
Algorithmica (2006) 45:3-20
DOI: 10.1007/s00453-005-1187-5 Algorithmica

 9 2006 Springer Science+Business Media, Inc.

Maximum Matchings in Planar Graphs
via Gaussian Elimination 1

Marcin Mucha 2 and Piotr Sankowski 2

Abstract. We present a randomized algorithm for finding maximum matchings in planar graphs in time
O(n'~ where co is the exponent of the best known matrix multiplication algorithm. Since co < 2.38, this
algorithm breaks through the O (n J.5) barrier for the matching problem. This is the first result of this kind for
general planar graphs. We also present an algorithm lor generating perfect matchings in planar graphs uniformly
at random using O (n ~ arithmetic operations. Our algorithms are based on the Gaussian elimination approach
to maximum matchings introduced in [16].

Key Words. Maximum matching, Planar graphs, Fast matrix multiplication.

1. I n t roduc t i on . A matching in an undirected graph G = (V, E) is a subset M ___ E,
such that no two edges in M are incident. Let n = I V I, m = I El. A perfect matching
is a matching of cardinality n/2. The problems of finding a Maximum Matching (i.e. a
matching of maximum size) and, as a special case, finding a Perfect Matching if one
exists, are two of the most fundamental algorithmic graph problems.

Solving these problems in time polynomial in n remained an elusive goal for a long
time until Edmonds [4] gave the first algorithm. Several other algorithms have been
found since then, the fastest of them being the algorithm of Micali and Vazirani [14],
Blum [1] and Gabow and Tarjan [5]. The first of these algorithms is in fact a modification
of the Edmonds algorithm, the other two use different techniques, but all of them run in
time O (mq'-ff), which gives O(n 25) for dense graphs.

The matching problems seem to be inherently easier for planar graphs. For a start,
these graphs have O (n) edges, so O(m~v/~) = O (nl5) . The same time complexi ty can
also be achieved by directly using the separator theorem for planar graphs [12], However,
there is more to it. Using the duali ty-based reduction of maximum flow with multiple
sources and sinks to single source shortest paths problem (see [15]), Klein et al. [8] were
able to give an algorithm finding perfect matchings in bipartite planar graphs in time
O (n 4/3 log n). This reduction, however, does not carry over to the case of general planar
graphs.

We have recently shown [16], that extending the randomized technique of Lowisz [13]
leads to an O(n ~ algorithm for finding maximum matching in general graphs. In this
paper we use similar techniques, together with separator-based decomposit ion of planar

1 This research was supported by KBN Grant 4T11C04425.
2 Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland. {mucha,sank/@
mimuw.edu.pl.

Received November 30, 2004; revised May 19, 2005. Communicated by S. Albers and T. Radzik.
Online publication February 10, 2006.

4 M. Mucha and E Sankowski

graphs and the fast nested dissection algorithm, to show that maximum matchings in
planar graphs can be found in time O (n'~

REMARK l. In the case of w = 2 an additional polylogarithmic factor appears, so in
the remainder of this paper we assume for simplicity that w > 2.

There is one point to notice here. The O(n ~) algorithm for general graphs presented
in [16] is faster than the standard maximum matching algorithms only if the Coppersmith-
Winograd matrix multiplication is used (see [3]). On the other hand, for our O(n ~/2)
algorithm to be faster than the standard algorithms applied to planar graphs, it is enough to
use any o(n 3) matrix multiplication algorithm, e.g. the classic algorithm of Strassen [20].
This suggests that our results not only constitute a theoretical breakthrough, but might
also give a new practical approach to solving the maximum matching problem in planar
graphs.

The same techniques can be used to generate perfect matchings in planar graphs
uniformly at random using O(n ~ arithmetic operations. This improves on the result
of Wilson [22].

The rest of the paper is organized as follows. In the next section we recall some well-
known results concerning the algebraic approach to the maximum matching problem
and the key ideas from [16], In Section 3 we recall the separator theorem for planar
graphs and the fast nested dissection algorithm and show how these can be used to test
planar graphs for perfect matchings with O (n '~ operations. In Section 4 we present an
algorithm for finding perfect matchings in planar graphs with O(n ~~ operations, and
in Section 5 we show how to extend it to an algorithm finding maximum matchings. In
all these algorithms we use multivariate rational functions arithmetic and so their time
complexity is in fact much larger than O(n~ This issue is addressed in Section 6,
where we show that all the computations can be performed over a finite field Zp, for a
random prime p = ~(n4). In Section 7 we present an algorithm for generating perfect
matchings in planar graphs uniformly at random.

2. Preliminaries

2.1. Matchings, Adjacency Matrices and Their Inverses. Let G = (V, E) be a graph
and let n = IV[and V = {vl vn}. A skew symmetric adjacency matrix of G is an
n x n matrix ,4(G) such that

I xi,j if (vi, vj) ~ E and i < j ,
A(G)i,j = -xi.j if (vi, vj) c E and i > j , ,

0 otherwise

where the Xi, j a r e unique variables corresponding to the edges of G. For/~ = {Xi, j : (Ui, Uj)
c E}, let Z[E] be the ring of polynomials with integral coefficients and variables from
/~, and let Z(/~) be its field of fractions, i.e. field of rational functions with integral
coefficients and variables from/~. For example, A(G) is a matrix over Z(/~).

Maximum Matchings in Planar Graphs via Gaussian Elimination 5

Tutte [21] observed the following

THEOREM 2. The symbolic determinant det.A(G) is non-zero iff G has a perfect
matching.

Lovfisz [13] generalized this to

THEOREM 3. The rank of the skew symmetric adjacency matrix A (G) is equal to twice
the size of maximum matching of G.

Let G be a graph having a perfect matching and let A = A(G) be its skew symmetric
adjacency matrix. By Theorem 2, ,~ is invertible. Rabin and Vazirani [18] showed that

THEOREM 4. (/~-I)j,i 7~ 0 iff the graph G - {1)i, 1)j } has a perfect matching.

In particular, if (vi, vj) is an edge in G, then (/i-I)j,i r 0 iff (Ui, Uj) is allowed,
i.e. it is contained in some perfect matching. This follows from the formula (X -1) i , j =
adj(X)i,j/det X, where adj(X)i.:--the so-called adjoint of X- - i s the determinant of X
with the j th row and ith column removed, multiplied by (- 1) i+j.

2.2. Randomization. Theorem 2 could be used directly to test for graphs having a
perfect matching. We need to compute d e t * (G) and answer "YES" if it is non-zero.
Unfortunately, this solution requires Z[/~] arithmetic and is thus infeasible.

There is however another, more subtle, way of using Theorem 2 to test for perfect
matchings. Recall the classic lemma due to Zippel [23] and Schwartz [19]:

LEMMA 5 (Zippel, Schwartz). I f p(xl Xm) is a non-zero polynomial of degree d
with coefficients in a field and S is a subset of the field, then the probability that p
evaluates to zero on a random element (sl , s2 sin) ~ S m is at most d /[S[.

Choose a prime p --- n o (l) and substitute each variable in/~ (G) with a random element
of Zp. We call the resulting matrix the random adjacency matrix of G and denote it by
A(G). Since det A(G) is a polynomial of degree n, by Lemma 5 with high probability
we have det A(G) 5~ 0 iffdet A(G) ~ O, i.e. G has a perfect matching. This randomized
testing algorithm was given by Lovfisz [13]. It can be implemented to run in O(n ~')
time using fast matrix multiplication (where co is the matrix multiplication exponent,
currently co < 2.38, see [3]).

Lov~isz also showed that

THEOREM 6. The rank of A(G) is at most twice the size of maximum matching in G.
The equality holds' with probability at least 1 - (n / p).

Lovfisz's algorithm is an example of a general approach to constructing randomized
algorithms. We first develop an algorithm working over a ring of polynomials or a field

6 M. Mucha and E Sankowski

of rational functions and then use the Zippel-Schwartz lemma to show that it can be
performed over Zp for a suitable choice of p.

In particular, this is the approach we take in this paper. In the remainder of this section,
as well as in Sections 3-5, we describe our algorithms using Z(/~) arithmetic (even
though it is computationally infeasible). The complexity bounds for these algorithms are
expressed in terms of the number of Z(/~) operations. In Section 6 we show that if all the
computations are performed over a finite field Zp instead of Z (E) , with high probability
we still get correct results, for a sufficiently large (but polynomial in n) prime p.

2.3. Per fec t M a t c h i n g s via Gauss ian E l imina t ion . We now recall a technique, recently
developed by the authors, of finding perfect matchings using Gaussian elimination. This
technique can be used to find an inclusionwise maximal allowed submatching of any
matching in time O (n ~) , which is a key element of our matching algorithm for planar
graphs. A more detailed exposition of the Gaussian elimination technique and faster
algorithms for matchings in bipartite and general graphs can be found in [16].

Consider a skew symmetric adjacency matrix A = A (G) of a graph G = (V, E),
where I V I = n, V = {v i, U2 U n }. If (vi, ~ j) E E and (A- i) i , j ~z~ 0, then (~)i, U j) is an
allowed edge. We may thus choose this edge as a matching edge and try to find a perfect
matching in G' = G - {vl, v2}. The problem with this approach is that edges that were
allowed in G might not be allowed in G' . Computing the matrix .4(G') - I from scratch is
out of the question as the resulting algorithm would require O (n ~+1) operations to find
a perfect matching. There is however another way of computing A(G ') - I , suggested by
the following well-known property of the Schur complement

THEOREM 7 (Elimination Theorem). Let

x = \ u i y] '

where fc l . i :~ O. Then Y I = I) _ t~T/Xi , i .

PROOF. Since X X L = 1, we have

J
[

Using these equalities we get

Y(]) - t~vr/xl , l) = L, I - u v v - YhOr/-?t ,L

= ln--1 - - H ~)r ~- H f f l , t ~ r / X l , l = l n - I - - bl~jT -~- U ~)r = L, 1.

and so y-1 = I~ - h~T/~;:l,l as claimed. []

The modification of 1) described in this theorem is in fact a single step of the well-
known Gaussian elimination procedure. In this case we are eliminating the first variable

Maximum Matchings in Planar Graphs via Gaussian Elimination 7

(column) using the first equation (row). Similarly, we can eliminate from X-J any other
variable (column) j using any equation (row) i, such that (X -1)i,j 5 ~ O.

In [16] we show that among the consequences of Theorem 7 is a very simple O (n 3)
algorithm for finding perfect matchings in general graphs (this is an easy corollary) as
well as O (n ~ algorithms for finding perfect matchings in bipartite and general graphs.
The last of these requires some additional structural techniques.

2.4. Matching Verification. We now describe another consequence of Theorem 7, one
that is crucial for our approach to finding maximmn matchings in planar graphs. In [161
we have shown that

THEOREM 8. Gaussian elimination without row or column pivoting can be done with
0 (n ~~ operations using lazy computations.

REMARK 9. The algorithm in Theorem 8 is very similar to the classic Hopcroft-Bunch
algorithm [2]. It is however more intuitive and better suited for our purposes.

PROOF. Assume that we are performing Gaussian elimination on an n x n matrix X
and after eliminating the first i - 1 rows and columns, we always have Xi, i ~ O. In this
case we can avoid any row or column pivoting, and the following algorithm performs
Gaussian elimination of the whole matrix X in time O(n~ By "lazy elimination" we
mean storing the expression of the form uvr /c describing the changes required in the
remaining submatrix without actually performing them. These changes are then executed
in batches during the calls to UPDATE(R, C) which updates the Xs.c submatrix. Suppose
that k changes where accumulated for the submatrix Xk.c and then UPDATE(R, C) was
called. Let these changes be U lV(/Cl U2U~'/C 2, 7" uk v k ~ok, the accumulated change
of XR,c is

Ic, + + . . . + u, l lc , = u v .
where U is an IRI x k matrix with columns uj, u2 uk and V is a k • ICI matrix
with rows v~/cT, v'~/c2 v~'/ck. The matrix UV can be found using fast matrix
multiplication.

Let us consider the call to ELIMINATE-ROWS-AND-COLUMNS(X, p, q) (see Fig-
ure 1), and let j = q - m + 1. The cost of the updates in the call is proportional to the
cost of multiplying the 2 . /x 2 -i matrix by a 2 j x n matrix. By splitting the second matrix
into 2J x 2 j square submatrices, this can be done in t i m e n / 2 J (2 J) a' = n(2J) ~ 1. Now,
every j appears n/2 / times, so we get the total time complexity of

[log n7 [log n]
Z n/2/n(2i)~~ I = n 2 Z (2~~ 2)j < n2(2~o 2)Flog.7 = O(nOO). []
j =0 j =0

This algorithm has a very interesting application:

THEOREM 10. Let G be a graph having a perfect matching. For any matching M of G,
an inclusion-wise maximal allowed (i.e. extendible to a perfect matching) submatching
M' of M can be found using O(n ~~ operations.

8 M. Mucha and R Sankowski

ELIMINATE-ROWS-AND-COLUMNS(X, p, q):

1. i f q = p t h e n
- lazily eliminate the pth row and the pth column of X
- r e t u r n

2. let m := [(p + q)/2J
3. ELIMINATE-ROWS-AND-COLUMNS(p, m)
4. UPDATE({m + l q}, {m + 1 n})
5. UPDATE({q + 1 n}, {m + 1 q})
6. ELIMINATE-ROWS-AND-COLUMNS(m + 1, q)

ELIMINATE(X):

I. ELIMINATE-ROWS-AND-COLUMNS(X, 1, n)
Fig. 1. Elimination with no pivoting.

PROOF. Let M = {(Vl, /)2), (/)3, /)4) (Uk-l, vk)} and let vk+l, /)k+2 V~ be the
unmatched vertices. We compute the inverse ,4(G) -1 and permute its rows and columns
so that the row order is vt, /)2, v3, v4 v,~ and the column order is v2, vl, v4,
v3 v, , v~_l. Now, perform Gaussian elimination of the first k rows and k columns
using the algorithm of Theorem 8, but if the el iminated element is zero just skip to
the next row/column pair. The el iminated rows and columns correspond to a maximal
submatching M' of M. []

2.5. Degree Reduction. We now recall a well-known technique of "vertex split t ing"
(see for example [22]).

THEOREM 11. The problem of finding perfect (maximum) matchings in planar graphs
is reducible in O(n) time to the problem of finding perfect (maximum) matchings in
planar graphs with maximum vertex degree 3. This reduction adds O(n) new vertices.

PROOF. Suppose that G has a vertex v with degree > 3. Let N (v) be the set of neighbours
of v. We choose two neighbours w], w2 ~ N(v) and replace v with three vertices
vl, v2, v3 as shown in Figure 2. Let G be the resulting graph. There is a a one-to-one
mapping between perfect matchings in G and in (~. Reducing the degrees of all vertices

\\\ / \, /
\\\

.o ~, / .j
w l W I @ 9

w2 . %

Fig. 2. Vertex splitting. On the left is a high degree vertex v. It is matched in the perfect matching with one of
its neighbours w2. On the right is the graph after splitting this vertex into vl, v2, v3. Now v3 is matched with
w2 and vt is matched with v2. Perfect matchings in the two graphs are in one-to-one correspondence.

Maximum Matchings in Planar Graphs via Gaussian Elimination 9

to < 3 requires only O (m) = O (n) splitting operations, so the resulting graph has O (n)
vertices.

Even if G has no perfect matching, we can still use this reduction. There is an easy
translation of maximum matchings in the original graph G to maximum matchings in
the bounded degree graph G and vice versa (it is not one-to-one, though). Notice that
the number of unmatched vertices in a maximum matching is the same for G and G. []

Throughout the rest of this paper we restrict ourselves to graphs with degree bounded
by 3.

3. Testing Planar Graphs for Perfect Matching. In this section we show how planar
graphs can be tested for perfect matching using O(n ~/2) operations. We use the nested
dissection algorithm which performs Gaussian elimination using O (n ~/2) operations for
a special class of matrices. The results presented in the next subsection are due to Lipton
and Tarjan [11] and Lipton et al. [10]. We follow the presentation in [17] as it is best
suited for our purposes.

3.1. Sparse LU Factorization via Nested Dissection. We say that a graph G = (V, E)
has an s(n)-separatorfamily (with respect to some constant no) if either IVI _< no,
or by deleting a set S of vertices such that ISI _< s(IWr), we may partition G into two
disconnected subgraphs with the vertex sets Vl and V2, such that I Vi I < 2/31V1, i = 1,2,
and furthermore each of the two subgraphs of G defined by the vertex sets S U Vi, i = 1,2,
also has an s(n)-separator family. The set S in this definition is called an s(n)-separator
in G (we also use the name small separators for O(v'~)-separators) and the partition
resulting from recursive application of this definition is the s (n)-separator tree. Partition
of a subgraph of G defines its children in the tree.

The following theorem of Lipton and Tarjan [1 1] gives an important example of
graphs having O (v'~)-separator families:

THEOREM 12 (Separator Theorem). Planar graphs have 0 (vrff)-separator families.
Moreover, an 0 (V-if)-separator tree for a planar graph can be found in time 0 (n log n).

Let X be an n • n matrix. The graph G(X) corresponding to A is defined as follows:
G(X) = (V, E), V = {1,2 n}, E = { {i, j}l i 5 ~ j and (Xi,j r Oor Xj,i # 0)}.The
existence of an O (v/-ff)-separator family for G(X) makes faster Gaussian elimination
possible as the following theorem of Lipton and Tarjan shows:

THEOREM 13 (Nested Dissection). Let X be a symmetric positive definite matrix and
let G (X) have an O (v ~)-separator family. Given an O (v/n) separator tree for G (X),
Gaussian elimination on X can be performed in time 0 (n ~~ using so-called nested
dissection. The resulting LU factorization of X is given by matrices L and D, X =
LDL r, where matrix L is unit lower-triangular and has O(n logn) non-zero entries
and matrix D is diagonal.

REMARK 14. The assumption of X being symmetric positive definite is needed to assure
that no diagonal zeros will appear, so that no row or column pivoting is neccessary during

10 M. Mucha and E Sankowski

the elimination. If we can guarantee this in some other way, then the assumption can be
omitted.

We do not present the details of this algorithm. The basic idea is to permute rows
and columns of X using the O Gv/-~)-separator tree. Vertices of the top-level separator S
correspond to the last I SI rows and last I SI columns, etc. When Gaussian elimination is
performed in this order, the matrix remains sparse throughout the elimination.

Since we are going to perform Gaussian elimination on matrices over Z(/~), we
need to find a way to apply Theorem 13 to such matrices. The usual notion of positive
definiteness does not make sense in this case, so we call a matrix X over Z(/~) symmetric
positive definite if it is of the form X = y y T for some non-singular Y.

We have the following:

FACT 15 (Symbolic Nested Dissection). Theorem 13 holds for matrices over Z(/~).

PROOF. Let X = Y yT be a symmetric positive definite matrix over g(/~). According to
Remark 14 we only need to guarantee that no diagonal zeros appear during the elimination
of X. Since det Y 5~ 0, there exist a substitution v of variables in E, such that det Yo r 0,
where Y~ is Y after the substitution v.

Since Y~ is non-singular, X, = Y~ Y~ is symmetric positive definite in the usual sense.
By Theorem 13 there are no diagonal zeros during the elimination of X~. The same has
to be true for X, since entries of X~ are just substituted versions of entries of X. []

3.2. The Testing Algorithm. Testing a general graph G for having a perfect matching
requires performing Gaussian elimination on the matrix ,4 = ,~(G) (in order to compute
its determinant). In case of planar graphs and planar matrices, we want to get an O (n ~/2)
algorithm, so we have to use the nested dissection algorithm to perform the elimination.
In order to use it, however, we need to guarantee that there are no zeros on the diagonal
during the elimination, and the only known method of doing this requires finding a
perfect matching first. This approach does not look very promising. Instead, we work on
the matrix/~ = ~ r .

Notice that if A is non-singular (i.e. G has a perfect matching), then/~ is symmetric
positive definite. In order to use Fact 15, we need to show that G(B) and all its subgraphs
have small separators. This is not true in general, but it is true if G is a bounded degree
graph. Let S be a small separator in G(A) = G, and consider the set T containing all
vertices of S and all their neighbours. We call T a thick separator corresponding to S.
Notice that Bi,j can be non-zero only if there exists a path of length 2 between vi and
vj. Thus T is a separator in G(/~). T is also a small separator, because G has bounded
degree and so ITI < 4[SI = 0(4%-)- In the same manner small separators can be found
in any subgraph of G(/3), so Gaussian elimination on matrix/~ can be performed using
the nested dissection algorithm with O (n ~~ operations.

We are now ready to present the testing algorithm for planar graphs (see Figure 3).
If the nested dissection algorithm finds an LU factorization of /~ , then B is non-

singular, and so A is non-singular, thus G has a perfect matching. If, however, the nested
dissection fails, i.e. there appears zero on the diagonal during the elimination, then/~ is
not positive definite, and so A is singular.

Maximum Matchings in PLanar Graphs via Gaussian Elimination 11

PLANAR-TEST-PERFECT-MATCHING(G):

1. reduce the degrees of vertices in G;
2. compute i/ = ~,~r;
3. run nested dissection on/~;
4. G has a perfect matching iff the algorithm succeeds, i.e. finds an LU factorization;

Fig. 3. An algorithm for testing if a planar graph has a perfect matching.

4. Finding Perfect Matchings in Planar Graphs. In this section we present an algo-
rithm for finding perfect matchings in planar graphs. In Section 5 we show that the more
general problem of finding a maximum matching reduces to the problem of finding a
perfect matching.

4.1. The General Idea. For any matrix X, let XR,c denote a submatrix of X corre-
sponding to rows R and columns C.

The general idea of the matching algorithm is presented in Figure 4.
To find a perfect matching in a planar graph, we find a small separator, match its

vertices in an allowed way (i.e. one that can be extended to the set of all vertices), and
then solve the problem for each of the connected components created by removing the
endpoints of this matching. In the remainder of this section, we show that we can perform
steps 3 and 4 using O(n ~/2) operations. This gives the complexi ty bound of O(n ~
operations for the whole algorithm as well.

4.2. Computing the Important Part o f fit(G) - j . We could easily find (A(G) I)r,T if
we had an LU factorization of fit = fit(G). Unfortunately, 2i is not symmetric positive
definite, so we cannot use the fast nested dissection algorithm to factorize fit. In the
testing phase we find n x n matrices L and D such t h a t / ~ r = L D L T, where L is unit
lower-triangular and D is diagonal. We now show how L and D can be used to compute
(A - I) r , r in time O(n~~ We represent fit, L and D as block matrices:

fit = fit2,1 A2 2] ' D = 02,2 ,

L = \L2, j [Lz,2J = -1 L -1 L I , L2,2L2,1 1,1 2,2

PLANAR-PERFECT-MATCHING(G):

1. run PLANAR-TEST-PERFECT-MATCHING(G);
2. let S be a small separator in G and let T be the corresponding thick separator;
3. find (A(G)- l) r , r ;
4. using the FIND-ALLOWED-SEPARATOR-MATCHING procedure, find an allowed matching

M incident on all vertices of S;
5. find perfect matchings in connected components of G - V(M);

Fig. 4. An algorithm for finding perfect matchings in planar graphs.

12 M. Mucha and E Sankowski

where lower right blocks in all matrices correspond to the vertices of the thick separator
T, for example Ar,r = A2,2. Since , ~ r = L D L r, we have

(/~r)- I = (L T) - I D - I L - I f i i ,

where the interesting part of (.~r) - l is

(AT)TI T = ((LT)-I)T, v D - I L - I ~V, r

: (C~,2) - 'D2 ,1(L- I)T , vAv+ T
(L~,:) - t - ' - ' - + (L ~ :) - t D~t2(L-' fii = D2,2L2.2A2,2 , ,)2.1 1.2.

The first component can be easily computed with O(n ~ operations using fast matrix
multiplication. The second component can be written as

T - I - I - I T - I - I -1 - I
(L2,2) D 2 , z (L)2,1"~1,2 = - (L 2 , 2) D2,2L2,2L2,1LI,IAt,2

and the only hard part here is to compute X = -L2,1L~I+ A 1,2. Consider the matrix

0

When Gaussian elimination is performed on the non-separator columns and vertices of
B, the lower right submatrix becomes X. This is a well-known property of the Schur
complement. Elimination can be performed with use of the nested dissection algorithm
in time 0(#~ The idea here is that the separator tree for/~fi~r is a valid separator tree
for L, thus also for B. The new non-zero entries of L introduced by Gaussian elimination
(so-calledfill-in), correspond to the edges that can only go upwards in the separator tree,
from child to one of its ancestors (see [7]). Notice that since L~. j is lower-diagonal, there
are no problems with diagonal zeros, even though B is not symmetric positive definite.

4.3. Matching the Separator Vertices. We now show how the separator vertices can be
matched using the matching verification algorithm. Consider the procedure presented in
Figure 5.

The verification algorithm finds a maximal allowed submatching M~ of MG using
O(n ~'/2) operations. It works on the matrix ,4(G) - j , but it never uses any values from

FIND-ALLOWED-SEPARATOR-MATCHING:

1. let M ---- 0;
2. let GT = (T, E(T) - E(T - S));
3. let Me be any inclusionwise maximal matching in GT using only allowed edges;
4. run the verification algorithm of Theorem 10 on (A-J)T.T to find a maximal allowed submatch-

ing M~ of MG;
5. add M~ to M;
6. remove the vertices matched by M~ from GT;
7. mark edges in Me - M~ as not allowed;
8. if M does not match all vertices of S go to step 3;

Fig. 5. A procedure for finding allowed submatching of the separator.

Maximum Matchings in Planar Graphs via Gaussian Elimination 13

outside the submatrix (5, (G)-I)T,T corresponding to the vertices of T, so we only have
to compute this submatrix. Let A' be the result of running the verification algorithm on

~' = (A(G - V(M'G))-I)T, r,, the matrix (,~,-l)r, T. Notice that due to Theorem 7, A r,, r '
where T' is obtained from T by removing the vertices matched by M~. Thus the inverse
does not need to be computed from scratch in each iteration of the loop.

Now consider the allowed matching M covering S, found by the algorithm shown
in Figure 5. Notice that any edge e of M is either incident on at least one edge of the
inclusionwise maximal matching Mc or is contained in Mo, because of the maximality
of Me. If e is in Me, it is chosen in step 4, otherwise one of the edges incident to e is
marked as not allowed. Every edge e ~ M has at most four incident edges, so the loop
is executed at most five times and the whole procedure requires O(n ~ operations.

5. Maximum versus Perfect Matchings. We now show that the problem of finding a
maximum matching can be reduced to the problem of finding a perfect matching using
O(n ~/2) operations. The problem is to find the largest subset W c V, such that the
induced G[W] has a perfect matching. Notice that this is equivalent to finding the largest
subset W __ V, such that A w, w is non-singular. The basic idea is to use the nested
dissection algorithm. We first show that non-singular submatrices of A A r correspond to
non-singular submatrices of A (note that Lemma 16, Theorem 17 and Theorem 18 are
all well-known facts).

LEMMA 16. The matrbc A A T has the same rank as A.

PROOF. We will prove that ker(A) = ker(ATA). Let v be such that (ATA)v = 0. We
have

0 = vT(ATA)v = (vTAT)(Av) = (Av)T(Av) ,

s o A r = 0 . []

We will also need the following classic theorem of Frobenius (see [9]):

THEOREM 17 (Frobenius Theorem). Let A be an n x n skew-symmetric matrix and let
X, Y __. {1 n} such that [X[= [Y[= rank(A). Then

det(Ax,x) det(Ay, y) = (- 1) Ixl det2(Ax, y).

Now we are ready to prove the following:

THEOREM 18. If(AAT)w,w isnon-singularand IWl = rank(AAT), then Aw, w isalso
non-singular.

PROOF. We have (AAT)w,w = Aw, vAv,w , T so rank(Aw, v) = rank(AAT). By
Lemma 16, this is equal to rank(A). Let Aw, u be any square submatrix of Aw, v of
maximal rank. From the Frobenius theorem it follows that A w, w also has maximal
rank. []

14 M. Mucha and R Sankowski

The only question now is, whether AA r always has a submatrix (AAr)w,w (i.e. a
symmetrically placed submatrix) of maximal rank. There are many ways to prove this
fact, but we use the one that leads to an algorithm for actually finding this submatrix.

LEMMA 19. l f (AAr)i , i = O, then (AAT)i,j = (AAr)j,i = Oforall j .

PROOF. Let ei be the ith unit vector. We have

0 = (AAr)i.i = (eIA)(ATei) = (AYei)r(Arei) ,

so Arei = 0. However, then (AAr)i , j = (efA)(AVei) = 0 for any j and the same for
(AAr)Li . []

THEOREM 20. A submatrix (AA r) w,w of AA r of maximal rank always exists and can
be found with 0 (n ~~ operations using the nested dissection algorithm.

PROOF. We perform the nested dissection algorithm on the matrix AA r. At any stage
of the computations, the matrix we are working on is of the form BB r for some B. It
follows from Lemma 19, that if a diagonal entry we want to eliminate has value zero,
then the row and the column corresponding to this entry consist of only zeros, We ignore
these and proceed with the elimination. The matrix (AA r) we are looking for consists
of all non-ignored rows and columns, ffl

COROLLARY 21. Foranyptanargraph G = (V, E) a targestsubset W c_ V, such that
G[W] has a perfect matching, can be found with 0 (n ~''/2) operations'.

We have thus argued that for planar graphs the maximum matching problem can be
reduced to the perfect matching problem with O(n "/2) operations. Since we can solve
the latter with O(n "/2) operations, we can solve the former within the same bounds.

6. Work ing over a Finite Field. So far, we have shown an algorithm finding a max-
imum matching in a planar graph using O(n ''/2) operations in Z(E) . Obviously, this
cannot be implemented efficiently. We now show that, with high probability, our match-
ing algorithms give the same results if performed using the finite field arithmetic Z~, for
a randomly chosen prime p = O(n4).

Each rational function computed by our matching algorithm is a quotient of two
polynomials from Z |E] . Let F = {fl, f2 } be the set of all these polynomials. Since
our algorithm performs O (n ~~ operations, we have I FI = O 01"/2). For any polynomial
f , let I f I - - the weight of f - - b e the sum of the absolute values of coefficients of f . Notice
that I fgl -5 < If[Igl , I f + gl < [f l + Igl.

Our algorithm performs arithmetic operations on the polynomials in F and tests if they
are non-zero. We would now like to apply the Zippel-Schwartz lemma simultanously
to all the polynomials in F and argue that by substituting variables in /7 with random
numbers from a suitable finite field Zp, with high probability all these tests give the
correct result.

Maximum Matchings in Planar Graphs via Gaussian Elimination 15

The problem with this reasoning is that the coefficients of some f 6 F might be all
multiples of p and then f is zero over Zp, even though it is non-zero over Z. To get
around this problem we prove that the coefficients of all f E F are small. It follows that
they have a small number of prime divisors and thus, with high probability, all f E F
are non-zero modulo a sufficiently large random prime p.

The following theorem is a formal statement of the above considerations.

THEOREM 22. Assume that all f E F have degrees o f order O(n) and coefficients o f
order O(n2"). Let p = 6)(n 4) be a random prime. I f we assign random values from the
set { 1 p - 1 } to the variables o f polynomials in F, then with high probability all
polynomials f E F have non-zero value over Zp.

PROOF. We first prove that with high probability all the polynomials are not identically
zero over Zp. Every f has a non-zero coefficient of order O(n2n). This coefficient can
only have O(n) distinct prime divisors of order 6)(n4). This gives at most O(nn ~ =
O(n 3) distinct prime divisors for all polynomials since we only consider one coefficient
for each polynomial and IF] = O (n~~ There are 6)(n4/log n) distinct primes of order
O(n4), so with high probability all polynomials in F have a non-zero coefficient in Z v
for a random prime p of order 6)(n4).

We can now use the Zippel-Schwartz lemma. Since all polynomials f E F have
degrees O(n), the probability of a false zero for a single polynomial is O(n 9 n 4) =
O (n 3). The sum of these probabilities over all polynomials .f E F is O (n I). []

We now proceed to show that the assumptions of this theorem are satisfied.
All the rational functions we consider are the entries of one of the following matrices:

- the skew symmetric matrix ,4 = / t (G) and its inverse;
_ ~ r ;

- intermediate results of Gaussian elimination performed on the above;

The case o f / t and ,4 I has already been analysed in [18] and it is significantly easier,
so we only consider ~ 7 ' and its partially eliminated versions.

Notice that the elements of AA T have a very simple form.

LEMMA 23. Non-zero elements o f f~ f~ v are polynomials consisting o f at most three
different monomials with all coefficients equal to • I .

PROOF. This follows from the fact that all vertices of G have degree at most 3 (see
reduction in Section 2.5). []

This gives the following bound for the determinant of any submatrix of AA T:

LEMMA 24. The determinant o f any submatrix o f f~ f~ r is a polynomial o f weight at
most 0 (3kk !).

PROOF. The determinant of a k x k submatrix of , ~ v is the sum of at most k! prod-
ucts, each of them consisting of exactly k non-zero entries o f / ~ r . Expansion of this

16 M. Mucha and R Sankowski

determinant gives at most 3kk! monomials with • coefficients, so the weight of the
determinant is at most O (3kk!). []

COROLLARY 25. The entries of the inverse of any submatrix of A A r are rational func-
tions with both numerator and denominator having weight of order 0 (3~k !).

The following well-known theorem describes the structure of a partially eliminated
matrix:

THEOREM 26. Let B be an n x n matrix, and let

BI,I BI,2)
B = \B2 1 B2,2,] '

where B l, I corresponds to the first k rows and k columns of B. Then Gaussian elimination
of these rows and columns results in the matrix

(o o)
/} = B2 ,2 - B2,1Bj, IB1,2 '

where D is the diagonal matrix from the LDU factorization of Bl, j.

The following theorem guarantees that our matching algorithm can be run over Zp.

THEOREM 27. At any stage of the Gaussian elimination performed on the matrix f~ ~ v,
the rational functions corresponding to non-zero entries of the uneliminated part of f~ A r
have numerators and denominators with weight of order 0 (3nn !) = O(n2n).

PROOF. Assume that B = ~ r has a block structure as described in the previous
theorem. When nested dissection is performed on B, we only need the elements from the
part of the matrix that was not yet eliminated, i.e. the elements of X = B2,2 - B2, l B ~, I B I, 2.
Non-zero polynomials in B2, j and Bi,2 have weights at most 3 and non-zero entries of
B~, I are rational functions with numerators and denominators of weight O(3nn !). This
gives a weight bound of O(n23n+2n!) for numerators and denominators of entries in

- I B2,1Bl, I Bi,2, which can be further reduced to O(3"+2n!) = O(3~n!), if we notice that
there are at most nine nonzero elements in every row and column of B. This bound holds
for X as well, because entries of B2,2 have weights at most 3. []

Similarly to Theorem 27, we can prove the following:

THEOREM 28. The degrees of all polynomials f ~ F are O(n).

7. Generating Random Matchings. In this section we consider the problem of gener-
ating perfect matchings in planar graphs uniformly at random. Our algorithm is based on

Maximum Matchings in Planar Graphs via Gaussian Elimination 17

the theorem of Kasteleyn [6], who showed how to compute the number of perfect match-
ings in a planar graph. Since the reduction used in the proof of Theorem 11 maintains
the number of perfect matchings, we can assume that our graphs have degree bounded
by 3.

7.1. Kastelyn Matrices. An orientation of a graph G = (V, E) is a directed graph
Go = (V, E') such that, for each edge (u, v) ~ E, exactly one of the edges (u, v),
(v, u) belongs to E'.

The Kasteleyn matrix K(Go) is an adjacency matrix of the orientation Go defined
as follows:

1 if (u,v) r E ' ,
K(Go)u ,v= --1 if (v ,u) r E ' ,

0 otherwise.

We denote by G (U) a subgraph of G induced by the set of vertices U _c V. Kasteleyn
proved the following theorem.

THEOREM 29. An orientation Go of a graph G such that for every V' c_ V,

det(K (G o (V'))) = (# of perfect matching s of G (V')) 2

exists and can be found in time linear in the size of the graph. The orientation Go is
called a pfaffian orientation of G.

7.2. The General Idea. The algorithm for generating perfect matchings uniformly at
random is similar to the algorithm for finding perfect matchings. The idea is to match
separator vertices in such a way that the random extension of this matching will give
a random matching. Let #M(G) be the number of perfect matchings containing M
as a submatching. We should match the separator with a maching M with probability
#M(G)/#O(G) in order to generate a perfect matching of the whole graph uniformly at
random. The algorithm is presented in Figure 6.

In the next subsection we show how the procedure GENERATE-RANDOM-SEP-
ARATOR-MATCHING can be implemented with O (n <'/2) arithmetic operations. The
matrix (K (Go) -I)-r~T can be computed with O(n <~ operations in the same way as
in Section 4.2. This gives the complexity bound of O(n ~ operations for the whole
algorithm as well.

GENERATE- RANDOM-PLANAR-PERFECT-MATCHING(G):

1. run PLANAR-TEST-PERFECT-MATCHING(G);
2. find pfaffian orientation Go of G;
3. let S be a small separator in G and let T be the corresponding thick separator;
4. find (K(Go)-l)r.r;
5. using the GENERATE-RANDOM-SEPARATOR-MATCHING procedure, find a matching M

incident on all vertices of S;
6. generate random perfect matchings in connected components of G - V (M);

Fig. 6. An algorithm for generating a perfect matching in planar graphs uniformly at random.

18 M. Mucha and R Sankowski

MATCH-SEPARATOR-VERTICES(M, X, p, q):

1. i f q = p t h e n
- match the pth vertex of the separator with one of its neighbors r with probability

(m U (p, r)) (G)/#M(G),
- lazily eliminate the pth row and the rth column of X,
- lazily eliminate the rth row and the pth column of X,
- r e t u r n

2. let m :-- I_(P + q)/2]
3. MATCH-SEPARATOR-VERTICES(M, X, p, m)
4. UPDATE-ADJACENT-VERTICES({m + 1 q}, {m + 1 n})
5. UPDATE-ADJACENT-VERTICES({q + 1 n}, {m + I q})
6. MATCH-SEPARATOR-VERTICES(M, X, m + 1, q)

GENERATE-RANDOM-SEPARATOR-MATCHING((A- l)r.r):

1. M : = 0 ,
2. MATCH-SEPARATOR-VERTICES(M, (A-~)r.r, 1, ISI).

Fig. 7, An algorithm for randomly matching the separator.

7.3. Matching the Separator Vertices. We now show how the separator vertices can
be matched using a slightly modified matching verification algorithm. Consider the
procedure presented in Figure 7.

The procedure UPDATE-ADJACENT-VERTICES(p, q) updates the rows and col-
umns corresponding to the vertices of S in the range p q and to all neighbours
of these vertices. Let us compare the algorithm with the ELIMINATE procedure from
Section 2.4. Each vertex can have at most three neighbours. Thus the size of the matrices
in updates increases four times compared with Algori thm ELIMINATE from Section 2.4
and so the above algorithm works in 0 (n C~ arithmetic operations. This updating scheme
guarantees that the pth and the rth rows and columns are computed explici t ly before
lazy elimination.

The last remaining problem is how to compute the probabli ty # (M U (p, r)) (G) /
#M(G) . From the Kasteleyn theorem we get

(# (M U (p, r)) (G)) z
(#M(G)) 2

d e t (K (G o (V - V (M) - {p, r})))
d e t (K (G o (V - V (M))))

The following lemma shows how this can be computed.

LEMMA 30. Before matching the pth vertex we have

d e t (K (G o (V - V (M) - {p, r}))) - I l l
= (A)p,p(A)r,r - (A- l)p , r (A -)r,p.

d e t (K (G o (V - V (M))))

PROOF. If we permute the pth and r th row to the left side of the matrix and the r th and
pth column to the top (note that this changes the sign of the determinant), the matrix

Maximum Matchings in Planar Graphs via Gaussian Elimination 19

will be o f the form

(A-l)p,r (A - l) p , p

(A- l) r ,p

Not ice that this matr ix is exact ly the inverse o f the mat r ix K (G o (V - V (M))) . This
fo l lows f rom T h e o r e m 7. Af te r the e l imina t ion o f the first two rows and co lumns we
obtain

i (A l)r,p - - (A - 1) P , o ((A - l) r , r / (A - 1) p , r) (t~-I)TSp,F,T-P, r .

The matr ix ^-1 (A)T-p,r ,r-p,r is the inverse o f the matr ix K (G o (V - V (M) - {p, r})).
The e l iminat ion does not change the de te rminant o f the matr ix and so we get

det(A~,~) = de t (A- l)T_p , r ,T_p , r ((A 1)p,p(A-l)r,r - (A - l) r , p (A - l) p , r) ,

and so

(det K (G o (V - V (M)))) - l
--1 -1 --1 -1 1 -- (d e t K (G o (V V (M) - { p , r }))) ((A)p,p(A)r,r -- - - (A)r,p(A)p,r). []

A c k n o w l e d g e m e n t s . The authors thank their favouri te superv isor Krzysz to f Diks for
numerous useful discussions.

R e f e r e n c e s

[1] Blum, N.: A new approach to maximum matching in general graphs. In: Proc. 17th ICALP, Volume
443 of LNCS, Springer-Verlag, Berlin, 1990, pp. 586-597.

[2] Bunch, J., Hopcroft, J.: Triangular factorization and inversion by fast matrix multiplication. Math.
Comp. 28 (1974), 231-236.

[3] Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proceedings
of the Nineteenth Annual ACM Conference on Theory of Computing, ACM Press, New York, 1987,
pp. I-6.

[4] Edmonds, J.: Paths, trees and flowers. Canad. J. Math, 17 (1965), 449-467.
[5] Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph matching problems. J. ACM 38

(1991), 815-853.
[6] Harary, F., editor: Graph Theory and Theoretical Physics. Academic Press, New York, 1967.
[7] Khaira, M.S, Miller, G.L., Sheffler, T.J.: Nested dissection: a survey, Technical Report CS-92-106,

1992.
[8] Klein, P., Rao, S., Rauch, M,, Subramanian, S.: Faster shortest-path algorithms for planar graphs. In:

Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, ACM Press, New
York, 1994, pp. 27-37.

[9] Kowalewski, G.: Einfuhrung in die Determinanten Theorie. Leipzig Verlag von Veit & Co, Leipzig,
1909.

20 M. Mucha and E Sankowski

[10] Lipton, R.J., Rose, D.J,, Tarjan, R,: Generalized nested dissection. SIAM J. Numer Anal. 16 (1979),
346-358.

[11] Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36 (1979),
177-189.

[12] Lipton, R.J., Tarjan, R.E.: Applications of a planar sep~ator theorem. SIAM J. Comput. 9 (1980),
615~527.

[13] Lov~isz, L.: On determinants, matchings and random algorithms. In Budach, L., ed.: Fundamentals of
Computation Theory, Akademie-Verlag, Berlin, 1979, pp. 565-574.

[14] Micali, S., Vazirani, V.V.: An o (~ l e l) algorithm for finding maximum matching in general graphs.
In: Proceedings of the Twen~-First Annual IEEE Symposium on Foundations of Computer Science,
1980, pp. 17-27.

[15] Miller, G.L., Naor, J.: Flow in planar graphs with multiple sources and sinks. In: Proceedings of the
30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 112-117.

[16] Mucha, M., Sankowski, E: Maximum matchings via gaussian elimination. In: Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 248-255.

[17] Pan, V.Y.,Reif, J.H.: Fast and efficient parallel solution of sparse linear systems. SIAMJ. Comput. 22
(1993), 1227-1250.

[18] Rabin, M.O., Vazirani, V.V.: Maximum matchings in general graphs through randomization. J. Algo-
rithms 10 (1989), 557-567.

[19] Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27 (1980),
701-717.

[20] Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13 (1969), 354-356.
[21] Tutte, W.T.: The factorization of linear graphs. J. London Math. Soc. 22 (1947), 107-111.
[22] Wilson, D.B.: Determinant algorithms for random planar structures. In: Proceedings of the Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1997, pp. 258-267.

[23] Zippel, R.: Probabilistic algorithms for sparse polynomiars. In: International Symposium on Symbolic
and Algebraic Computation, Volume 72 of LNCS, Springer-Verlag, Berlin, 1979, pp. 216-226.

