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The author presents  a geometrical modelwhich illuminates variants 
of the Hungarian method for the solution of the assignment problem. 

1. INTRODUCTION 

based on the work of D. Konig and J. Egervgry. In one possible interpretation, an assignment 
problem asks  for the best assignment of a set of persons to a set of jobs, where the feasible 
assignments are ranked by the total scores  or ratings of the workers in the jobs to which they 
are assigned. It is a special case of the transportation problem, which asks for the allocation 
of a homogeneous commodity from given supplies at a set of sources  to satisfy prescribed 
demands at a set of destinations, while minimizing the total source-destination transportation 
costs. The extension of the Hungarian Method to transportation problems can be found in the 
work of L. R. Ford, Jr., and D. R. Fulkerson [2] and of J. Munkres [6]. Comprehensive reviews 
of these problems may be found in the papers of M. M. Flood [3] and T. S. Motzkin [4]. 

The original purpose of this note was to present a modification of the Hungarian Method, 
inspired by an algorithm of Marshall Hall, Jr. (51, for the choice of a system of distinct repre- 
sentatives f o r  a family of sets. But is now seems that a synthesis of all of the available vari- 
ants would be more valuable. Accordingly, the paper now presents a geometrical model that 
is adequate to define and compare the algorithms contained in [I], [2], [5], and [6]. In Section 
2, the Hungarian Method is reviewed in outline so as to isolate the procedure that is altered in 
these variants. The modification suggested by Hall's work is presented in Section 3. A trans- 
lation into graph-theoretical t e r m s  of the problem solved by all four versions is the subject of 
Section 4; this section is self-contained and can be read by itself. A final section compares 
these alternative solutions by means of this geometric model. 

The Hungarian Method [ 11 is an algorithm for  solving assignment problems that is 

2. RESTATEMENT O F  THE HUNGARIAN METHOD 
As considered in this paper, the assignment problem asks: Given an n-by-n matrix 

A = h . )  of non-negative integers, find the permutation j,, . . . , jn of the integers 1, . . . , n 
9 
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that minimizes the s u m . a  t . . . t a (If a maximum permutation sum is demanded, set 
l j ,  n j i  

a =  max. l,j aij and replace A by A' = (a!.) with a!. = a - aij, for all i and j.) The Hungarian 

method is then based on two assertions: 
A. The problem is unchanged if the matrix A is replaced by A' = (a!.), with a!. = a.. - 

ui - v. for  constants ui and v., and i, j = 1, . . . , n. 

contain all of the zeros  of A is equal to the maximum number of zeros  that can be chosen, with 
no two on the same line. 

As presented in [ 13, the algorithm divides into two routines. Routine I is essentially an 
iterative procedure for  determining the minimum number of lines and the maximum number of 
zeros  referred to in Klinig's theorem; it is the possible variations in this routine that form the 
main subject of this paper. The input of the routine is a subset of the zeros  of A, marked by 
asterisks, with no two asterisks in the same line. If the number of as ter isks  is n, then the 
desired minimum is zero, and the problem is solved by j,, . . . , jn where the asterisk in row i 
appears in column j i ,  for i = 1, . . . , n. If the problem is not solved (i.e., if there  are k c n 
aster isks)  then the output of a single application of Routine I is one of the following disjoint 
alternatives : 

4 11 

11 11 4 
I 3 

B. (Klinig's theorem) The minimum number of l ines (rows and/or columns) needed to 

Ia. A new set of k t 1 asterisks on zeros  in A, with no two on the same line; o r  
Ib. A set C of k < n lines which contain all of the zeros  of A. 
Routine I is repeated until there  are n aster isks  (and the problem is solved) o r  until 

there  is an  occurrence of Alternative Ib. In the latter event, let h > 0 be the minimum entry 
not appearing in the lines of C. Routine II calls for the addition of h to all entries in each 
line of C (if an entry appears in two lines, then 2h is added) then for the subtraction of h from 
every entry in A. Routine I1 leaves A non-negative but decreases the sum of all entries by an 
amount nh(n - k). The only property of Ib needed for the finite termination of the combined 
algorithm is that the set C contains less than n lines. The original Routine I produces the 
exact minimum k; in the modification of Routine I proposed in the next section, the set C con- 
tains exactly n - 1 lines at every occurrence of Alternative Ib. 

3. MODIFIED ROUTINE I 
Search each column of A in turn for a O* . If a O* is found, proceed to the next column 

(if no columns remain then there are n asterisks and the problem is solved). If a O* is not 
found in the column, then the column is called pivotal and is searched for all of its 0's. If no 0 
is found in the pivotal column, then the remaining n - 1 columns contain all of the zeros  of A 
(Modified Alternative Ib). If there are 0's in the pivotal column, then their rows are searched 
in turn for a O*. If such a row contains no 0*, then the 0 in that row and in the pivotal column 
is marked with an asterisk (Alternative Ia). If each 0 in the pivotal column has a O* in its 
row, then these rows are listed in any order: il, . . . , $. We now construct a sequence of 
rows based on this initial segment. At s tep s of the construction, we search row i for a O*. 
If a O* is found, then the row indices of all 0's in its column are added to the sequence in any 
order  and any indices already present are omitted. If no O* is found in row is, then a t ransfer  
(see [ 11 and Section 4 below) is possible. Namely, is was added to the sequence via a 0 in the 
Column of a O* in an earlier row i of the sequence. If the aster isk is t ransferred from row 
ir to row is in this column, then we have the same situation earlier in the sequence. Con- 
tinuing, we ultimately free an aster isk in a row of the initial segment, il, . . . , it. But then 

S 

r 
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~~ ~~ 

Matrix A 

Transfer  

Transfer yielding incomplete 
assignment 

an aster isk can be marked in this row of the pivotal column (Alternative Ia). In the remaining 
case, a finite sequence il, . . . , iv is constructed with the following properties: Each row in 
the sequence contains a O* in some column. These columns, together with the pivotal column 
(v t 1 columns in all), contain 0’s (marked or  not) only in rows il, . . . , iv. Hence, the 
remaining n - v - 1 columns combined with the rows il, . . . , iv constitute n - 1 lines that 
contain all zeros  (Modified Alternative Ib). 

In a rough attempt to evaluate the advantages of this variant, it may simplify the search 
for  a transfer in Routine I at  the possible expense of smaller  changes in the sum of the entries 
in A on the next application of Routine II. 

Graph G 

Directed path (possibly void) originating at a source. 

Directed path (possibly void) from a source to a sink. 

4. A GRAPH-THEORETICAL EQUIVALENT OF ROUTINE I 
In this section, the problem solved by Routine I (and by the algorithm of Section 3) is 

given an independent statement and then rephrased as a problem in graph theory. 
Let A be an n-by-n square a r r a y  in which certain of the places are occupied by zeros. 

An assignment is a subset of k zeros, distinguished by asterisks,  such that no two aster isks  
lie in the same line (row o r  column) of A. An assignment is complete if every zero lies in the 
line of some asterisk. A z r  is a set of lines of A that contain all of the zeros  in A; if a 
complete assignment is available, only the lines in which aster isks  appear will be used in a 
cover. Konig’s theorem asserts that the largest  number of as ter isks  in an assignment is equal 
to the smallest  number of lines in a cover. Such an assignment is called maximal; such a cover 
is called minimal. A transfer is possible when there  is a sequence of asterisks at (il, j l ) ,  
. . . , ( i r ,  jr) in A such that there are zeros  at (i2, jl), . . . , (ir, jr-l) and a zero at (il, j0h 
for some jo, with no aster isk in its column. The t ransfer  removes the aster isks  from 
(il, jl), . . . , (ir, jr) and assigns them to (il, jo), . . . , (ir, jr-l). If there  is a zero at 
(irt 1, jr), for  some irt 1, with no aster isk in i ts  row, then the result  of the transfer is an 
incomplete assignment (and another asterisk can be placed at (ir+l, jr) ). 

To each complete assignment for A, we shall associate an  oriented graph G by the fol- 
lowing rules: 

The nodes V of G are in a 1-1 correspondence with the asterisks. A directed edge 
loins V1 to V2 if there is a zero  in intersection of the column of the asterisk-node V1 and 
the row of the asterisk-node V2. The node V is distinguished as a source (sink) if there is a 
zero in the row (column) of V with no aster isk in its column (row). Note that a node can be 
both a source and a sink. 

The equivalence of various concepts in the matrix A and the graph G is displayed in 
the table below: 

-- 

Cover r ~ 

Assignment o f t  and/or - to each node so that every 
source (sink) is marked +(-), and no edge starts at a t 
and ends at a - . 
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The first two equivalences follow directly from the definitions. To prove the last 
equivalence, suppose that a cover is given for the matrix A in which the assignment is com- 
plete. Each asterisk is contained in a line of the cover; if it is covered by a row (column), 
mark the corresponding node by a t (-). An asterisk-node V is a source (sink) if, and only if, 
there is a zero in the row (column) of V without an aster isk in its column (row). This zero is 
covered; hence the node is marked with a t (-) if it is a source (sink). Each edge in G cor- 
responds to an unmarked zero, and leads from an  asterisk-node in its column to an asterisk- 
node in its row. For this zero  to be covered, either the former is marked by a - o r  the latter 
by a t (Recall that when the available assignment is complete, only lines through asterisks 
appear in a cover.) To  show the other half of the equivalence, consider the set of the rows of 
the asterisk-nodes marked with a t and of the columns of the asterisk-nodes marked with a - ; 
under the conditions listed, it is asserted that this set is a cover. Clearly, only zeros  without 
asterisks need be considered. If there  is an asterisk in the row (column) of such a zero, but 
no asterisk in its column (row), then this asterisk-node is a source (sink) and is marked by a 
t (-). Hence the row (column) of the zero without an aster isk is in the set. If there is an 
aster isk in both the row and column of an unmarked zero, then there is an edge from the latter 
to the former.  Since either the asterisk-node in the row is marked with a t o r  the asterisk- 
node in the column is marked with a -, the unmarked zero  is covered. 

THEOREM 1: Let A be a matrix with a complete assignment and let 
G be the associated oriented graph. Suppose each node of G is assigned t 
o r  - (and not both), so that every source (sink) is marked t (-) and no edge 
starts at a t and ends at a - . Then the corresponding cover is minimal. 

PROOF: If there are k asterisks assigned in A, no cover can contain less than k 
lines. The cover corresponding to the given distribution of one t o r  - to each node of G 
contains exactly k lines. Q.E.D. 

We now prove a purely graph-theoretic theorem that will form the basis of our discus- 
sion of Routine I (and, incidentally, prove K6nig's theorem). 

THEOREM 2: Let G be a directed graph in which two disjoint 
(and possibly void) sets of nodes have been distinguished as sources  and 
sinks, respectively. Then exactly one of the following alternatives holds: 

(a) There is' a directed path in G from a source to a sink. 
(b) Each node of G can be marked with one sign (t o r  - ), so that 

every source (sink) is marked t (-) and no edge starts at a t and ends a t  a -. 

PROOF: Both alternatives cannot hold since, for any distribution of signs and any 
directed path from a source (t ) to a sink ( - ), there must be an  edge that starts at a t and 
ends at a -. 

Let S be the set of nodes that are connected to some source by a directed path (starting 
at the source). If a sink lies in S then (a) holds. If a sink does not lie in S, then assign t to 
the nodes in S and - to the nodes not in S. This marks the sources  and sinks as required by 
(b). Suppose that an edge s t a r t s  at a node marked +, and hence in S. If the directed path from 
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a source to this node is extended by the edge in question, the terminus is connected to the 
source by the extended path. Hence the terminus is in S and is marked t . Q. E.D. 

Remark 1: A proof of Kbnig's theorem now results as follows: It is a simple matter 
to construct a complete assignment of as ter isks  to the zeros  in A (say, by assigning an  aster- 
isk to the first zero in each row which is not in the column of an aster isk that has been placed 
previously). If alternative (a) of Theorem 2 holds, a t ransfer  yields an incomplete assignment 
and another as ter isk can be placed. Repeating, alternative (a) can hold only a finite number of 
t imes (surely no more than n - k). When alternative (b) first occurs, we have a minimal cover 
with the same number of lines as there  are assigned asterisks, and Kbnig's theorem is proved. 

Remark 2: If there  are no sources  (sinks) then the theorem is trivially satisfied by 
marking all nodes - (t ) . 

Remark 3: The construction of the proof can be altered in the following manner. Let 
S be as above. Let T be the set of nodes that are connected to a sink by a directed path 
(ending at the sink). If there  is a node both in S and T, then (a) holds. Otherwise, mark the 
nodes in S (T) with t ( -  ), and mark all nodes that are in neither S nor T with the same sign 
(either all t o r  all -). 

5. VARIANTS O F  ROUTINE I ON THE GRAPH G 
The methods described below all amount to a construction of the set S or T in different 

manners. They will be defined in informal geometric terms,  and the translation back into te rms  
of the matrix A will be left for the reader. 

1. (Kuhn [l]). In the search for  a path from a source to a sink, start at any source and 
continue as far as possible along a directed path. If a sink is not reached, backtrack to the 
nearest  branch point and t r y  again. When the directed paths originating at one source are 
exhausted, t r y  the next source. If all sources  are exhausted and no sink has been reached, the 
set of all nodes that have been encountered is S. 

2. (Ford-Fulkerson [2]). Start simultaneously from all sources  and construct all 
directed paths with one edge (or less)  originating at the sources. Ektend these to all directed 
paths with two edges (or less). Continue fanning out from all sources  until a sink is encoun- 
tered o r  until S is exhausted. 

0 in this column, then the remaining columns form a cover of n - 1 lines. Otherwise, each 0 
is in the row of a source. Fan out from these sources  (as  in 2, above) untih a sink is encoun- 
tered o r  until the set of nodes connected to these sources  by directed paths is exhausted. The 
cover then consists of the rows of the asterisk-nodes thus encountered completed by all col- 
umns except the pivotal column and the columns of asterisk-nodes already covered by rows 
(n - 1 lines in all). 

4. (Munkres [6]). Mark all nodes both t and - . Then examine the nodes that have 
two signs, according to some preassigned order  (say, from left to right in the matrix A). If 
such a node is a source (sink) o r  is connected from (to) a node marked only t ( - ) by a directed 
edge, remove the - (t) from the node and prime the edge used in the cri terion (if any). If both 
signs are removed, a unique path from a source to a sink consisting of primed edges has been 
found. Otherwise, the examination is repeated until no more removals are indicated. At this 
point, the nodes marked t ( - ) constitute S (T) and the remaining double signs can be changed 
to -. (See Remark 3, above.) 

3. (Hall [5]). Pick a column of A without a n  aster isk and call it pivotal. If there is no 
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Through the use of the graphical model, the reader can easily concoct variants of his 
own. Moreover, simple graphical examples show that none of the four methods given above is 
the best for all matrices A. 

The method of Munkres sketched in Section 5 above is replaced in the revised version of 
his paper 6 by the following variant: 

5. (Munkres 6 ). Mark all nodes - . Examine each source, sink, and edge in some pre- 
assigned order (since each of these objects is associated with one or  more unassigned zeros in 
A, the natural order of these zeros can be followed). If a source marked - , or an edge connect- 
ing a + to a - , is found then change the - to a + (and prime the edge). If a sink marked + is 
found then a unique path consisting of primed edges from a source to a sink has been discovered. 
(We now note that, i f  the rows and columns associated with the current marks + and - are 
covered, each of the objects for which we are  searching is associated with one or more uncovered 
zeros in A, and we can follow the natural order of these zeros.) Otherwise the process is 
repeated until all sources are marked + and no edge connects a + to a - (Alternative (b) of 
Theorem 2). 
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