth-first search in order to find the exposed
vertices of an augmenting path containing the bridge. In Figure 2 BLOSS-AUG
would perform a depth-first search from B to find A concurrently with a depth-first
search from C to find D. After finding exposed vertices A and D, BLOSS-AUG
calls FINDPATH twice, once with inputs B and A and once with inputs C
and D.

FINDPATH performs a simple depth-first search to find the exact vertices of
the alternating paths between its two input vertices. The augmenting path is the
concatenation of the two paths found by FINDPATH.

For each augmenting path found by BLOSS-AUG and FINDPATH, the
algorithm increases the matching along the augmenting path and marks these
vertices "erased." Since BLOSS-AUG considers only unerased vertices, all aug-
menting paths discovered during the same phase are vertex-disjoint. SEARCH
continues to pass bridges to BLOSS-AUG until Bridges(i) is exhausted. Then
the phase ends.

The General Maximum Matching Algorithm of Micali and Vazirani 515

This algorithm borrows some ideas from the algorithm of Even and Kariv
(1975), which also operates in phases. SEARCH resembles the first stage of the
algorithm of Even and Kariv, and the double depth-first search of BLOSS-AUG
corresponds to the third stage.

4. Subroutine SEARCH

4.1. Finding a Bridge. At the beginning of each phase the algorithm erases all
marks and labels used during the preceding phase and initializes the even-level
and odd-level of every vertex to +oo, signifying that it has not yet found any
alternating path. Then it sets the even-level of every exposed vertex to 0 and
starts SEARCH with search level 0.

SEARCH conducts a breadth-first search for augmenting paths, starting simul-
taneously from all exposed vertices at search level 0. In general, SEARCH finds
vertices at level i + 1 only after it finds all vertices at level i. SEARCH scans each
edge at most twice, once in each direction. We describe this process in detail.

When the search level i is even, SEARCH considers each vertex v such that
EvenLevel(v) = i. For each vertex u adjacent to v such that (u, v) is free, if
O d d L e v e l (u) = + ~ , then SEARCH sets OddLevel(u)= i+1. When the search
level i is odd, SEARCH considers each matched vertex v such that OddLevel(v) =
i. Let u be the mate of v. SEARCH sets EvenLevel(u) = i+ 1.

Figure 3 shows the state of SEARCH, which started from exposed vertices A,
B, and C simultaneously, after search level 2. Vertices are labeled with their
current values of EvenLevel and OddLevel. SEARCH will examine vertices H,
/, J, and K at search level 3.

For each edge (u, v) encountered at the current search level i, SEARCH
determines whether (u, v) is a bridge by comparing the even-level and odd-level
of both u and v. If (u, v) is a bridge, then it is added to the set Bridges(i) of

Fig. 3

516 P.A. Peterson and M. C. Loui

Fig. 4

bridges found at search level i. If SEARCH encounters no bridges at search level
i, then it begins search level i + 1.

Unless SEARCH encounters a blossom, considered in Section 7, the discovery
of a bridge yields an augmenting path. If at the end of search level i the set
Bridges(i) is nonempty, then for each bridge (s, t) in Bridges(i) in succession,
SEARCH calls BLOSS-AUG with input (s, t). After these calls to BLOSS-AUG
the current phase ends; SEARCH does not proceed to search level i+ 1 during
the current phase.

If at the start of a phase the current matching is maximum, then no augmenting
paths exist. SEARCH recognizes this condition when it reaches search level i
and finds no vertices at level i.

In Figure 4 SEARCH discovers bridges (B, C) and (E, F) at search level 1.
Edge (H, I) will not be a bridge in the current phase because the phase terminates
after increasing the matching along the augmenting paths through bridges at
search level 1. Suppose SEARCH calls BLOSS-AUG first with (B, C), then with
(E, F). If the matching is increased along the path (A, B, C, D), then (D, E, F, G)
would no longer be an augmenting path. Thus SEARCH could pass a bridge to
BLOSS-AUG that is not a part of an augmenting path. Section 5.3 discusses this
situation further.

4.2. Predecessors and Anomalies. During the execution of SEARCH, call vertex
y a predecessor of a matched vertex z if y is adjacent to z and either

(1) z is inner, and OddLevel(z)= EvenLevel(y)+ 1; or
(2) z is outer, and y is the mate of z.

If SEARCH first discovered z by examining the neighbors of y, then y is a
predecessor of z. Call (y, z) a predecessor edge of z. Let Predecessors(z) denote
the set of predecessors of vertex z. SEARCH inserts y into Predecessors(z) when
it scans edge (y, z). Vertex w is an ancestor of z if either w is a predecessor of
z or w is a predecessor of another ancestor of z.

Vertex y is an anomaly for vertex z if z is inner, y is outer, y is adjacent to z,
but y is not the mate of z, and EvenLevel(y)> OddLevel(z). Let Anomalies(z)
denote the set of anomalies of z. SEARCH adds y to the set Anomalies(z) when

The General Maximum Matching Algorithm of Micali and Vazirani 517

it reaches y. Informally, y is an anomaly for z because when SEARCH considers
the neighbors of y during the breadth-first search, z already has a finite value
for odd-level. Section 7 will use anomalies to construct augmenting paths through
blossoms.

In Figure 3 A and B are predecessors of D, D is the predecessor of F, and G
is an anomaly of E.

5. Subroutine B L O S S - A U G

5.1. Depth-First Search Processes. The input to BLOSS-AUG is a bridge (s, t).
BLOSS-AUG finds the exposed vertices x and x ' of an augmenting path containing
the bridge. I f (s, t) was discovered by SEARCH at level i, then

Length(s, x) + Length(t, x') = 2i,

and the augmenting path has length 2i + 1.
To find x and x' , BLOSS-AUG performs two depth-first searches concurrently,

starting from s and t simultaneously, using the predecessors of vertices: the left
depth-first search process LEFTDFS starts from s; the right depth-first search
process R I G H T D F S starts from t. Lets variables VL and VR denote the current
vertices of LEFTDFS and R I G H T D F S , respectively. Initially VL = S and VR = t.
Note that initially Level(VL) = Level(VR).

In general, LEFTDFS proceeds if Level(VL) >-- Level(VR), and R I G H T D F S
proceeds otherwise. LEFTDFS examines only the predecessor edges of VL that
have not yet been used. When LEFTDFS selects a predecessor u of VL, it defines
Parent(u) = VL, marks edge (VL, U) "used," marks vertex u "left ," and sets VL = U.
By definition of the predecessors, the level of VL is smaller than before.
R I G H T D F S proceeds in the same manner, marking the chosen predecessor vertex
"r ight" instead of "left ." I f LEFTDFS and R I G H T D F S reach two different
exposed vertices, then BLOSS-AUG calls F I N D P A T H , which constructs the
complete augmenting path.

5.2. Backtracking. LEFTDFS and R I G H T D F S may meet at a vertex w. Only
one process may claim w and the exposed vertex reachable from w. First,
LEFTDFS claims w and marks w "left." Then R I G H T D F S tries to find a vertex
as deep as w, backtracking via Parent if necessary. I f R I G H T D F S fails to find
another vertex as deep as w, then R I G H T D F S claims w and replaces the "left"
mark on w by "right." Now LEFTDFS backtracks via Parent and tries to find a
vertex as deep as w. I f LEFTDFS cannot find another vertex as deep as w, then
a blossom has been discovered. This situation is handled in Section 7.

LEFTDFS and R I G H T D F S use variables D C V (Deepest Common Vertex)
and Barrier. D C V is the deepest vertex--i .e. , the vertex with the smallest level- -
discovered by both LEFTDFS and RIGHTDFS. Before the first time that a
common vertex is reached, D C V is undefined. I f a blosson is discovered, then
D C V will be the base.

518 P.A. Peterson and M. C. Loui

Fig. 5

Barr i e r prevents unproductive backtracking to keep the time for one phase to
O (m) . Suppose LEFTDFS and R I G H T D F S meet at vertex w. Furthermore,
suppose R I G H T D F S fails to find another vertex as deep as w, but LEFTDFS
does. Subsequently LEFTDFS and R I G H T D F S meet again. At this time
R I G H T D F S should not back up above w. In general, when R I G H T D F S fails
during backtracking, B ar r i e r is set to the current D C V . Later backtracking by
R I G H T D F S never passes above Barrier. Initially Barr i e r = YR.

Let us examine Figure 5. Suppose BLOSS-AUG is called with input(/ , J) . The
following actions could occur:

(0) LEFTDFS sets VL = I and marks I "left"; R I G H T D F S sets VR = J and marks
J "right." Initially Barr i e r = J.

(1) LEFTDFS uses (/, G), marks G "left ," and sets VL = G.
(2) R I G H T D F S uses (J, H) , marks H "right," and sets VR = H.
(3) LEFTDFS uses (G, D) , marks D "left ," and sets VL = D.
(4) R I G H T D F S uses (H, E) , marks E "right," and sets VR = E.
(5) LEFTDFS uses (D, B), marks B "left ," and sets VL = B.
(6) R I G H T D F S uses (E, B), finds B = VL, and sets D C V = B.

(7) Since E now has no unused predecessor edges, R I G H T D F S backtracks to
H, which also has no unused predecessor edges, then to J. At this point VR = J.

(8) R I G H T D F S uses (J, G), but G is marked "left."
(9) Since VR = J = Barr i e r and J has no unused predecessor edges, R I G H T D F S

claims D C V by setting VR = D C V = B, marks B "right," and forces
LEFTDFS to backtrack by setting VL = D. Also, R I G H T D F S sets Barr ier =

D C V = B.

(10) Since D now has no unused predecessor edges, LEFTDFS backtracks to
G, which also has no unused predecessor edges, then to L At this point VL = L

(11) LEFTDFS uses (/, H) , but H is marked "right."
(12) LEFTDFS uses (it, F) , marks F "left ," and sets VL = F. Eventually LEFTDFS

reaches A.

The General Maximum Matching Algorithm of Micali and Vazirani 519

(13) BLOSS-AUG calls F INDPATH to construct the augmenting path from
exposed vertex A through bridge (/, J) to exposed vertex B.

If the graph did not have edge (/, F) , then at step (12) LEFTDFS would have
exhausted all predecessor edges of /, and LEFTDFS would have detected a
blossom.

5.3. Erasure. Figure 4 shows that SEARCH may pass to BLOSS-AUG a bridge
that is no longer part of an augmenting path. To prevent BLOSS-AUG from
searching for a nonexistent augmenting path, the algorithm erases the vertices
of each augmenting path as soon as the matching is increased along the path,
and LEFTDFS and RIGHTDFS select only unerased vertices. Thus the erasures
guarantee the disjointness of the minimum length augmenting paths during one
phase. The erasure of a vertex occurs at most once during each phase. All "erased"
marks are removed at the start of the next phase.

Subroutine ERASE marks every vertex on an augmenting path "erased." Also,
ERASE marks vertex z "erased" if every vertex in Predecessors(z) is marked
"erased." For speed, ERASE does not access Predecessors(z) when a predecessor
of z is erased. Instead, each vertex z has an integer variable Count(z) whose
value is the number of unerased predecessors of z, and ERASE subtracts 1 from
Count(z) when it erases a predecessor of z. When ERASE changes Count(z) to
0, it also erases z.

Upon completion of ERASE, every unerased, matched vertex z (with finite
Level(z)) has at least one unerased predecessor, hence has an alternating path
to an exposed vertex. Consequently, if BLOSS-AUG is called with input (s, t),
then there is an alternating path from s to an exposed vertex and an alternating
path from t to an exposed vertex, but these paths may intersect. By Menger's
Theorem (Bondy and Murty, 1976), vertex-disjoint alternating paths exist if and
only if for each i <- min{Level(s), Level(t)}, there are at least two distinct ancestors
of s or t at level i. Thus if LEFTDFS is unable to find another vertex as deep
as DCV, then there is only one ancestor of s or t at Level(DCV), and BLOSS-AUG
cannot find an augmenting path through (s, t).

6. Subroutine FINDPATH. After BLOSS-AUG has discovered the exposed
vertices x and x' of the augmenting path containing the bridge (s, t), it calls
subroutine FINDPATH twice: once to find the vertices of the alternating path
from s to x, once to find the alternating path from t to x'. The concatenation of
these two paths with (s, t) produces the augmenting path. If BLOSS-AUG
encountered no blossoms, then LEFTDFS and RIGHTDFS have already
traversed the desired paths, and FINDPATH would be superfluous. If BLOSS-
AUG encountered blossoms, however, then the modifications of Section 7.6 imply
that LEFTDFS and RIGHTDFS may not have traversed the desired paths.

The inputs to F INDPATH are vertices High and Low, with Level(High)>-
Level(Low). FINDPATH performs a depth first search from High to find Low.
When FINDPATH reaches a vertex for the first time during the phase, it marks
the vertex "visited." If the current vertex is v, then FINDPATH considers only

520 P.A. Peterson and M. C. Loui

the unvisited, unerased predecessors of v to continue the search. F I N D P A T H
selects a predecessor u of v only if the "left" or "right" mark of u is the same
as that of High and Level(u) >- Level(Low). Upon selecting u, F I N D P A T H sets
Parent(u) = v. I f Parent(u) was defined by LEFTDFS or R I G H T D F S , then
Parent(u) = v already. When F I N D P A T H reaches Low, F I N D P A T H uses the
Parent values to construct the path.

Section 7.7 modifies F I N D P A T H to handle blossoms.

7. Blossoms and Blooms. So far we have ignored the occurrence of blossoms.
This section describes the discovery, labeling, and opening of blossoms.

7.1. Blossoms and Phases. Every bridge discovered by SEARCH lies on either
an augmenting path or a blossom. BLOSS-AUG not only finds the exposed
vertices of an augmenting path but also detects the blossoms. I f BLOSS-AUG
determines that a bridge corresponds to a blossom, then it labels the vertices of
the blossom and exits.

The discovery of blossoms does not end a phase. I f all bridges at search level
i correspond to blossoms, then the search level is incremented. The current phase
does not end until either at least one augmenting path is found or the matching
is maximum.

7.2. Blooming Condition. The algorithm uses a generalization of blossoms that
we call blooms. Section 7.5 exhibits blooms that are not blossoms. Let (s, t) be
a bridge.

Blooming Condition. There exists a vertex w such that w is an ancestor of both
s and t, and no other ancestor of either s or t has the same level as w.

Among the w's of the Blooming Condition such that w does not currently belong
to a bloom, let b be the vertex whose level is maximum. The bloom B is the set
of vertices y such that:

(1) y does not belong to any other bloom when B is formed,
(2) either y = s or y = t or y is an ancestor of s or of t, and
(3) b is an ancestor of y.

Observe that by condition (1), a vertex can belong to at most one bloom. By
condition (3), b ~ B. Call b the base of B, and write b = base(B). Call s and t
the peaks of B. Figure 6(a) shows a bloom {D, E, F, G} whose peaks are F and
G and whose base is C.

By induction on the number of blooms that have been formed, we show that
for every matched edge (y, z), if y bdongs to a bloom B, then z ~ B too. Consider
the situation when B is formed, and let b = base(B). By condition (1) and the
inductive hypothesis, z is not yet in a bloom, and z satisfies condition (1). Because
(y, z) is matched, either y is the only predecessor of z or vice versa. It follows
that since y satisfies condition (2), z also satisfies condition (2). By the inductive

The General Maximum Matching Algorithm of Micali and Vazirani 521

i

I

| (,
(a)

3
)

)
Fig. 6

(b)

hypothesis again, since currently b is not in a bloom, the mate of b (if it exists)
is not in a bloom. Consequently b must be outer, for otherwise its mate would
be an ancestor of both s and t at a higher level. I f z is inner, then b ~ z, and
condition (3) implies that b is also an ancestor of z. I f z is outer, then y is the
predecessor of z, and condition (3) implies that b is also an ancestor of z. Thus
z satisfies condition (3). Ergo z ~ B.

7.3. Detection. Section 5.2 mentioned that BLOSS-AUG detects a bloom when
the depth-first search processes LEFTDFS and R I G H T D F S meet at a vertex w
such that neither LEFTDFS nor R I G H T D F S can find a different vertex as deep
as w.

Upon detecting a b loom B, the algorithm determines the set of vertices in B.
B comprises all vertices marked "left" or "right," excluding the DCV. The base
of B is the DCV. Section 7.6 modifies LEFTDFS and R I G H T D F S to ensure that
neither the vertices of B nor base(B) belong to a previously formed bloom.

7.4. Setting Other-leveL Let y be a vertex in bloom B. I f y is inner (outer), then
there is an even (odd) length alternating path containing (s, t) from an exposed
vertex to y. Thus the other-level of y can be set to

tenacity(s, t) - Level(y).

Figure 6 shows a bloom--afortiori a b lossom--discovered at search level 4 before
and after the other-level of each bloom vertex is set; each vertex is labeled with
its even-level and odd-level.

522 P.A. Peterson and M. C. Loui

Once BLOSS-AUG has set the other-level of each vertex in B, it must check
for newly formed bridges. Any new bridge must have at least one vertex in B.
For new bridges (y, z) such that both y and z belong to B, the Blooming Condition
holds. Thus (y, z) induces not an augmenting path, but a bloom already contained
in B. These bridges are ignored. For new bridges (y, z) such that only vertex y
is in B, necessarily y is inner. If EvenLevel(z) < OddLevel(y), then z is a pre-
decessor of y, but since the depth-first search processes did not find an augmenting
path through z, bridge (y, z) is ignored. If EvenLevel(z)> OddLevel(y), then z
is an anomaly of y. In Figure 6(b) (E, H) is a bridge and H is an anomaly of
E. Conversely, for every anomaly z of an inner vertex y of B, the edge (y, z) is
a bridge. BLOSS-AUG computes tenacity(y, z) = 2k+ 1 and inserts (y, z) into the
set Bridges(k). If the present search level is i, then k > i because

2k = EvenLevel(z) + EvenLevel(y) since z is an anomaly of y

> EvenLevel(y) + OddLevel(y) = 2i + 1.

If SEARCH reaches level k, then it will call BLOSS-AUG with input (y, z).
After BLOSS-AUG has set the other-level of the vertices in B, SEARCH can

continue the breadth-first search from the inner vertices y of B when it reaches
search level EvenLevel(y). Since y is inner, SEARCH does not scan the free
edges incident on y until it reaches search level EvenLevel(y). In Figure 7 a
bloom is discovered at search level 1, and a bridge of an augmenting path is
discovered at search level 3.

7.5. Example. Blooms detected by the algorithm depend on the order in which
SEARCH passes bridges to BLOSS-AUG. In Figure 8 SEARCH has discovered
bridges (K, L) and (L, M) at search level 6. (The figure omits other edges incident
on P.)

If BLOSS-AUG handles (K, L) before (L, M), then the blooms are

U 1 = {K, L, H, I}

|
Fig. 7

The General Maximum Matching Algorithm of Micali and Vazirani 523

Fig. 8

with peaks K and L and base F and

B2={M,J,F, G,D,E}

with peaks L and M and base C. Notice that a peak of a bloom may not belong
to that bloom.

I f BLOSS-AUG handles (L, M) before (K, L), then the blooms are

BI={L,M,I ,J ,F, G,D,E}

with peaks L and M and base C and

B~ = {K, H}

with peaks K and L and base C.

Zr. Embedded Blooms. An embedded bloom is a bloom whose base belongs to
another bloom. In Section 7.5 bloom B1 is embedded in bloom B:. For blooms
B and B', define the partial order < by

base(B) < base(B') if base(B) ~ B'.

524 P.A. Peterson and M. C. Loui

Let <* be the reflexive, transitive closure of <. Define base*(B) to be the base(B*)
such that base(B) <* base(B*), and base(B*) does not belong to a bloom.

When LEFTDFS or RIGHTDFS advances to a predecessor that belongs to a
bloom B, it changes its current vertex (vL or vR) to base*(B) immediately. This
operation guarantees that no vertex considered by LEFTDFS or RIGHTDFS
belongs to a previously formed bloom. In essence, this operation has the effect
of "shrinking" each bloom into its base*. There is an augmenting path for the
current matching if and only if there is an augmenting path after a blossom is
shrunk (Papadimitriou and Steiglitz, 1982; Tarjan, 1983).

To compute base* we may apply the standard algorithm for the U N IO N -F IN D
problem, which uses both path compression and weighted union (Aho et al.,
1974; Reingold et al., 1977). For m operations (one for each edge) on n elements
(vertices), this algorithm takes O((m + n)a(m, n)) time, where a is a very slowly
growing function (Tarjan, 1975); in particular, a(m, n)<-log* n for all m and n.
For computing base*, however, we may use the more efficient incremental set
union algorithm of Gabow and Tarjan (1985) since the only union operation
requires adding a new bloom base. This algorithm runs in O(m + n) time.

7.7. Opening a Bloom. We modify FINDPATH to handle blooms. In general,
the inputs to FINDPATH are vertices .High and Low and a bloom B. when
BLOSS-AUG calls FINDPATH, B is undefined. Subsequent recursive calls to
F INDPATH will request paths through bloom B.

First, F INDPATH finds a sequence of vertices

HIGH = xl, . . . , Xk = Low

from High to Low via Predecessors, assuming that all blooms other than B are
shrunk. That is, when FINDPATH encounters a vertex x~ ~ B', where bloom
B' ~ B, it jumps to xj+~ = base(B'). Otherwise, as in Section 6, if xj ~ B or xj is
in no bloom, then FINDPATH selects the predecessor X~+l of xj having the same
"left" or "right" mark as High. This sequence of vertices may not be an alternating
path.

Second, for each xj e B' ~ B, FINDPATH calls a new subroutine OPEN to find
a path in B' from xj to xj+~. If xj is outer, then OPEN calls F INDPATH with
inputs xj, xj+~, B'. If xj is inner, then OPEN calls FINDPATH twice. Suppose
that xj was marked "left" when B' was formed. The first call to FINDPATH
finds a path P~ from the left peak of B' to xj, and the second call finds a path
P2 from the right peak of B' to X j + 1 . Then the path from x~ to x~+~ is the
concatenation of the reversal of P~ with P2.

In Figure 8 bloom B ~ = { K , L , H , I } is embedded in bloom B2 =
{M, J, F, G, D, E}, base(B1) = F, and base(B2) = C. Suppose BLOSS-AUG calls
F INDPATH with High = P, Low = A, and B = empty. FINDPATH first obtains
the sequence (P, H, F, C, B, A). Since H e B~, FINDPATH calls OPEN; since H
is inner, OPEN delivers the path (H, K, L, I, F). Next, since F ~ B2, F INDPATH
calls OPEN; since F is outer, OPEN delivers the path (F, D, C). Upon
completion, the original call to FINDPATH produces the path
(P , H , K , L , I , F , D , C , B , A) .

The General Maximum Matching Algorithm of Micali and Vazirani 525

8. Analysis

8.1. Correctness. Let us verify informally that the algorithm is correct. Consider
the situation at the beginning of a phase. If the current matching is maximum,
then there is no augmenting path, hence during this phase SEARCH finds no
bridges that yield augmenting paths, and the algorithm halts. If the current
matching is not maximum, then an augmenting path of some minimum length
L exists. It suffices to show that the algorithm finds a maximal set of vertex-disjoint
augmenting paths of length L during this phase.

First, we proceed by induction to confirm that SEARCH and BLOSS-AUG
compute the even-level and odd-level of each vertex correctly.

Suppose that at an even search le~,el i, SEARCH encounters a vertex u adjacent
to a vertex v at level i such that OddLevel(u)= +co. (The argument for an odd
i is identical.) By the inductive hypothesis, i is the length of the shortest alternating
path of even length from v to an exposed vertex. Consequently, the shortest odd
length alternating path from u to an exposed vertex must have length i - 1 or
i + 1. If the length were i - 1, then SEARCH would have set OddLevel(u) at level
i - 1 because the search is breadth first. Therefore SEARCH sets OddLevel(u)
to i + 1 correctly. Furthermore, since every u with OddLevel(u) = i + 1 is adjacent
to a v with EvenLevel(v)= i, SEARCH reaches all vertices at level i+ 1 whose
odd-level was +oo.

BLOSS-AUG sets the other-level of every vertex in a bloom. Suppose y is an
outer vertex in a bloom discovered from a bridge at level k. Then BLOSS-AUG
sets OddLevei(y) to 2k+ 1 - EvenLevel(y) because there is an alternating path
of this odd length from y around the bloom to an exposed vertex. If this value
were incorrect, then OddLevel(y) would be 2j + 1 - EvenLevel(y) for some j < k.
Thus y would have been an ancestor of the vertices of a bridge (s, t) discovered
at previous search level j. If (s, t) induced an augmenting path, then we would
have ended this phase without reaching search level k. If (s, t) induced a bloom,
then BLOSS-AUG would have set OddLevel(y) at levelj. Therefore BLOSS-AUG
sets OddLevel(y) correctly. Analogously, if y is an inner vertex in a bloom, then
BLOSS-AUG sets EvenLevel(y) correctly.

Second, we check that during this phase, the algorithm finds at least one
augmenting path of length L.

Since the algorithm determines the vertex levels correctly, for every augmenting
path of length L, SEARCH finds a bridge of the path at search level (L - 1)/2.
Let (s, t) be the first bridge of an augmenting path with which SEARCH calls
BLOSS-AUG. By Menger's theorem, since there are vertex-disjoint alternating
paths from s to an exposed vertex and from t to an exposed vertex, at each level
i<-min{Level(s), Level(t)}, there are at least two distinct ancestors of s or t at
level i. We must show that LEFTDFS and RIGHTDFS eventually reach different
exposed vertices, for then FINDPATH can construct the augmenting path.

Let us examine the operation of LEFTDFS and RIGHTDFS. LEFTDFS (resp.
RIGHTDFS) inspects each predecessor u of VL (VR)- If U belongs to a bloom B,
then base*(B) is the only ancestor of u whose level is Level(base*(B)); thus the
shortest alternating path from u to an exposed vertex must pass through base*(B),

526 P.A. Peterson and M. C. Loui

and LEFTDFS (R I G H T D F S) may replace u by base*(B) in its search. Next,
LEFTDFS sets VL (R I G H T D F S sets VR) to U only if u has neither a "left" nor
a "right" mark. I f u is marked "left" or "right," then either u is on a current
alternating path from s to VL or from t to VR, or, since the search processes are
depth first, all predecessor edges of u have been used. In the latter case, the only
ancestor of u at level Level(DCV) is DCV, which is marked "right" (resp. "left").
Because LEFTDFS (R I G H T D F S) seeks a different ancestor at this level, it need
not consider u again. Since there are two or more distinct ancestors of s or t at
every level, we conclude that LEFTDFS and R I G H T D F S can find shortest
vertex-disjoint alternating paths from s and t to distinct exposed vertices.

Third, we establish that the algorithm finds a maximal set of vertex-disjoint
augmenting paths of length L at this phase.

Clearly, the "erased" marks on vertices ensure that the augmenting paths in
this phase are vertex-disjoint. To verify that the set of vertex-disjoint augmenting
paths is maximal, recall that for every augmenting path of length L, SEARCH
finds a bridge of the path and calls BLOSS-AUG with that bridge. LEFTDFS
and R I G H T D F S ignore a vertex u only when either u is erased or u already has
a "left" or "right" mark. But if u is erased, then u no longer has an alternating
path P via a predecessor to an exposed vertex such that P is disjoint from
augmenting paths previously discovered during the phase. And if u has a "left"
or "right" mark, then u was marked during the current invocation of BLOSS-AUG
(to be shown in the next paragraph), and as argued before, u does not lead to
a different ancestor at the level of the current DCV. Ergo, by the correctness of
LEFTDFS and R I G H T D F S , the algorithm determines a maximal set of vertex-
disjoint augmenting paths during the phase.

We demonstrate that the only unerased vertices marked "left" or "right"
encountered by LEFTDFS and R I G H T D F S during an invocation of BLOSS-AUG
are marked during the same invocation. Consider any previous invocation of
BLOSS-AUG, and suppose (s, t) was the input. I f this invocation yielded a bloom
B, then every vertex y marked "left" or "r ight" during this invocation became
part of B; subsequently, LEFTDFS and R I G H T D F S always bypass y when they
replace y by base*(B). I f this invocation yielded an augmenting path, then for
every vertex y marked "left" or "right" during this invocation, either (1) y was
on the augmenting path, or (2) y was marked "left" and was not on the augmenting
path, or (3) y was marked "r ight" and was not on the augmenting path. In case
(1) y was erased at the end of the invocation of BLOSS-AUG. In case (2)
LEFTDFS backtracked above y because, at some time during its search, the only
ancestor of y at level Level(DCV) was DCV = Barrier, which was also the only
ancestor of t at this level. This DCV was on the augmenting path. The erasure
of this DCV eventually caused the erasure of y. In case (3) R I G H T D F S back-
tracked above y because, at some time during its earth, DCV = VL was the only
ancestor of y at level Level(VL). Later, either the path from s to VL was extended
into an augmenting path to an exposed vertex, or LEFTDFS backtracked above
this VL because of a new DCV = Barrier at a smaller level. Thus y had at some
level only one ancestor, either VL or the new DCV, and this ancestor was on the
augmenting path. Since this ancestor was erased, y itself became erased.

The General Maximum Matching Algorithm of Micali and Vazirani 527

8.2. Time Complexity. Let us analyze the running time of the algorithm. Let m
be the number of edges and n be the number of vertices of an input graph.
Without loss of generality, assume that the graph has no isolated vertices; that
is, every vertex is incident on at least one edge. Consequently, n---2m. During
each phase the algorithm increases the matching along a maximal set of disjoint
minimum length augmenting paths. Thus there are O(n 1/2) phases (Hopcroft and
Karp, 1973). We show that each phase runs in O(m) time.

During one phase, subroutine SEARCH considers each vertex at most twice--
once at an odd search level, once at an even search level. (Only inner vertices
in blooms are considered twice.) Furthermore, SEARCH scans each edge at most
twice, once in each direction. It follows that the total time for operations in
SEARCH is O(m+n)= O(m).

During one phase, the depth-first search processes of BLOSS-AUG use each
edge at most once. Once a vertex v has a "left" or "right" mark, neither LEFTDFS
nor RIGHTDFS considers the predecessor edges of v again--even on subsequent
calls to BLOSS-AUG. Section 7.6 established that the total time for base*
computations can be kept to O(m + n). The total time for operations in BLOSS-
AUG is O(m+n)=O(m).

During one phase, F INDPATH marks each edge "visited" at most once, each
vertex "visited" at most once. The total time for FINDPATH is O(m + n) = O(m).
During one phase, ERASE decrements a Count(z) variable once for each pre-
decessor edge joining z to a predecessor of z. The total time for ERASE is at
most proportional to the number of edges, O(m). In summary, each phase runs
in O(m) time, and the algorithm runs in O(nl/2m) time.

Appendix. This appendix presents the complete matching algorithm. The pres-
entation uses constructs from modern programming languages. Instead of begin-
end pairs, however, the indentation of blocks of statements specifies the control
structures. Each statement ends either at the end of a line or at a semicolon.
Straight brackets " [" and "]" delimit comments. The exit statement exits the
subroutine. Peterson (1985) wrote a program in Pascal to implement this
algorithm.

GENERAL MATCHING ALGORITHM

repeat
[New phase: Initialization]

for each vertex v do
EvenLevel(v) := +oo; OddLevel(v):= +oo
Bloom(v) := undefined [name of bloom to which v belongs]
Predecessors(v) := empty; Successors(v):= empty; Anomalies(v):= empty
Count(v) := 0 [number of unerased predecessors]
Mark v "unerased" [for disjoint augmenting paths]
Mark v "unvisited" [for depth-first search in FINDPATH]
Delete any "left" or "right" mark [for BLOSS-AUG]

528 P .A . Peterson and M. C. Loui

for each edge (u, v) do
Mark (u, v) "unused" [for depth-first search in BLOSS-AUG]
Mark (u, v) "unvisi ted" [for depth-first search in F I N D P A T H]

for i:= 1 to I Vt do
Candidates(i) := empty [vertices to be searched at level i]
Bridges(i) := empty [set of bridges at level i]

[Each of the sets Predecessors, Successors, Anomalies, Candidates, and Bridges
can be implemented by a linear list such as a queue. The operations on these
sets are to insert a new vertex and to select the next vertex in the set. Both
operations can be implemented in constant time.]

call SEARCH
until No augmentation occurred

SUBROUTINE SEARCH

Effect: Finds all augmenting paths of minimal length and increases the current
matching along these paths.
Calls: BLOSS-AUG

(SO) [Initialization]
i:= 0
for each exposed vertex v do

EvenLevel(v) := O; Insert v into Candidates(O)

(S1) [Breadth-first search]
while Candidates(i) is not empty and No augmentation occurred at level i - 1 do

if i is even then for each v in Candidates(i) do
for each unerased neighbor u of v such that (u, v) is free do

if EvenLevel(u) < +oo
then [(u, v) is a bridge, but because u could belong to a blossom, Level(u)

could be greater than Level(v)]
j := (EvenLevel(u) + EvenLevel(v))/2
Insert (u, v) into Bridges(j)

else if OddLevel(u) = +o0
then OddLevel(u) := i + 1
if OddLevel(u) = i + 1
then Add 1 to Count(u)

Insert v into Predecessors(u)
Insert u into Successors(v)
Insert u into Candidates(i+l)

if OddLevel(u) < i
then Insert v into Anomalies(u)

if i is odd then for each v in Candidates(i) such that v belongs to no bloom do
Let u be the mate of v [v must be matched]
if OddLevel(u) < +o~
then j := (OddLevel (u) + OddLevel (v)) / 2

Insert (u, v) into Bridges(j)
if EvenLevel(u) = +oo

The General Maximum Matching Algorithm of Micali and Vazirani 529

then Predecessors(u) := {v}; Successors(v) := {u}; Count(u) := 1
EvenLevel(u) := i+ 1; Insert u into Candidates(i+ 1)

for each edge (s, t) in Bridges(i) do
if s and t are both unerased [Calls to BLOSS-AUG may induce erasure of

vertices]
then call BLOSS-AUG with input (s, t)

i : = i + 1

SUBROUTINE BLOSS-AUG

Input: A bridge (s, t)
Effect: Either discovers a bloom or augments the current matching.
Called by: SEARCH
Calls: LEFTDFS, R I G H T D F S , ERASE

(B0) [Initialization]
if s and t belong to the same bloom then exit
if s belongs to a bloom then Ve := base*(Bloom(s)) else Ve := s
if t belongs to a bloom then VR := base*(Bloom(t)) else VR := t
Mark VL "left" and Va "r ight"
DCV:= undefined; Barrier := VR

(B1) [Double depth-first search]
while VL and VR are not both exposed do
[I f Leve l (s)=Leve l (t) , then except during backtracking, either Level(VL)=
Level(VR) or Level(VL) = Level(vR) -- 1]

if Levei(vL) >-- Level(vR)
then call LEFTDFS
else call R I G H T D F S
if This call discovers a bloom
then gnto step (B3)

(B2) [VL and vR are both exposed]
call F I N D P A T H to find a path PL from High = s to Low = Ve with B = undefined
call F I N D P A T H to find a path PR from High = t to Low = Vr~ with B = undefined
Increase the matching along the path starting with the reversal of PL through
(s, t) ending with PR
call ERASE to erase all vertices along the augmenting path
exit

(B3) [Creation of a new bloom]
Remove the "r ight" mark from D C V
Create a new bloom B that comprises all vertices marked "left" or "r ight" during
the current call to BLOSS-AUG
far each y in B do Bloom(y) := B
The peaks of B are s and t
base(B) := D C V
for each y in B do

Bloom(y) := B
[Set the other-level of each vertex in B]

530 P.A. Peterson and M. C. Loui

if y is outer
then OddLevel(y) := 2i + 1 - EvenLevel(y)
if y is inner
then EvenLevel(y) := 2i + 1 - OddLevel(y)

Insert y into Candidates (EvenLevel(y))
for each z in Anomalies(y) do

j := (EvenLevel(y) + EvenLevel(z))/2 [At this point j > i]
Insert (y, z) into Bridges(j)
Mark (y, z) "used"

SUBROUTINE L E F T D F S

Inputs: Vertices s, rE, VR, DCV, Barrier
Effect: One step of left depth-first search process--advances VL to a predecessor
or backtracks or signals the discovery of a bloom.
Called by: BLOSS-AUG

(L0) [Search each predecessor edge]
while VL has "unused" predecessor edges do

Choose an "unused" predecessor edge (VL, U) such that u is "unerased"
Mark (VL, U) "used"
if Bloom(u) is defined
then u:= base*(Bloom(u))
if u is not marked "left" or "right"
then Mark u "left"; Parent(u):= rE; VL := U

exit
[If u is marked "left" or "right," then LEFTDFS is backtracking. At this time
VR = Barrier = DCV, and Level(rE) > Level(VR). Because the search is depth first,
either u is on the alternating path from t to VR, or all predecessor edges of u
have already been used.]

(L1) IrE has no more "unused" predecessor edges]
i f /)L = S [Input to BLOSS-AUG]

then Signal discovery of a bloom
else VL := Parent(vL) [Backtrack]

SUBROUTINE R I G H T D F S

Inputs: Vertices ~'L, VR, DCV, Barrier
Effect: One step of right depth-first search process--advances VR to a predecessor
or backtracks.
Called by: BLOSS-AUG

(R0) [Search each predecessor edge]
while VR has "unused" predecessor edges do

Choose an "unused" predecessor edge (VR, U) such that u is "unerased"
Mark (VR, U) "used"
if Bloom(u) is defined
then u:= base*(Bloom(u))

The General Maximum Matching Algorithm of Micali and Vazirani 531

if u is not marked "left" or "right"
then Mark u "right"; Parent(u) := VR; V R := U

exit
else if u = VL then DCV:= u

[If u is marked "left" or "right," then because the search is depth first, either u
is on the alternating path from s to rE, or all predecessor edges of u have already
been used.]

(R1) [VR has no more "unused" predecessor edges]
if VR = Barrier
then VR := DCV; Barrier := DCV; Replace the "left" mark on VR by "right"

VL := Parent(rE) [Force LEFTDFS to backtrack from VL = DCV]
else VR := Parent(vR) [Backtrack]

SUBROUTINE E R A S E

Input: Set Y of vertices to be erased [Y can be implemented by a queue]
Effect: Marks all vertices in Y "erased."

Once all predecessors of a vertex z have been erased, z is erased too.
Called by: BLOSS-AUG

repeat
Remove a new vertex y from Y
Mark y "erased"
for each "unerased" z in Successors(y) do

Subtract 1 from Count(z)
if Count(z) is now 0 then Insert z into Y

until Y is empty

SUBROUTINE F I N D P A T H

Inputs: Vertices High and Low with Level(High)>_ Level(Low), bloom B
Output: An alternating Path from High to Low through Predecessors
Called by: BLOSS-AUG, OPEN
Calls: OPEN, which finds paths through blooms other than B

(F0) [Initialization]
if High = Low
then Path := High; exit
v := High

(F1) [Depth-first search to find Low]
repeat

while v has no "unvisited" predecessor edges do v := Parent(v)
if Bloom(v)= B or Bloom(v)= undefined
then Choose an "unvisited" predecessor edge (u, v)

Mark (u, v) "visited"
else u := base (Bloom (v))

532 P.A. Peterson and M. C. Loui

if (u is "unvisited") and (u is "unerased")
and (Level(u) > Level(Low))
and (u has same "left"/"right" mark as High)

then Mark u "visited"; Parent(u) := v; v := u
until u = Low

(F2) [Path has been found, except for blooms other than B]
Let Path = x~ , xm be the path defined by the Parent pointers from High to Low
f o r j : = l t o m - l d o

if Bloom(xj) is defined and Bloom(xj) ~ B
then [At this point xj+~ = base(Bloom(xj))]

Replace xj and xj+l by output of OPEN(xj)

SUBROUTINE OPEN

Inputs: Vertex x
Output: An alternating path Path from x through Bloom(x) to base(Bloom(x))
Called by: F INDPATH
Calls: F INDPATH

B := Bloom(x); b := base(B)
if x is outer
then Let Path be the output of FINDPATH on inputs x, b, B
if x is inner
then Let LeftPeak and RightPeak be the peaks of B

if x is marked "left"
then call F INDPATH with inputs LeftPeak, x, B

call F INDPATH with inputs RightPeak, b, B
Let Path be the concatenation of these paths

if x is marked "right"
then call F INDPATH with inputs RightPeak, x, B

call F INDPATH with inputs LeftPeak, b, B
Let Path be the concatenation of these paths

References

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974), The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA.

Berge, C. (1957), Two theorems in graph theory, Proc. Nat. Acad. Sci. U.S.A. 43, 842-844.
Bondy, J. A., and Murty, U. S. R. (1976), Graph Theory with Applications, Elsevier North-Holland,

New York.
Edmonds, J. (1965), Paths, trees and flowers, Canad. J. Math. 17, 449-467.
Even, S., and Kariv, O. (1975), An O(n zS) algorithm for maximum matching in general graphs, Proc.

16th Ann. Symp. on Foundations of Computer Science, IEEE, pp. 100-112.
Fujii, M., Kasami, T., and Ninomiya, K. (1969), Optimal sequencing of two equivalent processors,

SIAM J. AppL Math. 17, 784-789.
Gabow, H. N. (1976), An efficient implementation of Edmonds' algorithm for maximum matching

on graphs, J. Assoc. Comput. Mach. 23, 221-234.
Gabow, H. N., and Tarjan, R. E. (1985), A linear-time algorithm for a special case of disjoint set

union, J. Comput. System Sci. 30, 209-221.

The General Maximum Matching Algorithm of Micali and Vazirani 533

Hajek, B. (1984), Link schedules, flows, and the multichromatic index of graphs, Proc. 1984 Conf.
on Information Sciences and Systems, Princeton University, Princeton, N J, pp. 498-502.

Hopcroft, J. E., and Karp, R. M. (1973), An n 5/2 algorithm for maximum matching in bipartite
graphs, SIAMJ. Comput. 2, 225-231.

Kameda, T., and Munro, I. (1974), An O(I V I �9 IE[) algorithm for maximum matching of graphs,
Computing 12, 91-98.

Micali, S., and Vazirani, V. (1980), An O(x/~[EI) algorithm for finding maximum matching in general
graphs, Proc. 21st Ann. Syrup. on Foundations of Computer Science, IEEE, pp. 17-27.

Papadimitriou, C. H., and Steiglitz, K. (1982), Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, Englewood Cliffs, NJ.

Peterson, P. A. (1985), The general maximum matching algorithm of Micali and Vazirani, Tech. Rep.
ACT-62, Coordinated Sci. Lab., Univ. Illinois at Urbana-Champaign, Aug. 1985.

Reingold, E. M., Nievergelt, J., and Deo, N. (1977), Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, Englewood Cliffs, NJ.

Tarjan, R. E. (1975), Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach.
22, 215-225.

Tarjan, R. E. (1983), Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA.

