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ABSTRAGT

In this paper we present an Oo(JTVIEl ) algo-
rithm for finding a maximum matching in general
graphs. This algorithm works in 'phases'. In
pach phase a maximal set of disjoint minimum len-
gth augmeniing paths is found, and the existing
matching is increased along these paths.

Our contribution consists in devising a spe—
cial way of handling blossoms, which enablee an
0(|E|) implementation of a phase, In each phase,
the algorithm grows Breadth IMret Search treee at
all unmaiched vertices. Yhen it detects the pres-
ence of a blossom, it does not 'shrink' the blosaom
immediately, Instead, it delays the shrinking in
guch a way that the firsi augmenting path found is
of minimum length., Furthermors, it achieves the
effect of shrinking a blossom by a special labeling
procedure which enables it to find an augmenting
path through a blossom quickly.

PROBLEY STATEMENT
AND PRELTHINARY DEFINITIONS

Tn this paper we present an efficient algo-
rithm for finding a maximum matching in a general
graph, The precise satement of the problem is
as followa:

Let G=(V,E) be a finite, undirsoted, comnec-

ted graph (without loops or multiple edges)

whose set of vertices is V and set of edges
is BE. A matohing M is a subset of I guch
ihat no two edges of M are incident at a com-
mon vertex. A maximum matching is a maiching
whose cardinality is maximum.
e give the following basic definitions relative
to a matching l:

If an edge is conlained in M, then it is said

to be 'matched', elme it is said to be tunmatched'.

In this paper, matohed edges will be drawn wiggly
and unmatched edges will be drawn straight.

A vertex is 'free! if all edges inoident at
it are unmatched.

in 'alternating path! is & simple path whose
edges are alternately in M and not in M.

An 'augmenting path' is an alternatimg path
between twe free vertices.

A HISTORICAL NOTE

The hiatory of the maximum matching problem
began in 1957 when Bexrge proved that a watching is
maximum if and only if the graph has no augmenting
paths., In 1965, Edmends uped this result to give

an Of qu) algorithm for this problem. Since then
many oombinatorists have golved this problem with
petter running time. Among them are Gabowz, Kameda
and E-Iunroa, and Lawler[’l. The best previous rwning
times were due to Hoporoft and Km‘p5 for bipartite
graphs { o(/TVI-|E|)), and to Even and Ka.riv6 for

general graphs { Of |V12'5). Cur algorithm, close
in spirit to that of Fven and Kariv's, has a running

time of O(JTVI-IZY).

SALIENT TFEATURES OF
THE _ALGORTTHM

The algorithm presented in this paper finde
sets of augnenting paths in'phases'. Given a
matching li, a ‘phase’ may be defined as the proce-
ss of finding a maximal set of disjoint winimum
length augmenting paths (min aug paths) in the
graph, and augmenting the matching aleong these
paths, As shown by Hoporoft and Karp™, only
o(y/JVl ) such phases are needed for finding a max-
imum matohing.
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In order to describe the algorithm we first
glve the following definitions:

evenlavel; The evenlevel of a vertex v is the
length of the minimum even length alternating
path from v to a free vertex, if any, infin-
ite otherwise,

oddlevel: The oddlevel of a vertex v is the len-
gth of the minimum odd length alternating
path from v to a free vertex, if any, infin-
ite otherwise.

level: The level of a vertex v is. the minimum
between evenlevel(v) and oddlevel{v), i.e.
it is the length of the minimum alternating
path from v to a free vertex.

outer: A vertex is outer iff level(v} is even,

inner: A vertex ip inner iff level{v) is ocdd.

other level: If v is outer (inmer) then its
cddlevel (evenlevel) will be refered to as
the other level of v.

bridge: An edge (w, v) is a bridge if
either both evenlevel{u) and evenlevel(v)
are finite,
or both oddlevel(n) and oddlevel(v) are fin-.
ite.

Mate that since an aumgmenting path P has an

odd length, every edge in P ip a bridge. Note
also that if there is a bridge {(u, v), then some
vertices (at least w and v) have both the evanlev-

el and the cddlevel finite.

e now explain the concept 'tenacity of a
hridge':

tenacity: Given a bridge {u, v}, temacity ({u,v))
= min {evenlevel(u) + evenlevel(v),
oddlevel(u) + oddlevel{v)) + 1,

S0, the tenacity of a bridge represents the mini-
mum length of a not necessarily simple alternating
path from a free veritex to a free vertex contain-
ing the bridge. If suchk a path is simple, then it
is an augmenting path. It can be proved that any
min aug path P contains a bridge whose tenacity
equals the length of F.

The algorithm consists of a main routins,
SEARCH, and three subroutines; BLOSS-AUG {which is
called with two vertices as pavameters), FINDPATH
and TOPOLOGICAL ERASE.

In each phase, SEARCH grows Treadth First
Search {BUFS) trees rooted at the free vertices of
G in order to find the level of sach vertex in ¢
i.e. to find the evenlevel of outer vertices and
the oddlevel of inner vertices. In order to do s8¢
SEARCH starts with the search level O and grows
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the BFS trees by incrementing the search level by
one each time.

When SEARCH detects that a certain edge {u,v}
i6 a bridge, it .;7ill call the subroutine BLOSS-AUG
with the parameters u and v. If there is an aug-
menting path containing (u, v), its length is at
least tenacity({u, v))., In faot, when BLOSS-AUG
is called with parameters u and v, it looks for an
augmenting path of exactly this length. Bo, if
BLOSS-AUG is called at a lower search level for
bridges having a lower tenacity, the firsi augmen-
ting path found in 2 phase will have minimum len-
gth, TIndeed, SEARCH ocalls BLOSS-AUG at search
level i for bridges whose tenacity is 2i+1, This
is asccomplished by putting bridges whose tenacity :
is 2i+1 in the set bridges{i), Then, at the end
of search level i, BLOSS-AUG is called for each
edge in bridges(i).

In oase there iz no asugmenting path of length
tenacity({u,v)) containing the bridge (u, v},
then BLOSS-AUG ereates a neuw'blossom' B (a set of
vertices)., Before this call, all vertices in B
had exactly tne level (even or odd) set o a fin-
ite value by SEARCH, During the present call,
BLOSS~AUG will set to a finite value the other
level of the vertices in B, In this process, some
edges may be discovered io be bridges., The ten-
acity of these edges is computed, and they are in-
serted in fthe proper .ei of bridges.

hen BLOSS—AUGQ detects the presence of an
augmenting path centaining (u,v), FINDPATH
finds one such path, P. The present matching is
increased along P; then TOPOLOGICAL ERASE remo-
ves the edges whieh,in the present phase, cannot
be part of a min aug path disjoint from ¥, In
a phase, if & min aug path is found at search le-
vel m, then a2 maximal set of disjoint 2m+1 long
augmenting paths is found at the same search le-
vel and the phase ends, TOPOLOGICAL ERASE en~
sures that these pathe are indeed disjoint. The
faoct that the phase ends when there are no more
bridges having tenacity 2m+1 ensures ihat the set
of min aug paths found is indeed maximal, since,
a5 said, each min aug path P contains a bridge
whose tenacity eguals the length of P.

Since the algorithm executes a phase in

} steps, it finds a maximum matching in

of 15
0(\”‘:’{- IE| ) steps.

DESCRIPTION OF SEARCH

During the execution of a phase, SEARCH
grows Breadth FPirst Search trees rooted at the
free vertices of G in order to find the level of
each vertex.
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TARCH scans an edge at most once {in one of
the two directions). A searched edge may be scanned
in the opposite direction, by BLOSS-AUG. Uhen this
happens BLOSS-AUG marks the edge wused" +to prohibit
SEARCH from scanning it again.

At the start of a phase, the evenlevel and
oddlevel of emch vertex of C are set to infinity,
to signify that ne alternating path of any length
has been found yei. Then, the evenlevel of each
free vertex is reset o zero.

lhen the cearch level, i, is even, search is
conducted from each vertex, v, with evenlevel{v)=i
to find vertices u such that the edge (v, u) is
"unused” and unmatched, If the oddlevel of w is

infinity, then it is reset to i+1.

When i ie odd, the search is conduoted from
each vertex, v, with oddlevel{v)=i, to find the
unique matched neighbour, 1, of v, Furthermore,
the evenlevel of u is reset to i-+1.

While growing the BFS trees, SEARCH constructs,
for sach searched vertex u, the get of its
tpredecessors’:
praedecessors: Let u be a vertex of @ whioch i® not

free, If u is inner and oddlevel{u)=2i+1

then v is a predecessor of w iff
evenlevel{v)=2i and (w,v) is a member of &,

If u is oubter then v is a predecessor of 1

iff {u,v) iz a matohed edge.

The set of predecessory of each vertex u will be
denoted by tpredecessora(u)'s

ancestor: 1Is the transitive {put non-reflexive)}
clogure of the relation predecensoT.

in addition, SEARCH constructs, for sach inner
vertex u, the set of its 'anomalies's
anomaly: Let w be an inner verisx and oddlevel{u)
be 2i+1. Then v is an anomaly of w iff
evenlevel(v) >2i+1 and (w, v) is a member of
(B ~ M).
The get of anomalies of U will be denoted by
tanomalies{u)t.

EXAMPLE 1:
In figure 1, o and t are the predecessors of
u, u is the predecessor of wy, and v is an anomaly

of w.

JCL‘ﬂu.rg 1.

While moanning an edge, SEARCH checks to see
if 1%t is a bridge. ¥hen SEARCH disoovers that an
edge (u, v) is a bridge, it computes the tenacity
of the edge, say 2i+1, and inserts (u, v) in
bridges(i). A%t the end of search ievel i, SEARCH
calls BLOSS-AUG, with parameters v and v, for each
bridge in bridges(i). If during these calls, an
augmenting path is found. (mora precisely, a maximal
get of minimum length disjoint angmenting paths
would be found), them the present matohing will be
increased and the phase will end. If instead, at
the start of the present phase, the matching is
already maximum, no augmenting paths ocan be found,
but SEARCH will reach a gearch level i such that
no verticee will have level i, and the algorithm

will halt.

TESCRIPTION OF BLOSS-AUG

The subrowiine BLOSS-AUG i called with ver-
tices w and v such that the edge fu,v) is a bridge.
Thig call will result either in the formation of
a new blossom, or in the discovery of an augmenting
path, 4 new blessom ig formed if and only if the

following condition holds:

BLOISOMING CONDITION:

puch that
1. =z is an ancestor of both v and v.
2, u and v 4o not have any anoestors, other than

z, whose level is egual 4o level(a).

thers exist veriices, 2,

if the blossoming conditien does not hold,
a min aug path is discovered,
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Assume that the
blossoming oendition holds for the bridge {u,v).
Then BLOSS-AUG will construct a new blossom B.

"B will consist of all vertices w whose other level

CONSTRUCTION OF A NEW BLOSSOM.

is gtill infinity, but can be met to a Tinite value
due to the bridge (u,v), i.e. if w is inner (ou-
ter) there is a min even (odd) length alternating
path, containing (u,v}, from w to a Iree vertex.

We give also an algorithm-oriented definition of
B:

Among the z's of the blossoming condition
which do not belong to any blossom, let b be the
vertex whose level is maximum. Then the new blos-
som B is the set of vertices, w, such that
1. w does not belong to any other blossom when
B is formed.

2. either w=u or w=v or W is an anoeator of u or
w is an ancesfor of v.

3, b is an ancestor of w.

Purthermore, b is designated %o be the 'bass' of B
and u and v the 'peaks' of B.

EX{AMPLE 2
Figure 2 ghows the formation of a blossom. At
search level 6, SEARCH detects the bridge (1, m),
and calls BLOS3-AUG, During this call, blosszom B
is formed.
B= {l,m,j,k,g,h,i,d,e,fj ,
The base of B i85 o and its peaks are 1 and m.

m é

o kel 0

fiqurve 2.

The following faots should be pointed out
about blossoms!t

1. At any stage in the algorithm, a vertex hae
both levels (even and odd) finite if and only
if it belengs to a blossom at that stage.

2., A vertex can belong to at most one blossom,

20

3, The base, b, of a bleossom B is always an out-
er vertex,

4. b does not belong to B because when B is be~
ing formed, there is no odd length alternating
path from b to a free vertex.

5. As a consequence of fact 2, a peak of a bloss-
om B does not necessarily belong to DB.

6. Since at each search level i, SEARCH scans ihe
edges in an arbitrary order, the set
bridges{i) is formed in an arbitrary order.
Consequently, our blossoms are not algorithm-
independent structures. This point is illus-
trated in the next example.

T. If a vertex v belongs to a blossom B and it
is contained in a min aug path P, then P
also contains base(B).

EXAMPLE 3

At search level 4, if the bridge (i, j) is
processed before (j, k), then the blossoms formed
are:

B = {i,jsfsgl
The base of BI iz 4 and its peaks are i and j.
B~ {k,h,d,e,b,0}
The base of 32 is a and itm peaks are j and k.
However, if (j, k) is processed before (i, j)
then the blossoms formed are:

B= {3kg:hyd,e,0,0)

The bhase of BI i a8 and its peaks are j and k.
B,= {i,f]

The base of B2 ie a and its peaks are i and j.
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In order ¢ acocomplish the taske of construct-
ing blossoms and deteoting the presence of augment-
ing paths within the rumning time of O(|E|} per
phase, BLOSS-AUG performe a rpouble Depth First
Search' (DDFS). The DDFS consists of growing two
Depth First Search trees 'I‘l and Tr contemporarily,

i,e. if at a oertain stage, the ceniers of activit-

ies of ’I‘1 and Tr are at vl and vr respectively,
then the DDFS grows T, if 1eve1(vl)}level(vr),

and it grows Tr otherwiae. 'l":1 and Tr are rooted

at u and v respectively. This DDFS nas the follow-
ing special feature: when the search i\ condunted
from a vertex w, which is the center of activity of

one of the trees, say Tl’ then the DDFS seeks only

the vertices of predacesaors(w) for growing Tln

(w, p}, Where P is a member

While scanning an edge
arks it "used" so that

of predecessors(w), DDFS m
SEARCH may not scan (v, p) when it reaches v.

The verticea of ‘I‘l are marked wieft" and those

of Tr are marked "right" B0 that, in case an aug-

menting path contains these verkioes, the funotion

FINDPATH can find it.

During the DDFS, the two trees may find two
different free vertices. In this case, an augmei—
tation is possible. However, the search may not
be so simple, for the two trees may meet at a ver-
tex v. Then, clearly, only one of the tress can
claim w and the free vertex reachable from it.
fipat T. is eilowed to claim W (w ip marked niaft")
Purtheriore, T_ backs up and tries to find a veriex
ag deep aB vy rthu.s enabling the DOFS to procesd.
However, if T, fails, then T must claim W {the

Soy

DDFS changes the mark on W %0 npight' ). Now, Tl

backs up and tries to find a vertex as deep aB We
If T is also unsuccessful then an augmentation
invo}ving the sdge (v, v) is not possible at this
stage. This is 80 because there cannot be two dis-
joint alternating paths starting at u and v and
reaching the same Jevel as W, Now, a new blossom
is created, The base of thie blossom is ¥, its
Peaki (left peak) is w, and its PeakR {(right peak)
ig v, The blossom contains all of the vertices of
'I‘1 and Tr other than w, and the "pight" mark on ¥

is point the other level of the

is removed, At th
o formulat

vertices & in B is computed by th

tenacity((u, v)) = 1evel{s).

Once B is formed and the other level of its

vertices is computed, some
to be bridges. Such newly discovered bridges are

of two types: pridges having poth endpoints in B,
and bridges having only one endpoint in B.

edges may be discovered

m—

Por bridges (s, t)} svch that both B and t be—
long to B, the blossoming coundition clearly helds.
So, no augmenting path would be discovered if
BLOSS-AUG ie oalled with parameters 8 and +, Pur-
thermore, the blossom B that BLOSS—AUG would ore--
ate will be empty bescause the other level of no
new vertices can be set to a finite value due to
{a, t). Therefors, suoh bridges are ignored.

For bridges (s, %) such that only one vertex,
say ©, bolongs to B, it can be shown that 8 is an
jnner vertex and t is an anomaly of s, Converse—

1y each anomaly of each inner vertex of B iR
2 newly discoversd bridge. S0, BLOSS-AUG computes

the tenaoity, say 2j+1, of sach such bridge and
inperts it in pridges(j). Also, it marks the brig-
ge"used". Note that if i is the present search

levﬁl, then j>i| .

Another spscial featurs of the DDFS is that
while the search is oonducted from & vertex w %0
soan an edge (w, )y if P pelongs to a blossom B,

then it shifts the center of activity to base*(B1),
in order to define the funotion basex(.), we
introduce the partial order 12t on the bases of
blogscms:

If 31 and 32 are blossome, then,

'baae(B,I)(bs.se(Ba) iff
‘nasa(51) belongs 0 B,e

Purthermors the reflexive and transitive clopure
of will be denoted by 1 ', Then,

st
base*(B, ) 8 pane(p) iff base(B )€ pase(B)
and there is no B! guch that
pase(B)< base(B').
This feature of the DDFS has the same effect as
that of 'shrinking' eaoh tlossom into a maoroncde
located at ite base¥.

Clearly, the funo¥ion vase*{.) could be imple-

mented by a Union Find. However, because of the
gpeoial structure of blossoma, o path compression
ig sufficient to bound by o(}Bl} the work done
due to base#* in a phase. Pase* i8 implemented by

a path gompresgion as follows!
1. Tbase*(B) = bage(B) vhen B is formed, and

o, if just before a new computation of base*{B),

base*(B)=ba.se(]31), baﬁe*(B1)=‘uase(B2), aes
baﬁe%-‘(Bk)&hase(B' ), and base*(B' j=bese{B'),

then, the new compuiation of base*(B} leaves

upon termination
'ba.sa*(B)=‘ba.sa*(B,l)== ves =base*(l3k)=baae(]3‘).
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The subroutine uses wo varisbles, DOV and
barrier, whose function needs an explaination. A%
any stage, DCV (Deepest Common Vertex) points 4o
the deepest vertex which has boen disocovered by
both T. and T , Before the first time that such
a vertdx is dimcoversd, DOV is undefined. Barrier
ascomplishes the following task: suppose '1‘1 and Tr

meet at a vertex w, PFurthermors, suppose that Tr

baoks up all the way and fails to find another
vertex as deep as Wj however, Tl ig able to accom-

plish this task. Subsequently, T'1 and Tr meet
again., Thiz time, 'I'r phould not back up above W.

This task of limiting T 's backing up is acoompl-
ighed by barrier. Barrier is initialized %o v,
and each time T fails during baokiracking,
barrier is shif‘¥ed +o the current DOV.

DESCRIPTION QF FINDPATH

Yhen BLOS8-AUG detecis the presence of a
min aug path, it makes use of FIMDPATH to find
one such path, P.

FIIDPATE is passed two vertices, high" and
11ow" and a blossom B ap parameters. High and low
are such that level{high)plevel{low) and they
both belong ko a common min aug path. FINDPATH
reiurns the portion betwsen high and low of one
such path.

FINDPATH performs a Deapth Pirst Search siar-
ting at high to find loW. This Deapth First Search
hae some special features:

1. When the center of activity is at z vertex v
belonging to B, the blessom passed af & para-
meter, only the predecessors of v are congide-
red to continue the search. If the center of
aotivity is transferred to one sugh predeces—
gor, W, v is made the father of u.

2, 1t considers shrunk all blossoms other than B:
asgume that the cenier of activity ks at a
vertex v not belonging to Bj it can be showm
that v belonge tc some other blossom B', then
only base(B')=b is considered to continue the
gearch, If the center of activity is tran-
gfered to base(B')=b then v is made the father

of b.

3, The center of activity is never iransferred to
a vertex veB such that its "left!/tright"
mark is different from that of high, or to a

veptex v whose level is less than that of low.

When the search succesds in finding low {i.e.
the center of activity is at low), FINDPATH cons-

tructs the 'generalized path' high=X_ ...x =loW

by reversing X;. ..x,lz the father chain from low

to high.

The path T, e x is called a 'generalized

path because it may not be a lagal alternating path
from high to low. This will be the case if xj

does not belong to B, for some J=1 ... m-1.

So for all suech x_, if
any, OFEN is invoked. Its functicon iz to “open
properly the blossom, say B', to which xj belongs

by finding an alternating path from x. to
base (B! )=x, J

J+i
If xj is outer then OFEN calls FINDPATH with
aramete *
P TS xj, xd+1, BY,

If xj it inner, then OPEN mekes two calls to
PINDPATH, Let us assume, w.l.0.g., that xj is

marked "left" {mark received at the time of the
formation of B'}. Then the firset call finds a
path, P, from PeakL(B') to x, and the second a
path, P, from Peakn(s') to Jbase(B')—.»xjH.

It should be aoticed that 1:‘1 and P2 are disjoint.
Let P'a denote the reverse of P and "o" the con-
catenation operator. Then the alternating path

from ¥ to % ie given by P= o P,

+1 1 2

EXANPLE

ov
;?ure 4

In this portion of graph there are two blos—

BOTIE 4 ]31 and B,. B1={k,l,h,i] and base(B1).—.f;

B2={n,o,m, jif,g’d?e} and, base(B2)=c.

22
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parameters high=p,
all Dlogsom must be

+h returned
OFEN will

PINDPATH is called with
low-a snd B=‘undefined’ {i.e.
considered shrunk). The generalized pa
will be phfcha. Since hEB,l and fEBg,

The first call will oonstruct

the path hilif {containing the vridge {k,1) sin-
ce h is inner). The second call will consiruct the

path fdo o The p-a path will then be
phklifdcbas

be called twice.

DEGCRIPTION OF
POPOLOGICAL ERASE

g has found & min aug path P

After FINDPA
eased along P

and the matching has been incr
TOPOLOGICAL ERASE is ocalled. This gubroutine era—
ses from the graph the path P and all those edges

which cannot be part of a min aug path disjoint

from P.

FOPOLOGICAL ERASE is very ol
the well known topological sort.
a counter which at any Btage ind
of its unerased. predacessor adges.
erased; along with all edges (predecessors
incident at it gither when its sounter is decreas—
ed to zero or when 1t enters a min 8ug path detec—
ted by FINDPATH. gince the free vyertices do not
have any predecessor edges, their counter is setb
to one at the start of a phase, 80 it will remain
one ithroughout the phase. I% is not diff ieult to
gae that the total complexity of thim routins 18

o |E\) per phase.

Wote that if & plossom
vertices in B are arased.
PATH puts in the augmenting pat

blossom B whenever jt puts in P a vartex
i0 B, we oan alao say that whenever & yertex of

B is erased, all vertices in B are erased.

ose in spirit to
Each vertex has
joates the number
A vertex is

or not)

B ig erased 4then all
Morsover, singe FIND-
h P the base of a

belonging
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Routine SEARCH

{0} {initialization) For each vertexv, evenlevel(v):=infinite,
oddlevel{v):=infinite, blossom(v):=undefined, predecessors(v):=¢,
anomalies(v):= ¢ and vis marked "unvisited".

All edges are marked "unused” and “unvisited".
For ii=1to|V|: bridges(i):= ¢ .
ii=-1.

(1) For each free vertex v, evenlevel{v}:=D,

(2) =i+l
If no more vertices have lavel { then HALT,

(3) Itiis eventhen
for each v with evenlevel(v)=1 find its unmatched, "unused" neighbors,
for each such neighbor v
If avenlevel{u) is finite
then ternp:= (evenlevel{u) + evenlevel(v))/2,
bridges(temp):=bridges(temp) U {(u. v}.
else
{(a) {(handile oddlevsl} If oddlevel{u)=infinity then
cddlevel({u):=i+i.
{b) (handle predecessors) If oddlevel{u)=i+1 then
predecessors({u):=predecessors{u} | J {vi.
(c) (hendle anomalies) If oddlevel{u) < i then
anomalies(u):=anomalies{u) | {vl.

{4) Ifiis odd then .
for each v with {(oddlavel{v)=i and v & B) take its matched neighbor u.
{a} (handle bridges) If oddlevel{u)=i then
temp::%oddlevel(u) + pddlevel{v)}/B,
bridges({temp):=bridges(temp) U {{u, v}

{b) (handle predecesszors) If oddlevel{u)=infinity then
evenievel{u):=i+1,
predecessors(u):= {vi}.

{6) For sach edge {u, v) in bridges(i): call BLOSS-AUG(q, ¥).
If an augmentation occurred
then go to step (0) (end of a phase)
else go to step ().

Note:

{1} "u & B" stands for "wertex u does not belong to any blossom," i.e.,
blessom({u) = undefined.

"u € B" stands for "vertex u belongs to s blossom. This blossom was named
B", i.e., blossom(u) = B.

(2) The functlon base *(*) is defined in the descripton,

(3) The string oparations;“iu {inverse) and “o"{concatena-

tion) are explained in the deseription.
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Subreutine BLOSS-AUG (awj, wg: verticea).

{neither is an augmentation poasible, nor can a new blossom be created).
Otherwise, it wy € Bthenw, :=base *(B)
glse v 1= wy .
Ifwz € B then v, =base * (B)
else v, 1= Wy
Mark v; "left" and v, "right",
f( »; ) Is undefined, DCV is undefined, and barrier:= vy.

(1.1) If »; and v, are free vertices then
P:=( FINDPATH( wy, % , undefined} ) -1, FINDPATH ( wg vy ,undefined).

(1.2) {w and v, are not both free vertices)
Itlevel( v, } s levell v, )
then go to step {2.1)
else go to step (3.1).

(2.1} If v, hes no more "unuged" ancestor edges then
if f( v, ) is undefined
then go to step (4} (create anew blossom)
else 1, :=£( +; ) and go to step (1.1},
(2.2) ( v; has "unused” ancestor edges). Choose an "unused” ancestor edge
v, £.u Mark e "uged”.
Ifu€ B then w=hase * (B).

(a) If uls unmarked
then mark u "left”, flu}=1;, v !=u, and
go to step (1.1).

{b) Otherwise {u is marked)
if u=barrier or u ¥,
then go to step (1.1},
alse mark u "left", vy = v ) vpiEw
PCY¥:=u, and go to step (1.1).

{3.1) If 2, has no more "unused” ancestor edges then
if v, =barrier
then w, :=DCV, barrier:=DCV, mark v “right",
vy :=t{ v ), and go to step (L.1),
else vy :=f{ ¥, ) and go to step (1.1),

(3.2) { v has "unused” ancestor edges). Choose an "unused" ancestor edge
v.2u. Mark e used. :
Ifu € B then u:=base * (B).

(a) £ u is unmarked then mark it "right”, Euh= v, e i=u, and

go to step {1.1).

{b) Otherwise (uis marked)
ifu= v, then DCVi=u.
Go to step {1.1}.

25

{0) {initialization} 1f w, and wg belong to the same blossom then go to step {5).

Augment the matching along P, do a TOPOLOGICAL BRABE, andgoto step (5).
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{4) {Creation of a new bloasem)
Remove the "right" mark from DCYV.
Create a new blossom (a set) B, Let B consist of all vertices that wers
marked "lef{" or "right" during the present call.
peakLl{B):= w,, peekR(B):= 1wy, base (B):=DCV.

For eachuin B:
blossormn{u):=8.

(a) if uis cuter then
eddlevel{u):= 2i + 1 - evenlevel(u)

{b) if u is inner then
evenlevel{u):= 2i + 1 - oddlevel{u),
for each v in ancmalies(u) :
temp:= (evenlevel{u} + evenlevel(v))/2
bridges(temp):=bridges(temp) | §{u, v)}.
Mark (u, v) tuged",

(5) Return to SEARCH.

Function FINDPATH (high, low : vertices,
B : blossom)

0.0 (boundary condition) If high=low then Pathi=high and go to step®

0.1 (initialization) v:=high.
1. If v has no more "unvisited" predecessor edges

then vi=f{v} and go to step (1).

2. If blossom{v) = B then ochoose an "unvisited” predecessor
edge v--u. Hark e "vigited".
else wu:=hase({blossom(v)}.

3, If u=low then go to step (8) (the path has been found).

4, If {u is "visited”) or (lewel{u)<level{low)) or
{blossom{u)=B and u does not have the same
"leftM/right" mark as high)
then go to step 1k

5. Mark u "visited"”.
Eu):=v, wi=u and go o step (1).

8. {u=low) Pathi=low.
Until v=high do: Path:=v Path and v:=f(v).

T.(Pakth=zy: ** T, . wherez,; shigh and z,, =low) For j=1 tem-1 do:
Ir bloasom(xj)¢3 then replace x:i and x‘]_+1 with
OFEN(x_, x_. .} in Fath.
j j+1

8. Return Path.
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[2]

[l

(4]

6]

(8]

Function OPEN (entrancs, base : vertices)

0., B:=bloessom(entrance},

1, If entrance is vuter
then Path:=FINDPATH(entrance, base, B)
and go to step (3).

2. (entrance is inner) Let Peakl, and PeakR be the peak vertices of B,
If entrance is marked "left"

then Path := (FINDPATH{Peakl, entrance, B)) "! FINDPATH{PeakR, base, B)
else Path := (FINDPATH{PeekR, entrance, B)) ! FINDPATH(Peakl, base, B}

3. Return Path.
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