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Finding the Maximum Cut in a Graph

G. 1. ORLOVA AND YA. G. DORFMAN
(Moscow)

A method is proposed for finding the largest cut dividing a plane graph
into two subgraphs. It is shown that such a cut in the original graph corresponds
to the system of shortest chains pairwise connecting the vertices with odd powers
in the dual graph. The total length of these chains must be minimum. We pro-
pose a method of curtailed sorting of the variants of the systems of chaing that
is analogous to the branch-and-bound method.
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1. Let us consider an ordinary graph G = (X, U), thatis, an unoriented graph without loops such
that every pair of vertices is connected by no more than one edge, where X is the set of vertices of the
graph and U is the set of edges. Let X1 and X2 denote two disjoint subsets of the set of vertices of the

graph such that X1 U X2 = X. The set of edges not included in the subgraphs generated by these sets of

vertices is called a cut partitioning the graph into two subgraphs. Each of these subgraphs can consist
of several connecting components. The number of edges of a cut is called its magnitude.
In a number of problems [1], we are required to find, out of all cuts of a given graph partitioning
it into two subgraphs, the cut of greatest magnitude. If the graph has a large number of vertices, the
number of possible variants of the cuts is extremely large, and direct sorting of them is inapplicable.
Let us solve this problem when the graph G is a plane graph. Obviously, the largest cut dividing
the graph into two subgraphs is the union of the largest cuts of all the connecting components of the graph.
Let us therefore look at one of the connecting components.
An edge whose removal increases the number of connecting components is called an isthmus.
Theorem 1. Every isthmus is included in the largest cut partitioning the graph into two subgraphs.
This is a direct consequence of the theorem proven in [1].
Theorem 2. A cut dividing the graph into two subgraphs has an even number (possibly zero) of edges
in common with any cycle of that graph.
To see this, consider a cycle of the graph that contains edges of the cut. Beginning with any vertex
of the set Xl’ let us move along the cycle. Moving across the edges of the cut, we first enter the set of

vertices Xl’ then the set of vertices X2' When the full cycle has been traversed, we return to the origi-

nal vertex of the set X, and consequently pass through an even number of edges included in the cut.
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The converse is also true.

Theorem 3. If a nonempty set of edges has an even number of edges in common with any cycle of
the graph, that set is a cut partitioning the graph into two subgraphs.

Let us look at a connected graph G without any isthmuses. Let us represent it in the plane. We
assign to the graph G a graph I' according to the following rule (see Fig. 1): Inside each face s of the
graph G we put a vertex y of the graph T, and to each edge u of G we assign that edge v of I that con-
nects the vertices Y1 and Yy corresponding to the faces s and t on the two sides of the edge u; that is,

edge v intersects edge u. Such a graph is called the dual of G. The graph T is a plane and connected
graph. Since G does not have any isthmuses, I' does not have any loops. Let us look at a cut in G that
partitions it into two subgraphs, for example, the cut consisting of the edges (xl, x8), (xz, x5), and (x3,

X 4) in Fig. 1. Let us remove from I all edges corresponding to edges in G that are not included in that
cut. We obtain a graph I''. (In Fig. 1, the edges (yl’ Yo (Yz, Y5), and (y5, yl) belong to T''.)

Theorem 4. In the graph I'', the powers of all the vertices are even,
To see this, let us look at an arbitrary face s in G. The cycle bounding this face has an even num-
ber of edges of the cut {the edges (xl, xs) and (XZ’ x5)]. Consequently, the corresponding vertex in T'

will be of even power. A graph whose vertices have even power is called a quasicycle.
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Theorem 5. The set of edges of the graph G corresponding to the edges of an arbitrary none mpty
quasicycle T'' in I constitutes a cut partitioning G into two subgraphs,

We know that an arbitrary quasicycle can be represented in the form of a set of cycles that do not
overlap along the edges [2]. Let us look at one of these cycles in I''. Let us single out in it the edges
intersecting the edges of some cycle in G. There will be an even number of them, since they correspond
to the points of intersection of two cycles in the plane, and there can be only an even number of such
points. This means that, in the entire graph I'', an even number of edges corresponds to the edges of
any cycle in G. Consequently, in accordance with Theorem 3, the edges of G corresponding to the edges
of I'' constitute a cut in G.

Theorems 4 and 5 establish a one-to-one correspondence between the set of cuts in G partitioning
it into two subgraphs, and the set of quasicycles I'' in I', The number of edges of a cut, and the number
of edges of the quasicycle corresponding to it, are the same. Thus, to find the greatest cut in G, we
need to find in T the quasicycle with the greatest number of edges, or, what amounts to the same thing,
to remove from I' the smallest number of edges so that, in the remaining graph, the powers of all the
vertices will be even. Suppose that there are 2s vertices of odd power (there will always be an even
number of them) in I'= (Y, V). We denote by O the set of vertices of odd powers.

Theorem 6. Edges inT = (Y, V) not included in the quasicycle I'' = (Y, V') constitute a system of
s chains, not intersecting along edges, between pairs of vertices of odd power in T.

Proof: Since all the vertices of I'' = (Y, V') are of even power, the only vertices that are of odd
power in the graph """ = (Y, V \ V') are those that are of odd power in I'= (Y, V). But a graph with 2s
odd vertices can be covered by a system of s chains, not intersecting along the edges, with ends at those
vertices [3].

It is also obvious that, if from T we remove the edges constituting a system of s chains, not inter-
secting along the edges, between pairs of vertices of odd power, the remaining graph is a quasicycle.
Let us denote such a system of chains by Q. Of course, the greatest quasicycle corresponds to the sys-
tem Q with the smallest overall length of the chains. We shall call this system of chains minimal.

Suppose that the chain Co(xl, x2) is included in the minimal system of chains Q. Then it must be

the shortest chain between these vertices, for otherwise, if the shortest chain C(xl, x2) does not contain
edges of other chains of the system, the chain Co(xl, xz) can be replaced with C(xl, xz), and this will

decrease the overall length of the system. If the shortest chain has common edges with any chain of the
system C(Xl’ xj), both these chains can be replaced with the chain C(xl, xi) passing through the vertex

a and the chain C(xz, xj) passing through the vertex b, where a is the first common vertex of these chains

as we move along the first chain from x_, and b is the last (see Fig. 2). This will also decrease the over-

1’
all length of. the system. The sequence of analogous replacements can be carried out even in the case
when the shortest chain C(xl, xz) has common edges with several chains of the system Q in question.

Let us partition the 2s vertices of odd power in T into pairs, and combine them with the shortest chains.

Fig, 2
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Out of all possible partitions into pairs, let us find the one for which the overall length of these chains is
smallest. When we have removed the edges of these chains, we obtain the quasicycle we are seeking.
The dimension of the problem has been reduced, since only the shortest chains between vertices of odd
powers are considered.

Let us list the steps in finding the greatest cut partitioning a plane graph into two subgraphs.

1. Remove the isthmuses from G (the edge (xl, x2) in Fig. 3).

2. Construct the graph T dual to it (see Fig. 4).
3. For each connecting component of T, find the vertices of odd powers (the vertices Yis Yoo V5

and Yg in Fig. 4).

4. Find the minimal system of chains between pairs of these vertices (the edges (yl, yz) and
(y5, y6) in Fig. 4). The edges included in these chains correspond to edges of the original graph G that
are not included in the cut (the edges (Xl’ x4) and (x5, x6) in Fig. 3). The remaining edges constitute
the greatest cut. The graph G (see Fig. 3) is divided into two subgraphs with sets of vertices (x2, Xg
X5 Xgs Xg xlO) and (xl, X4 Xoo xg).

2. Let us describe a method of sorting the various chains between vertices of odd power. We de-
note by (i, j) the shortest of the chains C(yi, y].), where y; € 0 and yj =0, Leta(i, j) denote the length

of the chain (i, j), and define A(i) = min «(i, j). Obviously a(i, j) = A(i). Let us number the vertices
760, jo&i
of Y in such a way that vertices of ochld iJower have smaller numbers than vertices of even power, and

A() = A(j) for i<< j. Thus the vertices are numbered, beginning with zero, in decreasing order of A(i).
. r .
We shall call a sequence of r chains Qk = {(1, q2), (q3, q4), cees (q2r_1, q2r)} an r-variant of
the system. Here k denotes the number of the r-variant in the course of the solution. Corresponding

to each r-variant ri is a sequence Pkr of vertex numbers arranged in increasing order beginning with
P "= {p" P p’ }

k k1’ Pk2 - Pgag-ard
.., 28 - 2r); that is, Pkr includes the numbers representing those vertices that are not ends of the

Zero: where prk i#q]. (fori=1, 2, ..., 2randj=1, 2, ...,

chains inQ,_*. I correspondence with Q T let us put the estimate
k k

T 22 a{qu_1, gz:) +Z 7\(1’;21—1)-
i=1 =1
0

We define the 0-variant QOO as the variant not containing a single chain. For it, P0 ={1, 2, ..., 28}

and T 2 2(2j - 1). From the r-variants we construct successively the (r + 1)-variants. The vari-

ant Q 1s obtamed from the variant Qk already constructed by adjoining to the sequence of chains ri

the chalns (pkl’ m), where m is a given vertex number, mePk, and m;épk’1 ThusQ r+l _
={Q ", (0F, ;» m)}
kLtklhwtht with thi tutnT 1>Tr For1<Ci<m -1, we have r+l r
et us sho a i is constructio =T . pn,1 pk,i+1’

504




!
585 | 585 | % 3 |
585 588 | 8383
286 | 286 256
552 | 58e| 551 |
zsd |z58 | =83 i
10 11 8
20 18 54
45 4 76
50 49 81
and for m - 1 <<i<<2s -2r - 1, we have pn,1 1= prk, 141 Consequently, for 2 <<i << 2s - 2r - 1 we
r+1
havepn, l\pk1+1’ and
M(pa ) = M (pian), 2.1)

3—r—1
T+

T,.TH— T, = a(p;;,:, m)+ }\-(ph,:i)—l‘ 2 [ (pazi—) 4 A (pe; ZJ+1) 1.

j=1
T r+l r_
kl) a(pkl, m)thatT —Tk
By definition, the s-variant Qk consists of s chalns between pairs of vertices from 0 and Tk

—2 oz(q21 1 Y9; .); that is, Tk is the total length of a system of s chains. Thus the problem of finding

It follows from (2.1) and A(pr

the minimal system of chains Q is equivalent to finding the s-variant with minimal estimate Tks. To

find such an s-variant, we use the idea of the method of branches and bounds [4].
Let us construct the variants sequentially. To each of the variants constructed at the first j steps

we assign the set of numbers representing the vertices Mk from 0, where m, = Mk (j), if the variant
Qk was filled out at each of these steps to form Q by adjoining the chain (p k, 1’ m, ) We shall say
that the variant Q (r # 8) at step j is closed if the sets of numbers representing the vertlces pk and
Mk (j) coincide. Otherw1se we shall say that the variant Qk is open.

At the first step, let us construct the 0-variant. At step j (j= 1) we find, from among the open
variants already constructed, those with values r and k for which the estimate T Tis minimal and from

k
among them select the variants with greatest r. Suppose that these are the !-variants Q Q

Let us expand them to (I + 1)-variants, adJo1mng to each Qh , one by one, all the chains (plh 1

I
; phg,

11 l l
whereph IEPh’ ph,t EP , phtgéM t(]—l), for which the lengtha(ph r ph,t) is minimal,

To the Q that are constructed, we assign different subscripts i that do not coincide with any of the sub-

scrlpts j of the Q constructed earlier. The process is terminated when we have obtained an s-variant

Q S with estimate T, ® that is least among the estimates of the constructed variants Q T (for r= 0, .1,
k k

..., 8). The estimates of the variants in the constriiction process can only increase. Consequently,
all the r-variants up to the instant of termination of the process can be extended to be s-variants with

estimates less than Tk . Thus Q is the sought system of chains.

Obviously, for virtually all g'raphs, the number of variants that one must consider in solving the
problem by the method proposed is an insignificant portion of the total number of variants of a system of
s chains. The data shown in the table regarding some of the problems solved with this method testify
to this.
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Construction of Optimum Schedules for Parallel Processors

V. S. LINSKIY AND M. D. KORNEV
(Moscow)

Using the branch-and-bound method we solve two problems of construction
of optimum schedules for executing a semi-ordered set of operations in several
parallel processors. One problem presupposes that all processors are identical,
whereas in the other the processors differ in type in such a way that each processor
can perform only the operations of corresponding type. The execution time of opera-
tions is determined in both problems by its type. An example is presented.

* k%

1. INTRODUCTION

This paper is devoted to construction of shortest schedules, with constraints on the order of
execution of operations in the processors. A processor can be the operational unit of a computer, an
individual digital computer, a machine, etc., in other words, something that is capable of performing an
operation and is characterized by the states "free' and '"busy with the execution of an operation'.

One of the problems is to find schedules for a set of processors that are identical, in the sense that
each of them can be used for any operation of an algorithm, whereas in the other problem the processors
differ in type, so that each processor can perform operations of only the corresponding type. In each
problem, the execution time of an operation is determined by its type.

Such problems are encountered, for example, in compiling programs for a digital computer with
parallel processors (general-purpose or special-purpose), or for a set of digital computers that operate
in a system, and also in the planning of production, the assembly of parts, and network planning. The
proposed algorithm for solution of the above problems can be used for obtaining long-time schedules (such
as standard digital-computer programs, algorithms of special-purpose digital computers, etc).

2, STATEMENT OF THE PROBLEM

Let us consider a circuit-free oriented graph G(X, U), in which the set of vertices X = {xl, .

v xs} represents the set of operations. Each arc (Xi’ xj) = ui’ j = U signifies that the operation X,
must be executed prior to the operation xj. This will be denoted by X< x].. We shall assume that X is
partitioned into subsets Xl’ RN Xw. It xj = Xi’ we shall say that xj is an operation of type i.

Let us consider a set F = {‘fl’ vy fv} and its partition into subsets Fl’ cees Fw' An element
f =F is called a processor of type jif f = Fj' Suppose we are also given a function ©: X — N (N being
the set of natural numbers) that defines the execution time of an operation, and such that r(xj) =7y if

xj = Xi' A schedule R is a pair of functions f(x) and t(x) such that, for x, y = X (x and y being any opera-

tion belonging to Xi’ i=1, ..., W),
(< y) = [(tE) +1{z)) < W], 2.1
[f(2) = (] =[t(=) # i),
() <t@), (f@) =1N]=1t@ +10) <t@] (2.2)

In fact, t(x) is the instant at which operation x begins, and f(x) is the number of the processor in which
it is executed. Condition (2.1) signifies that operation y can be executed only after operationx if x <y
in G, whereas condition (2.2) signifies that at each instant it is possible to execute only one operation

in each processor. The length L(R) of a schedule R is defined as Iileagi [t(x) + 1(x)] - Ixrékn t(x). Letus

formulate the following problems.
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