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Maximum Matchings in Planar Graphs 
via Gaussian Elimination 1 

Marcin Mucha 2 and Piotr Sankowski 2 

Abstract. We present a randomized algorithm for finding maximum matchings in planar graphs in time 
O(n'~ where co is the exponent of the best known matrix multiplication algorithm. Since co < 2.38, this 
algorithm breaks through the O (n J.5) barrier for the matching problem. This is the first result of this kind for 
general planar graphs. We also present an algorithm lor generating perfect matchings in planar graphs uniformly 
at random using O (n ~ arithmetic operations. Our algorithms are based on the Gaussian elimination approach 
to maximum matchings introduced in [ 16]. 
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1. I n t roduc t i on .  A matching in an undirected graph G = (V, E)  is a subset M ___ E, 
such that no two edges in M are incident. Let n = I V I, m = I El. A perfect matching 
is a matching of  cardinality n/2. The problems of  finding a Maximum Matching (i.e. a 
matching of maximum size) and, as a special case, finding a Perfect Matching if one 
exists, are two of  the most fundamental algorithmic graph problems. 

Solving these problems in time polynomial  in n remained an elusive goal for a long 
time until Edmonds [4] gave the first algorithm. Several other algorithms have been 
found since then, the fastest of  them being the algorithm of  Micali  and Vazirani [14], 
Blum [ 1 ] and Gabow and Tarjan [5]. The first of these algorithms is in fact a modification 
of  the Edmonds algorithm, the other two use different techniques, but all of  them run in 
time O (mq'-ff), which gives O(n 25) for dense graphs. 

The matching problems seem to be inherently easier for planar graphs. For a start, 
these graphs have O (n) edges, so O(m~v/~) = O (nl5) .  The same time complexi ty can 
also be achieved by directly using the separator theorem for planar graphs [ 12], However,  
there is more to it. Using the duali ty-based reduction of  maximum flow with multiple 
sources and sinks to single source shortest paths problem (see [15]), Klein et al. [8] were 
able to give an algorithm finding perfect matchings in bipartite planar graphs in time 
O (n 4/3 log n). This reduction, however, does not carry over to the case of  general planar 
graphs. 

We have recently shown [ 16], that extending the randomized technique of  Lowisz [ 13] 
leads to an O(n ~ algorithm for finding maximum matching in general graphs. In this 
paper we use similar techniques, together with separator-based decomposit ion of  planar 
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graphs and the fast nested dissection algorithm, to show that maximum matchings in 
planar graphs can be found in time O (n'~ 

REMARK l. In the case of w = 2 an additional polylogarithmic factor appears, so in 
the remainder of this paper we assume for simplicity that w > 2. 

There is one point to notice here. The O(n ~) algorithm for general graphs presented 
in [ 16] is faster than the standard maximum matching algorithms only if the Coppersmith- 
Winograd matrix multiplication is used (see [3]). On the other hand, for our O(n ~/2) 
algorithm to be faster than the standard algorithms applied to planar graphs, it is enough to 
use any o(n 3) matrix multiplication algorithm, e.g. the classic algorithm of Strassen [20]. 
This suggests that our results not only constitute a theoretical breakthrough, but might 
also give a new practical approach to solving the maximum matching problem in planar 
graphs. 

The same techniques can be used to generate perfect matchings in planar graphs 
uniformly at random using O(n ~ arithmetic operations. This improves on the result 
of Wilson [22]. 

The rest of the paper is organized as follows. In the next section we recall some well- 
known results concerning the algebraic approach to the maximum matching problem 
and the key ideas from [16], In Section 3 we recall the separator theorem for planar 
graphs and the fast nested dissection algorithm and show how these can be used to test 
planar graphs for perfect matchings with O (n '~ operations. In Section 4 we present an 
algorithm for finding perfect matchings in planar graphs with O(n ~~ operations, and 
in Section 5 we show how to extend it to an algorithm finding maximum matchings. In 
all these algorithms we use multivariate rational functions arithmetic and so their time 
complexity is in fact much larger than O(n~ This issue is addressed in Section 6, 
where we show that all the computations can be performed over a finite field Zp, for a 
random prime p = ~(n4). In Section 7 we present an algorithm for generating perfect 
matchings in planar graphs uniformly at random. 

2. Preliminaries 

2.1. Matchings, Adjacency Matrices and Their Inverses. Let G = (V, E) be a graph 
and let n = IV[ and V = {vl . . . . .  vn}. A skew symmetric adjacency matrix of G is an 
n x n matrix ,4(G) such that 

I xi,j if (vi, vj) ~ E and i < j ,  
A(G)i,j = -xi.j if (vi, vj) c E and i > j , ,  

0 otherwise 

where the Xi, j a r e  unique variables corresponding to the edges of G. For/~ = {Xi, j : (Ui, Uj) 
c E}, let Z[E] be the ring of polynomials with integral coefficients and variables from 
/~, and let Z(/~) be its field of fractions, i.e. field of rational functions with integral 
coefficients and variables from/~. For example, A(G) is a matrix over Z(/~). 
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Tutte [21 ] observed the following 

THEOREM 2. The symbolic determinant det.A(G) is non-zero iff G has a perfect 
matching. 

Lovfisz [13] generalized this to 

THEOREM 3. The rank of the skew symmetric adjacency matrix A ( G ) is equal to twice 
the size of maximum matching of  G. 

Let G be a graph having a perfect matching and let A = A(G) be its skew symmetric 
adjacency matrix. By Theorem 2, ,~ is invertible. Rabin and Vazirani [18] showed that 

THEOREM 4. (/~-I)j,i 7~ 0 iff the graph G - {1)i, 1)j } has a perfect matching. 

In particular, if (vi, vj) is an edge in G, then (/i-I)j,i  r 0 iff (Ui, Uj)  is allowed, 
i.e. it is contained in some perfect matching. This follows from the formula (X -1 ) i , j  = 
adj(X)i,j/det X, where adj(X)i.:--the so-called adjoint of X- - i s  the determinant of X 
with the j th row and ith column removed, multiplied by ( - 1 )  i+j. 

2.2. Randomization. Theorem 2 could be used directly to test for graphs having a 
perfect matching. We need to compute d e t * ( G )  and answer "YES" if it is non-zero. 
Unfortunately, this solution requires Z[/~] arithmetic and is thus infeasible. 

There is however another, more subtle, way of using Theorem 2 to test for perfect 
matchings. Recall the classic lemma due to Zippel [23] and Schwartz [19]: 

LEMMA 5 (Zippel, Schwartz). I f  p(xl . . . . .  Xm) is a non-zero polynomial of degree d 
with coefficients in a field and S is a subset of  the field, then the probability that p 
evaluates to zero on a random element (sl , s2 . . . . .  sin) ~ S m is at most d /[S[. 

Choose a prime p --- n o (l) and substitute each variable in/~ (G) with a random element 
of Zp. We call the resulting matrix the random adjacency matrix of G and denote it by 
A(G). Since det A(G) is a polynomial of degree n, by Lemma 5 with high probability 
we have det A(G) 5~ 0 iffdet A(G) ~ O, i.e. G has a perfect matching. This randomized 
testing algorithm was given by Lovfisz [13]. It can be implemented to run in O(n ~') 
time using fast matrix multiplication (where co is the matrix multiplication exponent, 
currently co < 2.38, see [3]). 

Lov~isz also showed that 

THEOREM 6. The rank of  A(G) is at most twice the size of  maximum matching in G. 
The equality holds' with probability at least 1 - (n / p). 

Lovfisz's algorithm is an example of a general approach to constructing randomized 
algorithms. We first develop an algorithm working over a ring of polynomials or a field 
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of rational functions and then use the Zippel-Schwartz  lemma to show that it can be 
performed over Zp for a suitable choice of p. 

In particular, this is the approach we take in this paper. In the remainder of  this section, 
as well as in Sections 3-5,  we describe our algorithms using Z(/~) arithmetic (even 
though it is computationally infeasible). The complexity bounds for these algorithms are 
expressed in terms of the number of  Z(/~) operations. In Section 6 we show that if all the 
computations are performed over a finite field Zp instead of  Z (E) ,  with high probability 
we still get correct results, for a sufficiently large (but polynomial in n) prime p. 

2.3. Per fec t  M a t c h i n g s  via Gauss ian  E l imina t ion .  We now recall a technique, recently 
developed by the authors, of  finding perfect matchings using Gaussian elimination. This 
technique can be used to find an inclusionwise maximal allowed submatching of  any 
matching in time O ( n ~ ) ,  which is a key element of  our matching algorithm for planar 
graphs. A more detailed exposition of  the Gaussian elimination technique and faster 
algorithms for matchings in bipartite and general graphs can be found in [ 16]. 

Consider a skew symmetric adjacency matrix A = A ( G )  of  a graph G = (V, E),  
where I V I = n, V = {v i, U2 . . . . .  U n }. If  (vi, ~ j )  E E and (A- i  ) i , j  ~z~ 0, then (~)i, U j)  is an 
allowed edge. We may thus choose this edge as a matching edge and try to find a perfect 
matching in G'  = G - {vl, v2}. The problem with this approach is that edges that were 
allowed in G might not be allowed in G' .  Computing the matrix .4(G')  - I  from scratch is 
out of the question as the resulting algorithm would require O (n ~+1) operations to find 
a perfect matching. There is however another way of computing A(G ' )  - I  , suggested by 
the following well-known property of  the Schur complement  

THEOREM 7 (Elimination Theorem). Let  

x = \ u  i y ]  ' 

where fc l . i  :~ O. Then Y I = I) _ t~T/Xi , i .  

PROOF. Since X X L = 1, we have 

J 
[ 

Using these equalities we get 

Y(]) - t~vr/xl , l )  = L, I - u v  v - YhOr/-?t ,L 

= ln--1 - -  H ~)r ~-  H f f l , t ~ r / X l , l  = l n - I  - -  bl~jT -~- U ~)r = L,  1. 

and so y-1 = I~ - h~T/~;:l,l as claimed. [] 

The modification of 1 ) described in this theorem is in fact a single step of  the well- 
known Gaussian elimination procedure. In this case we are eliminating the first variable 
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(column) using the first equation (row). Similarly, we can eliminate from X-J any other 
variable (column) j using any equation (row) i, such that (X -1 )i,j 5 ~ O. 

In [16] we show that among the consequences of  Theorem 7 is a very simple O (n 3) 
algorithm for finding perfect matchings in general graphs (this is an easy corollary) as 
well as O (n ~ algorithms for finding perfect matchings in bipartite and general graphs. 
The last of  these requires some additional structural techniques. 

2.4. Matching Verification. We now describe another consequence of  Theorem 7, one 
that is crucial for our approach to finding maximmn matchings in planar graphs. In [ 161 
we have shown that 

THEOREM 8. Gaussian elimination without row or column pivoting can be done with 
0 (n ~~ operations using lazy computations. 

REMARK 9. The algorithm in Theorem 8 is very similar to the classic Hopcroft-Bunch 
algorithm [2]. It is however more intuitive and better suited for our purposes. 

PROOF. Assume that we are performing Gaussian elimination on an n x n matrix X 
and after eliminating the first i - 1 rows and columns, we always have Xi, i ~ O. In this 
case we can avoid any row or column pivoting, and the following algorithm performs 
Gaussian elimination of  the whole matrix X in time O(n~ By "lazy elimination" we 
mean storing the expression of  the form uvr /c  describing the changes required in the 
remaining submatrix without actually performing them. These changes are then executed 
in batches during the calls to UPDATE(R, C) which updates the Xs.c  submatrix. Suppose 
that k changes where accumulated for the submatrix Xk.c and then UPDATE(R, C) was 
called. Let these changes be U lV(/Cl U2U~'/C 2, 7" . . . . . .  uk v k ~ok, the accumulated change 
of  XR,c is 

Ic, + + . . .  + u, l lc ,  = u v .  
where U is an IRI x k matrix with columns uj, u2 . . . . .  uk and V is a k • ICI matrix 
with rows v~/cT, v'~/c2 . . . . .  v~'/ck. The matrix UV can be found using fast matrix 
multiplication. 

Let us consider the call to ELIMINATE-ROWS-AND-COLUMNS(X,  p, q) (see Fig- 
ure 1), and let j = q - m + 1. The cost of  the updates in the call is proportional to the 
cost of  multiplying the 2 . /x  2 -i matrix by a 2 j x n matrix. By splitting the second matrix 
into 2J x 2 j square submatrices, this can be done in t i m e  n / 2 J ( 2 J )  a' = n(2J) ~ 1. Now, 
every j appears n/2 / times, so we get the total time complexity of  

[log n7 [log n] 
Z n/2/n(2i)~~ I = n 2 Z (2~~ 2)j < n2(2~o 2)Flog.7 = O(nOO). [] 
j =0 j =0 

This algorithm has a very interesting application: 

THEOREM 10. Let G be a graph having a perfect matching. For any matching M of G, 
an inclusion-wise maximal allowed (i.e. extendible to a perfect matching) submatching 
M' of M can be found using O(n ~~ operations. 
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ELIMINATE-ROWS-AND-COLUMNS(X, p, q): 

1. i f q = p t h e n  
- lazily eliminate the pth row and the pth column of X 
- r e t u r n  

2. let m := [(p + q)/2J 
3. ELIMINATE-ROWS-AND-COLUMNS(p, m) 
4. UPDATE({m + l ..... q}, {m + 1 ..... n}) 
5. UPDATE({q + 1 ..... n}, {m + 1 . . . . .  q}) 
6. ELIMINATE-ROWS-AND-COLUMNS(m + 1, q) 

ELIMINATE(X): 

I. ELIMINATE-ROWS-AND-COLUMNS(X, 1, n) 
Fig. 1. Elimination with no pivoting. 

PROOF. Let M = {(Vl, /)2),  (/)3, /)4) . . . . .  (Uk-l, vk)} and let vk+l, /)k+2 . . . . .  V~ be the 
unmatched vertices. We compute the inverse ,4(G) -1 and permute its rows and columns 
so that the row order is vt, /)2, v3, v4 . . . . .  v,~ and the column order is v2, vl,  v4, 
v3 . . . . .  v, ,  v~_l. Now, perform Gaussian elimination of  the first k rows and k columns 
using the algorithm of  Theorem 8, but if  the el iminated element  is zero just  skip to 
the next row/column pair. The el iminated rows and columns correspond to a maximal  
submatching M'  of  M. []  

2.5. Degree Reduction. We now recall a well-known technique of  "vertex split t ing" 
(see for example [22]). 

THEOREM 11. The problem of finding perfect (maximum) matchings in planar graphs 
is reducible in O(n) time to the problem of finding perfect (maximum) matchings in 
planar graphs with maximum vertex degree 3. This reduction adds O(n) new vertices. 

PROOF. Suppose that G has a vertex v with degree > 3. Let N (v) be the set of  neighbours 
of v. We choose two neighbours w], w2 ~ N(v)  and replace v with three vertices 
vl, v2, v3 as shown in Figure 2. Let G be the resulting graph. There is a a one-to-one 
mapping between perfect matchings in G and in (~. Reducing the degrees of  all vertices 

\\\ / \, / 
\\\ 

.o ~, / .j 
w l W I @  9 

w2 . % 

Fig. 2. Vertex splitting. On the left is a high degree vertex v. It is matched in the perfect matching with one of 
its neighbours w2. On the right is the graph after splitting this vertex into vl, v2, v3. Now v3 is matched with 
w2 and vt is matched with v2. Perfect matchings in the two graphs are in one-to-one correspondence. 
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to < 3 requires only O (m) = O (n) splitting operations, so the resulting graph has O (n) 
vertices. 

Even if G has no perfect matching, we can still use this reduction. There is an easy 
translation of maximum matchings in the original graph G to maximum matchings in 
the bounded degree graph G and vice versa (it is not one-to-one, though). Notice that 
the number of  unmatched vertices in a maximum matching is the same for G and G. [] 

Throughout the rest of  this paper we restrict ourselves to graphs with degree bounded 
by 3. 

3. Testing Planar Graphs for Perfect Matching. In this section we show how planar 
graphs can be tested for perfect matching using O(n ~/2) operations. We use the nested 
dissection algorithm which performs Gaussian elimination using O (n ~/2) operations for 
a special class of  matrices. The results presented in the next subsection are due to Lipton 
and Tarjan [11] and Lipton et al. [10]. We follow the presentation in [17] as it is best 
suited for our purposes. 

3.1. Sparse LU Factorization via Nested Dissection. We say that a graph G = (V, E) 
has an s(n)-separatorfamily (with respect to some constant no) if either IVI _< no, 
or by deleting a set S of  vertices such that ISI _< s(IWr), we may partition G into two 
disconnected subgraphs with the vertex sets Vl and V2, such that I Vi I < 2/31V1, i = 1,2, 
and furthermore each of  the two subgraphs of  G defined by the vertex sets S U Vi, i = 1,2, 
also has an s(n)-separator family. The set S in this definition is called an s(n)-separator 
in G (we also use the name small separators for O(v'~)-separators) and the partition 
resulting from recursive application of this definition is the s (n )-separator tree. Partition 
of  a subgraph of  G defines its children in the tree. 

The following theorem of Lipton and Tarjan [1 1] gives an important example of  
graphs having O (v'~)-separator families: 

THEOREM 12 (Separator Theorem). Planar graphs have 0 (vrff )-separator families. 
Moreover, an 0 ( V-if )-separator tree for a planar graph can be found in time 0 (n log n). 

Let X be an n • n matrix. The graph G(X) corresponding to A is defined as follows: 
G(X) = (V, E), V = {1,2 . . . . .  n}, E = { {i, j}l i 5 ~ j and (Xi,j r Oor Xj,i # 0)}.The 
existence of  an O (v/-ff)-separator family for G(X) makes faster Gaussian elimination 
possible as the following theorem of Lipton and Tarjan shows: 

THEOREM 13 (Nested Dissection). Let X be a symmetric positive definite matrix and 
let G ( X ) have an O ( v ~  )-separator family. Given an O ( v/n ) separator tree for G ( X ), 
Gaussian elimination on X can be performed in time 0 (n ~~ using so-called nested 
dissection. The resulting LU factorization of X is given by matrices L and D, X = 
LDL  r, where matrix L is unit lower-triangular and has O(n logn)  non-zero entries 
and matrix D is diagonal. 

REMARK 14. The assumption of  X being symmetric positive definite is needed to assure 
that no diagonal zeros will appear, so that no row or column pivoting is neccessary during 
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the elimination. If  we can guarantee this in some other way, then the assumption can be 
omitted. 

We do not present the details of  this algorithm. The basic idea is to permute rows 
and columns of  X using the O Gv/-~)-separator tree. Vertices of  the top-level separator S 
correspond to the last I SI rows and last I SI columns, etc. When Gaussian elimination is 
performed in this order, the matrix remains sparse throughout the elimination. 

Since we are going to perform Gaussian elimination on matrices over Z(/~), we 
need to find a way to apply Theorem 13 to such matrices. The usual notion of  positive 
definiteness does not make sense in this case, so we call a matrix X over Z(/~) symmetric 
positive definite if it is of  the form X = y y T  for some non-singular Y. 

We have the following: 

FACT 15 (Symbolic Nested Dissection). Theorem 13 holds for matrices over Z(/~). 

PROOF. Let X = Y yT be a symmetric positive definite matrix over g(/~). According to 
Remark 14 we only need to guarantee that no diagonal zeros appear during the elimination 
of  X. Since det Y 5~ 0, there exist a substitution v of  variables in E, such that det Yo r 0, 
where Y~ is Y after the substitution v. 

Since Y~ is non-singular, X, = Y~ Y~ is symmetric positive definite in the usual sense. 
By Theorem 13 there are no diagonal zeros during the elimination of  X~. The same has 
to be true for X, since entries of  X~ are just substituted versions of  entries of  X. [] 

3.2. The Testing Algorithm. Testing a general graph G for having a perfect matching 
requires performing Gaussian elimination on the matrix ,4 = ,~(G) (in order to compute 
its determinant). In case of planar graphs and planar matrices, we want to get an O (n ~/2) 
algorithm, so we have to use the nested dissection algorithm to perform the elimination. 
In order to use it, however, we need to guarantee that there are no zeros on the diagonal 
during the elimination, and the only known method of  doing this requires finding a 
perfect matching first. This approach does not look very promising. Instead, we work on 
the matrix/~ = ~ r .  

Notice that if A is non-singular (i.e. G has a perfect matching), then/~ is symmetric 
positive definite. In order to use Fact 15, we need to show that G(B) and all its subgraphs 
have small separators. This is not true in general, but it is true if G is a bounded degree 
graph. Let S be a small separator in G(A) = G, and consider the set T containing all 
vertices of  S and all their neighbours. We call T a thick separator corresponding to S. 
Notice that Bi,j can be non-zero only if there exists a path of  length 2 between vi and 
vj. Thus T is a separator in G(/~). T is also a small separator, because G has bounded 
degree and so ITI < 4[SI = 0(4%-)- In the same manner small separators can be found 
in any subgraph of  G(/3), so Gaussian elimination on matrix/~ can be performed using 
the nested dissection algorithm with O (n ~~ operations. 

We are now ready to present the testing algorithm for planar graphs (see Figure 3). 
If  the nested dissection algorithm finds an LU factorization of /~ ,  then B is non- 

singular, and so A is non-singular, thus G has a perfect matching. If, however, the nested 
dissection fails, i.e. there appears zero on the diagonal during the elimination, then/~ is 
not positive definite, and so A is singular. 
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PLANAR-TEST-PERFECT-MATCHING(G): 

1. reduce the degrees of vertices in G; 
2. compute i/ = ~,~r; 
3. run nested dissection on/~; 
4. G has a perfect matching iff the algorithm succeeds, i.e. finds an LU factorization; 

Fig. 3. An algorithm for testing if a planar graph has a perfect matching. 

4. Finding Perfect Matchings in Planar Graphs. In this section we present an algo- 
rithm for finding perfect matchings in planar graphs. In Section 5 we show that the more 
general problem of  finding a maximum matching reduces to the problem of  finding a 
perfect matching. 

4.1. The General Idea. For any matrix X, let XR,c denote a submatrix of  X corre- 
sponding to rows R and columns C. 

The general idea of  the matching algorithm is presented in Figure 4. 
To find a perfect matching in a planar graph, we find a small separator, match its 

vertices in an allowed way (i.e. one that can be extended to the set of all vertices), and 
then solve the problem for each of  the connected components  created by removing the 
endpoints of  this matching. In the remainder  of  this section, we show that we can perform 
steps 3 and 4 using O(n ~/2) operations. This gives the complexi ty bound of  O(n ~ 
operations for the whole algorithm as well. 

4.2. Computing the Important Part o f  fit(G) - j .  We could easily find (A(G)  I)r,T if 
we had an LU factorization of fit = fit(G). Unfortunately, 2i is not symmetric  positive 
definite, so we cannot use the fast nested dissection algorithm to factorize fit. In the 
testing phase we find n x n matrices L and D such t h a t / ~ r  = L D L  T, where L is unit 
lower-triangular and D is diagonal. We now show how L and D can be used to compute 
( A - I ) r , r  in time O(n~~ We represent fit, L and D as block matrices: 

fit = fit2,1 A2 2 ] '  D = 02,2 , 

L = \L2, j  [ Lz,2J = -1 L -1 L I , L2,2L2,1 1,1 2,2 

PLANAR-PERFECT-MATCHING(G): 

1. run PLANAR-TEST-PERFECT-MATCHING(G); 
2. let S be a small separator in G and let T be the corresponding thick separator; 
3. find (A(G)- l ) r , r ;  
4. using the FIND-ALLOWED-SEPARATOR-MATCHING procedure, find an allowed matching 

M incident on all vertices of S; 
5. find perfect matchings in connected components of G - V(M); 

Fig. 4. An algorithm for finding perfect matchings in planar graphs. 
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where lower right blocks in all matrices correspond to the vertices of  the thick separator 
T, for example Ar,r  = A2,2. Since , ~ r  = L D L  r, we have 

( /~r)- I  = ( L T ) - I D - I L - I f i i ,  

where the interesting part of  ( .~r) - l  is 

(AT)TI T = ( (LT)-I )T,  v D - I  L - I  ~V, r 

: (C~,2) - 'D2 ,1(L- I )T ,  vAv+ T 
(L~,:) - t  - ' - ' -  + ( L ~ : ) - t  D~t2(L-'  fii = D2,2L2.2A2,2 , , )2.1 1.2. 

The first component can be easily computed with O(n ~ operations using fast matrix 
multiplication. The second component can be written as 

T - I  - I  - I  T - I  - I  -1  - I  
(L2,2)  D 2 , z ( L  )2,1"~1,2 = - ( L 2 , 2 )  D2,2L2,2L2,1LI,IAt,2 

and the only hard part here is to compute X = -L2,1L~I+ A 1,2. Consider the matrix 

0 

When Gaussian elimination is performed on the non-separator columns and vertices of  
B, the lower right submatrix becomes X. This is a well-known property of  the Schur 
complement. Elimination can be performed with use of  the nested dissection algorithm 
in time 0(#~ The idea here is that the separator tree for/~fi~r is a valid separator tree 
for L, thus also for B. The new non-zero entries of  L introduced by Gaussian elimination 
(so-calledfill-in), correspond to the edges that can only go upwards in the separator tree, 
from child to one of  its ancestors (see [7]). Notice that since L~. j is lower-diagonal, there 
are no problems with diagonal zeros, even though B is not symmetric positive definite. 

4.3. Matching the Separator Vertices. We now show how the separator vertices can be 
matched using the matching verification algorithm. Consider the procedure presented in 
Figure 5. 

The verification algorithm finds a maximal allowed submatching M~ of  MG using 
O(n ~'/2) operations. It works on the matrix ,4(G) - j ,  but it never uses any values from 

FIND-ALLOWED-SEPARATOR-MATCHING: 

1. let M ---- 0; 
2. let GT = (T, E(T) - E(T - S)); 
3. let Me be any inclusionwise maximal matching in GT using only allowed edges; 
4. run the verification algorithm of Theorem 10 on (A-J)T.T to find a maximal allowed submatch- 

ing M~ of MG; 
5. add M~ to M; 
6. remove the vertices matched by M~ from GT; 
7. mark edges in Me - M~ as not allowed; 
8. if M does not match all vertices of S go to step 3; 

Fig. 5. A procedure for finding allowed submatching of the separator. 
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outside the submatrix (5, (G)-I)T,T corresponding to the vertices of  T, so we only have 
to compute this submatrix. Let A' be the result of  running the verification algorithm on 

~' = (A(G - V(M'G))-I)T, r,, the matrix (,~,-l)r, T. Notice that due to Theorem 7, A r,, r '  
where T'  is obtained from T by removing the vertices matched by M~. Thus the inverse 
does not need to be computed from scratch in each iteration of  the loop. 

Now consider the allowed matching M covering S, found by the algorithm shown 
in Figure 5. Notice that any edge e of M is either incident on at least one edge of  the 
inclusionwise maximal matching Mc or is contained in Mo,  because of  the maximality 
of  Me.  If  e is in Me,  it is chosen in step 4, otherwise one of  the edges incident to e is 
marked as not allowed. Every edge e ~ M has at most four incident edges, so the loop 
is executed at most five times and the whole procedure requires O(n ~ operations. 

5. Maximum versus Perfect Matchings. We now show that the problem of finding a 
maximum matching can be reduced to the problem of finding a perfect matching using 
O(n ~/2) operations. The problem is to find the largest subset W c V, such that the 
induced G[W] has a perfect matching. Notice that this is equivalent to finding the largest 
subset W __ V, such that A w, w is non-singular. The basic idea is to use the nested 
dissection algorithm. We first show that non-singular submatrices of  A A r correspond to 
non-singular submatrices of  A (note that Lemma 16, Theorem 17 and Theorem 18 are 
all well-known facts). 

LEMMA 16. The matrbc A A T has the same rank as A. 

PROOF. We will prove that ker(A) = ker(ATA). Let v be such that (ATA)v = 0. We 
have 

0 = vT(ATA)v = (vTAT)(Av)  = (Av)T(Av) ,  

s o A r  = 0 .  [] 

We will also need the following classic theorem of Frobenius (see [9]): 

THEOREM 17 (Frobenius Theorem). Let A be an n x n skew-symmetric matrix and let 
X, Y __. {1 . . . . .  n} such that [X[ = [Y[ = rank(A). Then 

det(Ax,x) det(Ay, y) = ( - 1 )  Ixl det2(Ax, y). 

Now we are ready to prove the following: 

THEOREM 18. If(AAT)w,w isnon-singularand IWl = rank(AAT), then Aw, w isalso 
non-singular. 

PROOF. We have (AAT)w,w = Aw, vAv,w , T  so rank(Aw, v) = rank(AAT). By 
Lemma 16, this is equal to rank(A). Let Aw, u be any square submatrix of  Aw, v of  
maximal rank. From the Frobenius theorem it follows that A w, w also has maximal 
rank. [] 
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The only question now is, whether AA r always has a submatrix (AAr)w,w (i.e. a 
symmetrically placed submatrix) of  maximal rank. There are many ways to prove this 
fact, but we use the one that leads to an algorithm for actually finding this submatrix. 

LEMMA 19. l f (AAr)i , i  = O, then (AAT)i,j = (AAr)j,i = Oforall j .  

PROOF. Let ei be the ith unit vector. We have 

0 = (AAr)i.i = (eIA)(ATei)  = (AYei)r(Arei) ,  

so Arei = 0. However, then (AAr)i , j  = (efA)(AVei)  = 0 for any j and the same for 
(AAr)Li . [] 

THEOREM 20. A submatrix (AA r) w,w of AA r of maximal rank always exists and can 
be found with 0 (n ~~ operations using the nested dissection algorithm. 

PROOF. We perform the nested dissection algorithm on the matrix AA r. At any stage 
of  the computations, the matrix we are working on is of  the form BB r for some B. It 
follows from Lemma 19, that if a diagonal entry we want to eliminate has value zero, 
then the row and the column corresponding to this entry consist of  only zeros, We ignore 
these and proceed with the elimination. The matrix (AA r) we are looking for consists 
of  all non-ignored rows and columns, ffl 

COROLLARY 21. Foranyptanargraph G = (V,  E) a targestsubset  W c_ V, such that 
G[ W] has a perfect matching, can be found with 0 (n ~''/2) operations'. 

We have thus argued that for planar graphs the maximum matching problem can be 
reduced to the perfect matching problem with O(n "/2) operations. Since we can solve 
the latter with O(n "/2) operations, we can solve the former within the same bounds. 

6. Work ing  over a Finite Field. So far, we have shown an algorithm finding a max- 
imum matching in a planar graph using O(n ''/2) operations in Z(E) .  Obviously, this 
cannot be implemented efficiently. We now show that, with high probability, our match- 
ing algorithms give the same results if performed using the finite field arithmetic Z~, for 
a randomly chosen prime p = O(n4). 

Each rational function computed by our matching algorithm is a quotient of  two 
polynomials from Z |E] .  Let F = {fl, f2 . . . .  } be the set of  all these polynomials. Since 
our algorithm performs O (n ~~ operations, we have I FI = O 01"/2). For any polynomial 
f ,  let I f I - - the weight of f - - b e  the sum of the absolute values of  coefficients of  f .  Notice 
that I fgl  -5 < If[Igl ,  I f  + gl < [f l  + Igl. 

Our algorithm performs arithmetic operations on the polynomials in F and tests if they 
are non-zero. We would now like to apply the Zippel-Schwartz lemma simultanously 
to all the polynomials in F and argue that by substituting variables in /7 with random 
numbers from a suitable finite field Zp, with high probability all these tests give the 
correct result. 
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The problem with this reasoning is that the coefficients of  some f 6 F might be all 
multiples of  p and then f is zero over Zp, even though it is non-zero over Z. To get 
around this problem we prove that the coefficients of  all f E F are small. It follows that 
they have a small number of  prime divisors and thus, with high probability, all f E F 
are non-zero modulo a sufficiently large random prime p. 

The following theorem is a formal statement of the above considerations. 

THEOREM 22. Assume that all f E F have degrees o f  order O(n)  and coefficients o f  
order O(n2"). Let p = 6)(n 4) be a random prime. I f  we assign random values from the 
set { 1 . . . . .  p - 1 } to the variables o f  polynomials in F, then with high probability all 
polynomials f E F have non-zero value over Zp. 

PROOF. We first prove that with high probability all the polynomials are not identically 
zero over Zp. Every f has a non-zero coefficient of  order O(n2n). This coefficient can 
only have O(n) distinct prime divisors of  order 6)(n4). This gives at most O(nn ~ = 
O(n 3) distinct prime divisors for all polynomials since we only consider one coefficient 
for each polynomial and IF] = O (n~~ There are 6)(n4/log n) distinct primes of  order 
O(n4), so with high probability all polynomials in F have a non-zero coefficient in Z v 
for a random prime p of order 6)(n4). 

We can now use the Zippel-Schwartz lemma. Since all polynomials f E F have 
degrees O(n),  the probability of  a false zero for a single polynomial is O(n  9 n 4) = 
O (n 3). The sum of these probabilities over all polynomials .f E F is O (n I). [] 

We now proceed to show that the assumptions of  this theorem are satisfied. 
All the rational functions we consider are the entries of one of  the following matrices: 

- the skew symmetric matrix ,4 = / t ( G )  and its inverse; 
_ ~ r ;  

- intermediate results of Gaussian elimination performed on the above; 

The case o f / t  and ,4 I has already been analysed in [18] and it is significantly easier, 
so we only consider ~ 7 '  and its partially eliminated versions. 

Notice that the elements of AA T have a very simple form. 

LEMMA 23. Non-zero elements o f  f~ f~ v are polynomials consisting o f  at most three 
different monomials with all coefficients equal to • I . 

PROOF. This follows from the fact that all vertices of  G have degree at most 3 (see 
reduction in Section 2.5). [] 

This gives the following bound for the determinant of  any submatrix of  AA T: 

LEMMA 24. The determinant o f  any submatrix o f  f~ f~ r is a polynomial o f  weight at 
most 0 (3kk !). 

PROOF. The determinant of  a k x k submatrix of  , ~ v  is the sum of at most k! prod- 
ucts, each of  them consisting of exactly k non-zero entries o f / ~ r .  Expansion of  this 
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determinant gives at most 3kk! monomials with •  coefficients, so the weight of the 
determinant is at most O (3kk!). [] 

COROLLARY 25. The entries of the inverse of any submatrix of A A r are rational func- 
tions with both numerator and denominator having weight of  order 0 (3~k !). 

The following well-known theorem describes the structure of  a partially eliminated 
matrix: 

THEOREM 26. Let B be an n x n matrix, and let 

BI,I BI,2) 
B = \B2 1 B2,2,] ' 

where B l, I corresponds to the first k rows and k columns of  B. Then Gaussian elimination 
of  these rows and columns results in the matrix 

(o o ) 
/} = B2 ,2 -  B2,1Bj, IB1,2 ' 

where D is the diagonal matrix from the LDU factorization of  Bl, j. 

The following theorem guarantees that our matching algorithm can be run over Zp. 

THEOREM 27. At any stage of the Gaussian elimination performed on the matrix f~ ~ v, 
the rational functions corresponding to non-zero entries of  the uneliminated part of  f~ A r 
have numerators and denominators with weight of  order 0 (3nn !) = O(n2n). 

PROOF. Assume that B = ~ r  has a block structure as described in the previous 
theorem. When nested dissection is performed on B, we only need the elements from the 
part of  the matrix that was not yet eliminated, i.e. the elements of X = B2,2 - B2, l B ~, I B I, 2. 
Non-zero polynomials in B2, j and Bi,2 have weights at most 3 and non-zero entries of  
B~, I are rational functions with numerators and denominators of  weight O(3nn !). This 
gives a weight bound of O(n23n+2n!) for numerators and denominators of entries in 

- I  B2,1Bl, I Bi,2, which can be further reduced to O(3"+2n!) = O(3~n!), if we notice that 
there are at most nine nonzero elements in every row and column of B. This bound holds 
for X as well, because entries of  B2,2 have weights at most 3. [] 

Similarly to Theorem 27, we can prove the following: 

THEOREM 28. The degrees of  all polynomials f ~ F are O(n). 

7. Generating Random Matchings. In this section we consider the problem of gener- 
ating perfect matchings in planar graphs uniformly at random. Our algorithm is based on 
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the theorem of Kasteleyn [6], who showed how to compute the number of perfect match- 
ings in a planar graph. Since the reduction used in the proof of  Theorem 11 maintains 
the number of  perfect matchings, we can assume that our graphs have degree bounded 
by 3. 

7.1. Kastelyn Matrices. An orientation of  a graph G = (V, E) is a directed graph 
Go = (V, E') such that, for each edge (u, v) ~ E, exactly one of the edges (u, v), 
(v, u) belongs to E'.  

The Kasteleyn matrix K(Go)  is an adjacency matrix of  the orientation Go defined 
as follows: 

1 if (u,v) r E ' ,  
K(Go)u ,v= --1 if (v ,u )  r E ' ,  

0 otherwise. 

We denote by G (U) a subgraph of  G induced by the set of  vertices U _c V. Kasteleyn 
proved the following theorem. 

THEOREM 29. An orientation Go of a graph G such that for every V' c_ V, 

det( K ( G o ( V') ) ) = (# of perfect matching s of  G ( V') ) 2 

exists and can be found in time linear in the size of the graph. The orientation Go is 
called a pfaffian orientation of G. 

7.2. The General Idea. The algorithm for generating perfect matchings uniformly at 
random is similar to the algorithm for finding perfect matchings. The idea is to match 
separator vertices in such a way that the random extension of  this matching will give 
a random matching. Let #M(G) be the number of  perfect matchings containing M 
as a submatching. We should match the separator with a maching M with probability 
#M(G)/#O(G) in order to generate a perfect matching of  the whole graph uniformly at 
random. The algorithm is presented in Figure 6. 

In the next subsection we show how the procedure GENERATE-RANDOM-SEP-  
ARATOR-MATCHING can be implemented with O (n <'/2) arithmetic operations. The 
matrix (K (Go) -I)-r~T can be computed with O(n <~ operations in the same way as 
in Section 4.2. This gives the complexity bound of  O(n ~ operations for the whole 
algorithm as well. 

GENERATE- RANDOM-PLANAR-PERFECT-MATCHING(G): 

1. run PLANAR-TEST-PERFECT-MATCHING(G); 
2. find pfaffian orientation Go of G; 
3. let S be a small separator in G and let T be the corresponding thick separator; 
4. find (K(Go)-l)r.r; 
5. using the GENERATE-RANDOM-SEPARATOR-MATCHING procedure, find a matching M 

incident on all vertices of S; 
6. generate random perfect matchings in connected components of G - V (M); 

Fig. 6. An algorithm for generating a perfect matching in planar graphs uniformly at random. 
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MATCH-SEPARATOR-VERTICES(M, X, p, q): 

1. i f q = p t h e n  
- match the pth vertex of the separator with one of its neighbors r with probability 

# (m U (p, r)) (G)/#M(G), 
- lazily eliminate the pth row and the rth column of X, 
- lazily eliminate the rth row and the pth column of X, 
- r e t u r n  

2. let m :-- I_(P + q)/2] 
3. MATCH-SEPARATOR-VERTICES(M, X, p, m) 
4. UPDATE-ADJACENT-VERTICES({m + 1 ..... q}, {m + 1 ..... n}) 
5. UPDATE-ADJACENT-VERTICES({q + 1 ..... n}, {m + I . . . . .  q}) 
6. MATCH-SEPARATOR-VERTICES(M, X, m + 1, q) 

GENERATE-RANDOM-SEPARATOR-MATCHING((A- l)r.r): 

1. M : = 0 ,  
2. MATCH-SEPARATOR-VERTICES(M, (A-~)r.r, 1, ISI). 

Fig. 7, An algorithm for randomly matching the separator. 

7.3. Matching the Separator Vertices. We now show how the separator vertices can 
be matched using a slightly modified matching verification algorithm. Consider  the 
procedure presented in Figure 7. 

The procedure UPDATE-ADJACENT-VERTICES(p,  q) updates the rows and col-  
umns corresponding to the vertices of  S in the range p . . . . .  q and to all neighbours 
of  these vertices. Let us compare the algorithm with the ELIMINATE procedure from 
Section 2.4. Each vertex can have at most three neighbours. Thus the size of  the matrices 
in updates increases four times compared with Algori thm ELIMINATE from Section 2.4 
and so the above algorithm works in 0 (n C~ arithmetic operations. This updating scheme 
guarantees that the pth and the rth rows and columns are computed explici t ly before 
lazy elimination. 

The last remaining problem is how to compute the probabli ty # (M U (p, r)) ( G ) /  
#M(G) .  From the Kasteleyn theorem we get 

(# (M U (p,  r ) )  (G))  z 
(#M(G) )  2 

d e t ( K ( G o ( V  - V ( M )  - {p, r}))) 
d e t ( K ( G o ( V  - V ( M ) ) ) )  

The following lemma shows how this can be computed. 

LEMMA 30. Before matching the pth vertex we have 

d e t ( K ( G o ( V  - V ( M )  - {p, r}))) - I  l l 
= (A )p,p(A )r,r - (A- l )p , r (A  - )r,p. 

d e t ( K ( G o ( V -  V ( M ) ) ) )  

PROOF. If  we permute the pth and r th row to the left side of the matrix and the r th  and 
pth column to the top (note that this changes the sign of  the determinant),  the matrix 
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will  be o f  the form 

(A-l)p,r ( A - l ) p , p  

(A- l ) r ,p  

Not ice  that this matr ix  is exact ly the inverse o f  the mat r ix  K ( G o ( V  - V ( M ) ) ) .  This  
fo l lows f rom T h e o r e m  7. Af te r  the e l imina t ion  o f  the first two rows and co lumns  we  
obtain 

i (A l)r,p - - ( A - 1 ) P , o ( ( A - l ) r , r / ( A - 1 ) p , r  ) (t~-I)TSp,F,T-P, r . 

The  matr ix ^-1 (A )T-p,r ,r-p,r  is the inverse o f  the matr ix  K ( G o ( V  - V ( M )  - {p, r})).  
The  e l iminat ion  does not  change the de te rminant  o f  the matr ix  and so we  get  

det(A~,~)  = de t (A- l )T_p , r ,T_p , r ( (A  1)p,p(A-l)r,r  - ( A - l ) r , p ( A - l ) p , r ) ,  

and so 

(det K ( G o ( V  - V ( M ) ) ) )  - l  
--1 -1 --1 -1 1 -- ( d e t K ( G o ( V  V ( M ) - { p , r } ) ) )  ( (A  )p,p(A )r,r -- - - ( A  )r,p(A )p,r). [] 
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