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The General Maximum Matching Algorithm 
of Micali and Vazirani I 

Paul A. Peterson 2'3 and Michael C. Loui 2 

Abstract. We give a clear exposition of the algorithm of Micali and Vazirani for computing a 
maximum matching in a general graph. This is the most efficient algorithm known for general matching. 
On a graph with n vertices and m edges this algorithm runs in O(ni/2m) time. 
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1. Introduction. Let G = (V, E) be a finite, undirected graph with vertices V 
and edges E. Let n = I Vl and m = IEI. A matching is a set M of edges of G such 
that no two edges of M are incident on the same vertex. A maximum matching 
is a matching of maximum cardinality. 

The computation of maximum matchings is a fundamental problem of com- 
binatorial optimation. The classic assignment problem of operations research can 
be formulated as a matching problem on bipartite graphs (Bondy and Murty, 
1976). The scheduling of tasks of multiprocessor computers (Fujii et al., 1969) 
and the scheduling of transmissions on packet radio networks (Hajek, 1984) can 
be modeled as matching problems on general graphs. 

For bipartite graphs the best maximum matching algorithm, due to Hopcroft 
and Karp (1973), runs in O(n~/2m) time. For general graphs a straightforward 
implementation of the maximum matching algorithm of Edmonds (1965) runs 
in O ( n  4) time (Papadimitriou and Steiglitz, 1982). Progressively more efficient 
general matching algorithms have been designed with the following running times: 

O(n 3) (Gabow, 1976), 
O(nm) (Kameda and Munro, 1974), 
O(n s/2) (Even and Kariv, 1975), 
O(nl/2m) (Micali and Vazirani, 1980). 

We give a clear exposition of the important--but extremely complicated-- 
algorithm of Micali and Vazirani, which is the most efficient known for maximum 
matching in general graphs. The efficiency of this algorithm depends on the new 
algorithm for incremental tree set union of Gabow and Tarjan (1985). We hope 
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that this exposition will reach a wider audience than did the original paper (Micali 
and Vazirani, 1980), which appeared only in a conference proceedings. 

We assume that the reader understands basic graph theory (Bondy and Murty, 
1976) and the breadth-first search and depth-first search techniques. Section 2 
reviews basic definitions for matching. Section 3 gives an overview of the algorithm 
of Micali and Vazirani. Sections 4-6 describe the principal subroutines of the 
algorithm in detail, assuming that they encounter no blossoms. Section 7 modifies 
the subroutines to handle blossoms. The presence of blossoms complicates general 
matching algorithms. Section 8 establishes that the algorithm runs in O(nl/2m) 
time. The appendix presents the entire algorithm formally; it corrects several 
minor errors in the original paper of Micali and Vazirani (1980). 

2. Basic Definitions.  Let M be a matching in a graph. With respect to M we 
define the terms matched, free, mate, exposed, alternating path, and augmenting 
path. 

An edge e is matched if e ~ M, free if e ~ M. A vertex v is matched if some 
matched edge is incident on v, exposed if no matched edge is incident on v. If 
(v, w) ~ M, then v is the mate of w, and vice versa. (The pairs (v, w) and (w, v) 
denote the same edge.) 

A blossom is a circuit of odd length, say 2k+ 1, that has k matched edges. 
Since bipartite graphs have no circuits of odd length, bipartite matching algorithms 
need not handle blossoms. 

A path (v~,/)2,.. ") is alternating if the edges (vl, v2), (1)2, ~)3),""" are alternately 
in M and not in M. For vertices v and w, let Length(v, w) be the length of the 
shortest alternating path from v to w. A path is augmenting if it is alternating, 
and the first and last vertices are exposed. An augmenting path always has odd 
length. An augmenting path with 2 k + l  edges has k matched edges and k + l  
free edges. 

? ? 
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Fig. 1 
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Let E(P) be the edges of an augmenting path P for M. The symmetric difference 

M ' = E ( P ) O M  

comprises the edges in E(P) or in M but not in both. M'  is a matching with 
one more edge than M. Call M'  the result of increasing M along P. In Figure 1 
straight lines denote free edges, wavy lines matched edges. Increasing the matching 
along augmenting path (C, D, E, F)  in Figure l(a) yields the new matching of 
Figure l(b). 

From this discussion it is apparent that if M has an augmenting path, then M 
is not maximum. Conversely, Berge (1957) established that if M has no augment- 
ing paths, then M is maximum. Bondy and Murty (1976) and Papadimitriou and 
Steiglitz (1982) gave clear proofs of this fundamental fact. 

3. Overview of the Algorithm 

3.1. Phases. To obtain a maximum matching, the algorithm proceeds in a 
sequence of phases. At the beginning of each phase the algorithm has a matching 
M. During each phase the algorithm finds a maximal set of vertex-disjoint 
minimum length augmenting paths for M and increases the matching along each 
of these paths. Hopcroft and Karp (1973) proved that O(n 1/2) of these phases 
suffice for finding a maximum matching, even in nonbipartite graphs. Each phase 
of the algorithm runs in O(m) time. Consequently, the running time of the 
algorithm is O(nl/2m). 

3.2. Definitions. Fix a matching M in the graph. The even-level of a vertex v 
is the length of the minimum even length alternating path for M from an exposed 
vertex to v, if any, +oo otherwise. Write EvenLevel(v) for the even-level of v. The 
odd-level of a vertex v is the length of the minimum odd length alternating path 
for M from an exposed vertex to v, if any, +oo otherwise. Write OddLevel(v) 
for the odd-level of v. Define the level of v to be 

Level(v) = min{ EvenLevel( v ), OddLevel( v ) }. 

Vertex v is outer if Level(v) is even, inner if Level(v) is odd. Observe that if 
v is exposed, then Level(v)= EvenLevel(v)= 0, hence v is outer. If  v is outer 
(resp. inner), then the other-level of v is its odd-level (even-level). 

An edge (s, t) is a bridge if both EvenLevel(s) and EvenLevel(t) are finite, or 
if both OddLevel(s) and OddLevel(t) are finite. (We caution the reader than our 
use of the word bridge differs from its use in pure graph theory, namely, an edge 
whose removal leaves a disconnected graph.) Since every augmenting path P h a s  
odd length, every edge in P is a bridge. Furthermore, if M has no blossoms, 
then every bridge lies on an augmenting path. Define 

tenacity(s, t) = min{ EvenLevel( s ) + EvenLevel( t ), 

OddLevel( s ) + OddLevel( t ) } + 1. 
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Inner vertices at level 3 

Outer vertices at level 2 

Inner vertices at level 1 

Exposed vertices at level 0 

Fig. 2 

The length of the minimum length augmenting path containing a bridge (s, t) is 
tenacity(s, t ). 

3.3. Description of Subroutines. To explain the fundamental ideas of the 
algorithm clearly, we assume here and in Sections 4-6 that no matching construc- 
ted by the algorithm has blossoms. Section 7 presents the modifications to handle 
blossoms. 

The algorithm has three principal subroutines: SEARCH, BLOSS-AUG, and 
FINDPATH. This description will refer to Figure 2. 

During each phase SEARCH conducts a breadth-first search for augmenting 
paths. It searches simultaneously from all exposed vertices until it discovers a 
nonempty set Bridges(i) of bridges at search level i. In Figure 2 SEARCH would 
start from the exposed vertices A and D to find the bridge (B, C) at search level 
3. For every bridge in Bridges(i), SEARCH calls BLOSS-AUG with the bridge 
as the input. 

BLOSS-AUG performs a double depth-first search in order to find the exposed 
vertices of an augmenting path containing the bridge. In Figure 2 BLOSS-AUG 
would perform a depth-first search from B to find A concurrently with a depth-first 
search from C to find D. After finding exposed vertices A and D, BLOSS-AUG 
calls FINDPATH twice, once with inputs B and A and once with inputs C 
and D. 

FINDPATH performs a simple depth-first search to find the exact vertices of 
the alternating paths between its two input vertices. The augmenting path is the 
concatenation of the two paths found by FINDPATH. 

For each augmenting path found by BLOSS-AUG and FINDPATH, the 
algorithm increases the matching along the augmenting path and marks these 
vertices "erased." Since BLOSS-AUG considers only unerased vertices, all aug- 
menting paths discovered during the same phase are vertex-disjoint. SEARCH 
continues to pass bridges to BLOSS-AUG until Bridges(i) is exhausted. Then 
the phase ends. 
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This algorithm borrows some ideas from the algorithm of Even and Kariv 
(1975), which also operates in phases. SEARCH resembles the first stage of the 
algorithm of Even and Kariv, and the double depth-first search of  BLOSS-AUG 
corresponds to the third stage. 

4. Subroutine SEARCH 

4.1. Finding a Bridge. At the beginning of each phase the algorithm erases all 
marks and labels used during the preceding phase and initializes the even-level 
and odd-level of every vertex to +oo, signifying that it has not yet found any 
alternating path. Then it sets the even-level of  every exposed vertex to 0 and 
starts SEARCH with search level 0. 

SEARCH conducts a breadth-first search for augmenting paths, starting simul- 
taneously from all exposed vertices at search level 0. In general, SEARCH finds 
vertices at level i + 1 only after it finds all vertices at level i. SEARCH scans each 
edge at most twice, once in each direction. We describe this process in detail. 

When the search level i is even, SEARCH considers each vertex v such that 
EvenLevel(v) = i. For each vertex u adjacent to v such that (u, v) is free, if 
O d d L e v e l ( u ) = + ~ ,  then SEARCH sets OddLevel(u)= i+1.  When the search 
level i is odd, SEARCH considers each matched vertex v such that OddLevel(v) = 
i. Let u be the mate of  v. SEARCH sets EvenLevel(u) = i+ 1. 

Figure 3 shows the state of  SEARCH, which started from exposed vertices A, 
B, and C simultaneously, after search level 2. Vertices are labeled with their 
current values of  EvenLevel and OddLevel. SEARCH will examine vertices H, 
/, J, and K at search level 3. 

For each edge (u, v) encountered at the current search level i, SEARCH 
determines whether (u, v) is a bridge by comparing the even-level and odd-level 
of  both u and v. If  (u, v) is a bridge, then it is added to the set Bridges(i) of  

Fig. 3 
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Fig. 4 

bridges found at search level i. If SEARCH encounters no bridges at search level 
i, then it begins search level i + 1. 

Unless SEARCH encounters a blossom, considered in Section 7, the discovery 
of a bridge yields an augmenting path. If  at the end of search level i the set 
Bridges(i) is nonempty, then for each bridge (s, t) in Bridges(i) in succession, 
SEARCH calls BLOSS-AUG with input (s, t). After these calls to BLOSS-AUG 
the current phase ends; SEARCH does not proceed to search level i+  1 during 
the current phase. 

If at the start of a phase the current matching is maximum, then no augmenting 
paths exist. SEARCH recognizes this condition when it reaches search level i 
and finds no vertices at level i. 

In Figure 4 SEARCH discovers bridges (B, C) and (E, F)  at search level 1. 
Edge (H, I )  will not be a bridge in the current phase because the phase terminates 
after increasing the matching along the augmenting paths through bridges at 
search level 1. Suppose SEARCH calls BLOSS-AUG first with (B, C), then with 
(E, F).  If the matching is increased along the path (A, B, C, D),  then (D, E, F, G) 
would no longer be an augmenting path. Thus SEARCH could pass a bridge to 
BLOSS-AUG that is not a part of an augmenting path. Section 5.3 discusses this 
situation further. 

4.2. Predecessors and Anomalies. During the execution of  SEARCH, call vertex 
y a predecessor of a matched vertex z if y is adjacent to z and either 

(1) z is inner, and OddLevel(z)= EvenLevel(y)+ 1; or 
(2) z is outer, and y is the mate of z. 

If  SEARCH first discovered z by examining the neighbors of  y, then y is a 
predecessor of z. Call (y, z) a predecessor edge of z. Let Predecessors(z) denote 
the set of predecessors of vertex z. SEARCH inserts y into Predecessors(z) when 
it scans edge (y, z). Vertex w is an ancestor of z if either w is a predecessor of 
z or w is a predecessor of another ancestor of z. 

Vertex y is an anomaly for vertex z if z is inner, y is outer, y is adjacent to z, 
but y is not the mate of  z, and EvenLevel(y)> OddLevel(z). Let Anomalies(z) 
denote the set of anomalies of z. SEARCH adds y to the set Anomalies(z) when 
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it reaches y. Informally,  y is an anomaly for z because when SEARCH considers 
the neighbors of  y during the breadth-first search, z already has a finite value 
for odd-level. Section 7 will use anomalies to construct augmenting paths through 
blossoms. 

In Figure 3 A and B are predecessors of  D, D is the predecessor of  F, and G 
is an anomaly of  E. 

5. Subroutine B L O S S - A U G  

5.1. Depth-First Search Processes. The input to BLOSS-AUG is a bridge (s, t). 
BLOSS-AUG finds the exposed vertices x and x '  of  an augmenting path containing 
the bridge. I f  (s, t) was discovered by SEARCH at level i, then 

Length(s, x) + Length(t, x') = 2i, 

and the augmenting path has length 2i + 1. 
To find x and x' ,  BLOSS-AUG performs two depth-first searches concurrently, 

starting from s and t simultaneously, using the predecessors of  vertices: the left 
depth-first search process LEFTDFS starts from s; the right depth-first search 
process R I G H T D F S  starts from t. Lets variables VL and VR denote the current 
vertices of  LEFTDFS and R I G H T D F S ,  respectively. Initially VL = S and VR = t. 
Note that initially Level( VL) = Level( VR). 

In general, LEFTDFS proceeds if Level( VL) >-- Level( VR), and R I G H T D F S  
proceeds otherwise. LEFTDFS examines only the predecessor edges of  VL that 
have not yet been used. When LEFTDFS selects a predecessor u of  VL, it defines 
Parent(u) = VL, marks edge (VL, U) "used,"  marks vertex u "left ,"  and sets VL = U. 
By definition of the predecessors, the level of  VL is smaller than before. 
R I G H T D F S  proceeds in the same manner,  marking the chosen predecessor vertex 
"r ight"  instead of "left ." I f  LEFTDFS and R I G H T D F S  reach two different 
exposed vertices, then BLOSS-AUG calls F I N D P A T H ,  which constructs the 
complete augmenting path. 

5.2. Backtracking. LEFTDFS and R I G H T D F S  may meet at a vertex w. Only 
one process may claim w and the exposed vertex reachable from w. First, 
LEFTDFS claims w and marks w "left." Then R I G H T D F S  tries to find a vertex 
as deep as w, backtracking via Parent if necessary. I f  R I G H T D F S  fails to find 
another  vertex as deep as w, then R I G H T D F S  claims w and replaces the "left" 
mark on w by "right." Now LEFTDFS backtracks via Parent and tries to find a 
vertex as deep as w. I f  LEFTDFS cannot find another vertex as deep as w, then 
a blossom has been discovered. This situation is handled in Section 7. 

LEFTDFS and R I G H T D F S  use variables D C V  (Deepest Common  Vertex) 
and Barrier. D C V  is the deepest vertex--i .e. ,  the vertex with the smallest level- -  
discovered by both LEFTDFS and RIGHTDFS.  Before the first time that a 
common vertex is reached, D C V  is undefined. I f  a blosson is discovered, then 
D C V  will be the base. 



518 P.A. Peterson and M. C. Loui 

Fig. 5 

Barr i e r  prevents unproductive backtracking to keep the time for one phase to 
O ( m ) .  Suppose LEFTDFS and R I G H T D F S  meet at vertex w. Furthermore, 
suppose R I G H T D F S  fails to find another vertex as deep as w, but LEFTDFS 
does. Subsequently LEFTDFS and R I G H T D F S  meet again. At this time 
R I G H T D F S  should not back up above w. In general, when R I G H T D F S  fails 
during backtracking, B ar r i e r  is set to the current D C V .  Later backtracking by 
R I G H T D F S  never passes above Barrier.  Initially Barr i e r  = YR. 

Let us examine Figure 5. Suppose BLOSS-AUG is called with input(/ ,  J) .  The 
following actions could occur: 

(0) LEFTDFS sets VL = I and marks I "left";  R I G H T D F S  sets VR = J and marks 
J "right." Initially Barr i e r  = J. 

(1) LEFTDFS uses (/, G),  marks G "left ," and sets VL = G. 
(2) R I G H T D F S  uses (J, H) ,  marks H "right," and sets VR = H. 
(3) LEFTDFS uses (G, D) ,  marks D "left ,"  and sets VL = D. 
(4) R I G H T D F S  uses (H, E) ,  marks E "right," and sets VR = E. 
(5) LEFTDFS uses (D,  B), marks B "left ,"  and sets VL = B. 
(6) R I G H T D F S  uses (E, B), finds B = VL, and sets D C V  = B. 

(7) Since E now has no unused predecessor edges, R I G H T D F S  backtracks to 
H, which also has no unused predecessor edges, then to J. At this point VR = J. 

(8) R I G H T D F S  uses (J, G),  but G is marked "left." 
(9) Since VR = J = Barr i e r  and J has no unused predecessor edges, R I G H T D F S  

claims D C V  by setting VR = D C V =  B, marks B "right," and forces 
LEFTDFS to backtrack by setting VL = D. Also, R I G H T D F S  sets Barr ier  = 

D C V  = B. 

(10) Since D now has no unused predecessor edges, LEFTDFS backtracks to 
G, which also has no unused predecessor edges, then to L At this point VL = L 

(11) LEFTDFS uses (/, H) ,  but H is marked "right." 
(12) LEFTDFS uses (it, F) ,  marks F "left ," and sets VL = F. Eventually LEFTDFS 

reaches A. 
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(13) BLOSS-AUG calls F INDPATH to construct the augmenting path from 
exposed vertex A through bridge (/, J )  to exposed vertex B. 

If  the graph did not have edge (/, F) ,  then at step (12) LEFTDFS would have 
exhausted all predecessor edges of /, and LEFTDFS would have detected a 
blossom. 

5.3. Erasure. Figure 4 shows that SEARCH may pass to BLOSS-AUG a bridge 
that is no longer part of  an augmenting path. To prevent BLOSS-AUG from 
searching for a nonexistent augmenting path, the algorithm erases the vertices 
of each augmenting path as soon as the matching is increased along the path, 
and LEFTDFS and RIGHTDFS select only unerased vertices. Thus the erasures 
guarantee the disjointness of  the minimum length augmenting paths during one 
phase. The erasure of  a vertex occurs at most once during each phase. All "erased" 
marks are removed at the start of the next phase. 

Subroutine ERASE marks every vertex on an augmenting path "erased." Also, 
ERASE marks vertex z "erased" if every vertex in Predecessors(z) is marked 
"erased." For speed, ERASE does not access Predecessors(z) when a predecessor 
of  z is erased. Instead, each vertex z has an integer variable Count(z) whose 
value is the number of  unerased predecessors of  z, and ERASE subtracts 1 from 
Count(z) when it erases a predecessor of z. When ERASE changes Count(z) to 
0, it also erases z. 

Upon completion of  ERASE, every unerased, matched vertex z (with finite 
Level(z)) has at least one unerased predecessor, hence has an alternating path 
to an exposed vertex. Consequently, if BLOSS-AUG is called with input (s, t), 
then there is an alternating path from s to an exposed vertex and an alternating 
path from t to an exposed vertex, but these paths may intersect. By Menger's 
Theorem (Bondy and Murty, 1976), vertex-disjoint alternating paths exist if and 
only if for each i <- min{Level(s), Level(t)}, there are at least two distinct ancestors 
of  s or t at level i. Thus if LEFTDFS is unable to find another vertex as deep 
as DCV, then there is only one ancestor of  s or  t at Level(DCV), and BLOSS-AUG 
cannot find an augmenting path through (s, t). 

6. Subroutine FINDPATH. After BLOSS-AUG has discovered the exposed 
vertices x and x' of  the augmenting path containing the bridge (s, t), it calls 
subroutine FINDPATH twice: once to find the vertices of  the alternating path 
from s to x, once to find the alternating path from t to x'. The concatenation of 
these two paths with (s, t) produces the augmenting path. If BLOSS-AUG 
encountered no blossoms, then LEFTDFS and RIGHTDFS have already 
traversed the desired paths, and FINDPATH would be superfluous. If BLOSS- 
AUG encountered blossoms, however, then the modifications of  Section 7.6 imply 
that LEFTDFS and RIGHTDFS may not have traversed the desired paths. 

The inputs to F INDPATH are vertices High and Low, with Level(High)>- 
Level(Low). FINDPATH performs a depth first search from High to find Low. 
When FINDPATH reaches a vertex for the first time during the phase, it marks 
the vertex "visited." If  the current vertex is v, then FINDPATH considers only 
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the unvisited, unerased predecessors of  v to continue the search. F I N D P A T H  
selects a predecessor u of  v only if the "left"  or "right" mark of  u is the same 
as that of  High and Level(u) >- Level(Low). Upon selecting u, F I N D P A T H  sets 
Parent(u) = v. I f  Parent(u) was defined by LEFTDFS or R I G H T D F S ,  then 
Parent(u) = v already. When F I N D P A T H  reaches Low, F I N D P A T H  uses the 
Parent values to construct the path. 

Section 7.7 modifies F I N D P A T H  to handle blossoms. 

7. Blossoms and Blooms. So far we have ignored the occurrence of blossoms. 
This section describes the discovery, labeling, and opening of blossoms. 

7.1. Blossoms and Phases. Every bridge discovered by SEARCH lies on either 
an augmenting path or a blossom. BLOSS-AUG not only finds the exposed 
vertices of  an augmenting path but also detects the blossoms. I f  BLOSS-AUG 
determines that a bridge corresponds to a blossom, then it labels the vertices of  
the blossom and exits. 

The discovery of blossoms does not end a phase. I f  all bridges at search level 
i correspond to blossoms, then the search level is incremented. The current phase 
does not end until either at least one augmenting path is found or the matching 
is maximum. 

7.2. Blooming Condition. The algorithm uses a generalization of blossoms that 
we call blooms. Section 7.5 exhibits blooms that are not blossoms. Let (s, t) be 
a bridge. 

Blooming Condition. There exists a vertex w such that w is an ancestor of  both 
s and t, and no other ancestor of  either s or t has the same level as w. 

Among the w's of  the Blooming Condition such that w does not currently belong 
to a bloom, let b be the vertex whose level is maximum. The bloom B is the set 
of vertices y such that: 

(1) y does not belong to any other bloom when B is formed, 
(2) either y = s  or y =  t or y is an ancestor of  s or of  t, and 
(3) b is an ancestor of  y. 

Observe that by condition (1), a vertex can belong to at most one bloom. By 
condition (3), b ~ B. Call b the base of B, and write b = base(B). Call s and t 
the peaks of  B. Figure 6(a) shows a bloom {D, E, F, G} whose peaks are F and 
G and whose base is C. 

By induction on the number  of  blooms that have been formed, we show that 
for every matched edge (y, z), if y bdongs  to a bloom B, then z ~ B too. Consider 
the situation when B is formed, and let b = base(B). By condition (1) and the 
inductive hypothesis, z is not yet in a bloom, and z satisfies condition (1). Because 
(y, z) is matched, either y is the only predecessor of  z or vice versa. It follows 
that since y satisfies condition (2), z also satisfies condition (2). By the inductive 
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hypothesis again, since currently b is not in a bloom, the mate of  b (if it exists) 
is not in a bloom. Consequently b must be outer, for otherwise its mate would 
be an ancestor of  both s and t at a higher level. I f  z is inner, then b ~ z, and 
condition (3) implies that b is also an ancestor of  z. I f  z is outer, then y is the 
predecessor of  z, and condition (3) implies that b is also an ancestor of  z. Thus 
z satisfies condition (3). Ergo z ~ B. 

7.3. Detection. Section 5.2 mentioned that BLOSS-AUG detects a bloom when 
the depth-first search processes LEFTDFS and R I G H T D F S  meet at a vertex w 
such that neither LEFTDFS nor R I G H T D F S  can find a different vertex as deep 
as w. 

Upon detecting a b loom B, the algorithm determines the set of  vertices in B. 
B comprises all vertices marked "left" or "right," excluding the DCV. The base 
of  B is the DCV. Section 7.6 modifies LEFTDFS and R I G H T D F S  to ensure that 
neither the vertices of  B nor base(B) belong to a previously formed bloom. 

7.4. Setting Other-leveL Let y be a vertex in bloom B. I f  y is inner (outer), then 
there is an even (odd) length alternating path containing (s, t) from an exposed 
vertex to y. Thus the other-level of  y can be set to 

tenacity(s, t) - Level(y). 

Figure 6 shows a bloom--afortiori  a b lossom--discovered  at search level 4 before 
and after the other-level of  each bloom vertex is set; each vertex is labeled with 
its even-level and odd-level. 
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Once BLOSS-AUG has set the other-level of each vertex in B, it must check 
for newly formed bridges. Any new bridge must have at least one vertex in B. 
For new bridges (y, z) such that both y and z belong to B, the Blooming Condition 
holds. Thus (y, z) induces not an augmenting path, but a bloom already contained 
in B. These bridges are ignored. For new bridges (y, z) such that only vertex y 
is in B, necessarily y is inner. If EvenLevel(z) < OddLevel(y), then z is a pre- 
decessor of y, but since the depth-first search processes did not find an augmenting 
path through z, bridge (y, z) is ignored. If  EvenLevel(z)> OddLevel(y), then z 
is an anomaly of y. In Figure 6(b) (E, H)  is a bridge and H is an anomaly of 
E. Conversely, for every anomaly z of an inner vertex y of B, the edge (y, z) is 
a bridge. BLOSS-AUG computes tenacity(y, z) = 2k+  1 and inserts (y, z) into the 
set Bridges(k). If the present search level is i, then k > i because 

2k = EvenLevel(z) + EvenLevel(y) since z is an anomaly of y 

> EvenLevel(y) + OddLevel(y) = 2i + 1. 

If SEARCH reaches level k, then it will call BLOSS-AUG with input (y, z). 
After BLOSS-AUG has set the other-level of the vertices in B, SEARCH can 

continue the breadth-first search from the inner vertices y of B when it reaches 
search level EvenLevel(y). Since y is inner, SEARCH does not scan the free 
edges incident on y until it reaches search level EvenLevel(y). In Figure 7 a 
bloom is discovered at search level 1, and a bridge of an augmenting path is 
discovered at search level 3. 

7.5. Example. Blooms detected by the algorithm depend on the order in which 
SEARCH passes bridges to BLOSS-AUG. In Figure 8 SEARCH has discovered 
bridges (K, L) and (L, M)  at search level 6. (The figure omits other edges incident 
on P.) 

If BLOSS-AUG handles (K, L) before (L, M),  then the blooms are 

U 1 = {K, L, H, I} 

| 
Fig. 7 
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Fig. 8 

with peaks K and L and base F and 

B2={M,J,F, G,D,E} 

with peaks L and M and base C. Notice that a peak of  a bloom may not belong 
to that bloom. 

I f  BLOSS-AUG handles (L, M)  before (K, L), then the blooms are 

BI={L,M,I ,J ,F,  G,D,E} 

with peaks L and M and base C and 

B~ = {K, H} 

with peaks K and L and base C. 

Zr. Embedded Blooms. An embedded bloom is a bloom whose base belongs to 
another bloom. In Section 7.5 bloom B1 is embedded in bloom B:. For blooms 
B and B', define the partial order < by 

base(B) < base(B') if base(B) ~ B'. 
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Let <* be the reflexive, transitive closure of <.  Define base*(B) to be the base(B*) 
such that base(B) <* base(B*), and base(B*) does not belong to a bloom. 

When LEFTDFS or RIGHTDFS advances to a predecessor that belongs to a 
bloom B, it changes its current vertex (vL or vR) to base*(B) immediately. This 
operation guarantees that no vertex considered by LEFTDFS or RIGHTDFS 
belongs to a previously formed bloom. In essence, this operation has the effect 
of "shrinking" each bloom into its base*. There is an augmenting path for the 
current matching if and only if there is an augmenting path after a blossom is 
shrunk (Papadimitriou and Steiglitz, 1982; Tarjan, 1983). 

To compute base* we may apply the standard algorithm for the U N IO N -F IN D  
problem, which uses both path compression and weighted union (Aho et al., 
1974; Reingold et al., 1977). For m operations (one for each edge) on n elements 
(vertices), this algorithm takes O((m + n)a(m, n)) time, where a is a very slowly 
growing function (Tarjan, 1975); in particular, a(m, n)<-log* n for all m and n. 
For computing base*, however, we may use the more efficient incremental set 
union algorithm of Gabow and Tarjan (1985) since the only union operation 
requires adding a new bloom base. This algorithm runs in O(m + n) time. 

7.7. Opening a Bloom. We modify FINDPATH to handle blooms. In general, 
the inputs to FINDPATH are vertices .High and Low and a bloom B. when 
BLOSS-AUG calls FINDPATH,  B is undefined. Subsequent recursive calls to 
F INDPATH will request paths through bloom B. 

First, F INDPATH finds a sequence of vertices 

HIGH = xl,  . . . , Xk = Low 

from High to Low via Predecessors, assuming that all blooms other than B are 
shrunk. That is, when FINDPATH encounters a vertex x~ ~ B', where bloom 
B' ~ B, it jumps to xj+~ = base(B'). Otherwise, as in Section 6, if xj ~ B or xj is 
in no bloom, then FINDPATH selects the predecessor X~+l of xj having the same 
"left" or "right" mark as High. This sequence of vertices may not be an alternating 
path. 

Second, for each xj e B' ~ B, FINDPATH calls a new subroutine OPEN to find 
a path in B' from xj to xj+~. If xj is outer, then OPEN calls F INDPATH with 
inputs xj, xj+~, B'. If xj is inner, then OPEN calls FINDPATH twice. Suppose 
that xj was marked "left" when B' was formed. The first call to FINDPATH 
finds a path P~ from the left peak of B' to xj, and the second call finds a path 
P2 from the right peak of B' to X j +  1 . Then the path from x~ to x~+~ is the 
concatenation of the reversal of P~ with P2. 

In Figure 8 bloom B ~ = { K , L , H , I }  is embedded in bloom B2 = 
{M, J, F, G, D, E}, base(B1) = F, and base(B2) = C. Suppose BLOSS-AUG calls 
F INDPATH with High = P, Low = A, and B = empty. FINDPATH first obtains 
the sequence (P, H, F, C, B, A). Since H e  B~, FINDPATH calls OPEN; since H 
is inner, OPEN delivers the path (H, K, L, I, F).  Next, since F ~  B2, F INDPATH 
calls OPEN; since F is outer, OPEN delivers the path (F, D, C). Upon 
completion, the original call to FINDPATH produces the path 
( P , H , K , L , I , F , D , C , B , A ) .  
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8. Analysis 

8.1. Correctness. Let us verify informally that the algorithm is correct. Consider 
the situation at the beginning of  a phase. If  the current matching is maximum, 
then there is no augmenting path, hence during this phase SEARCH finds no 
bridges that yield augmenting paths, and the algorithm halts. If  the current 
matching is not maximum, then an augmenting path of some minimum length 
L exists. It suffices to show that the algorithm finds a maximal set of  vertex-disjoint 
augmenting paths of  length L during this phase. 

First, we proceed by induction to confirm that SEARCH and BLOSS-AUG 
compute the even-level and odd-level of each vertex correctly. 

Suppose that at an even search le~,el i, SEARCH encounters a vertex u adjacent 
to a vertex v at level i such that OddLevel(u)= +co. (The argument for an odd 
i is identical.) By the inductive hypothesis, i is the length of the shortest alternating 
path of  even length from v to an exposed vertex. Consequently, the shortest odd 
length alternating path from u to an exposed vertex must have length i - 1  or 
i +  1. If  the length were i -  1, then SEARCH would have set OddLevel(u) at level 
i - 1  because the search is breadth first. Therefore SEARCH sets OddLevel(u) 
to i + 1 correctly. Furthermore, since every u with OddLevel(u) = i + 1 is adjacent 
to a v with EvenLevel(v)= i, SEARCH reaches all vertices at level i+  1 whose 
odd-level was +oo. 

BLOSS-AUG sets the other-level of every vertex in a bloom. Suppose y is an 
outer vertex in a bloom discovered from a bridge at level k. Then BLOSS-AUG 
sets OddLevei(y) to 2k+  1 -  EvenLevel(y) because there is an alternating path 
of  this odd length from y around the bloom to an exposed vertex. If  this value 
were incorrect, then OddLevel(y) would be 2j + 1 -  EvenLevel(y) for some j < k. 
Thus y would have been an ancestor of  the vertices of  a bridge (s, t) discovered 
at previous search level j. If  (s, t) induced an augmenting path, then we would 
have ended this phase without reaching search level k. If  (s, t) induced a bloom, 
then BLOSS-AUG would have set OddLevel(y) at levelj. Therefore BLOSS-AUG 
sets OddLevel(y) correctly. Analogously, if y is an inner vertex in a bloom, then 
BLOSS-AUG sets EvenLevel(y) correctly. 

Second, we check that during this phase, the algorithm finds at least one 
augmenting path of  length L. 

Since the algorithm determines the vertex levels correctly, for every augmenting 
path of  length L, SEARCH finds a bridge of the path at search level ( L -  1)/2. 
Let (s, t) be the first bridge of an augmenting path with which SEARCH calls 
BLOSS-AUG. By Menger's theorem, since there are vertex-disjoint alternating 
paths from s to an exposed vertex and from t to an exposed vertex, at each level 
i<-min{Level(s), Level(t)}, there are at least two distinct ancestors of s or t at 
level i. We must show that LEFTDFS and RIGHTDFS eventually reach different 
exposed vertices, for then FINDPATH can construct the augmenting path. 

Let us examine the operation of LEFTDFS and RIGHTDFS.  LEFTDFS (resp. 
RIGHTDFS)  inspects each predecessor u of  VL (VR)- If  U belongs to a bloom B, 
then base*(B) is the only ancestor of u whose level is Level(base*(B)); thus the 
shortest alternating path from u to an exposed vertex must pass through base*(B), 
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and LEFTDFS ( R I G H T D F S )  may replace u by base*(B) in its search. Next, 
LEFTDFS sets VL ( R I G H T D F S  sets VR) to U only if u has neither a "left" nor 
a "right" mark. I f  u is marked "left" or "right," then either u is on a current 
alternating path from s to VL or from t to VR, or, since the search processes are 
depth first, all predecessor edges of  u have been used. In the latter case, the only 
ancestor of  u at level Level(DCV) is DCV, which is marked "right" (resp. "left").  
Because LEFTDFS ( R I G H T D F S )  seeks a different ancestor at this level, it need 
not consider u again. Since there are two or more distinct ancestors of  s or t at 
every level, we conclude that LEFTDFS and R I G H T D F S  can find shortest 
vertex-disjoint alternating paths from s and t to distinct exposed vertices. 

Third, we establish that the algorithm finds a maximal set of  vertex-disjoint 
augmenting paths of  length L at this phase. 

Clearly, the "erased" marks on vertices ensure that the augmenting paths in 
this phase are vertex-disjoint. To verify that the set of  vertex-disjoint augmenting 
paths is maximal,  recall that for every augmenting path of  length L, SEARCH 
finds a bridge of the path and calls BLOSS-AUG with that bridge. LEFTDFS 
and R I G H T D F S  ignore a vertex u only when either u is erased or u already has 
a "left" or "right" mark. But if u is erased, then u no longer has an alternating 
path P via a predecessor to an exposed vertex such that P is disjoint from 
augmenting paths previously discovered during the phase. And if u has a "left" 
or "right" mark, then u was marked during the current invocation of BLOSS-AUG 
(to be shown in the next paragraph),  and as argued before, u does not lead to 
a different ancestor at the level of  the current DCV. Ergo, by the correctness of  
LEFTDFS and R I G H T D F S ,  the algorithm determines a maximal set of  vertex- 
disjoint augmenting paths during the phase. 

We demonstrate that the only unerased vertices marked "left" or "right" 
encountered by LEFTDFS and R I G H T D F S  during an invocation of BLOSS-AUG 
are marked during the same invocation. Consider any previous invocation of 
BLOSS-AUG, and suppose (s, t) was the input. I f  this invocation yielded a bloom 
B, then every vertex y marked "left" or "r ight"  during this invocation became 
part  of  B; subsequently, LEFTDFS and R I G H T D F S  always bypass y when they 
replace y by base*(B). I f  this invocation yielded an augmenting path, then for 
every vertex y marked "left" or "right" during this invocation, either (1) y was 
on the augmenting path, or (2) y was marked "left"  and was not on the augmenting 
path, or (3) y was marked "r ight"  and was not on the augmenting path. In case 
(1) y was erased at the end of the invocation of BLOSS-AUG. In case (2) 
LEFTDFS backtracked above y because, at some time during its search, the only 
ancestor of  y at level Level(DCV) was DCV = Barrier, which was also the only 
ancestor of  t at this level. This DCV was on the augmenting path. The erasure 
of  this DCV eventually caused the erasure of  y. In case (3) R I G H T D F S  back- 
tracked above y because, at some time during its earth,  DCV = VL was the only 
ancestor of  y at level Level(VL). Later, either the path from s to VL was extended 
into an augmenting path to an exposed vertex, or LEFTDFS backtracked above 
this VL because of a new DCV = Barrier at a smaller level. Thus y had at some 
level only one ancestor, either VL or the new DCV, and this ancestor was on the 
augmenting path. Since this ancestor was erased, y itself became erased. 
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8.2. Time Complexity. Let us analyze the running time of  the algorithm. Let m 
be the number of edges and n be the number of vertices of an input graph. 
Without loss of  generality, assume that the graph has no isolated vertices; that 
is, every vertex is incident on at least one edge. Consequently, n---2m. During 
each phase the algorithm increases the matching along a maximal set of  disjoint 
minimum length augmenting paths. Thus there are O(n 1/2) phases (Hopcroft  and 
Karp, 1973). We show that each phase runs in O(m) time. 

During one phase, subroutine SEARCH considers each vertex at most twice--  
once at an odd search level, once at an even search level. (Only inner vertices 
in blooms are considered twice.) Furthermore, SEARCH scans each edge at most 
twice, once in each direction. It follows that the total time for operations in 
SEARCH is O(m+n)= O(m). 

During one phase, the depth-first search processes of BLOSS-AUG use each 
edge at most once. Once a vertex v has a "left"  or "right" mark, neither LEFTDFS 
nor RIGHTDFS considers the predecessor edges of v again--even on subsequent 
calls to BLOSS-AUG. Section 7.6 established that the total time for base* 
computations can be kept to O(m + n). The total time for operations in BLOSS- 
AUG is O(m+n)=O(m). 

During one phase, F INDPATH marks each edge "visited" at most once, each 
vertex "visited" at most once. The total time for FINDPATH is O(m + n) = O(m). 
During one phase, ERASE decrements a Count(z) variable once for each pre- 
decessor edge joining z to a predecessor of z. The total time for ERASE is at 
most proportional to the number of edges, O(m). In summary, each phase runs 
in O(m) time, and the algorithm runs in O(nl/2m) time. 

Appendix. This appendix presents the complete matching algorithm. The pres- 
entation uses constructs from modern programming languages. Instead of begin- 
end pairs, however, the indentation of blocks of statements specifies the control 
structures. Each statement ends either at the end of  a line or at a semicolon. 
Straight brackets " ["  and " ]"  delimit comments. The exit statement exits the 
subroutine. Peterson (1985) wrote a program in Pascal to implement this 
algorithm. 

GENERAL MATCHING ALGORITHM 

repeat 
[New phase: Initialization] 

for each vertex v do 
EvenLevel(v) := +oo; OddLevel(v):= +oo 
Bloom(v) := undefined [name of bloom to which v belongs] 
Predecessors(v) := empty; Successors(v):= empty; Anomalies(v):= empty 
Count(v) := 0 [number of  unerased predecessors] 
Mark v "unerased" [for disjoint augmenting paths] 
Mark v "unvisited" [for depth-first search in FINDPATH] 
Delete any "left" or "right" mark [for BLOSS-AUG] 
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for each edge (u, v) do 
Mark (u, v) "unused"  [for depth-first search in BLOSS-AUG] 
Mark (u, v) "unvisi ted" [for depth-first search in F I N D P A T H ]  

for i:= 1 to I Vt do 
Candidates(i) := empty [vertices to be searched at level i] 
Bridges(i) := empty [set of  bridges at level i] 

[Each of  the sets Predecessors, Successors, Anomalies, Candidates, and Bridges 
can be implemented by a linear list such as a queue. The operations on these 
sets are to insert a new vertex and to select the next vertex in the set. Both 
operations can be implemented in constant time.] 

call SEARCH 
until No augmentation occurred 

SUBROUTINE SEARCH 

Effect: Finds all augmenting paths of  minimal length and increases the current 
matching along these paths. 
Calls: BLOSS-AUG 

(SO) [Initialization] 
i:= 0 
for each exposed vertex v do 

EvenLevel(v) := O; Insert v into Candidates(O) 

(S1) [Breadth-first search] 
while Candidates(i) is not empty and No augmentation occurred at level i -  1 do 

if i is even then for each v in Candidates(i) do 
for each unerased neighbor u of  v such that (u, v) is free do 

if EvenLevel(u) < +oo 
then [(u, v) is a bridge, but because u could belong to a blossom, Level(u) 

could be greater than Level(v)] 
j := (EvenLevel(u) + EvenLevel(v))/2 
Insert (u, v) into Bridges(j) 

else if OddLevel( u ) = +o0 
then OddLevel(u) := i + 1 
if OddLevel(u) = i + 1 
then Add 1 to Count(u) 

Insert v into Predecessors(u) 
Insert u into Successors(v) 
Insert u into Candidates( i+l)  

if OddLevel(u) < i 
then Insert v into Anomalies(u) 

if i is odd then for each v in Candidates(i) such that v belongs to no bloom do 
Let u be the mate of  v [ v must be matched] 
if OddLevel(u) < +o~ 
then j := ( OddLevel ( u ) + OddLevel (v)) / 2 

Insert (u, v) into Bridges(j) 
if EvenLevel( u ) = +oo 
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then Predecessors(u) := {v}; Successors(v) := {u}; Count(u) := 1 
EvenLevel(u) := i+ 1; Insert u into Candidates(i+ 1) 

for each edge (s, t) in Bridges(i) do 
if s and t are both unerased [Calls to BLOSS-AUG may induce erasure of  

vertices] 
then call BLOSS-AUG with input (s, t) 

i : = i + 1  

SUBROUTINE BLOSS-AUG 

Input: A bridge (s, t) 
Effect: Either discovers a bloom or augments the current matching. 
Called by: SEARCH 
Calls: LEFTDFS,  R I G H T D F S ,  ERASE 

(B0) [Initialization] 
if s and t belong to the same bloom then exit 
if s belongs to a bloom then Ve := base*(Bloom(s)) else Ve := s 
if t belongs to a bloom then VR := base*(Bloom(t)) else VR := t 
Mark VL "left"  and Va "r ight"  
DCV:= undefined; Barrier := VR 

(B1) [Double depth-first search] 
while VL and VR are not both exposed do 
[ I f  Leve l ( s )=Leve l ( t ) ,  then except during backtracking, either Level(VL)= 
Level( VR) or Level( VL) = Level( vR) -- 1] 

if Levei( vL) >-- Level( vR) 
then call LEFTDFS 
else call R I G H T D F S  
if This call discovers a bloom 
then gnto step (B3) 

(B2) [VL and vR are both exposed] 
call F I N D P A T H  to find a path PL from High = s to Low = Ve with B = undefined 
call F I N D P A T H  to find a path PR from High = t to Low = Vr~ with B = undefined 
Increase the matching along the path starting with the reversal of  PL through 
(s, t) ending with PR 
call ERASE to erase all vertices along the augmenting path 
exit 

(B3) [Creation of  a new bloom] 
Remove the "r ight"  mark from D C V  
Create a new bloom B that comprises all vertices marked "left" or "r ight"  during 
the current call to BLOSS-AUG 
far  each y in B do Bloom(y)  := B 
The peaks of  B are s and t 
base(B) := D C V  
for each y in B do 

Bloom(y) := B 
[Set the other-level of  each vertex in B] 
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if y is outer 
then OddLevel(y) := 2i + 1 - EvenLevel(y) 
if y is inner 
then EvenLevel(y) := 2i + 1 - OddLevel(y) 

Insert y into Candidates (EvenLevel(y)) 
for each z in Anomalies(y) do 

j := (EvenLevel(y) + EvenLevel(z))/2 [At this point j > i] 
Insert (y, z) into Bridges(j) 
Mark (y, z) "used"  

SUBROUTINE L E F T D F S  

Inputs: Vertices s, rE, VR, DCV, Barrier 
Effect: One step of left depth-first search process--advances VL to a predecessor 
or backtracks or signals the discovery of a bloom. 
Called by: BLOSS-AUG 

(L0) [Search each predecessor edge] 
while VL has "unused"  predecessor edges do 

Choose an "unused" predecessor edge (VL, U) such that u is "unerased" 
Mark (VL, U) "used"  
if Bloom(u) is defined 
then u:= base*(Bloom(u)) 
if u is not marked "left"  or "right" 
then Mark u "left";  Parent(u):= rE; VL := U 

exit 
[If  u is marked "left" or "right," then LEFTDFS is backtracking. At this time 
VR = Barrier = DCV, and Level(rE) > Level( VR). Because the search is depth first, 
either u is on the alternating path from t to VR, or all predecessor edges of u 
have already been used.] 

(L1) IrE has no more "unused"  predecessor edges] 
i f  /)L = S [Input to BLOSS-AUG] 

then Signal discovery of a bloom 
else VL := Parent(vL) [Backtrack] 

SUBROUTINE R I G H T D F S  

Inputs: Vertices ~'L, VR, DCV, Barrier 
Effect: One step of right depth-first search process--advances VR to a predecessor 
or backtracks. 
Called by: BLOSS-AUG 

(R0) [Search each predecessor edge] 
while VR has "unused"  predecessor edges do 

Choose an "unused" predecessor edge (VR, U) such that u is "unerased" 
Mark (VR, U) "used"  
if Bloom(u) is defined 
then u:= base*(Bloom(u)) 



The General Maximum Matching Algorithm of Micali and Vazirani 531 

if u is not marked "left" or "right" 
then Mark u "right"; Parent(u) := VR; V R := U 

exit 
else if u = VL then DCV:= u 

[If  u is marked "left" or "right," then because the search is depth first, either u 
is on the alternating path from s to rE, or all predecessor edges of u have already 
been used.] 

(R1) [VR has no more "unused" predecessor edges] 
if VR = Barrier 
then VR := DCV; Barrier := DCV; Replace the "left" mark on VR by "right" 

VL := Parent(rE) [Force LEFTDFS to backtrack from VL = DCV] 
else VR := Parent(vR) [Backtrack] 

SUBROUTINE E R A S E  

Input: Set Y of vertices to be erased [ Y can be implemented by a queue] 
Effect: Marks all vertices in Y "erased." 

Once all predecessors of a vertex z have been erased, z is erased too. 
Called by: BLOSS-AUG 

repeat 
Remove a new vertex y from Y 
Mark y "erased" 
for each "unerased" z in Successors(y) do 

Subtract 1 from Count(z) 
if Count(z) is now 0 then Insert z into Y 

until Y is empty 

SUBROUTINE F I N D P A T H  

Inputs: Vertices High and Low with Level(High)>_ Level(Low), bloom B 
Output: An alternating Path from High to Low through Predecessors 
Called by: BLOSS-AUG, OPEN 
Calls: OPEN, which finds paths through blooms other than B 

(F0) [Initialization] 
if High = Low 
then Path := High; exit 
v := High 

(F1) [Depth-first search to find Low] 
repeat 

while v has no "unvisited" predecessor edges do v := Parent(v) 
if Bloom(v)= B or Bloom(v)= undefined 
then Choose an "unvisited" predecessor edge (u, v) 

Mark (u, v) "visited" 
else u := base (Bloom (v)) 
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if (u is "unvisited") and (u is "unerased")  
and (Level(u) > Level(Low)) 
and (u has same "left"/"right" mark as High) 

then Mark u "visited"; Parent(u) := v; v := u 
until u = Low 

(F2) [Path has been found, except for blooms other than B] 
Let Path = x~ . . . .  , xm be the path defined by the Parent pointers from High to Low 
f o r j : = l t o m - l d o  

if Bloom(xj) is defined and Bloom(xj) ~ B 
then [At this point xj+~ = base(Bloom(xj))] 

Replace xj and xj+l by output of OPEN(xj) 

SUBROUTINE OPEN 

Inputs: Vertex x 
Output: An alternating path Path from x through Bloom(x) to base(Bloom(x)) 
Called by: F INDPATH 
Calls: F INDPATH 

B := Bloom(x); b := base(B) 
if x is outer 
then Let Path be the output of FINDPATH on inputs x, b, B 
if x is inner 
then Let LeftPeak and RightPeak be the peaks of B 

if x is marked "left"  
then call F INDPATH with inputs LeftPeak, x, B 

call F INDPATH with inputs RightPeak, b, B 
Let Path be the concatenation of  these paths 

if  x is marked "right" 
then call F INDPATH with inputs RightPeak, x, B 

call F INDPATH with inputs LeftPeak, b, B 
Let Path be the concatenation of these paths 
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