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Abstract

In this work, we present algorithms for finding maximum matchings in general and
planar graphs. The algorithm for the general case has O(n*) time complexity, and the
algorithm for the planar case has O(n“/?) time complexity, where w is the exponent
of the best known matrix multiplication algorithm. Since w < 2.38, for dense graphs
the general matching algorithm is asymptotically faster than previously known al-
gorithms. In particular, it breaks through the long-standing O(n*®) barrier for the
maximum matching problem. The planar matching algorithm is also faster than pre-
viously known algorithms. Both algorithms improve on previous results even in the
case of bipartite graphs and bipartite planar graphs, respectively. We also give a
simpler O(n*) algorithm for bipartite graphs and an elementary O(n?) algorithm for
general graphs.

Our algorithms are based on the algebraic technique introduced by Lovész, Rabin
and Vazirani, and its Gaussian elimination based improvement introduced recently
by the author and Piotr Sankowski.

All the presented algorithms are Las Vegas algorithms, except for the planar case
algorithm, which is Monte Carlo.

This work is based on the previous work by the author and Piotr Sankowski.

Keywords: maximum matching, fast matrix multiplication.

ACM Classification: F.2.2, G.2.2.






Streszczenie

W niniejszej rozprawie przedstawiamy nowe algorytmy znajdujace najliczniejsze sko-
jarzenia w dowolnych grafach w czasie O(n®) i w grafach planarnych w czasie O(n*/?).
O(n*) jest tu ztozonodcia mnozenia macierzy n xn. Wiadomo, ze w < 2.38 (patrz [7]).
Najlepsze znane algorytmy dla problemu najliczniejszego skojarzenia maja, w przy-
padku graféw gestych, ztozonosé O(n*9), sa wiec asymptotycznie wolniejsze od algo-
rytmu o ztozonosci O(n®). Algorytm dla graféw planarnych o ztozonosci O(n“/?) jest
roOwniez asymptotycznie szybszy od znanych algorytmoéw. Co wiecej, nasze algorytmy
sg szybsze nawet w przypadku, odpowiednio, graféw dwudzielnych i planarnych dwu-
dzielnych. Przedstawiamy takze prostsza wersje algorytmu o ztozonosci O(n¥) dla
przypadku graféw dwudzielnych oraz elementarny algorytm o zlozonosci O(n?) dla
dowolnych grafow.

W naszych algorytmach korzystamy z techniki algebraicznej opracowanej przez
Lovasza, Rabina i Vaziraniego, ulepszonej niedawno przez autora i Piotra Sankow-
skiego przy uzyciu eliminacji Gaussa.

Wszystkie algorytmy sa typu Las Vegas, z wyjatkiem algorytmu dla graféow pla-
narnych, ktory jest typu Monte Carlo.

Niniejsza praca powstata w oparciu o wczesniejsze prace autora i Piotra Sankow-
skiego.

Stowa kluczowe: najliczniejsze skojarzenia, szybkie mnozenie macierzy.

Klasyfikacja tematyczna ACM: F.2.2, G.2.2.






Contents

1 Introduction

2 Definitions and Preliminaries

21 Graphs . . . . . .
2.1.1 Basic Definitions . . . . .. ... o 000000
2.1.2 Planar Graphs and Their Properties . . ... ... ... ...
2.1.3 Matchings in Graphs . . . . .. . ... ..o

2.2 Linear Algebra . . . . . . .. Lo
2.2.1 Basic Definitions . . . . . ... ... L Lo
2.2.2 Matrix Algebra . . . . . ... oL oo
2.2.3 Properties of Skew-Symmetric Matrices . . . . . . . .. .. ..
2.2.4  Symmetric Positive Definite Matrices . . . . . . . . .. .. ..

2.3 Matrix Computations . . . . . . . . .. ..o
2.3.1 Basic Gaussian Elimination . . . . ... ... ... ... ...
2.3.2 Fast Matrix Multiplication . . . . . . . .. ... ... .....
2.3.3 Nested Dissection . . . . . .. ... 0oL

2.4 Randomization . . . . .. . . ... ...
2.4.1 Basicdefinitions. . . . . ... 0 L0000
2.4.2 Randomization via Zippel-Schwartz Lemma . . . . .. . . ..

Maximum Matchings via Gaussian Elimination

3.1 Algorithmof Lovadsz . . . . . . .. ... ... ... ... .......
3.2 Algorithm of Rabin and Vazirani . . . ... ... .. ... ......
3.3 Gaussian Elimination . . . . . . .. ..o 00000000
3.4 Bipartite Matching Algorithm . . . . . . ... .. ... 00
3.5 Matching Verification . . . . . . .. ... o o000
3.6 General Matching Algorithm . . . . . .. .. ... ... ...
3.6.1 Basicldea . . .. . .. ... ... o
3.6.2 Canonical Partition . . . . . . ... ... 0000
3.6.3 Implementation Details . . . . . . ... ... ... .......
3.6.4 Randomization . .. .. .. ... ... 0o
3.7 Maximum Matchings . . . . . .. ..o L Lo

NeJ

10
11
11
11
12
13
14
14
15
18
21
22
22
23



4 Perfect Matchings in Planar Graphs

4.1 Degree Reduction . . . . . .. .. ... ...
4.2 Testing Algorithm . . . . . ... ... ... L.
421 Generalldea. . . . . ... ... oL,
4.2.2 Symbolic Nested Dissection . . . . ... ... ...
4.2.3 Working over a Finite Field . . ... ... ... ..
4.3 The Matching Algorithm . . . . . .. ... ... ... ...
4.3.1 Generalldea. . . . . ... ... ... L.
4.3.2 Computing the important part of A~% . . .. ...
4.3.3 Matching the Separator . . . . .. ... ... ...
4.3.4 Working over a Finite Field . . . . ... ... ...
4.4 Maximum Matchings . . . ... ... ... ...,

5 Randomization
5.1 Making the Maximum Matching Algorithms Las Vegas

5.1.1 Gallai-Edmonds Decomposition . . . . . .. .. ..
5.1.2  Cheriyan’s Algorithm . . . . . . .. ... ... ...
5.1.3 Las Vegas algorithms . . . . . . ... ... ... ..
5.2 Las Vegas algorithm for computing ~¢ . . . . . . . . ...

6 Open Problems

CONTENTS



Chapter 1

Introduction

The maximum matching problem. A matching in a graph G = (V,E) is a
set M C E of edges of G with no two edges in M having a common endpoint. A
mazximum matching is a matching of maximum cardinality, and a perfect matching is
a matching of cardinality |V|/2.

In the maximum matching problem we look for a maximum matching in a given
graph, and in the perfect matching problem we look for a perfect matching, if one
exists. In this work we give several algorithms for the maximum/perfect matching
problem.

Historical background. Solving the maximum matching problem in time polyno-
mial in n remained an elusive goal for a long time until Edmonds [9] gave the first
algorithm in 1965, using ideas of Berge |3|. His algorithm works in time O(n?), but
in 1976 Gabow showed that a more careful implementation works in time O(n?). In
1975, Even and Kariv [11] improved the Edmonds’ algorithm and achieved time com-
plexity of O(min{n?? m+/nlogn}), but their algorithm is very complicated. A bit
simpler and faster algorithm was found by Micali and Vazirani [27] in 1980. Their
algorithm works in time O(m+/n). Other algorithms with the same time complexity,
but using different methods, have been found since then (see Blum [4] and Gabow
and Tarjan [14]).

The maximum matching problem is much easier in case of bipartite graphs. Al-
ready in 1931, Konig [22] and Egervary [10] gave a characterization of maximum
matchings in bipartite graphs together with a constructive proof, yielding a polyno-
mial time algorithm — the so-called Hungarian method — for the maximum bipartite
matching problem. In 1973, Hopcrof and Karp [17] showed an O(m+/n) algorithm.
This bound was later slightly improved by Alt, Blum, Mehlhorn and Paul [2] in 1991.
Their algorithm works in time O(n%2y/m/logn). Finally, Feder and Motwani [12]
constructed an O(y/nm log(n?/m)/logn) algorithm using the technique of clique com-
pression. Very recently Fremuth-Paeger and Jungnickel [13] showed that using ideas
of Feder and Motwani, the same time complexity can be achieved for general graphs.

Faster algorithms exist for the maximum matching problem in case of planar
graphs. For a start, such graphs have O(n) edges, so we have O(m+/n) = O(n’/?). We
can do even better for bipartite planar graphs. Using the duality-based reduction of
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6 CHAPTER 1. INTRODUCTION

maximum flow with multiple sources and sinks to single source shortest paths problem
(see Miller and Naor [28]), Klein, Rao, Rauch and Subramanian [21]| were able to give
a maximum matching algorithm for this case working in time O(n% logn). However,
the reduction they use does not carry over to the case of general planar graphs.

Algebraic algorithms. In 1979 Lovasz [25] showed, using a completely new, alge-
braic approach, that it is possible to test whether a given graph has a perfect matching
in randomized time O(n*). Here, O(n*) is the time required to multiply two n x n
matrices. The algorithm of Coppersmith and Winograd [7] does that in time O(n*3%),
so for dense graphs Lovész’s algorithm is faster then any of the algorithms actually
finding a perfect matching.

A natural question is thus whether Lovasz’s approach can be used to construct a
pefect matching in time O(n“). Rabin and Vazirani [33] showed an algorithm that
works in time O(n“T!'). A lot of matching related information about a graph can
be gained in time O(n“) (see Cheriyan [6]). For example, it is possible to find its
Gallai-Edmonds decomposition, canonical partition, identify the allowed edges, etc.
However, no O(n*) matching algorithm has been found so far.

The ideas of Lovasz, Rabin and Vazirani also yield an RNC algorithm for the
perfect matching problem (see Mulmuley, V. Vazirani and U. Vazirani [31], Galil and
Pan [38], and Karp, Upfal and Wigderson [20]). These algorithms can be made Las
Vegas (see Karloff [19] and Wein [36]).

Our results. We show an improvement of the technique of Lovész, Rabin and
Vazirani, based on the Gaussian elimination algorithm. We then use the improved
technique to give the following algorithms:

e a very simple O(n?) maximum matching algorithm,

e a simple O(n*) maximum matching algorithm for bipartite graphs,
e an O(n“) maximum matching algorithm,

e an O(n*/?) maximum matching algorithm for planar graphs.

The first of these algorithms is slower than the best known combinatorial algo-
rithms. However, its simplicity makes it ideal for practical purposes. For dense
graphs, the O(n*) algorithms are asymptotically faster than the combinatorial algo-
rithms. The O(n*/?) matching algorithm is faster than the best known algorithms
for planar graphs, even in the bipartite case.

This work is based on two papers, written by the author and Piotr Sankowski.
The algorithms for general graphs were first given in [30]|, and the algorithms for
planar graphs were given in [29]. However, several proofs have been simplified, and
some additional considerations have been included (e.g. Chapter 5 on making the
algorithm Las Vegas). Most importantly, the presentation in this work is much more
detailed, since we are not limited in any way, as is the case with conference papers.



Organization of this work. We start by recalling some basic definitions and facts
in Chapter 2. In Chapter 3 we discuss the algebraic technique for finding maximum
matchings and our improvement of this technique, based on Gaussian elimination.
We show that it gives a very simple O(n3) algorithm for the maximum matching
problem, as well as O(n*) matching algorithms for bipartite and general graphs. In
Chapter 4 we apply the ideas introduced in Chapter 3 to planar graphs, and give
an O(n“/?) maximum matching algorithm for this case. In Chapter 5 we discuss the
problem of making our algorithms Las Vegas. Finally in Chapter 6 we give some open
problems related to this work.

Acknowledgements. I would like to thank Piotr Sankowski, the co-author of the
papers this work is based on. Working with Piotr has always been a lot of fun.

I would also like to thank my supervisor Krzysztof Diks for his invaluable support
throughout my PhD studies, and in particular for his help in writing this PhD thesis.
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Chapter 2

Definitions and Preliminaries

In this chapter we provide some basic definitions and facts from graph theory (Sec-
tion 2.1), linear algebra (Section 2.2), matrix computations (Section 2.3) and ran-
domized algorithms (Section 2.4).

It is mainly meant for reference, so we do not recommend reading it in its entirety,
with a possible exception of Section 2.3 and Subsection 2.4.2. In Section 2.3 we
give a somewhat lengthy exposition of the Gaussian elimination algorithm and its
applications. Gaussian elimination is the single most important tool in the chapters
to follow and getting acquainted with the results and ideas presented in Section 2.3
might prove useful. In Subsection 2.4.2 we describe a generic method of randomization
based on the Zippel-Schwartz Lemma. Although this method is well-known and
has widely been used before, our approach is much more formal than usual. Also,
Subsection 2.4.2 introduces several new definitions.

2.1 Graphs

2.1.1 Basic Definitions

A graph is a pair G = (V, E), where V is a finite set of vertices, and E C {{u,v} :
u,v € V,u # v} is a set of edges. The number of vertices is usually denoted by
n = |V, and the number of edges is denoted by m = |F|. Also, we will often assume
that V = {vq,...,u,}.

For any edge e = {u, v}, we say that u and v are the endpoints of e, and that e is
incident to u and v. Two edges ey, ey are incident if they have a common endpoint.
If there is no danger of confusion, we denote {u, v} by uv.

Two vertices joined by an edge are called adjacent. For any vertex v, N(v) denotes
the set of all vertices adjacent to v. Similarly, for any set U C V of vertices, N(U)
denotes the set of all vertices adjacent to any of the vertices in U, ie. N(U) =
Uuer N (u). For any vertex v, the number |N(v)] is called the degree of v.

For any set U C V of vertices, G — U denotes the graph obtained by removing (or
deleting) U from G, ie. G —U = (V\U, EN{{u,v} :u,v € V\U}). Similarly, for
any set ' C F of edges, G — F' denotes the graph obtained by removing (or deleting)
F from G,ie. G—F = (V,E\F).
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For any set U C V, by G[U] we denote the subgraph of G induced by U, i.e. G[U] =
G—(V\U). By G/U we denote the graph obtained by contracting U, i.e. G/U contains
all vertices in V' \ U and a new node u, which replaces the set U. All edges of G not
incident to a vertex in U are kept, all edges with both endpoints in U are removed,
and for all edges with exactly one endpoint in U, this endpoint is replaced by w.

A sequence p = vy, vy, ..., vy of vertices of G = (V, E) is called a path in G if all
v; are distinct and v;v;.1 € E fori =0,1,...,k — 1. The number k is the length of
p. The vertices vy and v, are called the endpoints of p. A path with endpoints s, t is
an s-t-path.

Similarly, a sequence ¢ = vy, vy, ..., vy of vertices is called a cycle in G if vy = vy,
but other than that all v; are distinct, and v;v;,7 € E for e = 0,1,...,k — 1. The
number £ is the length of c.

We will often view a path p = vy, vy, ...,v; in G as a subgraph ({vo, v1,..., v},
{viviyr i =0,1,...,k — 1}). Similarly, we will view a cycle ¢ = vg,v1,...,v as a
subgraph ({vg,v1,..., v}, {viviy1 11 =0,1,...,k —1}).

A graph G is connected if every pair of its vertices is connected by a path. The
connected components (or simply components) of a graph G are maximal connected
subgraphs of G. The number of connected components of G is denoted comp(G).

A graph G = (UUYV, E), whose vertex set is a sum of two disjoint sets U, V' such
that each edge of GG connects a vertex in U with a vertex in V, is called a bipartite
graph. The sets U, V are called the parts of G. A bipartite graph is called balanced
if its parts have equal size. For a balanced bipartite graph G = (U UV, E), we often

use the notation n = |U| = |V/|. This is inconsistent with our previous notation, but
it will always be clear from the context which definition we are referring to. Also, we
will often assume that U = {u1,uy, ..., upy} and V = {vi,vs,..., vy}

Graphs can be represented by matrices. For any graph G = (V| F), the adjacency
matriz A(G) of G is an n X n matrix, defined as follows:

1 if V; U5 )
0 otherwise

A(G)ij = {

If G is bipartite, G = (U UV, E), it can also be represented by its bipartite
adjacency matriz A(G). This is a |U| x |V| matrix, defined as follows:

1 if U;V; )
0 otherwise

A(G)ij = {

Notice that for bipartite graphs, A(G) denotes both the bipartite and the general
adjacency matrix. It will always be clear from the context which of the two matrices
is referred to.

2.1.2 Planar Graphs and Their Properties

Every graph can be drawn in the plane by representing the vertices with points and
edges with line segments, where an edge e = uv is represented with a line segment
joining the points corresponding to u and v. A graph is called planar if it can be
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drawn in the plane in such a way that the lines representing the edges only intersect
at their endpoints.
We have the following:

Theorem 2.1. Let G = (V, E) be a planar graph, n = |V|, m = |E|. If n > 3, then
m < 3n — 6.

A separator in a graph G = (V, E) is aset S C V such that connected components
of G — S have at most Z|V| vertices. An s(n)-separator is a separator of size < s(n).
Separators of size O(y/n) are called small separators.

The following theorem of Lipton, Rose and Tarjan [23| gives one of the most
important properties of planar graphs.

Theorem 2.2 (Separator Theorem). Planar graphs have O(y/n)-separators.
Moreover, such separators can be found in time O(n).

2.1.3 Matchings in Graphs

A matching M in a graph G = (V, E) is a set of edges, such that no two edges of
M have a common endpoint. A vertex v is matched by M if M contains an edge
incident to v. A matching is mazimum if it has the largest possible cardinality. The
size of a maximum matching in G is denoted v(G).

A matching is perfect if it matches all vertices, and near perfect if it matches
all vertices but one. Obviously, only graphs with even number of vertices can have
perfect matchings, and only graphs with odd number of vertices can have near perfect
matchings.

Any subset of a matching is called a submatching. A matching is allowed if it is
a submatching of some maximum matching. In particular, an edge is allowed if it is
contained in some maximum matching.

2.2 Linear Algebra

2.2.1 Basic Definitions

By R (Q, C) we denote the field of real (rational, complex) numbers, by F, (p prime)
we denote the finite field of cardinality p, by Z we denote the ring of integers, and
by N we denote the set of natural numbers (with 0). For any ring R and any set
X, by R[X] we denote the ring of polynomials with coefficients from R and variables
from X. By R(X) we denote the field of fractions of R[X], i.e. the field of rational
functions with coefficients from R and variables from X.

For any field F', we consider the set F™ of vectors with n components from F.
Addition of vectors and multiplication of vectors by scalars from F' are as usual. The
set ' with these operations is a vector space over F. A vector is always considered as
a column vector, unless otherwise stated. The superscript “7” denotes transposition.
So, for any v € F™, v" is a row vector.
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A vector v € '™ is called a linear combination of vectors vy, v, ..., vy € F, if for
some Ay, Ag, ..., \p € F,

k
v = E )\ﬂ)z
i=1

For any vectors vy, vs,...,vx € F),, the set of all linear combinations of vy, vy, ..., vy
forms a vector space spanned by vy, v, . .., vy, denoted span{vy, ..., vg}.

A set S of vectors is linearly independent if none of its members is a linear com-
bination of the others. Otherwise S is linearly dependent. A basis of a vector space
V' is a maximal set of linearly independent vectors of V.

For u,v € F", we define the inner product of w and v as u’v =37  w;v;. We say
that « and v are orthogonal, denoted u L v, if u"v = 0. For any subspace V C F™,
the set of vectors orthogonal to all vectors of V' is a subspace of I, denoted V. We
have the following:

Theorem 2.3. Let V C F™ be any subspace. Then V = (V)L

The j-th unit vector, whose j-th component is 1 and all the other components are
zero, is denoted e;.

2.2.2 Matrix Algebra

For any ring R, R™*" denotes the set of all m x n matrices with entries in R. For a
matrix A € R™ " we assume that the row index set is {1,...,m} and the column
index set is {1,...,n}. The entry in the i-th row and j-th column of A is denoted
A ;.
Let A€ R™". Forany I C{l,...,m} and J C {1,...,n}, by A;; we denote

the submatrix of A induced by rows and columns whose indices belong to I and J,
respectively. A submatrix of the form A;; is called a principal submatriz of A. We
will sometimes write Ay . for A; ¢ n1, and A ; for Ay oy

Similarly, by A’/ we denote the submatrix of A induced by rows not in I and
columns not in J.

The kernel of a matrix A € F™*" is the space ker A C F" of all vectors v such
that Av = 0.

The determinant of an n xn matrix A is denoted det A. We often use the following
formula.

(21) detA = Z (_1)sgn7rHAk77T(k)
k=1

7T€2n

Here, ¥, is a set of all permutations of the set {1,...,n}, and sgn 7 denotes the sign
of 7.

The inverse matrix of an n X n matrix A is denoted by A~1. If a matrix has an
inverse matrix then it is called non-singular, otherwise it is called singular. A matrix
is non-singular iff its determinant is non-zero.
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The rank of a matrix A, denoted rank A, is the maximum number of rows
(columns) in a non-singular square submatrix of A. Equivalently, the rank of A
is the maximum number of linearly independent rows (columns) of A.

The adjoint matriz of a square matrix A, denoted adj A, is an n X n matrix such
that (adjA);; = (—1)""7 det A%*. Here, we use the short notation A7* instead of
Atb - We use this kind of short notation in other cases as well, as long as there is
no danger of confusion, e.g. G — v instead of G — {v}.

The following theorem gives a very useful formula for the inverse matrix.

Theorem 2.4 (Adjoint Formula). If A is non-singular, then
A7l =adj A/ det A.

Theorem 2.5 (Laplace’s Expansion Formula). Let A be an n x n matriz. Then,
for any row index i € {1,...,n}

j=1

j=1

Similarly, for any column indez j € {1,...,n}
det A = Z(—l)i—i_in’j det Ai’j = Z Ai7j(adj A)j,i-
i=1 i=1

The identity matriz is denoted by I or by I,, if we want to emphasize its dimension.
The zero matrixz is denoted by 0.

A matrix A € R™" is diagonal if A;; = 0 for all i # j, 4,7 = 1,2,...,n. Let
diag(as, as, ..., a,) denote a diagonal matrix such that diag(ay, as, ..., a,)i; = a;.

A matrix is lower-triangular (upper-triangular) if A;; = 0 for j > i (j < i),
i,7 = 1,2,...,n. A matrix is unit lower-triangular (unit upper-triangular) if it is
lower-triangular (upper-triangular) and A,; = 1 foralli € 1,2,... n.

A permutation matriz corresponding to a permutation 7w € ¥, is an n X n matrix
P, such that P; ;) = 1, for alli € {1,...,n}, and all the other entries of P, are equal
to 0. We have PT = P,-.. Moreover, permutation matrices are non-singular, and we
have P.1 = P = P_.. If Ais an n x n matrix, and 7 € ¥, is a permutation, then
P, A is equal to A with its rows permuted using 7, i.e. the i-th row of P, A is the

7(i)-the row of A. Similarly AP, is equal to A with its columns permuted using 7!

2.2.3 Properties of Skew-Symmetric Matrices

An n x n matrix A is called skew-symmetric if A = —A”T, i.e. A;; = —A;; for all
i,7 € {1,...,n}. In this section we recall some of the most important properties of
such matrices. Since they play a crucial role in our algorithms and are not very well
known, we have decided to provide their proofs as well.

Theorem 2.6. Let A be an n X n skew-symmetric matriz, and let [ = {iy,io,..., 0%}
be such that A;, ., Ai,., ..., Ai . s a mazimal set of linearly independent rows of A.
Then the principal submatriz A;; s non-singular.
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Proof. Without loss of generality, let us assume that I = {1,2,... k}. Since 4,
Ay, ..., Ay is a maximal set of linearly independent rows of A, we also have that
Aq,A 5, ..., A} is a maximal set of linearly independent columns of A, because A
is skew-symmetric. Thus all of the columns A.;, for i = k + 1,...,n, are linear
combinations of A.1, A o,..., A ;. It follows that rank A;; = rank A;. = k, and so
Ay is non-singular. O

Corollary 2.7. Any skew-symmetric matrix A has a mazximum non-singular subma-
triz, which is principal.

Lemma 2.8. Let A be an n X n skew-symmetric matriz. If n is odd, then A is
singular.

Proof. From the definition of the determinant (2.1) it follows that det A = det AT.
Since AT = —A, again using the definition (2.1), we have det A = (—1)"det AT. For
odd n, we get det AT = —det AT, and so A is singular. O

Corollary 2.7 and Lemma 2.8 give the following.

Theorem 2.9. The rank of a skew-symmetric matriz is even.

2.2.4 Symmetric Positive Definite Matrices

An n x n matrix A is called symmetric it A = AT, ie. A;; = A;j,; for all i,j €
{1,...,n}.

For F = R or C, a matrix A € F™*" is called positive definite if vT Av > 0 for
every non-zero vector v € F™".

Remark 2.10. Note that this definition does not make sense for matrices over a
fields of rational functions Z(X) or over a finite field F,,.

Theorem 2.11. If A is positive definite, then all its diagonal entries are positive.
Proof. A;; = el Ae;. O

Theorem 2.12. A matriz A is positive definite iff A = XDX™ for some non-singular
matriz X and some diagonal matriz D with all diagonal entries positive.

2.3 Matrix Computations

In this section we discuss effective algorithmic implementations of some of the oper-
ations introduced in the previous section: computing the determinant and the rank
of a matrix, finding the inverse matrix, etc. But most importantly, we give a de-
tailed description of the Gaussian elimination algorithm, the driving force behind our
matching algorithms. Incidentally, all the other algorithms presented in this section
rely on Gaussian elimination.

In Subsection 2.3.1 we discuss the Gaussian elimination algorithm and its appli-
cations. In Subsection 2.3.2 we show how the fast matrix multiplication algorithm of
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Coppersmith and Winograd can be used to speed up the Gaussian elimination algo-
rithm, and consequently all of its applications. Finally, in Subsection 2.3.3 we discuss
the nested dissection algorithm — a fast implementation of Gaussian elimination in
the case of so-called planar matrices.

Compared to previous sections, this one gives a much more thorough treatment
of the subject. However, the presention is rather informal at times, as its aim is to
acquaint the reader with the basic intuitions behind Gaussian elimination and the
notation used, rather than to give rigorous derivations of all the algorithms. Further
information concerning Gaussian elimination and matrix computations in general
can be found in most textbooks on algorithms, for example Cormen, Leiserson and
Rivest [8], or Aho, Hopcroft and Ullman [1]. The second of these is particularly
useful, since it contains a complete analysis of the Hopcroft-Bunch implementation
of Gaussian elimination.

2.3.1 Basic Gaussian Elimination

The purpose of Gaussian elimination is to represent a given matrix A as A = PLDU
(or A = LDUP), where L is unit lower-triangular, D is diagonal, U is unit upper-
triangular, and P is a permutation matrix.

Let A have form: .
_ _ [ @1 v
A=di= ( ur By )

If a; # 0, we have the following identity.
(2.2)

4 T
ayg vy o\ _ 1 0 ay 0 1 oTjay \
( u1 Bl ) - ( ul/al In—l ) ( 0 Bl —ulvlT/al ) ( 0 In—l - L1A2U1

This is the basic step of Gaussian elimination. Here, we are eliminating the first row
(v]) and the first column (u;) of A;. The element at the intersection of the eliminated
row-column pair is called the pivot.

If we represent A, as

aq 0 0
A2 = 0 (05} U;
0 (%) BQ

then, if only as # 0, we can repeat the basic step and get

1 0 0 a; 0 0 10 0
Ay =1 0 1 0 0 as 0 0 1 vljay | = LoAsUs
0 ’UQ/CLQ [n,1 0 0 BQ — ’U/QU;/CLQ 0 0 [n,Q
In the same manner we define matrices A;, B;, L;,U; for all i € {1,...,n — 1},

provided that a; # 0 for all i € {1,...,n — 1}. We get the following factorization of
A.

A — L1L2 “ o LnleUnfl e U2U1
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where D = diag(ay, as, ..., a,).

It is easy to verify that L = LiL,...L, 1 is a unit lower-triangular matrix.
Moreover L = Ly + Ly + ...+ L,y — (n — 2)1,. Similarly, U = U,_;...UyU; is
unit upper-triangular, and U = U,,_1 + ... + Uy + Uy — (n — 2)1,,.

We thus have the desired factorization.

A=LDU

The above factorization is even better than A = PLDU we aimed at. This is because
we made the assumption that a; # 0 for all i« € {1,...,n — 1}. In general it may
happen that a; = 0. We then exchange the i-th row, containing a; = 0, with some
other row j, having a non-zero element in the i-th column. Such a row exists if A is
non-singular. The process of exchanging rows in order get a non-zero pivot is called
the pivoting. After the row exchange, we proceed with the elimination.

It might seem that pivoting makes our previous considerations useless, but it is
not so. Imagine that we have done all the row exchanges before the elimination
started. In that case we would need no pivoting during the elimination. Still the
resulting L, D, U matrices would be the same. It follows, that Gaussian elimination
with pivoting gives an L DU factorization of A with permuted rows, i.e. P, A for some
permutation matrix P,. We get the desired factorization A = P,-+LDU. We can
also pivot columns instead of rows. This corresponds to factorizing AP, for some
permutation matrix P, and we get a factorization A = LDU P,-1.

Theorem 2.13. If A is a non-singular matriz, then the factorization A = PLDU
(A= LDUP) can be found in time O(n?®) using Gaussian elimination.

Corollary 2.14. If A is a non-singular matriz, then det A and A~! can be computed
in time O(n?®) using Gaussian elimination.

Proof. If A = PLDU, then det A = det D. Also, A=t = U 'D"'L=*P~!. The hard
part here is to invert L and U, and this can be done in time O(n?) using the following
recursive formulas.

L—l o LS,S O - o LE,IS 0
LT,S LT,T _LI_“}TLTﬁLE,}S” L;}T

gt ((Uss Usze \ ' _ (Uss ~UssUsrUny
0 Urr 0 Urr ’

where S ={1,...,|[n/2|} and T' = {|n/2] +1,...,n}. O

If A is singular, then during the elimination of A it may happen that the whole
column containing a; consists of zeros. We then find another column, not entirely
zero, exchange it with the ¢-th column and proceed as usual. At some point, the lower
right, uneliminated part of A consists of only zeros, and we finish the elimination. We
get a factorization of the form P AP, = LDU, where D = diag(ay,...,ax,0,0,...)
and a; # 0 for ¢ < k. We need both P; and P,, because we use both row and column
exchanges.
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Theorem 2.15. For any matriz A, the factorization A = P{LDUP,, where D =
diag(ai,...,ax,0,0,...) and a; # 0 for i < k, can be found in time O(n?®) using
Gaussian elimination.

Corollary 2.16. For any matriz A, the rank of A and the mazimum non-singular
submatriz of A can be computed in time O(n®) using Gaussian elimination.

Proof. Let Py, AP, = LDU, where D = diag(ay, ...,ax,0,0,...) and a; # 0 fori < k.
Then rank A = k. Also (Pr, AP,)q,.. k}.{1,...k} 15 @ maximum non-singular submatrix

of P APr,, 80 Az (1),...m(k)},{m2(1),...m2(k)} 18 @ Maximum non-singular submatrix of
A. O

Corollary 2.17. For any n X n matrixz A, the basis of ker A can be found in time
O(n?) using Gaussian elimination.

Proof. Consider the factorization PyAP, = LDU, where D = diag(ay, ..., a,0,0,...)
and a; # 0 for ¢« < k. We have

ker A = ker(LDUP; ') = ker(DUP; ') = (UP; ') ! (ker D) = (P,U ") (ker D).

Since vectors eg1, €gio,- .., e, form a basis of ker D, the columns numbered k +
1,k+2,...,n of B,U~! form a basis of ker A. O

Notice that in order to compute det A, rank A or find a maximum non-singular
submatrix of A, we do not need the L and U matrices. We only need the permutation
matrices (and the pivot values in case of det A), i.e. the information on how the
elimination proceeded.

This simplified Gaussian elimination, without constructing the L DU factorization,
but only pairing the rows and columns, is all we need most of the time. For simplicity
of presentation, this is the only form of Gaussian elimination we consider from now
on.

We now present the simplified form of the basic Gaussian elimination algorithm
(Algorithm 1).

Algorithm 1 Gaussian elimination

GAUSSTAN-ELIMINATION(A):
fori:=1to ndo
if there exists j such that A, ; # 0 then
choose any such j
eliminate the ¢-th row and the j-th column

The next theorem describes the structure of a partially eliminated matrix.

Theorem 2.18. Let A be an n x n matriz, and let
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A — Ass Asr
Ars Arr )’
where S = {1,...,k}. If Gaussian elimination of the first k rows and columns of A
does not require pivoting, then it gives the following factorization of A

Y L 0 D 0 U DL 'Agy
 \ApgU'D™t I, 0 AT,T—AT,SAE,lgAS,T 0 Ik ’

where LDU 1s the factorization resulting from performing Gaussian elimination on
Ass.

Proof. After eliminating the first & rows and columns of A, we have

A (L 0 D 0 U U
"\ L I,y 0 A 0 Inx )’

where Ag g = LDU. By carrying out the matrix multiplications we get
A_ (LD 0 U U \_(LDU LDU
~\ LD A 0 I, ) \LDU LDU+A

L=ApsU'D™, U=D"'L 'Agy,
A= Arp— LDU = Arp — LDU(U'D™'L™")LDU = Arr — ArsAgsAs,

Thus

as claimed. 0

Remark 2.19. The formula given in Theorem 2.18 is very similar to formula (2.2),
only “the pivot” is now a submatriz and not a single element. Theorem 2.18 may
be thought of as a variation of Gaussian elimination which allows for elimination of
several rows and columns in one step. From our point of view, however, this theorem
is only interesting because it gives a description of a partially eliminated matriz.

2.3.2 Fast Matrix Multiplication
Recall the following theorem, due to Coppersmith and Winograd [7].

Theorem 2.20 (Coppersmith, Winograd). Two n X n matrices over a ring can
be multiplied in time O(n*), where 2 < w < 2.376.

We will refer to the algorithm given in Theorem 2.20 as the fast matriz multi-
plication algorithm. This algorithm can be used to perform Gaussian elimination in
time O(n*). The first O(n*) implementation of Gaussian elimination was given by
Hopcroft and Bunch [5] (a more readable description can be found in [1]). The algo-
rithms given in this section are simplified versions of the Hopcroft-Bunch algorithm
but the presentation is different.
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Consider performing Gaussian elimination on a matrix M using Algorithm 1 and
let M4 p consist of rows and columns of M that are not eliminated for several iter-
ations. My p is updated in every iteration, but the results of these updates are not
used until some row in A or some column in B is eliminated. Each update to My g
amounts to substracting a matrix of the form cuv” from My 5. Let cyusv? | ... cpupvf
be a sequence of such updates. The accumulated update to My g is

vr

(2.3) cruvl . gt = ( ciuy e CRUug )
T
U
Computing the left side requires k|A||B| operations, but the right side can be com-
puted much faster using fast matrix multiplication.
The basic idea is to accumulate updates to the parts of M that are eliminated in
later stages and only perform updates in large batches. Let us start with the simple
case where no pivoting is required. Algorithm 2 shows how this can be done.

Algorithm 2 Fast Gaussian elimination with no pivoting

FAST-ELIMINATION-NO-PIVOTING (A):
ELIMINATE-ROWS-AND-COLUMNS(4, 1, n)

ELIMINATE-ROWS-AND-COLUMNS(A4, p, q):
if p = ¢ then
lazily eliminate the p-th row and the p-th column
else
m i 2]

ELIMINATE-ROWS-AND-COLUMNS(A, p, m)

ELIMINATE-ROWS-AND-COLUMNS(A4, m + 1, q)

Here, “lazy elimination” means storing the expression of the form uv” /¢ describing
the changes to the rows and columns not yet eliminated. These changes are then
performed in batches during the updates, using the identity (2.3).

Theorem 2.21. Algorithm 2 performs Gaussian elimination with no pivoting in time

O(n®).

Proof. First of all, notice that Algorithm 2 indeed performs Gaussian elimination.
This is because the eliminated rows and columns are always up-to-date.

Let us now analyze the time complexity of this algorithm. Consider a call to
ELIMINATE-ROWS-AND-COLUMNS(X, p, q), and let © = ¢ — m. The cost of the

updates in this call is proportional to the cost of multiplying the x x x matrix by a
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x X n matrix. This can be done in time n/zz* = nz*~! by splitting the x x n matrix
into n/x square x X x matrices. Let us assume, without loss of generality, that n is
a power of 2. Then for every j € {0,...,logn}, the value z = 2/ appears n/2’ times
throughout the whole execution of the algorithm. We get the total time complexity
of

logn logn
Z n/2jn<2j)w71 _ n2 Z<2w72)j < n2(2w72>logn+l _ O(nw)
=0 =0

O

Remark 2.22. Even if pivoting is necessary, we can still use Algorithm 2. If we get a
zero pivot, we simply skip over the corresponding row-column pair without eliminating
it. Thus we only eliminate a subset of rows and columns of A. This kind of elimination
will be called Gaussian elimination with skipping. Algorithm 2 with skipping is used
in Section 3.5 of Chapter 3.

In the general case, when pivoting is neccessay, we get the following algorithm 3.

Algorithm 3 Fast Gaussian elimination (the Hopcroft-Bunch algorithm)

FAST-ELIMINATION(A):
ELIMINATE-COLUMNS(A, 1, n)

ELIMINATE-COLUMNS(A4, p, q):
if p = g then
find an uneliminated row r such that A,, # 0
lazily eliminate the r-th row and the p-th column
else
m = | 2]
ELIMINATE-COLUMNS(A, p,m)
update the uneliminated rows in columns m +1,...,q
ELIMINATE-COLUMNS(A,m + 1, q)

Theorem 2.23. Algorithm 3 performs Gaussian elimination in time O(n®).

Proof. The proof of this theorem is essentially identical to the proof of Theorem 2.21.
There is however one thing we have to take care of.

Consider a call ELIMINATE-COLUMNS(A,p,q). The recursive call ELIMINATE-
COLUMNS(A,p,m) lazily eliminates columns p,...,m. For i = p,...,m, let r; be
the row eliminated with the i-th column. After eliminating columns p, ..., m the
submatrix Ay, . r.},{m+1,..q Still has the values from before the elimination. But
this submatrix has to be up-to-date before we start updating the uneliminated rows
in columns m + 1, ..., ¢. This can be done in O((m — p)*) time, again using the lazy
updating. O
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Remark 2.24. The construction of the LDU factorization can be included in Algo-
rithm 8 and we get an algorithm equivalent to the classical Hopcroft-Bunch algorithm.
Howewver, this improvement makes the algorithm, as well as its analysis, significantly
more complex.

By repeating the reasoning from Corollaries 2.14, 2.16 and 2.17 we get the follow-
ing.

Corollary 2.25. If A is an n X n matriz, then det A, rank A, ker A and a mazimum
non-singular submatriz of A can all be found in time O(n*) using the Hopcroft-Bunch
algorithm.

If A is non-singular, then A~ can also be found in time O(n®).

Note that the factorization of A is only needed for the inverse and the kernel. The
determinant, the rank and a maximum non-singular submatrix can all be found using
Algorithm 3.

2.3.3 Nested Dissection

For any n x n matrix A, a graph corresponding to A is the graph G(A) = (V, F),
where V' = {vy,...,v,} and vv; € Eiff i # j and A;; # 0 or A;; # 0. The
graph G(A) is thus a representation of the non-zero structure of A. In particular,
we have G(A(G)) = G, where A(G) is the adjacency matrix of G. Note that in the
construction of G(A) we ignore the diagonal entries of A.

We say that A is a planar matriz if G(A) is a planar graph. Using the sepa-
rator theorem (Theorem 2.2) for planar graphs, it is possible to perform Gaussian
elimination on a planar matrix in time O(n®/?). This implementation of Gaussian
elimination is called the nested dissection. In this subsection we briefly recall how it
works.

We say that G = (V. E) has an s(n)-separator family (with respect to some
constant ny) if either |V| < ngy or G has an s(n)-separator S such that the connected
components of G — S also have s(n)-separator families with respect to ny. The
partition resulting from recursive application of this definition is the s(n)-separator
tree. The root of the s(n)-separator tree of G is an s(n)-separator S in G, its children
are s(n)-separators in connected components of G — S and so on.

The following is an easy corollary of Theorem 2.2.

Fact 2.26. Planar graphs have O(\/n)-separator families. Moreover, an O(\/n)-
separator tree for a planar graph can be found in time O(nlogn).

Lipton and Tarjan [24] showed the following:

Theorem 2.27 (Nested dissection). Let X be a symmetric positive definite matriz
and let G(X) have an O(y/n)-separator family. Given an O(\/n) separator tree for
G(X), Gaussian elimination on X can be performed in time O(n“/?). The resulting
factorization of X has the form X = LDL", where L is unit lower-triangular and
has O(nlogn) non-zero entries and D is diagonal.
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Remark 2.28. The statement of Theorem 2.27 is quite different from that of Lipton
and Tarjan. Also, they only give an O(n®?) complexity bound and a vague remark on
improving it. The O(n*/?) implementation was given by Pan and Reif [32]. However,
they focus on the parallelization of nested dissection and seem to believe that sequential
O(n*/?) algorithm has already been given by Lipton and Tarjan.

We are not going to present the details of this algorithm. The basic idea is to
permute rows and columns of X using the O(y/n)-separator tree. Vertices of the top-
level separator S correspond to the last |S| rows and columns, etc.. Ordering rows
and columns in this way guarantees that the matrix always has O(nlogn) non-zero
entries throughout the elimination.

Remark 2.29. The assumption of X being symmetric positive definite is needed to
assure that no pivoting is necessary, as it would spoil the separator based ordering of
rows and columns. If we can guarantee this (i.e. no pivoting) in some other way, then
the assumption can be omitted.

Here is a very useful property of the factorization produced by the nested dissec-
tion:

Fact 2.30. Let X = LDL" be the factorization produced by performing the nested
dissection on X using an O(y/n)-separator tree T. Then both L and LT have O(\/n)-
separator families and T is an O(/n)-separator tree for L and LT.

2.4 Randomization

2.4.1 Basic definitions

A randomized algorithm is an algorithm which is allowed to access a source of random
bits. Consider a randomized algorithm and an input of size n for this algorithm. We
say that an event occurs with small probability if its probability is O(1/n). Similarly,
we say that an event occurs with high probability if its probability is 1 — O(1/n),
i.e. its complement occurs with small probability.

A randomized algorithm is a Monte Carlo algorithm if, for any fixed input, it may
produce an incorrect output with small probability. A randomized algorithm is a Las
Vegas algorithm if, for any fixed input, it either produces a correct output or reports
failure, the latter with small probability. The difference between the two types of
algorithms is that with a Las Vegas algorithm we know when it fails.

Obviously, we have the following:

Fact 2.31. A Las Vegas algorithm A for a problem P can be converted into a Monte
Carlo algorithm for P with the same time complexity.

Proof. We execute A, and if it reports failure, we return any (possibly incorrect)
output. U

On the other hand:
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Fact 2.32. An O(T'(n)) Monte Carlo algorithm A for a problem P can be converted
into a Las Vegas algorithm for P with the same time complexity, provided that the
correctness of the output of A can be verified in time O(T'(n)).

Proof. We execute A, verify the correctness of the output, and then return it only if
it is correct, otherwise we report failure. O

In the next subsection we introduce a generic method for designing randomized
Monte Carlo algorithms. We use this method to produce several algorithms in Chap-
ters 3 and 4. In Chapter 5 we discuss the problem of making these algorithms Las
Vegas.

2.4.2 Randomization via Zippel-Schwartz Lemma

In this subsection we introduce the randomization method used throughout this work.
This method is based on the celebrated Zippel-Schwartz Lemma.

Consider an algorithm A which uses Z(X') arithmetic for some set of variables X,
i.e. it adds, multiplies, substracts and divides rational functions from Z(X). Each
argument of a Z(X) operation has to be either a result of one of the previous opera-
tions or an element of X (viewed as a monomial). The only way to access the result
of an operation is to test if it is identically zero. Let us call these tests zero-tests.

How efficiently can this kind of algorithm be implemented? If we settle for a ran-
domized solution, we can do the following. We pick a prime p and substitute each
variable in X with a random element from the finite field F,. Instead of Z(X) arith-
metic we now perform F, arithmetic, which can be done efficiently if p = O(poly(n)).
Let us call this substituted algorithm an F, implementation of A. The problem with
[F, implementations is that some of the zero-tests might return true, even if the corre-
sponding rational function is non-zero. We may even end up dividing by zero. Other
than that, an F, implementation is a perfectly good implementation of A, since A
only accesses the rational functions through zero-tests.

Let us assume that before performing a division, A always zero-tests the divisor.
This way, to guarantee the correctness of any implementation of A, we only need to
guarantee that all the zero-tests give correct results.

For any input D, let gen 4(D) be the set of the rational functions zero-tested by
A, when given D.

Let geny(n) = U p, gena(D). The following theorem shows that under some
additional assumptions, we can guarantee that all the zero-tests will give the correct
answers with high probability.

Theorem 2.33. Let A be an algorithm performing at most T'(n) zero-tests in Z(X)
arithmetic for an input of size n. Suppose that every f € gen 4(n) has a representation
f = g/h such that deg g < D(n) and g has an O(1) non-zero coefficient. Then, with
high probability, the I, implementation of A correctly answers all zero-tests, for any
prime p > nD(n)T'(n).

In order to prove the above theorem, we first recall a well known lemma, due to
Zippel [39] and Schwartz [34].



24 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

Lemma 2.34 (Zippel,Schwartz). If p(z1,...,z,) is a non-zero polynomial of de-
gree d with coefficients in a field and S is a subset of the field, then the probability
that p evaluates to 0 on a random element (s1, S, ..., Sm) € S™ is at most d/|S]|.

Proof (of Theorem 2.33). Let p be a prime > nD(n)T(n). Consider any input D of
size n and any f € gen (D), f # 0. Since f = g/h, where g has an O(1) non-zero
coefficient, g is also a non-zero polynomial over FF,. By Lemma 2.34, the probability

that g (or, equivalently f) evaluates to 0 on a random element of IFJDX‘ is < % =
1

TGy Since | gen 4(D)| < T'(n), probability of any non-zero f € gen (D) evaluating

to 0 on a random element of Fj;' | is < T(n)nTl(n) =1 O

Remark 2.35. Theorem 2.33 is not the only approach to randomization we are going
to use in this work. Howewver, it gives a flavour of the Zippel-Schwartz Lemma based
randomization.

Also, notice that:

Fact 2.36. For any p = O(poly(n)), the F, implementation of an algorithm per-
forming O(T (n)) operations in Z(X) works in time O(T(n)logn). If the number of
divisions performed by the algorithm is o(T'(n)), then the F, implementation works in
time O(T(n)).

Proof. If p = O(poly(n)), all operations except for division work in time O(1), and
division works in time O(logn). O

Remark 2.37. Since zero-testing a rational function is equivalent to zero-testing
its numerator, one might wonder why not define gen 4(D) and geny(n) as sets of
numerators of rational functions computed by A. This would simplify the statement
of Theorem 2.33. The problem with this approach is that every rational function has
infinitely many representations as a quotient of two polynomials and it is not easy to
single out the one that is most suitable.

Remark 2.38. Here, we are only concerned with efficient implementation of the
Z(X) arithmetic. Algorithms discussed in this work perform some other operations
as well, but the number of these operations is of the same order as the number of
Z(X) operations, so we only consider the latter.

In the remainder of this work, we give several algorithms working over Z(X) for
some set of variables X, and use Theorem 2.33 (or some similar method) and Fact 2.36
to get efficient randomized implementations of these algorithms.

The randomization technique described above has been widely used before (e.g. |6,
33]). However, the usual approach is to describe and analyse the algorithm over F,,.
The issues of randomization and correctness of the algorithm are then intermixed,
since all the crucial properties of the algorithm only hold with large probability. To
avoid this kind of confusion, we introduced an intermediate stage — an algorithm
working over Z(X). We believe that this approach, by separating the randomization
considerations from the proof of correctness and the complexity analysis, facilitates
understanding of the algorithms.



Chapter 3

Maximum Matchings via GGaussian
Elimination

In this chapter we show how Gaussian elimination can be used to find maximum
matchings in graphs. We start with presenting the algorithms of Lovasz in Section 3.1
and Rabin and Vazirani in Section 3.2. In Section 3.3 we introduce our improvement
of the Rabin-Vazirani algorithm, based on Gaussian elimination. It immediately
gives an elementary O(n?®) matching algorithm. In Section 3.4 we show that using
the Hopcroft-Bunch implementation of Gaussian elimination we can achieve O(n®)
complexity for bipartite graphs. The general case is much harder. Before giving an
O(n%) solution in Section 3.6, we first show in Section 3.5 that a maximal allowed
submatching of any matching can be found in O(n*). This is a key ingredient of the
general matching algorithm.

In all these considerations we concentrate on the perfect matching problem. In
Section 3.7 we show that the maximum matching problem reduces in time O(n*) to
the perfect matching problem.

The results presented in this chapter are based on the papers of Lovasz [25] (Sec-
tion 3.1), Rabin and Vazirani [33] (Section 3.2), Mucha and Sankowski [30] (Sec-
tions 3.3, 3.4, 3.5 and 3.6), Ibarra and Moran [18|, Rabin and Vazirani [33] and
Cheriyan [6] (Section 3.7).

3.1 Algorithm of Lovasz

Let G = (V, E) be a graph and let V = {vy,...,v,}. A symbolic adjacency matriz of
G is an n X n matrix A(G) such that

T, j if V;U; € Fandi < j

AG)ij =1 —zj; ifvvyje Fandi>j |
0 otherwise

where z; ; is a unique variable corresponding to edge v;v;. Let E = {zj : vv; €
E and i < j} be the set of all these variables. Then A(G) is a matrix over Z(E).

25
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If G = (UUV, E) is a bipartite graph, where U = {uy,...,upy(}, V = {v1, ..., vy},
then the bipartite symbolic adjacency matriz A(G) of G is a |U| x |V| matrix such
that

Y

~ . X 5 if UiV eF

Wi { 0  otherwise
Remark 3.1. In the papers of Lovdsz [25] and Rabin and Vazirani [33] only the
general case is considered. This is to be expected as there is no point in proving
theorems for bipartite graphs if they hold in the general case. However, bipartite
graphs and bipartite symbolic adjacency matrices are crucial for our considerations
(see Section 3.4 and 3.6), so we need to prove the bipartite versions of all theorems.

For most of this chapter, we only use balanced bipartite graphs. The bipartite sym-
bolic adjacency matriz is then a square matriz, which is required in our considerations.
The general case is considered in Section 3.7.

Remark 3.2. Note, that we use fl(G) to denote both bipartite and general versions
of the symbolic adjacency matriz. It will always be clear from the context which one
we refer to.

Tutte |35] observed the following:

Theorem 3.3. Let A(G) be the (bipartite) symbolic adjacency matriz of a (balanced
bipartite) graph G. Then det A(G) # 0 iff G has a perfect matching.

In order to prove the non-bipartite case of Theorem 3.3 we first need to characterize
graphs having perfect matchings in terms of cycle covers. A cycle cover of GG is a set
of vertex disjoint cycles covering all vertices of G. A cycle cover is an even cycle cover
if all its cycles have even length.

Lemma 3.4. A graph G has a perfect matching if and only if it has an even cycle
cover.

Proof. 1f GG has a perfect matching M, then the set of two-vertex cycles corresponding
to the edges of M is an even cycle cover of G.

Conversely, if G has an even cycle cover C, then taking every second edge from
each cycle gives a perfect matching in G. O

We are now ready to prove Theorem 3.3
Proof of Theorem 3.3. We have:

A(G>k,n(k)

1

(3.1) det A(G) = > (—1)=™
TEX, k=
If G is a balanced bipartite graph and A(G) is a bipartite symbolic adjacency
matrix, then the non-zero terms of the right side of (3.1) correspond to the perfect
matchings of GG, which ends the proof of this case.
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In the general case, the non-zero terms of det fl(G) do not directly correspond to
perfect matchings in G, but we will show that they do correspond to even cycle covers
of G and the claim will follow from Lemma 3.4.

Non-zero elements of the right side of (3.1) now have form (—1)"™ [T'_| +x) (1),
where v1vz(1), ..., UpUr(n) are edges of G. These edges form a cycle cover of G, cor-
responding to the cycle decomposition of 7. Reversing the direction of any cycle of
length > 2 in 7 leads to the same cycle cover of G and the question is: what happens
to the sign of the corresponding non-zero term. Consider a permutation n’ which is
equal to m with a single cycle reversed. Reversing a cycle does not change the sign
of the permutation, but changes the signs of all the variables x; .(; corresponding to
the edges of this cycle. Thus the terms corresponding to m and 7’ have the same sign
if the length of the reversed cycle is even, and opposite signs if the length is odd. It
follows that the terms corresponding to even cycle covers add up and give non-zero
monomials of det A(G), while all the other non-zero terms cancel out. O

The proof of Tutte’s Theorem also suggests the following:

Theorem 3.5. Let A(G) be the (bipartite) symbolic adjacency matriz of a (balanced
bipartite) graph G. If the determinant of A(G) is non-zero, then it has an O(1)
non-zero coefficient.

Proof. Let us first consider the bipartite case. Let G = (UUV, F) and let us assume,
without loss of generality, that M = {ujvy, usve, ..., u,v,} is a perfect matching in
G. Then zy 1225 . .., , has coefficient +1 in det fl(G)

In the general case, let M = {vjve, U304, ...,v,_10,} be a perfect matching in G.
Then 22,23, ... 22_, , has coefficient &1 in det A(G). O

Theorem 3.3 suggests Algorithm 4 for deciding whether a given graph G has a
perfect matching.

Algorithm 4 Lovasz’s testing algorithm

TEST-PERFECT-MATCHING(G):
compute det A(G) using Gaussian elimination
if det A(G) # 0 then
return “YES”
else
return “NO”

Theorem 3.6. For any prime p = ©O(n?), the F, implementation of Algorithm 4
is an O(n*) Monte Carlo algorithm deciding whether a given graph G has a perfect
matching.
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Proof. The determinant det A(G) is a polynomial of degree n. If it is non-zero,
then it is also non-zero over [F,,, by Theorem 3.5. By Zippel-Schwartz Lemma, with
probability at least 1 — n/p = 1 — O(1/n), it evaluates to a non-zero value for a
random substitution of £ with elements of F, and Gaussian elimination gives a non-
zero determinant.

The complexity bound follows from Fact 2.36, since Gaussian elimination only
requires n divisions. O

Remark 3.7. We could, of course, try to use Theorem 2.33 to prove Theorem 3.6, but
this would give an inferior bound on p. The key idea here is that we do not actually
care if all the zero-tests performed by the F), implementation are correct. We only need
the Gaussian elimination algorithm to succeed, and for this a non-zero determinant
1s sufficient. Still, Theorem 2.33 will prove useful in case of more complex algorithms
in Sections 3.5 and 3.6 of this chapter.

Remark 3.8. We require p to be ©(n?), and not only Q(n?), to guarantee that p €
poly(n). We could of course make this assumption directly, but assuring p = ©(n?)
15 not a problem and the statement of the theorem 1is shorter. There is no point
in taking p larger than necessary anyway. The same remark applies to most of the
randomization considerations in the remainder of this work.

3.2 Algorithm of Rabin and Vazirani

In the previous section we have proved that det A(G) # 0 iff G has a perfect matching.
In this case the matrix A(G) has an inverse which, as Rabin and Vazirani noticed
in [33|, encodes very useful information about G.

Let us first consider the bipartite case. As a consequence of Theorem 3.3 we get
the following.

Theorem 3.9. Let G = (UUV,E) be a bipartite graph having a perfect matching
and let A = A(G) be its bipartite symbolic adjacency matriz. Then (A1), ; # 0 iff
G — {uj,v;} has a perfect matching.

Proof. Since A% = A(G — {u;,v;}), the claim follows from the adjoint formula for
the inverse matrix (Theorem 2.4) and Tutte’s Theorem (Theorem 3.3). O

As a special case, if u;v; is an edge of G, Theorem 3.9 says that (A~1);; # 0 iff
u;v; is allowed.
A similar theorem, due tu Rabin and Vazirani [33|, holds in the general case.

Theorem 3.10 (Rabin,Vazirani). Let G = (V,E) be a graph having a perfect
matching, and let A = A(G) be its symbolic adjacency matriz. Then (A~ Y # 0 4ff
the graph G — {v;,v;} has a perfect matching.

Remark 3.11. To be precise, Rabin and Vazirani only show in [33] that if (A~1),; #
0, then G —{v;,v;} has a perfect matching, as this is all they need in their algorithm.
However, Cheriyan [6] seems to believe that they actually prove Theorem 3.10.
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In the proof of the above theorem we will again use the adjoint formula for the
inverse matrix. Notice, however, that A% only misses the j-th row and the i-th
column, while A(G — {v;,v;}) = Al#}1{7} misses two rows and two columns, so we
first need to prove the following.

Lemma 3.12. Let A be an n x n non-singular skew-symmetric matriz. Then A% is
non-singular iff AWM03Y is non-singular, for anyi,7 € {1,...,n}, i # j.

Proof. If A% is non-singular, then it has rank n — 1. Since A{7}{47} misses one
of A"’s rows and one of its columns, it has rank > n — 3. But A{H{7} is skew-
symmetric, so by Corollary 2.9 its rank is even, and it has to be n—2. Thus At#7h{n}
is non-singular.

Conversely, let A{%7}{97} be non-singular. We then have rank At»7h{tit =5 — 2,
so rank A»1%7} > n — 2. By Corollary 2.9, we also have rank A* = n — 2 | so
rank A%} = rank A" = n — 2. But this means that the j-th column of A*? is a
linear combination of its other columns, so rank A%/ = rank A"? =n — 1. O

Proof (of Theorem 3.10). The claim follows from the adjoint formula for the inverse
matrix (Theorem 2.4), Lemma 3.12 and Tutte’s Theorem (Theorem 3.3). O

Again, if v;v; is an edge in G, then A™1(G);,; # 0 iff v;v; is allowed.
Theorem 3.10 can be used to find perfect matchings (Algorithm 5).

Algorithm 5 Matching algorithm of Rabin and Vazirani

RABIN-VAZIRANI(G):
M:=1
for ::=1to ndo
if v; is not yet matched then

compute A(G)™*
find j, such that v;v; € B(G) and (A(G)™");; # 0
M = M U {vv;}
G =G — {v;,v;}

return M

In the case of balanced bipartite graphs, we can also use the bipartite adjacency
matrix (Algorithm 6).

Theorem 3.13. For any prime p = ©(n?), the F, implementation of Algorithm 5
(Algorithm 6) is an O(n“™') Monte Carlo algorithm finding a perfect matching in a
(bipartite) graph G having one.

To prove the Theorem 3.13 we need the following lemma.

Lemma 3.14. Let M be an n x n matriz. If M is non-singular, then for every
i €{1,...,n}, there exists j € {1,...,n} such that M;; # 0 and (M~"');; # 0.
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Algorithm 6 Matching algorithm of Rabin and Vazirani (bipartite version)

RABIN-VAZIRANI-BIPARTITE(G):

M:=0

for i :=1to ndo
compute A(G)~" { the bipartite symbolic adjacency matrix }
find 7, such that uv; € E(G) and (A(G)™1);; #0
M = M U {uv,}
G =G —{u;,v;}

return M

Proof. This is an immediate consequence of the Laplace’s Expansion (Theorem 2.5).
]

As a corollary we get the following.

Theorem 3.15. Let G = (U UV, E) be a bipartite graph having a perfect matching,
let A = fl(G) be its bipartite symbolic adjacency matriz, and let s : E — F, be a
substitution, such that det fl(s) # 0. Then for every u; € U there exists v; € V such
that wyv; € B and (A(s)™1);; # 0, i.e. A(s)™! encodes the edge u;v; as being allowed.
Moreover, det(A(G — {u;, v;})(s)) # 0.

Proof. The theorem follows from Lemma 3.14 if we take M = A(s). The second part
of the theorem follows from the adjoint formula for the inverse matrix (Theorem 2.4).
U

Similar theorem, due to Rabin and Vazirani [33], is also true in the general case.

Theorem 3.16. Let G = (V, E) be a graph having a perfect matching, let A =
A(G) be its symbolic adjacency matriz, and let s : E — T, be a substitution, such
that det A(s) # 0. Then for every v; € V there exists v; € V such that viv; € E

and (~A(s)_1)j,i £ 0, i.e. A(s)™" encodes the edge v;v; as being allowed. Moreover,
det(A(G — {vi, v;})(s)) # 0.

Proof. The first part of the theorem again follows from Lemma 3.14, and the second
part follows from Lemma 3.12. O

We are now ready to prove Theorem 3.13.

Proof (of Theorem 3.13). If the substitution s : E — F, chosen by the F, implemen-
tation of Algorithm 6 satisfies det A(s) # 0, then by iterated application of Theo-
rem 3.15, the algorithm finds a perfect matching. The same is true for Algorithm 5,
by Theorem 3.16.

Thus, we only need to guarantee that with high probability det fl(s) # 0, and for
p = O(n?) this follows from the Zippel-Schwartz Lemma. O
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3.3 Gaussian Elimination

The bottleneck of the algorithm of Rabin and Vazirani (Algorithm 5) and its bipartite
version (Algorithm 6) is the computation of the inverse of A(G). In every iteration we
remove only two rows and two columns from A(G) (a single row and a single column
in case of Algorithm 6), but the inverse is recomputed from scratch. Rabin and
Vazirani suggested in [33] that it should be possible to find a method of updating the
inverse matrix, faster than recomputing it from scratch. Recently we have suggested
such a method, based on the Gaussian elimination algorithm (see [30]). We present
it in this section.
Our method is based on the following well known fact.

Theorem 3.17 (Elimination Theorem). Let

T - AT
[ a1n v -1 _ [ @11 UA
() ()

where a1, # 0. Then B~ = B — a0 /ay ;.

Proof. Since AA™! = I, we have

a1,1d1,1 + UTlAL al,ﬂA}T + UTB . ]1 0
ua,, + Bt wi” + BB N0 Ly )]

Using these equalities we get

B(é — ’ZlTA}T/CALLl) = [n,1 - U@T - BﬁﬁT/dlvl =

T

Iy —ud” +ua 107 fay, = I, —ud” +ud” =1, ;.

and so B~! = B — a7 /a;; as claimed. O

Notice that the modification of B described in the above theorem is a single step
of Gaussian elimination. Here, we are eliminating the first column and the first row
of A~1L.

As an immediate consequence of Theorem 3.17 we get the following algorithms
finding perfect matchings in general (Algorithm 7) and balanced bipartite (Algo-
rithm 8) graphs. These algorithm are simply modifications of Algorithm 5 and Algo-
rithm 6, based on the Elimination Theorem.

Remark 3.18. Note that the two-step elimination in Algorithm 7 always succeeds.
This is because (A(G) ™) = (A(G)™Y);; = 0, so the the value of (A(G)™1);; does
not change during the elimination of the i-th row and the j-th column.

Theorem 3.19. For any prime p = ©(n?), the F, implementation of Algorithm 7
(Algorithm 8) is an O(n®) Monte Carlo algorithm finding a perfect matching in a
(balanced bipartite) graph G having one.
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Algorithm 7 Simple matching algorithm

SIMPLE-MATCHING(G):
M :=10
compute A(G)™?
for i :=1to ndo
if the ¢-th row is not yet eliminated then
find j such that v;v; € E(G) and (A(G)™1);; #0
M = M U {vv;}
G =G — {v;,v;}
update A(G)~! by eliminating the i-th row and the j-th column
and then the j-th row and the i-th column
return M

Algorithm 8 Simple matching algorithm (bipartite version)

SIMPLE-BIPARTITE-MATCHING(G):
M:=1
compute A(G)~" { the bipartite symbolic adjacency matrix }
for::=1to ndo
find j such that uw; € E(G) and (A(G)™1);; #0
M = M U {uw;}
G =G — {u;,v;}
update A(G)~! by eliminating the i-th row and the j-th column
return M

Proof. The first part of the theorem follows from the fact that both algorithms are
equivalent to the algorithm of Rabin and Vazirani. The time complexity is O(n?®) by
Fact 2.36, because both algorithms perform O(n?) operations in Z(E) and only n of
them are divisions. O

Even though Algorithm 7 and Algorithm 8 are slower than the Micali-Vazirani al-
gorithm or other fast implementations of the Edmonds algorithm, they are extremely
simple and might be a serious practical alternative. In the remainder of this chapter
we show that by using fast implementations of Gaussian elimination, we can beat the
combinatorial algorithms in terms of asymptotic complexity as well.

3.4 Bipartite Matching Algorithm

Throughout the last three sections we accompanied every theorem and every algo-
rithm with its bipartite version. This might have seemed redundant, since one can
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always use the general algorithm.

However, in this section we show that Algorithm 8, the bipartite version of Algo-
rithm 7, can easily be modified to work in time O(n®). Similar improvement in case
of Algorithm 7 is not likely to succeed. Although we give an O(n*) algorithm for the
general case in the next section, it is not only much more complicated, but also uses
the bipartite algorithm of this section as a subroutine.

When we compare Algorithm 8 with the Gaussian elimination algorithm (Algo-
rithm 1), we can see that they are essentially the same algorithm. The only difference
is that in Algorithm 8 we choose a pivot which not only is non-zero, but also cor-
responds to a graph edge. This additional requirement can easily be included in
Algorithm 1, as well as in the Hopcroft-Bunch algorithm (Algorithm 3). We get
Algorithm 9.

Algorithm 9 O(n*) bipartite matching algorithm

BIPARTITE-MATCHING(G):
A= AG)!
MATCH-U-VERTICES(1, n)

MATCH-U-VERTICES(p, q):

if p = ¢ then
find an unmatched vertex v,, such that u,v, € I/ and A, , # 0
lazily eliminate the r-th row and the p-th column of A

else
m o= 2]
MATCH-U-VERTICES(p, m)
update the uneliminated rows in columns m + 1,...,q of A
MATCH-U-VERTICESS(m + 1, q)

Theorem 3.20. For any prime p = O(n?), the F, implementation of Algorithm 9 is
an O(n¥) Monte Carlo algorithm finding a perfect matching in a bipartite graph G
having one.

Proof. Algorithm 9 is almost identical to the Hopcroft-Bunch algorithm, only some

matrix related notions have been exchanged with graph related ones.
Randomization analysis is the same as for Algorithm 8, and the time complexity

is equal to the complexity of the Hopcroft-Bunch algorithm. O

In case of general graphs, deleting v; and v; from G corresponds to eliminating
the i-th row and the j-th column and then the j-th row and the i-th column. This is
not how the usual Gaussian elimination works, so we cannot use the Hopcroft-Bunch
algorithm directly. We believe that there is no way to perform this kind of Gaussian
elimination in time O(n*) using the lazy computation techniques only. In order to
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apply these we need some kind of information about the elimination order, so that
we can delay updating the parts that are eliminated later. In Algorithm 7 we have
no such information.

3.5 Matching Verification

Before we start with the general case, we first introduce a very interesting application
of the Gaussian elimination technique. Incidentally, it is also the key ingredient of
our matching algorithm for the general case.

Theorem 3.21. Let G be a graph having a perfect matching. For any matching M
of G, an inclusion mazimal allowed submatching M' of M can be found using O(n®)

operations in Z(E).

Proof. Consider the following algorithm.

Let M = {vivy, v3vs, ..., vk_10x} and let vgyq, Vgia, ..., v, be the unmatched ver-
tices. Compute the inverse A(G)~! and permute its rows and columns so that the
row order is v1,V9,U3,U4, . .., v, and the column order is vo,v1,v4,V3, ..., Up,Vp_1. NOW,

perform Gaussian elimination of the first £ rows and k columns using Algorithm 2
with skipping (see Remark 2.22). The eliminated row-column pairs correspond to a
maximal submatching M’ of M. O

Randomization of the verification algorithm given above cannot be carried out
using the simple technique used so far. Instead, we use Theorem 2.33, but first we
need to characterize the rational functions zero-tested by the verification algorithm.

Lemma 3.22. Let G = (V, E) be a (bipartite) graph having a perfect matching, and
let A = A(G) be its (bipartite) symbolic adjacency matriz. Then, all the non-zero
entries of A~' have form g/h, where g is a polynomial of degree O(n) and has a
non-zero O(1) coefficient.

Proof. Let (A~');; = det A%/ det A be non-zero. Since det A% is a polynomial of
degree n — 1, we only need to show that it has a non-zero O(1) coefficient.
In the bipartite case A7 = A(G —{u;,v;}), so the claim follows from Theorem 3.5.
Let us consider the general case. Working with the determinant of A7 is a bit
awkward, instead we consider the following matrix:

(B)ay = if (z =) and (y =1) ,

Apy if (x # ) and (y # i)
1
0 otherwise

From Laplace’s expansion formula (Theorem 2.5) it follows that

det A = (1) det B,
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We have
det B = > (=1)®O T[] Bl =
TEXn,m(j)=1 k=1
= Z (—I)Sgn(ﬂ) H Ak,w(k)
TEX,m(J)=t ke{l,...j—1,j+1,...,n}

The non-zero terms of this sum have the form (—1)%n(™) er{l,...,jfl,j+1,...,n} Thm(k)s
where 7(j) = ¢. For any such term, the cycle decomposition of 7 gives a covering of
G consisting of a v;-v;-path (but not necessarily a cycle, since we do not know if v;
and v; are neighbours) and a set of cycles. If any of these cycles has odd length, then
the term corresponding to 7 cancels out with some other term, just like in the proof
of Tutte’s Theorem. If, on the other hand, all the cycles have even length, then the
the term corresponding to 7 gives a non-zero contribution to det B/*.

Since det A% # 0, G — {v;,v;} has a perfect matching M. Let Mg be a perfect
matching of G. Consider the symmetric difference M & Mg, i.e. the set of edges
contained in exactly one of these matchings. Let H = (V, M @ M). The vertices v;
and v; have degree 1 in H and all the other vertices of G have degree 0 or 2 in H. The
graph H is thus a sum of disjoint cycles and v;-v;-path p. Moreover, Mg matches
the vertices not on p with other vertices not on p. Two-edge cycles corresponding
to the edges of My not contained in p, together with p, form a covering of G with
even length cycles and a v;-v;-path. The monomial in det B’ corresponding to this
covering has coefficient +1, as required. ]

Remark 3.23. The ideas used in the above proof lead to an alternative, combinatorial
proof of Lemma 3.12.

Theorem 3.24. For any prime p = O(n?), the F, implementation of the algorithm
described in the proof of Theorem 3.21 is an O(n“) Monte Carlo algorithm finding an
inclusion mazimal allowed submatching of a given matching.

Proof. Tt follows from Remark 3.18, that after eliminating the first row-column pair
corresponding to vertices vy; 1, v9;, the second one can be eliminated without zero-
testing the pivot. The only elements zero-tested by the algorithm are thus (the
numerators of) the pivots used in odd-numbered iterations. There are at most n/2
such pivots and each of them is an element of A~'(H) for some subgraph H C G, so by
Lemma 3.22 it has the form g/h, where g is a polynomial of degree < n having an O(1)
non-zero coefficient. The assertion of the theorem now follows from Theorem 2.33.
As usual, the time complexity of the F, implementation is O(n“), because Gaus-
sian elimination uses only n divisions. 0J

3.6 General Matching Algorithm

Our discussion at the end of Section 3.4 suggests that Gaussian elimination by itself
is not sufficient to solve the general case of the perfect matching problem. In this
section we combine it with structural properties of graphs having a perfect matching,
and achieve an O(n*) algorithm for the general case.
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3.6.1 Basic Idea

Algorithm 10 O(n“) matching algorithm

GENERAL-MATCHING(G):
find a matching Mg of size > n/4 in G using the greedy algorithm
find a maximal allowed submatching M of M using the verification algorithm
if |M| > n/8 then
M := MU GENERAL-MATCHING(G — V(M)

else
M := MU DECOMPOSE(G — V(M)
return M

The idea of Algorithm 10 is that if |[M| > n/8, then we have to find a perfect
matching in a graph smaller by a constant factor, and if |M| < n/8 then it is possible
to use some structural properties to decompose (G into smaller pieces and find a perfect
matching in each of them separately. The decomposition uses the fact that G has a
large matching consisting of unallowed edges only (i.e. Mg — M).

3.6.2 Canonical Partition

We now describe the details of the DECOMPOSE procedure, used in Algorithm 10.

Let us start with a few definitions. A graph G = (V, E) is called factor-critical if
for any v € V, G — v has a perfect matching. A graph G is called elementary if G
has a perfect matching and allowed edges of GG form a connected subgraph of G.

For any graph G, let us define a relation ~¢ on the set V' of vertices of G as
follows: u ~¢ v iff either u = v or G — {u, v} does not have a perfect matching.

The following theorem is due to Lovasz (for a proof, see [26])

Theorem 3.25. If G is elementary, then ~¢ is an equivalence relation.

Let P(G) = V(G)/ ~¢ be the set of equivalence classes of ~¢, the so-called
canonical partition of G. Recall that G—{u, v} has a perfect matching iff A(G)~! # 0,
so A(G)~" encodes the canonical partition.

The partition P(G) has very nice structural properties as the following theorem
shows (for a proof, see [26])

Theorem 3.26. Let G be elementary, let S € P(G) with |S| > 2 and let C be any
component of G — S. Then:

1. the bipartite graph G's obtained from G by contracting each component of G — S
to a single vertex and deleting edges in S is elementary,
2. the graph C 1is factor-critical,

3. the graph C'" obtained from G[V(C) U S] by contracting the set S to a single
verter uc is elementary,
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4. P(C") = {uc}} U{T nV(O)|T € P(G)}-

A set S € P(G) with |S| > 2 will be called a non-trivial class of the canonical
partition of G. If P(G) has a non-trivial class .S, then it follows from Theorem 3.26
that the number of connected components in G — S is equal to |S| and that every
perfect matching of G matches vertices of S with vertices in different components of
G — S. Moreover, any such matching of vertices of S can be extended to a perfect
matching of G.

The decomposition algorithm (Algorithm 11) breaks G down into bipartite and
non-bipartite pieces and reduces the problem of finding a perfect matching in G to
the problem of finding perfect matchings in all the pieces using the O(n*) bipartite
matching algorithm (Algorithm 9) and Algorithm 10.

Algorithm 11 The decomposition procedure

DECOMPOSE(G):
1. if GG is not elementary then
2. find elementary components of G
3. call DECOMPOSE for each of them
4. return the union of the matchings found
5. else if there is no non-trivial class S in P(G) then
6. return GENERAL-MATCHING(G)
7. else
8. let S € P(G) be a non-trivial class in P(G)
9. let C1,...,Cy be connected components of G — S with C] being the largest
10.  let C] be G[SUV(Cy)] with S contracted to a single vertex s
11. M := DECOMPOSE(CY)
12. let ¢; be the vertex matched with s in M
13. let v; € S be any neighbour of ¢;
14.  M:= M\ {cs} U{civ1}
15.  extend {cijv;} to a matching Mp which matches all vertices of S
16. with vertices in different C; using BIPARTITE-MATCHING algorithm
17. M := MUMp
18. fori:=2to k do
19. let ¢; be the vertex of C; matched by M
20. C; =0 — ¢
21. M := MU GENERAL-MATCHING(())
22. return M

Theorem 3.27. Algorithm 11 finds a perfect matching in a giwven graph G having
one.
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Proof. 1t follows from Theorem 3.26 that any perfect matching in G is a sum of k+ 1
perfect matchings. One of them is a perfect bipartite matching between S and a set
C containing a single vertex ¢; from each of the C; and the other £ matchings are
perfect matchings in C; — ¢;.

Algorithm 11 first constructs the matching in C'; — ¢; and matches ¢; with some
vy in S. This is done by calling DECOMPOSE(C]) and then substituting edge c;s,
matching an artificial vertex s, with an edge cyv;.

Next the remaining vertices of S are matched with vertices in different C;. This is
done by finding a perfect matching in a bipartite graph G’ defined in Theorem 3.26.
All edges of this graph are allowed by the definition of ~¢ and P(G), so it is possible
to find a perfect matching in G’y consistent with edge cjv;.

Finally perfect matchings in graphs C; — ¢; are found using GENERAL-MA-
TCHING. These graphs all have perfect matchings, because C; are factor-critical,
again by Theorem 3.26. O

Algorithm 11 reduces the problem of finding a perfect matching in G to the prob-
lem of finding perfect matchings in smaller bipartite and non-bipartite graphs. We
now show that the total size of all these graphs is n, and that the non-bipartite
graphs are all smaller than G by a constant factor. It follows that the complexity
of both Algorithm 10 and Algorithm 11 is O(n“), provided that we can implement
the decomposition algorithm itself with O(n“) operations. This last problem is quite
technical and is considered in Subsection 3.6.3.

Lemma 3.28. The total number of vertices in graphs for which Algorithm 11 calls
BIPARTITE-MATCHING or GENERAL-MATCHING s equal to n.

Proof. Every edge of the matching M returned by Algorithm 11 is either an element
of one of the matchings found by calls to BIPARTITE-MATCHING or GENERAL-
MATCHING or is a substitute of such edge (c;v; is a substitute for ¢;s), and hence
the claim. u

Lemma 3.29. If G contains a matching M of size > n /6, consisting of only unallowed
edges, then DECOMPOSITION(G) calls GENERAL-MATCHING for graphs with
< 7/9n vertices.

Proof. Since C' is the largest component of G — S, all the other C; have less than
n/2 vertices, so the calls to GENERAL-MATCHING(C;) in line 21 satisfy the claim
of the theorem.

The only other call to GENERAL-MATCHING is made in line 6 when canonical
partition P(G) has no non-trivial class. This can happen after any number of recursive
calls in line 11. We will show that when GENERAL-MATCHING is finally called in
line 6, G has at most 7/9n vertices.

Initially, G has a matching M of size > n/6, consisting of only unallowed edges.
Thus, M matches at least n/3 vertices. Let V be the set of these vertices. Notice
that if, at any level of recursion, G contains a vertex v € V, then it also contains the
vertex v matched with v in M. This is because edges of M are unallowed, so they
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are always contained either in S or in some C;. Also, if G contains any edge uv € M,
then P(G) contains a non-trivial class — the one containing u and v.

When DECOMPOSE is called recursively in line 11, it is called for a graph that
is missing at least 3 of G’s vertices (at least two vertices in .S and at least one vertex
in () and gains exactly one artificial vertex s. When GENERAL-MATCHING(G)
is called in line 6, G does not have any vertex from V, so it is missing at least n/3
vertices. Thus, G then has at most n — 2/3|V| < n — 2/9n = 7/9n vertices. O

In Subsection 3.6.3 we will show the following:

Lemma 3.30. The DECOMPOSE procedure together with all its recursive calls, but
excluding the calls to GENERAL-MATCHING and BIPARTITE-MATCHING, can
be implemented using O(n? log” n) operations, for some k.

We are now ready to prove the main theorem of this section.

Theorem 3.31. The GENERAL-MATCHING algorithm (Algorithm 10) finds a per-
fect matching in a given graph G having one, using O(n*) operations.

Proof. The GENERAL-MATCHING algorithm uses O(n*) operations for BIPAR-
TITE-MATCHING calls and for book-keeping.

It also, directly or indirectly (through the DECOMPOSE procedure), calls itself
recursively. In both cases the recursive calls of GENERAL-MATCHING are made
for graphs smaller than GG by a constant factor. For direct calls, this is obvious. For
indirect calls, notice that when DECOMPOSE(G — V(M) is called by GENERAL-
MATCHING(G), we have |M| > n/8, so G — V(M) has at most n — n/4 = 3n/4
vertices and we can use Lemma 3.29.

Also, the total number of vertices in the graphs for which GENERAL-MATCHING
is called recursively is at most n, by Lemma 3.28. By easy induction (or by the so-
called Master’s Theorem), GENERAL-MATCHING uses O(n“) operations. O

3.6.3 Implementation Details

So far we have ignored the problem of performing the decomposition and focused on
the complexity of finding perfect matchings in its parts. The ideas that lead to an
O(n?) implementation of the decomposition are implicit in the work of Cheriyan [6],
and we now give a detailed description by proving Lemma 3.30. Here, O is the so-
called “soft O” notation. We write f(n) = O(g(n)) iff f(n) = O(g(n)log"n) for some
constant k.

We need the dynamic connectivity algorithm of Holm, de Lichtenberg and Tho-
rup [16]. It supports the following operations on a dynamic graph:

e INSERT(e) — inserts an edge e into G;
e DELETE(e) — deletes an edge e from Gj

e SIZE(v) — returns the size the connected component containing v;
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e CONNECTED(u,v) — tests if u and v are connected by a path in G;

All these operations require O(1) time.

Proof (of Lemma 3.30). First of all, notice that when DECOMPOSE(G) is called by
GENERAL-MATCHING, the matrix A(G)~! is already computed, and it gives the
canonical partition of elementary components of G. Also, when DECOMPOSE(G)
makes a recursive call to DECOMPOSE(C!), we do not need to compute A(CY),
because by Theorem 3.26 the canonical partition of C] is induced by the canonical
partition of G. Thus in every call to DECOMPOSE(G), not necessarily the top-level
one, we know the canonical partition of G.

Algorithm 12 gives another view on Algorithm 11, emphasizing the implementa-
tions details. Only the decomposition itself is included in this description, construc-
tion of a perfect matching does not cause any problems.

Algorithm 12 Implementation details of the DECOMPOSE procedure

DECOMPOSE(G): { implementation details }
{ cases where no decomposition is performed }
1. choose a non-trivial class S in P(G)
2. call DELETE(e) for every edge e between G[S] and G — S
let T" be the set of all endpoints in G — S of these edges
3. call SIZE(v) for every v € T'
let u be a vertex for which the value returned was the largest
4. ue Cy, find CL U...UCy by calling CONNECTED (u, v) for all v € T
5. identify Cs, ..., Cy by starting a DFS from every vertex in Cy U ... U C}
Cir=G-5-0C,—...—Cj
6. add a new vertex s to C}
call INSERT(s,v) for all v € T\ (CoU...UCy)
7. call DECOMPOSE(C})
{ matching construction }

Steps 3., 4. and 6. require O(n) operations. Since the whole decomposition process
makes O(n) recursive calls to DECOMPOSE, the total number of operations required
to perform these steps is O(n?).

The complexity of step 1. is O(n?) operations for the whole partition. To see this,
notice that for each v we only need to test once if v is contained in a non-trivial class
of P(G). If v is an element of such S, then we use S as a basis for decomposition, and
then C'; does not contain v. If, on the other hand, v is not an element of a non-trivial
class of P(G), then it will never be, because of part 4. of Theorem 3.26.

The number of operations required to perform steps 2. and 5. is proportional to
the number of edges between G[S]| and G — S and edges inside smaller components.
These sets of edges are disjoint for different recursion levels, so the total complexity
of steps 2. and 5. is O(m) = O(n?) operations.

The decomposition algorithm thus requires O(n?) operations, as claimed. O
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3.6.4 Randomization

Theorem 3.32. For any prime p = ©(n“*?), the F,, implementation of Algorithm 10
is an O(n*) Monte Carlo algorithm finding a mazimum matching in a given graph G
having one.

Proof. Algorithm 10 performs zero-tests:
e during the matching verification, and
e to retrieve information about the canonical partition.

All the rational functions tested in these two situations are elements of A~'(H) for
some subgraph H C G and thus have form g/h, where g has degree O(n) and an
O(1) non-zero coefficient (recall the proof of Theorem 3.24).

Algorithm 10 also makes calls to the bipartite matching algorithm. In order to
make these calls find perfect matchings, it is enough to guarantee that the deter-
minants of the corresponding submatrices of A(G) are non-zero (recall the proof of
Theorem 3.13). Again, these determinants have degree O(n) and an O(1) non-zero
coefficient.

The assertion of the theorem now follows from Theorem 2.33. O

Remark 3.33. More careful analysis shows that p = ©(n*) is enough.

3.7 Maximum Matchings

So far we have only considered perfect matchings in this chapter. We now show that
the problem of finding a maximum matching can be reduced to the problem of finding
a perfect matching. There are several methods of doing this, the one we have chosen
is likely to be among the simplest ones, it is also in the same spirit as the other results
of this chapter, and as we shall see in the next chapter, it can be easily modified to
work for planar graphs.

The following generalization of Tutte’s Theorem has been proved by Lovész [25].

Theorem 3.34 (Lovasz). If A(G) is the bipartite symbolic adjacency matriz of a
bipartite graph G, then rank A(G) = v(G). )
If A(G) is the symbolic adjacency matriz of a graph G, then rank A(G) = 2v(G).

Proof. In the biparite case, non-singular submatrices of fl(G) correspond to subgraphs
of G having a perfect matching. The claim then follows immediately from Tutte’s
Theorem.

In the general case, this reasoning only works in one direction: if G has a matching
of size s, then rank A(G) > 2s.

Since A(G) is skew-symmetric, it has even rank by Corollary 2.9. Let rank A(G) =
2s. By Corollary 2.7 A(G) has a non-singular principal submatrix A(G)yy where
|U| = 2s. By Tutte’s Theorem G[U] has a perfect matching of size s. O

Consider Algorithm 13.
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Algorithm 13 Reduction of maximum matching to perfect matching

REDUCTION(G):
find a maximum non-singular submatrix A(G)yw of A(G)
return U

Theorem 3.35. For any graph G = (V. E), Algorithm 13 finds a maximum set
U CV, such that G[U| has a perfect matching, using O(n*) operations.
Proof. Since A(G) is skew-symmetric, we have rank A(G)yy = rank A(G)yw by
Theorem 2.6, so A(G)U,U is a maximum non-singular principal submatrix of fl(G)
The claim now follows from Tutte’s Theorem.

By Theorem 2.16, a maximum non-singular submatrix A(G) uw of A can be found
using O(n*) operations. O

Randomization of this algorithm follows the usual pattern.

Theorem 3.36. For any prime p = ©(n?), the F, implementation of Algorithm 4 is
an O(n*) Monte Carlo algorithm finding a mazimum set U C V', such that G[U] has
a perfect matching.

Proof. This proof is similar to the proofs of Theorem 3.6 and Theorem 3.13.

Given a graph G, choose any maximum non-singular principal submatrix A(G)y¢
of A(G). The determinant det A(G)yy is a polynomial of degree < n and has an O(1)
non-zero coefficient by Theorem 3.5. By Zippel-Schwartz Lemma, with probability
>1—n/p=1—0(1/n) this polynomial evaluates to a non-zero value for a random

substitution s : Z(E) — Z,. We then have rank A(G)(s) = rank A(G) and an F,
implementation of Algorithm 13 works.
The complexity bound follows from 2.36, the maximum non-singular submatrix is

found using Gaussian elimination and Gaussian elimination only requires n divisions.
O

Remark 3.37. Another simple reduction, based on Theorem 3.3/, has been proposed
by Rabin and Vazirani [83]: Add n—v(G) new vertices to G and connect each of these
vertices with every vertex of G. The resulting graph has a perfect matching, and any
such matching contains a mazximum matching in G.

This reduction is a bit stmpler than the one we use, but it does not extend to the
case of planar graphs.



Chapter 4

Perfect Matchings in Planar Graphs

In this chapter we apply the techniques introduced in the previous chapter to the prob-
lem of finding maximum matchings in planar graphs. Recall from Subsection 2.3.3
that under certain assumptions we can perform Gaussian elimination on a planar
matrix in time O(n*/?) using the nested dissection algorithm. We show that nested
dissection can be used to solve the planar case of the maximum matching problem
within the same time bounds.

In Section 4.1 we recall a well-known reduction of the planar case of the maxi-
mum (perfect) matching problem to the case of bounded degree planar graphs. In
Section 4.2 we show an O(n*/?) implementation of the Lovasz’s algorithm in the pla-
nar case. We also introduce the basic ingredients of our planar matching framework,
which we then use to give an O(n*/?) perfect matching algorithm for planar graphs
in Section 4.3. Finally, in Section 4.4 we show that the maximum matching problems
for planar graphs reduces in time O(n“/2) to the perfect matching problem in planar
graphs.

All the results presented in this chapter are based on the paper by Mucha and
Sankowski [29], except for Section 4.1 which describes a well-known technique (see
Wilson [37]).

4.1 Degree Reduction

We start by showing that we can restrict our considerations to the case of planar
graphs with vertex degrees < 3. This assumption will be extremely useful in the
remainder of this chapter. The following is a well-known reduction:

Theorem 4.1. The problem of finding perfect (mazimum) matchings in planar graphs
is reducible in O(n) time to the problem of finding perfect (mazimum) matchings in
planar graphs with mazimum vertex degree 3. This reduction adds O(n) new vertices.

Proof. We will prove the theorem using the technique of vertex splitting.

Suppose that G has a vertex v with degree > 3, and let N(v) be the set of its
neighbours. We choose 2 neighbours wy, ws € N(v) and replace v with three vertices
v1, U9, v3 as shown in Fig. 4.1. The neighbours of v; are w, w, and vy, the neighbours

43
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of vy are v; and v3, and the neighbours of v3 are v, and all the neighbours of v except
wy and wy. There is a one-to-one mapping between perfect matchings in G and in @,
as shown in the figure.

A single splitting operation reduces the degree of a single high degree vertex by
2, and adds 2 new vertices. Reducing the degrees of all the vertices to < 3 requires
only O(m) = O(n) splitting operations and adds O(n) new vertices, so the resulting
graph has O(n) vertices.

Yo

Figure 4.1: Vertex splitting. On the left there is a high degree vertex v. It is matched
in the perfect matching with one of its neighbours w. On the right there is the graph
after splitting this vertex into vy, vy, v3. Now w3 is matched with w and v; is matched
with vy. Perfect matchings in the two graphs are in one to one correspondence.

Even if G has no perfect matching, we can still use this reduction. The translation
of perfect matchings in the original graph G to perfect matchings in the bounded
degree graph G works for maximum matchings as well. In order to go from G to G,
we need to first guarantee that v, is matched. Let M be a matching in G. If vy is
not matched in M, then either v; or v3 has to be matched. Suppose v; is matched
with some vertex u. Then M U {vjv2} — {v;u} is a maximum matching in which vy
is matched. Once v, is matched we can use the correspondence shown in the figure
to get a matching in G. Notice, however, that this translation is not one-to-one.

_ The number of unmatched vertices in a maximum matching is the same for G and

G. O

In the remainder of this chapter we assume that all the graphs have vertex degrees
bounded by 3.

4.2 Testing Algorithm

We start by adapting Lovész’s testing algorithm (Algorithm 4) to the planar case.
This allows us to introduce the basic ingredients of the planar matching algorithm
without getting involved in obscure details.

4.2.1 General Idea

In order to achieve an O(n*/?) implementation of Lovasz’s testing algorithm, we would
like to perform Gaussian elimination on A(G) using O(n*/?) operations. The problem
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is that there is no easy way to avoid pivoting, which is required if we are going to
use the nested dissection algorithm. A common solution to this kind of problem it to
consider A(G)A(G)T instead. We get Algorithm 14.

Algorithm 14 Testing algorithm for planar graphs

PLANAR-TEST-PERFECT-MATCHING(G):
compute B(G) = A(G)A(G)T
compute det B(G) using the nested dissection
if det B(G) # 0 then
return “YES”
else
return “NO”

Notice that B(G) is non-singular iff A(G) is non-singular. In the next section we
verify that performing the nested dissection on B(G) requires only O(n*/?) operations
and in Section 4.2.3 we show that we can get a Monte Carlo testing algorithm by
implementing Algorithm 14 over a finite field [F,, for a suitable choice of p.

4.2.2 Symbolic Nested Dissection

In this subsection we show that performing the nested dissection on the matrix
A(GYA(G)T in Algorithm 14 requires O(n*/?) operations.

For any graph G, let G* = (V, E), where uv € E, if there exists a vertex w € V
such that uw,wv € E. Notice the following:

Lemma 4.2 (Thick Separator Lemma). If G is a bounded degree planar graph
and S is a small separator in G, then also T = S U N(S) is a small separator in G*.

Proof. The fact that T is a separator in G2 follows from the definition of G?. The
size of T is O(y/n) because G has bounded degree. O

The separator 7T' constructed in Lemma 4.2 will be called the thick separator
corresponding to S. Obviously, T is also a small separator in G.

We are now ready to make the first step towards applying the nested dissection
algorithm.

Theorem 4.3. Let G be a bounded degree planar graph. Then G(A(G)A(G)T) has
an O(y/n)-separator family.

Proof. Notice that G(A(G)A(G)T) C G?. The assertion follows by recursive applica-
tion of the Thick Separator Lemma. O

In order to use Theorem 2.27 we need to prove that no pivoting is required during
the elimination of A(G)A(G)T. For any non-singular matrix X over R (or C), the
matrix X X7 is symmetric positive definite (see Theorem 2.12) and Theorem 2.27 can
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be used. In case of matrices over Z(FE) the usual notion of positive definiteness does
not make sense, so we cannot use Theorem 2.27 directly.

Let us call a matrix X over Z(E) symmetric positive definite if it has the form X =
YY?T for some non-singular Y. Notice, that we are mimicking the usual definition,
due to the characterization given in Theorem 2.12.

We have the following:

Theorem 4.4 (Symbolic nested dissection). Theorem 2.27 holds for matrices
over Z(E), i.e. if X is a symmetric positive definite matriz over Z(E) and G(X) has
an O(y/n)-separator family, then given an O(\/n) separator tree for G(X), Gaussian
elimination on X can be performed using O(n“/?) operations. The resulting factor-
ization of X has the form X = LDL”, where L is unit lower-triangular and has

O(nlogn) non-zero entries and D is diagonal.

Proof. Let X = YY7 be a symmetric positive definite matrix over Z(E). We need to
guarantee that no pivoting is required during the elimination of X. Since detY # 0,
there exists a substitution s : £ — R, such that det Y (s) # 0.

Since Y (s) is a non-singular real matrix, X (s) = Y (s)Y (s)” is symmetric positive
definite in the usual sense. By Theorem 2.27 (and Remark 2.29), no pivoting is
required during the elimination of X (s). The same has to be true for X. O

Using Theorem 4.4 we get the following:

Theorem 4.5. Algorithm 14 tests whether a given planar graph G has a perfect
matching using O(n*/?) operations.

4.2.3 Working over a Finite Field

In this subsection we show that, for a random prime p = O(n*), an F, implementation
of Algorithm 14 is a Monte Carlo testing algorithm.

It is the first time we need a random large prime and not just any large prime.
This is because polynomials computed by Algorithm 14 have very large coefficients
and it is not easy to guarantee that they are non-zero over I,.

In particular, we need the following theorem, stronger than Theorem 2.33.

Theorem 4.6. Let T'(n) and D(n) be such that T'(n), D(n) = Q(n) and T'(n), D(n) =
O(poly(n)). Let A be an algorithm performing at most T'(n) zero-tests in Z(X)
arithmetic for any input data of size n. Suppose that every f € geny(n) has a
representation f = gg/hy, such that deg gy < D(n) and g; has an O((nT'(n)D(n))")
non-zero coefficient. Then, with high probability, the IF, implementation of A correctly
answers all zero-tests, for a random prime p = ©(nT(n)D(n)).

Proof. Consider any input D of size n. We first prove that with high probability all
f € gen (D) are not identically zero over F,,.

For each f € gen,(D), choose a representation f = gs/hy, such that degg; <
D(n) and gy has an O((nT'(n)D(n))™) non-zero coefficient ¢;. Since ¢y can only have
O(n) prime divisors of order ©(nT'(n)D(n)), we have at most O(nT'(n)) distinct prime
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divisors of order ©(nT'(n)D(n)) for all the ¢, f € gen 4(D). Let p be a random prime
of order ©(nT'(n)D(n)). If p does not divide any of ¢y, then all g; are non-zero over
[F,. Since there are O(nT'(n)D(n)/logn) distinct primes of order O(nT'(n)D(n)), the
probability of that event is 1 — O(#("D)(n)) =1-0(1/n).

We can now use the Zippel-Schwartz Lemma. Since all g; have degree < D(n),

the probability of getting a false zero testing any of them is O(%) = O(#(n))
The sum of these probabilities over all g; gives O(1/n), so the probability that all

zero-tests give correct answers is 1 — O(1/n). O

All the rational functions zero-tested by Algorithm 14 are entries of the interme-
diate results of Gaussian elimination performed on AAT. In order to use Theorem 4.6
we need to prove that all these functions satisfy its assumptions.

First notice that the elements of AAT have a very simple form.

Lemma 4.7. Non-zero elements of AAT are polynomials consisting of at most 3
different monomials, all of degree 2 and with £1 coefficients. Moreover, there are at
most 10 non-zero entries in each row or column of AAT.

Proof. The first part of the theorem follows directly from the fact that all vertices of
G have degree at most 3. To prove the second part, notice that ([lflT)i,j can be only
non-zero if either ¢ = 5 or ¢ and j have a common neighbour. There are at most 10
such j for every 1. O

For any polynomial f € Z(E), let the weight of f, denoted |f|, be the sum of the
absolute values of coefficients of f. Notice that |fg| < |f|lgl, |f + gl < |f] + |gl-
We have the following bound.

Lemma 4.8. The weight of a determinant of any submatriz of AAT is O(n*). The
degree of any such determinant is O(n).

Proof. The determinant of a k x k submatrix of AA7 is the sum of at most k! prod-
ucts, each of them consisting of exactly k non-zero entries of AAT. By Lemma 4.7,
expanding this determinant gives at most 3¥k! = O(n?") terms, all with +1 coeffi-
cients, so the weight of the determinant is at most O(n?"). Obviously, the degree of
the determinant is O(n). O

The adjoint formula for the inverse matrix (Theorem 2.4) gives the following.

Corollary 4.9. The entries of the inverse of any non-singular submatriz of AAT
have form g/h, where g and h are polynomials of degree O(n) and weight O(n").

Theorem 4.10. At any stage of Gaussian elimination performed on the matrix
A(GYA(G)T, the non-zero entries of the uneliminated part of AAT have form g/h,
where both g and h are polynomials of degree O(n) and weight O(n").

Proof. Let B = AAT. Suppose that k steps of Gaussian elimination have been
performed on B and let B’ be resulting matrix. Let S = {1,... k} be the set of
eliminated rows (columns), and let 7" = {k+1, ..., n} be the set of uneliminated rows
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(columns). When nested dissection is performed on B, we only need the elements
from the part of the matrix that was not yet eliminated, i.e. the elements of By .
By Theorem 2.18, we have B’T7T = Brr — BT,SBEEBS,T. Non-zero entries in Brg
and Bgr are polynomials of weight < 3 and there are at most 10 such entries in
every row or column, by Lemma 4.7. Non-zero entries of Bg}q have form g/h, where
g and h are polynomials of weight O(n?"), by Corollary 4.9 (also note that h can
be assumed to be the same for all non-zero entries). This gives a weight bound
of O(10-10-3-3-n?*) = O(n?") for numerators and denominators of the entries of
BT,SB;}SYBS’T. The bound holds for B} as well, because entries of By have weights
at most 3. The degree bound is obvious. 0

We are now ready to use Theorem 4.6.

Theorem 4.11. For a random prime p = ©(n***/2), the F, implementation of Algo-
rithm 14 is an O(n*/?) Monte Carlo algorithm deciding whether a given planar graph
G has a perfect matching.

Proof. We apply Theorem 4.6 with T'(n) = O(n“/?) and D(n) = O(n). The assump-
tions of this theorem are satisfied, due to Theorem 4.10. O

4.3 The Matching Algorithm

We now present the matching algorithm for planar graphs. We use the ideas in-
troduced in the previous section: performing Gaussian elimination on the matrix
A(G)A(G)T and randomization based on Theorem 4.6 and Theorem 4.10.

4.3.1 General Idea

Our matching algorithm (Algorithm 15) is a recursive algorithm based on the sepa-
rator decomposition of planar graphs. We start by finding a small separator, next we
find an allowed matching incident on all its vertices, and then find perfect matchings
in connected components of the unmatched portion of the graph.

Algorithm 15 Matching algorithm for planar graphs

PLANAR-PERFECT-MATCHING(G):
let S be a small separator in GG
let T" be the thick separator corresponding to S
find the factorization A(G)A(G)T = LDLT using the nested dissection
with T" as a top-level separator

compute (A(G)™)rr using L and D

use (A(G) !zt to find an allowed matching M incident on all vertices of S
find perfect matchings in connected components of G — V(M)
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In the remainder of this section, we show that both computing (A(G)™!)rr and
finding an allowed matching only require O(n*/?) operations. This gives the com-
plexity bound of O(n*/?) operations for the whole algorithm as well.

Remark 4.12. The above statement is not true if w = 2. In this case, additional
O(log®n) factor appears in the complexity of Algorithm 15. In the remainder we
assume that w > 2 to avoid unnecessary complications.

4.3.2 Computing the important part of A~

By performing the nested dissection algorithm on the matrix AAT, we find n x n
matrices L and D such that AA” = LDL". We now show how L and D can be used
to compute (A~!)r 7 with O(n*/?) operations. Let us represent A, L and D as block

matrices - -
i Avu Aur Dyy 0
A= g O D = ’
( Ary Arr )’ 0 Drr )’

o ( Lov O -1 Ly 0
Lry Lrr )’ —LilTLT,UL(},lU LilT ’
where lower right blocks in all matrices correspond to the vertices of the thick sepa-
rator 7, and U =V — T. Since AAT = LDL”, we have

(AT>71 — (LT)leflLflzzl7
where the interesting part of (A7)~ is
(ATl = (L") gy DL Ay =
= (LE ) ' D (L )y Avy =
= (LE ) ' Dy LAy + (L5 ) D (LY rp Avr.

The first component can be easily computed with O(n“/?) operations using fast matrix
multiplication. The second component can be written as

(LE) ' Dyi(L v Ay = —(LEp) ' Dyl Ly Ly Ly Avr

and the only hard part here is to compute X = _LT,UL(},IUAU,T- Consider the matrix

Luy Avr
B = : : :
( Lry 0
When Gaussian elimination is performed on rows and columns in U, the lower
right submatrix becomes X (see Theorem 2.18). The elimination can be performed
with use of the nested dissection algorithm in time O(n*/?). This is possible, because
the separator tree for AA” is a valid separator tree for B (recall Fact 2.30). Since

Ly is lower-triangular, there are no problems with diagonal zeros, even though B is
not symmetric positive definite.
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4.3.3 Matching the Separator

We now show how the separator vertices can be matched using the matching verifi-
cation algorithm. Consider Algorithm 16.

Algorithm 16 A procedure for finding an allowed matching of the separator.

FIND-ALLOWED-SEPARATOR-MATCHING:

M =1
Gr = (T,E(T) — E(T — S))
repeat

let Mg be a maximal matching in G using only allowed edges
use (A=) 7 to find a maximal allowed submatching M/, of M
M = M U M
Gr = Gr — V(M)
mark edges in Mq — M/, as not allowed

until M matches all vertices of S

Lemma 4.13. Algorithm 16 finds an allowed matching of the separator.

Proof. The algorithm first finds a maximal matching Mg of S using only allowed
edges. All the edges of My are then either included in M or marked as not allowed
and the whole procedure is repeated. Since Gr is always non-empty, the algorithm
stops after a finite number of iterations. O

Lemma 4.14. Algorithm 16 makes at most 5 iterations.

Proof. Consider the allowed matching M found by Algorithm 16 and a matching Mg
constructed in any iteration. For every edge e € M, either e incident with at last
one edge of ¢ € Mg, or e € Mg, because of the maximality of Mg. If e is in Mg,
it is immediately added to M. Otherwise, an edge ¢/ € Mg incident to e is marked
as not allowed. Every edge e € M has at most 4 incident edges, so the main loop of
Algorithm 16 is executed at most 5 times. O

Lemma 4.15. Each iteration of Algorithm 16 requires O(n*/?) operations.

Proof. The dominating step of Algorithm 16 is finding the maximal allowed submatch-
ing M(, of M. This can be done using the verification algorithm (see Theorem 3.21)
with O(n“/?) operations. This algorithm works on the matrix A(G)~!, but it never
uses any values from outside the submatrix (A(G)~1)7.

Let A’ be the result of running the verification algorithm on the matrix (A‘l)Tj.
Due to Theorem 3.17, A%, 5 = (A(G — V(M) ™) v, where T" is obtained from T
by removing the vertices matched by M(,. Thus, the inverse A(G);}T does not need
to be computed from scratch in every iteration. O
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The following Theorem follows from Lemmas 4.13, 4.14 and 4.15.

Theorem 4.16. Algorithm 16 finds an allowed matching of the separator using
O(n*/?) operations.

4.3.4 Working over a Finite Field

We have the following theorem, similar to Theorem 4.11.

Theorem 4.17. For a random prime p = ©(n*t/?), the F, tmplementation of Algo-
rithm 15 is an O(n“/?) Monte Carlo algorithm finding a perfect matching in a given
planar graph G having one.

Proof. The proof is similar to the proof of Theorem 4.11. The rational functions
zero-tested by the algorithm are entries of:

1. partially eliminated AAT, or
2. partially eliminated A;lT, or
3. partially eliminated Ly .

All these functions satisfy the assumptions of Theorem 4.10. The entries of partially
eliminated AAT have been considered in the analysis of the testing algorithm (Algo-
rithm 14). By the Elimination Theorem (Theorem 3.17), partially eliminated A;}T
is just an inverse of a submatrix of flT,T, so they satisfy these assumptions by the
adjoint formula. Finally, the diagonal entries of Ly ;; (only diagonal entries are tested
when nested dissection is used) are all equal to 1.

The assertion of the theorem follows from Theorem 4.10. O

4.4 Maximum Matchings

We now show that the problem of finding a maximum matching in a planar graph
can be reduced to the problem of finding a perfect matching in a planar graph.

We use the method introduced in Section 3.7. Algorithm 17 is a natural adaptation
of Algorithm 13 to our planar framework, but it is not clear at all that it works.

Algorithm 17 Reduction of maximum matching to perfect matching (planar case)

REDUCTION(G):
perform the nested dissection with skipping on A(G)A(G)”
return the set U of eliminated rows (columns)

Let us first prove the following:
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Lemma 4.18. For any subset U C V, A(G)yy is non-singular iff (A(G)A(G)")yv
1S mon-singular.

Proof. Let B = AAT.

Suppose BU,U is non-singular. We have §U7U = AU,V(AT)V7U so rank §U7U =
rank AU,V. But since A is skew-symmetric, we also have rank AU,V = rank flU,U by
Theorem 2.6, so zleU is non-singular.

Conversely, let AUJ] be non-singular. We have

BU,U = AU,V(AT)V,U = _AU,VAV,U = _AU,UAU,U - AU,V—UAV—U,Ua

Since ApyyAywy and Apyy_yAy_yy use disjoint sets of variables, By is non-
singular. 0

We are now ready to prove the following:

Theorem 4.19. For any graph G = (V| E), Algorithm 17 finds a mazimum set
U CV, such that G[U] has a perfect matching, using O(n*/?) operations.

Proof. Algorithm 17 finds a maximum non-singular principal submatrix (flflT)U’U
of AAT. By Lemma 4.18 this corresponds to a maximum non-singular principal
submatrix 14~1U7U of A, which by Tutte’s Theorem gives a maximum set U, such that
G[U] has a perfect matching.

Since we can assume that G has degree bounded by 3 (recall that Theorem 4.1
works for maximum matchings as well), the complexity is O(n“/?). O

Following the usual pattern we get:

Theorem 4.20. For a random prime p = ©(n***/2), the F, implementation of Algo-
rithm 17 is an O(n“/?) Monte Carlo algorithm finding a mazimum set U C V, such
that G[U] has a perfect matching.

Remark 4.21. Actually, a random prime p = ©(n?) is sufficient. Note that for the
F, implementation to work it is enough if rank AAT = rank(AAT)(s), where s is a
substitution with elements of F,. We can choose any mazimum non-singular subma-
triv X = (AAT)yy of AAT and try to guarantee that det X (s) # 0. By Lemma 4.8,
det X has a non-zero O(n*") coefficient and by the prime-density argument, det X is
non-zero over B, for a random prime p = ©(n?). We can then use the Zippel-Schwartz
Lemma.



Chapter 5

Randomization

The theme of this chapter is constructing Las Vegas versions of the algorithms pre-
sented so far.

In Section 5.1 we use the standard technique (see for example Karloff [19] or
Cheriyan [6]), based on the Gallai-Edmonds decomposition of a graph, to show that
all our algorithms for the maximum matching problem can be made Las Vegas, except
for the planar case algorithm (Algorithm 15).

In Section 5.2 we discuss the problem of making the ~ (see Subsection 3.6.2 for
a definition) computation Las Vegas and give some partial results, based on ideas of
Cheriyan [6]. We also consider the related problem of making the matching verifica-
tion algorithm Las Vegas.

5.1 Making the Maximum Matching Algorithms Las
Vegas

Recall that in order to make any Monte Carlo algorithm a Las Vegas one, we need to
be able to verify the correctness of its output (see Fact 2.31). In case of a maximum
matching algorithm this amounts to deciding if the matching found by the algorithm
is indeed maximum. The standard method, also used in the parallel setting (see
Karloff [19]), is based on the Gallai-Edmonds decomposition. Cheriyan has already
shown in [6] that it can be implemented in time O(n*). In this section, we use his
results to make our matching algorithms Las Vegas.

5.1.1 Gallai-Edmonds Decomposition

We start by providing a few more definitions. A vertex v € V of a graph G = (V, E)
is called critical if v is matched in all maximum matchings of G. Otherwise v is called
non-critical. By D(G) we will denote the set of all non-critical vertices of G, by A(G)
the set of all critical vertices of G that are adjacent to some non-critical vertices, and
by C(G) =V (G)\ (D(G) U A(GQ)) the set of the remaining vertices.

We are now ready to give the statement of the Gallai-Edmonds decomposition
theorem.
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Theorem 5.1 (Gallai-Edmonds decomposition). Let G = (V, E) be a graph and
let D= D(G), A= A(G) and C = C(G) be defined as above. Then:

e cach component of G[C| has a perfect matching,
e cach component of G| D] is factor-critical,

e cvery mazimum matching of G contains a perfect matching of G[C], a near
perfect matching of each component of G|D], and matches all vertices of A with
vertices in different components of G|D],

e cvery mazimum matching of G misses comp(G[D]) — |A| wvertices, i.e. n —
2v(G) = comp(G[D]) — |A|.

The last part of Gallai-Edmonds Theorem is especially important. It means that
using the Gallai-Edmonds decomposition of a graph G one can easily verify if a given
matching M of G is maximum: it is enough to test if the equality n — 2|M| =
comp(G[D]) — | A| holds.

5.1.2 Cheriyan’s Algorithm

In this subsection we describe a Monte Carlo algorithm, due to Cheriyan [6], finding
the Gallai-Edmonds decomposition of a given graph G in time O(n¥).

i

Proof. Consider the graph G = (V U {v, 1}, E U {vivni1}), i.e. G is equal to G with
an additional vertex v, .1, connected with v; only. We have

A(G):( A(G) xi,nﬂei)'

T
—Tin+1€; 0

Lemma 5.2. Let G be a graph, let fl ) be its symbolic adjacency matric.
>

Then, for any verter v; of G, rank rank A iff v; is non-critical. Otherwise

~— N8
@ﬂ:BI:Bz

rank( ﬁ ) — rank A.

i

If v; is critical in G, then v(G) = v(G), S0 rank A(G) = rank A(G), by Theo-

rem 3.34. We then have rank A = rank ( . A o7 ), and so rank A = rank < ;}F )
—Tint16€; i

Similarly, if v; is non-critical in G, then v(G) = v(G) + 1, so rank A(GQ) =

rank A(G) + 2, by Theorem 3.34. We then have rank ( A T ) = rank A + 1,

—Tin+1€;

and so rank ( f; ) — rank A + 1 > rank A, as claimed. C

Lemma 5.2 characterizes critical and non-critical vertices in terms of A(G). Algo-
rithm 18 uses this characterization to find the set C[G] U A[G] of critical vertices of
G.
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Algorithm 18 Cheriyan’s algorithm the finding critical vertices of G

CRITICAL-VERTICES(G):
{ preprocessing, for randomization purposes only }
find a maximum set W C V such that G[W] has a perfect matching
renumber the vertices of G so that the vertices of W have numbers 1,..., |W|
{ the actual algorithm }
find a basis k1, .. ., kn_ou(q) of ker A(G)
return K = {v; : V;(k;); = 0}

Remark 5.3. The first two lines of Algorithm 18 are only necessary to make the
randomization of the algorithm easier. They have no impact on the algorithm’s cor-
rectness.

Theorem 5.4. For a given graph G, Algorithm 18 finds the set of critical vertices of
G, using O(n*) operations.

Proof. First, let us note that Algorithm 18 indeed uses O(n*) operations, by Corol-
lary 2.25.

We need to prove, that the set K C V returned by Algorithm 18 is the set of
critical vertices of G.

Let S = span{flf,,flg_, .. .,Ai,}, i.e. the vector space spanned by (transposed)
rows of A. We have ker A = S, so by Theorem 2.3, S = (ker A)*. By Lemma 5.2
v; is critical iff rank ( f; ) — rank A and this equality holds iff ¢; € S. Thus v; is

critical iff e; € (ker A)*, which is exactly what Algorithm 18 tests. O

Lemma 5.5. The entries of the basis vectors ky, ..., kn_2u(q) have form g/h, where
g is a polynomial of degree O(n) and has an O(1) non-zero coefficient.

Proof. Recall how the basis of ker A is found. We perform Gaussian elimination on
A and find a factorization A = LDU, where D = diag(ay, as, ..., as.(q),0,0,...,0).
Then, ker A is spanned by the vectors U~'(e;) for i = 2v(G) + 1,n. (Here, we
assumed that no pivoting is neccessary. Later, we will show that this assumption can
be omitted.)

By Theorem 2.18, we have

v Uv Dy'LyAwy-w
0 In—k ’

where AW,W = Lyw DwUy . Inverting U gives

-l — Uyt Uy Dy Lt Awy-w \ _ [ Uy Aptw Awy—w
O [n—k O In—k ’
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so the basis of ker A found by Algorithm 18 consists of the columns of the matrix

A{;/%WAW,VfW
[nfk

We need to prove that the entries of AI}/{WAW,V_W satisfy the assertions of the
theorem. ) i
By Lemma 3.22, entries of Aﬁ%w have form g/ det Ay, where g has degree O(n)

and an O(1) non-zero coefficient. Also, the entries of flwy,w have form +z; ;, and
no two entries use the same z; ;. The claim follows.

Note that the assumption that no pivoting is necessary during the elimination
of A can easily be dropped. The important thing is that the eliminated rows and
columns of A correspond to . Whether they are permuted does not matter. O

Theorem 5.6. For any prime p = ©(n?), the F,, implementation of Algorithm 18 is
an O(n*) Monte Carlo algorithm finding the set of critical vertices of a given graph
G.

Proof. Let s : E — F, be any substitution. When the F, implementation of Al-
gorithm 18 is performed on A(s), it gives correct results if only it picks the set T
correctly (i.e. the same as the symbolic version), and if for any non-critical vertex v;
at least one of the entries (k;); is non-zero.

By Lemma 5.5 and the Zippel-Schwartz Lemma, the second of these conditions is
satisfied with probability 1 — O(1/n).

The only problem is how to bound the probability of picking the correct set W.
Assume without loss of generality that Algorithm 18 picks W by finding a maximum
non-singular submatrix AU,W of A using Gaussian elimination, i.e. the set W is the
column set of the submatrix found. Since Gaussian elimination always finds the
maximum submatrix AUW with W lexicographically first, the [, implementation
picks W as well, if only det A(S)WM/ # 0. By Theorem 3.5 and the Zippel-Schwartz
Lemma, the probability of this event is 1 — O(1/n?).

As usual, the time complexity of the [, implementation is O(n*), because Gaus-
sian elimination only uses n divisions. O

As a consequence, we get the following O(n“) Monte Carlo algorithm for finding
the Gallai-Edmonds decomposition of G (Algorithm 19).

Algorithm 19 Cheriyan’s algorithm finding the Gallai-Edmonds decomposition

GALLAL-EDMONDS(G):
K := CRITICAL-VERTICES(G) { the F, implementation for p = O(n?) }
D=V -K,C:=K—N(D),A:=KnN(D)
return C, A, D
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5.1.3 Las Vegas algorithms

We first present a Las Vegas reduction of the maximum matching problem to the
perfect matching problem (Algorithm 20).

Algorithm 20 Las Vegas reduction of maximum matching to perfect matching

CHERIYAN-REDUCTION(G):
find the sets C, A, D
let comp,;;(G — A) be the number of odd sized components in G — A
find a maximum set U C V such that G[U] has a perfect matching
if n — |U| = comp,44(G — A) — |A| then
return U
else

return “FAILURE”

Remark 5.7. Cheriyan performs some additional verification of the sets C, A, D
(e.g. whether all components of G[D] have odd size, etc.) but this is not really neces-
sary.

Theorem 5.8. Algorithm 20 is an O(n*) Las Vegas reduction of the mazimum match-
ing problem to the perfect matching problem.

Proof. If the equality n — |U| = comp,4y(G — A) — |A]| holds, then U is maximum,
because any matching has to miss at least one vertex from at least comp,;,(G—A)—|A|
odd components of G — A. Moreover, if both U and C, A, D are computed correctly,
then the equality does hold, due to Gallai-Edmonds Theorem. Since both C, A, D
and U are found using Monte Carlo algorithms, with high probability Algorithm 20
finds a maximum set U such that G[U] has a perfect matching, otherwise it reports
failure. It is thus a Las Vegas algorithm, as claimed. 0J

Theorem 5.9. The Monte Carlo implementations of the O(n®) matching algorithms
(Algorithm 8 and Algorithm 7) and the O(n®) matching algorithms (Algorithm 9 and
Algorithm 10) can be made Las Vegas using Algorithm 20.

Proof. This is obvious. We just perform any of these algorithms on a subgraph G[U]
found by the Las Vegas reduction, and if it does not find a perfect matching, we
report failure. ]

Remark 5.10. In fact, we can do even better.

Recall that the Monte Carlo reduction used in Algorithm 20 not only finds a set
U such that G[U] has a perfect matching, i.e. det AUU # 0, but also a substitution s
such that det Ay (s) # 0.

Once such substition is known, all the matching algorithms listed in the statement
of Theorem 5.9, except for the O(n¥) general matching algorithm (Algorithm 10), are
deterministic! To see this, recall the proof of Theorem 3.13.
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Remark 5.11. Most of the considerations of this section can be adapted to the planar
case using the ideas from Chapter 4. However, Algorithm 18 cannot be implemented
in time O(n*/?), because the basis vectors ky, . . ., kn—2u(q) and the matriz ‘Zli;/%W used
to compute them might not be sparse (see also Chapter 6).

5.2 Las Vegas algorithm for computing ~

By the Rabin-Vazirani Theorem (Theorem 3.10), the matrix A(G)~! encodes the
relation ~¢ defined in Subsection 3.6.2. As a consequence, we get an O(n*) Monte
Carlo algorithm for computing ~¢: compute A(G)~!(s) for a random substitution
s:E— [F,, where p is a suitable prime. It is interesting to ask whether this algorithm
can be made Las Vegas.

One of the consequences would be a Las Vegas version of the matching verification
algorithm given in Theorem 3.21. Recall that the matching verification algorithm
finds, for a given matching M in G = (V| E'), a maximal allowed submatching M’ of
M. In order to make this algorithm Las Vegas, we need to verify that M’ is indeed
maximum, i.e. that all the edges of M \ M’ are not allowed in G — V(M’). This
information is encoded in ~g.

The next two theorems are due to Cheriyan [6] and give some partial results.

Theorem 5.12. The set of allowed edges of a bipartite graph can be computed in
O(n¥) time Las Vegas.

The proof of Theorem 5.12 can be found in [6]. Note that only the set of allowed
edges is computed here and not the whole ~ relation.

Theorem 5.13. If G is elementary, then ~¢ can be computed in O(n¥) time Las
Vegas.

Since Cheriyan does not give a complete proof of this theorem, but instead refers
to personal communication with La Poutré, we have decided to reproduce his proof
here, filling in the missing details.

A barrier in a graph G = (V,E) is a set S C V of vertices of G such that
n —2v(G) = comp,,(G — S) — |S|, where comp,_,,(G — S) denotes the number of
odd sized components of G — S. For example, the set A(G) in the Gallai-Edmonds
decomposition is a barrier.

Cheriyan’s proof of Theorem 5.13 is based on the following characterization of ~¢
(for a proof, see Lovasz , Plummer [26]):

Theorem 5.14. If G is elementary, then P(G) = V/ ~¢g is a set of all mazimal
barriers in G.

Corollary 5.15. Let G be elementary and let P = {51, Sy, ..., Sk} be a partition of
V. If all S; are barriers in G, then P is a refinement of the canonical partition of G.
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Algorithm 21 Algorithm verifying if ~=~¢

VERIFY (G,~):
if ~ is not an equivalence relation then
return “FAILURE”
else
let P:=V/~={S51,S,...,5}
for i :=1to k do
{ verify that S; is a barrier }
odd :=0
forall st € F such that s € S; and t € S; do
DELETE(e)
if not CONNECTED(s, t) and SIZE(t) is odd then
{ a new odd sized component created }
odd :=odd + 1
if odd < |5;| then
return “FAILURE”
add back all edges between S; and V — 5;
return “CORRECT”

Proof (of Theorem 5.18). Perform the Monte Carlo algorithm computing ~¢ and let
~ be the relation found. We need to verify the correctness of ~, i.e. check if ~=~.

Consider Algorithm 21. We first verify if ~ is an equivalence relation (which
it should be, by Theorem 3.25). Next we test if all of its equivalence classes S; are
barriers. If they are, then ~¢ is computed correctly. This is because of Corollary 5.15
and the fact that we always have ~¢ C ~ (we can get a false zero in A(G)(s)™", but
not a false non-zero).

In order to efficiently verify that all S; are barriers, we use the dynamic con-
nectivity algorithm of Holm, de Lichtenberg and Thorup [16], introduced in Sub-
section 3.6.3. The correctness of the verification procedure is obvious. It works in
time O(m + n), because for every edge st of G, we have at most one call to each
of DELETE(st), DELETE(ts), CONNECTED(s,t), CONNECTED(t, s), SIZE(s),

SIZE(t), INSERT(st) and INSERT(t¢s), and each of these calls takes O(1) time. [

Theorem 5.12 and 5.13 are the only known results concerning the computation of
~¢ in O(n*) time Las Vegas. Whether this can be done for general graphs is a very
interesting open problem.
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Chapter 6

Open Problems

In this chapter we briefly discuss some open problems related to this work.

Las Vegas algorithm for the planar case. An open problem that seems to be
an easy one is making the planar matching algorithm Las Vegas. As mentioned in
Section 5.1 the method used in the general case can be adapted to the planar case.
The only problem is that the basis of ker A(G) is not, in general, sparse (i.e. may
have a lot of non-zero entries), so we need a way to efficiently extract the information
about the non-zero entries of the basis vectors without actually constructing them.

Las Vegas computation of ~;. The relation ~¢ can be computed in O(n) time
Las Vegas if GG is elementary or bipartite (see Section 5.2). As a consequence, we
get a Las Vegas matching verification algorithm for these two cases. It is interesting
whether a Las Vegas algorithm is possible in the general case.

Derandomization. Another interesting problem is whether we can find a substi-
tution s : 2 — I, such that det A(G)(s) # 0, deterministically. This can of course be
done by first finding a perfect matching using a deterministic algorithm, but this does
not give an O(n*) matching algorithm. More importantly, we would like a solution
based on linear algebra only. Geelen [15] has some ideas, but his algorithm is very
inefficient.

Derandomization of our matching algorithms is interesting in itself, but it might
also lead to an NC algorithm for the maximum matching problem. The RNC algo-
rithm for this problem, due to Mulmuley, V. Vazirani and U. Vazirani [31] is based
on the Rabin-Vazirani matching algorithm.

Algebraic matching algorithm. In Section 3.6 we gave an O(n*) maximum
matching algorithm for general graphs, based on the algebraic approach. However,
this algorithm is quite complicated and heavily relies on graph-theoretic results and
techniques. It would be nice to have a strictly algebraic, and possibly simpler, match-
ing algorithm for general graphs.
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The last two problems should probably be called research topics rather then open
problems.

Matrix inversion via perfect matchings. In this work, we have shown that by
using the fast matrix multiplication algorithm of Coppersmith and Winograd, we can
find maximum matchings in time O(n?3%). For dense graphs, this is asymptotically
faster than using any of the combinatorial algorithms. However, the large constant
hidden in O(n*3®) complexity renders our algorithm useless for practical purposes.

It would really be amazing if we could go in the opposite direction as well, i.e. use
the combinatorial matching algorithms to multiply boolean matrices in time O(n??),
with a small constant (for information theoretic reasons, there is probably no hope in
case of matrices over larger rings). It is easy to prove that all we need is an O(n??)
combinatorial algorithm for computing the ~¢ relation defined in Subsection 3.6.2. Is
that possible? In fact, any improvement over the O(n*8!) complexity of the Strassen’s
matrix multiplication algorithm would be very interesting.

A substitute for nested dissection. Reading Chapter 4 might give an impression
that although the nested dissection algorithm leads to an O(n*/?) maximum matching
algorithm, it is not really suited for this kind of purposes. This deficiency of the nested
dissection is particularly clear in Subsection 4.3.2 where a submatrix of A(G)™! is
computed.

One would expect a framework for planar matrix computations, in which elaborate
considerations of Subsection 4.3.2 are not necessary.
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bipartite, 10
adjoint formula, 13
algorithm
randomized, 22
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Monte Carlo, 22

barrier, 58

canonical partition, 36
non-trivial class, 37
component, 10
connected, 10
cycle, 10
length, 10
cycle cover, 26
even, 26

edge, 9
allowed, 11
endpoint, 9
incident, 9

edges
deleting, 9
removing, 9

event
high probability, 22
small probability, 22

fast matrix multiplication, 18

F, implementation, 23

Gaussian elimination, 15

with skipping, 20
graph, 9
bipartite, 10
balanced, 10
parts of, 10
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connected, 10
elementary, 36
factor critical, 36
planar, 10

Laplace’s expansion, 13

matching, 11
allowed, 11
maximum, 11
near perfect, 11
perfect, 11
submatching, 11
matrix
adjoint, 13
diagonal, 13
lower-triangular, 13
permutation, 13
planar, 21
positive definite, 14
skew-symmetric, 13
symmetric, 14

unit lower-triangular, 13
unit upper-triangular, 13

upper-triangular, 13
nested dissection, 21

path, 10
endpoints, 10
length, 10

pivot, 15

pivoting, 16

polynomial
weight, 47

separator, 11
s(n)-separator, 11
small, 11
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induced, 10
submatrix
principal, 12
symbolic adjacency matrix, 25
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vertex, 9
adjacent, 9
critical, 53
degree, 9
matched, 11
non-critical, 53

vertices
contracting, 10
deleting, 9
removing, 9
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