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ABSTRACT 

A computationally simple method for approximating the optimal 
solution to transportation problems is described. Also, a method to 
deal with fixed charges is proposed. The computational algorithms have 
been designed primarily to handle very large numbers of transportation 
problems each involving a small number of origins and destinations as 
is frequently the situation in the Navy supply system. The results of 
empirical tests of the effectiveness of the methods a re  summarized. 

INTMDUCTION 
In July of 1959 our research group w a s  authorized to proceed on a research 

project for the Bureau of Supplies and Accounts of the United States Navy. The project was 
given the title "Modified Linear Programming." Specifications for the project, as prepared by 
the Bureau, read in part as follows: 

"This project task is directed toward development of more efficient rules for the dis- 
tribution and redistribution of material in the Navy supply system, through modification of the 
techniques of solution of the transportation problem to represent adequately and minimize the 
total costs of alternative allocation and redistribution decision patterns for Navy material. In 
particular, the project seeks to discover feasible and workable approximating rules for distri- 
bution decisions where a fixed cost of shipment is postulated for each 'channel' in addition to 
the customary variable cost, linear with respect to quantity with fixed costs for a shipment 
approximately the same for all activities, with linear or piecewise linear variable costs based 
on distance and transportation rate data.. . ." 
APPROXIMATING AN OPTIMAL SOLUTION 

dling of the problem. The number of transportation routing calculations in the Navy supply 
system is tremendous. One division of the Navy supply system alone handles over 150,000 
items, of which some 20-30,000 require review of their stock position about every three weeks. 

Our study indicated that approximative techniques are indeed appropriate for the han- 

*Manuscript received July 19, 1961. 
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In the average r e v i e m i n e  items require a transportation routing decision. This 
profusion of transportati-alculations suggai- full-scale simplex method or network 
linear-programming c a l c l K M t p y  to be i m m t i c a l .  Even with a relatively efficient 
and speedy program, the amount of time required may add up rapidly. A recent study at one 
Navy supply installation suggested that as much as 40 hours of computer time per review 
period might be required by an ordinary transportation calculation which toGk into account no 
complications such as fixed charges. 

Very little work has been done on approximate methods prior to this study. (The work 
of Houthakker [l] is almost unique.) This is not surprising in view of the satisfactory state of 
the available exact methods and the fact that very few nonmilitary organizations have a quantity 
of problems so large as to necessitate approximatians. The natural place to start a search for 
approximative techniques was to examine feasible solutions for the simplex method. These are 
extremely simple to compute and, as will be seen in the discussion of "The Approximation 
Methods Tested," provide a degree of approximation that is quite satisfactory for the problem 
at hand. 

But first we record one relevant theoretical result which has, however, not been incor- 
porated in the calculations. The reason that it has not been used is that, although it is fairly 
effective in reducing the transportation costs, it has the unfortunate effect of sometimes 
increasing the number of shipments. In common parlance, the result states: "If costs are 
proportionate to distance shipped, never use routes which intersect! " This statement is based 
on an explicit solution of the following 2-by-2 transportation problem: 

where Ea and Eb are  the excesses available for shipment out of surplus installations A and 
B, Rc and Rd are the quantities required at two deficit installations C and D, and the c-. are 
unit transportation costs. 

1J 

Now suppose we happen to have 

and that Ea 5 Rc. Then it can be proved that the following distribution is the unique solution. 

PROOF: This distribution is clearly feasible. Moreover, note that for any feasible 
distribution (x. .) and €or any values of the (dual) variables ua, ub, vc, and vd satisfying the 

1J 
constraints of the dual problem 
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the inequality 

(4) 

u. + v. s c.. 
1 J 9 

C uiEi + C v.R. 5 C c..x.. 
J J - 1J 9 

follows immediately by the multiplication of each inequality (3) by x.. and summing. If equal- 
i ty  holds in (3) for each route on which material is shipped (i.e., for which x.. > 0) then equal- 
ity holds in (4). Moreover, if values of the x.. can be found for which equality holds in (4) 

9 
these values must constitute an optimal solution, for by (4) C c. .x.. must then be minimal. 

1J 

1J 

1J 1J 
Now, consider the particular values 

Clearly, the constraints (3) are satisfied and, indeed, equality holds for each positive shipment 
of the distribution (x..) proposed as a solution. Therefore equality holds in (4); since the 
right-hand side is total transportation cost, the proposed distribution is optimal. Note further 
that ua + vd < cad; this implies xad = 0 in all distributions which achieve the minimum, and 
the distribution is thereby determined uniquely. 

To derive our prohibition against "cross-hauling," we note that 
the sum of the lengths of the diagonals of any quadrilateral is always 
greater than the sum of the lengths of the opposite sides (because the 
sum of the lengths of any two sides of a triangle, e.g., AV + VC is 
always greater than the length of the remaining side, A ) .  Now let 
Figure 1 represent the location of our four installations, A, B, C, and 
D, and the routes between any pair of them. Then, by the theorem on 
quadrilaterals which was just given, we must have A + BD < AD + BC. 

be satisfied. Now let the amounts shipped in Figure 1 be represented by 

1J 

- -  

Figure 1 

If transportation costs vary monotonically with distances, condition (1) must therefore 

Suppose that a cross-haul has been made. This means that xad > 0 and xbC > 0. But we may 
assume that Ea = xac + xad 5 xac + xbc = Rc without loss of generality. Siqce the costs satisfy 
assumption (l), the unique minimum cost solution (2) involves xad = 0, which is a contradiction. 

THE FIXED CHARGES PFtOBLEM 

difficult problem is that which arises out of the presence of fixed charges-chargee which are  
incurred whenever a redistribution action is taken but which do not vary with the amount of 
material involved in a particular shipment. A prime example of this sort of cost arises from 

In addition to the problem of finding a good approximation technique, a second and more 
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the preparation of some of the papers which are  required in the course of such an action. Thus, 
if a shipment is eliminated altogether, the cost of invoice preparation is avoided. But once a 
shipment is undertaken, the cost of making out the invoice is not substantially affected by a 
decision to send 200 cases rather than 10 cases of the item. 

difficult to assess their importance to the Navy supply system. It is clear, however, that they 
can arise in at least two different ways. 

1. Fixed costs arise out of the clerical and administrative work associated with any 
shipment. It has been pointed out, however, that in the short run the elimination of this sort of 
fixed cost may result in relatively little cash saving to the Navy. If 1 hour of clerical time is 
saved per day per activity, it is very unlikely that any personnel reduction will occur; but in 
the long run a sufficient accumulation of such savings can lead to a decrease in clerical outlays 
by reducing the number of clerks who must be hired as replacements for or  additions to exist- 

Since information on the magnitude of these fixed charges is still rather limited, it is 

ing staff. 
2. A second type of fixed cost which has been identified derives from the fact that an 

increase in the number of shipments can result in a slowing down of commodity movements. 
If paperwork is a bottleneck, an additional redistribution action can reduce the speed with which 
others can be processed. This reduction in speed may then be dependent on the number of such 
actions rather than on the magnitude of the shipments involved. Therefore, consumer waiting 
time may very well be a fixed charge. 

The difficulty of the fixed-charge computation is well known. It is considerably simpli- 
fied, however, if there is a reasonable presumption that all fixed charges a re  approximately the 
same. In this case, there is a theorem which states that unless the problem is degenerate the 
ordinary linear programming solution will in fact be optimal, i.e., the solution will be the same 
whether or  not fixed charges are  present.1 

Clearly then, if fixed charges are approximately equal for all shipping routes, the only 
hope for cost reduction lies in degeneracy. Only degeneracy will permit fixed charge savings 
by making it possible for a reduction in the number of routes employed where, in a transporta- 
tion problem, degeneracy is defined to mean that some subset of the activity requirements adds 

'Outline of a proof: In the absence of degeneracy, the solution to ourfixedchargesprogramming 
problem must have at least as  many nonzero elements as there a re  independent constraints. 
Any distribution that i s  feasible for the fixed charges problem is  also feasible for the under- 
lying transportation problem. This problem involves mn variables (the number of routes) con- 
strained by m + n equations, of which m t n - 1 are  independent. Hence, non-degeneracy means 
no feasible-distribution for either problem can have fewer than m t n - 1 nonzero variables. 

If the fixed-charge constants K.. in our cost function a re  all equal to the same number K, 
the number of these fixed charges must be equal to the number of nonzero shipments (the 
number of positive X I S ) ,  i.e., the fixed charges must add up to at least (m + n - l)K. 

Now, the objective function of our problem is C(K t cijxij), while the objective function 
of the ordinary linear-programming problem (in the absence of fixed charges) is c c-.x-. It 
is well known that the linear-programming problem has an optimal solution, x*, which con- 
tains exactly m t n - 1 nonzero elements. Hence, for these values of the XIS we will have 
C K = (m t n - 1)K; i.e., both C K and C c..x.. will be at their minima. Thus the linear- 1J 1J 
programming problem solution x* must also be the solution to the minimum fixed-charges 
transportation problem. 

F o r  a complete discussion of this result, cf. Warren N. Hirsch and George Dantzig, The 
Fixed Charge Problem, EWNQ Corporation Paper P-648, December 1954. 

1J 

.1J LJ' 
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up to the sum of some subset of activity excesses.2 There are two reasons, however, why 
looking for problems which happen to be degenerate is not a satisfactory expedient: 

encountered in practice will turn out to be degenerate.3 

degeneracies is likely to be a long computational process. For, essentially, this requires the 
computation of all partial sums of excesses and of all partial sums of requirements and their 
comparison in order to see which, if any, of these partial sum8 happen to be equal. The num- 
ber of combinations involved mounts very rapidly with the scale of the problem, (Ses ''Corn- 
ments on the Fixed-Charge Problem.") 

Therefore, it was decided to undertake a systematic extension of a current Navy cleri- 
cal procedure. Often clerks will simply decide that very small requirements or excesses are 
not worth the trouble of a special shipment. In effect, this decision amounts to the elimination 
of a fixed charge by forcing a degeneracy onto the problem. A small clerical change in 
requirements or  excess figures has been used to eliminate one or  more shipments. 

problems by making insignificant changes in surplus and deficit figures which make some of 
their partial sums equal. This is clearly desirable, so long as the resulting savings in fixed 
charges are greater than any costs which are produced by changing the surplus or shortage 
figures. That is the approach which was taken by the algorithm which was developed fn this 
study and which is described in detail later under the unhappy title, "forced degeneracy." 

'Actually this is a special case of the general linear-programming definition of degeneracy. The 
dependence of the column vector of requirements and excesses upon fewer tban m + n - 1 col- 
umns of constraint coefficients easily implies the stated problem. To illustrate this, consider 
the two- shipper-two-destination transportation problem which has the follo-g constraints: 

1. There is no guarantee that a stgnfficant proportion of the problems which are 

2. Even when a problem is degenerate, identification and consideration of a l l  of its 

In generalizing this procedure, it will usually be possible to impose degeneracy on such 

xll + x12 = El 

x21 + x22 = E2 

= R1 21 + x  11 X 

RZ ' t XZZ = x12 

where E l  and E2 are  the excesses of surplus installations 1 and 2 and R1 and R2 are  the 
requirements of the two deficit installations. The matrix of coefficients is 

Note that only three of the first  four columns a r e  linearly independent. Degeneracy means that 
the last column is linearly dependent on a subset of fewer than m + n -  1 = 3 of theothers. Sup- 
pose, e.g., we have a x col 1 + & x col 2 = col 5, where a and b a r e  any constants. Then, by 
substitution, a + b =xi, a = Rl,  and b = R2 so that we have E l =  R1 + R2 - a partial sum of 
requirements-equals a partial sum <f surpluses, a s  was asserted. This argument is easily 
extended into a formal proof. 

31n a sample of the 34 problems in our test sample which on prior inspection appeared most 
likely to be degenerate, only 5 turned out to exhibit useful degeneracy. 
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THE APPROXIMATION METHODS TESTED 

methods for the ordinary transportation problem and to compare them with the results of a 
precise optimality calculation. 

and used in making a number of tests. The nature of the sample and the results of the calcula- 
tions are  described in detail later in this report. 

proximity table) solutions actually arrived at by the installation with which we worked, both as 
determined by the electronic computer and as adjusted subsequently by clerks, other types of 
solutions were investigated. 

It was necessary for our assignment to test out a variety of approximative computing 

For this purpose, a sample of 100 actual Navy transportation problems was collected 

In addition to the optimal solutions and the modified minimum distance (so-called 

Ship Most at Least Cost (SMALC) 

given the unfortunate mnemonic name SMALC. The basic idea is to find which route involves 
costs lower than any other and to ship as much as possible along this route. Then we ship as 
much as possible along the second-lowest cost route and so on, until all excesses have been 
eliminated and all requirements have been filled. 

Specifically, let x.. represent the amount shipped from activity4 i to activity j ,  let c.. 
9 1J 

be the unit cost of that shipment, let Ei represent the excess at installation i, and let R. rep- 
resent the requirement at installation j. Then the method proceeds as follows: 

In the cost matrix choose the minimum cost figure c.. Set x.. = smaller of Ei and R. 
and remove the corresponding row i or  column j from consideration. 

Replace 

The first approximation method tested was labelled ship most at least cost and was 

J 

1.J - 9 J 

Ei by Ei - x.. 
1J 

R. by Rj - x.. 
J 1J 

(hence at  least one goes to zero) and repeat on the new smaller matrix; continue until the prob- 
lem is solved. 

on the outside represent installations, excess quantities, and requirement quantities. The 
spaces in the table represent shipping routes, and the numbers which are entered in these 
spaces represent the unit cost (distance) of a shipment along that route. For example, the 832 
eptered in the upper left-hand corner represents the cost of shipping one unit from installation 
A to installation D. 

The basic idea is illustrated by the following tables. In the left-hand table the entries 

D E  F G  D E F G Installation 
18 301 52 4 Requirement ;FI 

B 
C 4 3336 3380 3444 

Installation Cost Table Solution Table 
Excess 

C 
A 1 ::: -1 

41n Navy supply system parlance, an installation i s  called "an activity." 
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The minimum c.. is clearly the 30 shipping cost from installation B (whose excess is 
9 

104 units) to installation E (whose requirement is 301 units). Hence, the maximum amount 
which can be shipped along this route is 104 units, and this is the amount entered in the cor- 
responding position in the right-hand solution table. 

reduced to 197. With this change in the original table, proceed to assign as large a shipment 
as possible (4 units) along the second lowest cost route (the 73 figure in the lower right-hand 
corner). This procedure is followed until all requirements are  met and all excesses are 
eliminated in the manner shown in the solution table. 

Now installation B's excess figure is reduced to zero while E's requirement is 

Vogel's Approximation Method (VAM) 
'A second method of approximation tested was a modification of Vogel's Approximation 

Method (VAM). This method is a bit more difficult to explain and involves more computer 
time. For each possible excess installation, i, one finds the lowest and the second-lowest cost 
shipping routes which begin at installation i. Similarly one determines the lowest and second- 
lowest cost routes which terminate at each requirement installation. The difference between 
these lowest and second-lowest cost figures may be referred to as the error  penalty which 
would result if the second-lowest cost route were inadvertently chosen. The basic idea of VAM 
is to seek to avoid these error penalties. Thus, now having an error penalty figure for each 
installation, we pick that installation which has the largest error penalty figure. On the argu- 
ment that here is where the most expensive mistake can be made, we make as much of that 
installation's shipment as possible along its least cost route to avoid such a costly error. We 
now reexamine (and, i f  necessary, recompute) the error penalty figures, and next take care of 
the installation with the largest remaining error  penalty, and so on. 

More explicitly, the following procedure was employed: 
Locate the minimum element in the cost matrix in each row and column. Call  these 

Rows Columns 

Locate the next largest element in each row and column. Call these 

(2) c; , ..., c' d i  , ..., d k  m 

Then the "unit penalties" incurred by not shipping on the routes located at the entries 
(1) are 

d i  - d l ,  .. . , d i  - dn . 

Instead of these unit penalties, the computation employed "absolute penalties." For example, 
if c1 = clj and is in row 1 and column j, we can ship only xlj = min(E1,Dj) on this route. 
Hence the "absolute penalty" for that route is xlj(ci - cl). 

is greatest. 
The largest possible shipments are  then made along routes where this absolute penalty 
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EXAMPLE: By use of the same problem as before, the cost table may be rewritten as 

D E F G 

18 301 52 4 

Cost matrix B 104 

row minima are underlined thus I 

column minima overlined thus - . 
where: 

and 

The row unit penalties = (61; 501; 3263) 

The column unit penalties = (301; 741; 307; 2415) 

The row absolute penalties = (16,287; 52,104; 13,052) 

The column absolute penalties = (5,418; 223,041; 15,964; 9,660). 

The 223,041 figure is clearly the greatest absolute penalty. Hence, the first shipment must be 
assigned in accord with the second column minimum entry, i.e., the first shipment must go from 
installation B to installation E, which, by coincidence, is the same as in the SMALC method. 

The Degeneracy Forcing Algorithm 
The last method tested is the one which was especially designed for the fixed-charges 

problem. It has these central features: 
1. A device for adjusting excess and requirements figures which is designed toproduce 

a reasonable amount of degeneracy by equating excess and requirements figures which differ 
by only a small amount or  by eliminating very small excess or  requirements figures. 

2. An optimality computation device which is an extension of the SMALC method 
described earlier. 

Specifically, the method is the following: 
SMALC-DEGENERACY FORCING ALGORITHM: Scan the matrix for min cij . Sup- 

i ,j 
pose this is achieved at i = k and j = m. If I Ek - Rml 5 A, set %m = max5 
delete both row k and column m. If 1 Ek - RmI > A, as in the usual SMALC algorithm, Set 

%m = [ k' m] min E R and then set 

5Note that this always results in the "rounding up"of excess or  requirement figures a s  needed. 
This decision was reached on the basis of Navy opinions that the cutting down of any such fig- 
ures would only postpone them until the next period and would not eliminate the requirement 
o r  excess quantity in question. However, the algorithm can easily be changed to work the 
other way by substituting "rninrl for "max" at this point. Indeed, on the basis of later tes ts  
conducted by the Navy, a modification of this sort was recommended. See C. M. Allender and 
James Encimer. Redistribution Decisions: The Transportation Problem, The Advanced Logistic 
Research and Development Branch, Ships Par ts  Control Center, Mechanicsburg, Pa., Sept. 1960. 
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Excesses 5 

9 

5 

and 

Excesses 5 

6 

if min [ Ek 9 Rm ] = +  
EL = O  

R L  = Rm - %m 

5 

3 1  2 

2 1 1  

9 3  2 4  

EXAMPLE: Using A = 1 consider the following transportation cost matrix: 

Excesses 5 

6 

2 

9 

4 4 6 2 4 2  

9 1 2  9 6 9 1 0  

7 3 7 7 5 5  

6 5 9 1 1 3 1 1  

6 8 1 1  2 2 1 0  

Requirements 

The preceding algorithm may readily be checked to yield the solution 

2 

4 2 1  

2 I 
1 0 1 4  2 4 I 

Requirements 

7 shipments 

Amount shipped = 23 

Total cost = 121 

Average cost = 5.3. 

This may be compared with the following optimal solution obtained by the simplex method: 

4 4 6 2 4 2  Requirements 

9 shipments 

Amount shipped = 22 

Total cost = 112 

Average cost = 5.1. 

In this algorithm, A, the degeneracy limiting constant, is the maximum amount by which 
excess or  requirement figures are  permitted to be revised in order to produce degeneracy. A 
recommendation was made that a different A be employed for each item and that the value of 
each A be revised at each review. The computation involved can be made very simple, and the 
factors affecting the appropriate value of A can vary sharply over time and from item to item, 
so that a more inflexible A figure appears to be undesirable. 

The tested value of A was based on the values of the following two variables: 
1. The average level of inventory on hand at the review date in those installations which 

carry the item. For, the higher the level of inventory on hand, the less significant, relatively, 
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will be a given readjustment in requirement or excess figures. Hence A should vary directly 
with the average stock level. 

2. The price of the item (as a rough index of military essentiality). Clearly, the more 
essential the item the less the adjustment in excess and requirement figures which can be per- 
mitted. Hence A should vary inversely with the price of the item. 

In our trial calculation A was arrived at as follows. Define D by the expression 

Average weekly system demand for the item 
Number of installations showing \demand 

D =  x a price adjustment factor. 

Then A is equal to D rounded up to the nearest integer. 
The price adjustment factor was developed on the argument that less essential items 

can be assigned larger A's,  i.e., that it is appropriate to go further in forcing degeneracy on 
such items. The relatively conservative but rather arbitrary rule which was developed for our 
trial run is summarized as follows: 

Price Adjustment Factor 

1.5 
2.0 
2.5 

In effect, this means that for expensive items A 

Unit Price of Item6 

$100.01 and over 
$ 50.01 to $100.00 
Up to $50.00 

is kept down to 1-1/2 weeks of average instal- 
lation demand; similarly, for medium priced items A is set at 2 weeks demand. 

RESULTS OF THE COMPUTATIONS 
Table 1 summarizes the results of the computations, and shows average figures for the 

100-problem sample. For example, the first figure in the first column indicates that the aver- 
age problem incurred 1,127,000 item-miles of transportation when redistributed in accord with 
the current Navy decision process. This was an average of some 12,600 item-miles more than 
would have been involved in an optimal solution. For the average problem7 this represents a 
2.60 percent increase in transport costs over the optimal solution. 

these results and the largest deviations from them which have been encountered. A s  an index 
of the variability of the percentage increase in the cost figures we see that the standard devia- 
tion of that percentage figure is 5.50. Moreover, the largest absolute excess in cost for any of 
the sample problems of the Navy calculation over the optimal solution is 215,000 item-miles. 
The largest percentage differences for any problem is 29 percent. These last two figures are 
meant to be indicative of the maximum risk incurred in using the approximation methods to 
solve a particular problem. 

The last three entries in this column are meant to indicate the representativeness of 

6The break points were developed partly on the basis of the information that more than 50 per- 
cent of the type of shipments investigated involve items worth less  than $50 while some 75 
percent of the shipments involve items worth less  than $100. 

Rather, it i s  obtained by getting the 
percentage saving for each of the 100 problems and averaging them. This i s  clearly the 
arithmetic mean which must be used in computing the standard deviation. 

7Notice this figure i s  not the percentage over-all saving. 
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TABLE 1 
Transportation "Costs": Results for an Average Trial Problem* 

Computed 
by 

Simplex 
(optimum) 

Method 

1,115,000 

Zomputed 

by 
SMALC 
Method 

L,119,000 

Shipments 
kcommended 

by the 
Computer 

1,123,000 

Computed 

Forced 
Iegeneracy 

Method 

by 

1,119,000 

Type 
of 

Computation 

Actual 
Shipments 
Ordered 

1,127,000 

2omputed 

by 
VAM 

1,132,000 Cost (item-miles)t 

Excess over 
optimum . . . . . . . 

Percentage excess 
over optimum 
(per problem). . . . 

12,600 

2.60 

0 4,100 17,100 

1.60 

8,700 4,700 

0 0.45 1.95 0.20 

Overall percentage 
excess over 
optimum . . . . . . . 

Standard deviation 
of per centage 
excess over 
optimum . . . . . . . 

0 1.13 

5.50 

215,000 

29.20 

0.37 

1.30 

11 1,000 

1.5 

3.30 

0.8 0.4 

0 4.50 4.60 

Maximum absolute 
excess over 
optimum . . . . . . . 

Maximum percentage 
excess over 
optimum . . . . . . . 

- 
0 628,000 164,000 88,000 

0 7.20 21.30 28.90 19.70 

*Some inconsistencies have crept in a s  a result of rounding errors .  
?Number of miles moved times the number of items in each shipment (addedover all shipments). 

It is to be noted that (ignoring for the moment the forced degeneracy method) the 
SMALC method comes out best after the simplex method on any one of the relevant criteria. 
The SMALC method has the smallest excess in transportation cost over the simplex result, 
taken either absolutely or percentagewise. Moreover, the excesses have a smaller maximum 
variation and standard deviation than any other method. Roughly, we may conclude that the 
SMALC method will involve more than a 2 percent saving in transportation costs on the aver- 
age redistribution as against present methods. (This conclusion, of course, applies only to 
larger problems.) 

abouta 9 percent reduction in number of shipments for the average problem (Table 2), compares 
very favorably with SMALC in the variable transportation costs it involves. This result is 

It is to be noted that the forced degeneracy calculation, despite the fact thqt it involves 
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TABLE 2 
Comparison of Forced Degeneracy 

Calculation with SMALC 

Number of Shipments 

Absolute 

707 642 -65 

Percent 
Difference 

-9.2 

explained by the fact that the forced degeneracy method automatically eliminates some trivially 
small shipments and hence can result in an over-all decrease in the total amount shipped in 
some problems. However, in general this method does involve considerable variability in the 
extent to which it approximates the transportation costs of the optimal solution. (In some 
problems its transportation costs will even be substantially below the simplex cost figure.) 
Hence, it seems advisable to maintain a conservative interpretation of the low average cost 
incurred by the forced degeneracy method. That is, it does not seem appropriate to consider 
this a reliable method for reducing transportation costs unless fixed costs also are substantial. 
It is remarkable that this method is able to achieve such a substantial reduction in number of 
shipments with A figures as moderate as those which were employed in the trial calculation.8 

COMMENTS ON THE FIXED-CHARGE PROBLEM 
Any theoretical attack on the fixed-charge problem must start from the two theoretical 

results of Hirsch and Dantzig [2]. An outline of a proof has been given earlier in footnote 1. 

THEOREM 1: If the underlying transportation problem is nondegenerate, and the fixed 
charges are  positive and - equal on all routes, then any basic optimal distribution (i.e., with 
m + n - 1 routes in use) for the underlying transportation problem will solve the fixed-charge 
problem. 

THEOREM 2: In the general case, where the fixed charges may vary from route to 
route, an optimal distribution may always be achieved as a basic feasible distribution (although 
it will not necessarily be optimal for the underlying transportation problem). 

These results suggested an attempt to use an approach analogous to the simplex 
method, to examine neighboring basic feasible distributions in order to see if any of these 
involves a lower cost than the current basis, and to take the current basis to be optimal i f  
none of its immediate neighbors is cheaper. The following example exhibits the difficulties 
inherent in such an approach: 

81t is noteworthy that these conclusions were confirmed and, in some cases, strengthened in 
independent tests subsequently conducted by the Navy. Cf. Allender and Encimer, op. cit. 
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R1 R2 R3 8 5 3  

3 1 0  

To exhibit the basic feasible solutions graphically, let x = xll and y = x12. Then the 
feasible region is the shaded area in Figure 2. The extreme feasible distributions are  tabu- 
lated below: 

A = r; 2 5 0  B =  

The total costs are as follows: 

A: 67 
B: 66 
C: 65 
D: 67 
E: 66. 

Thus E is a local minimum (the neighboring basic feasible distributions are A and D) but is 
not a global minimum. That is, despite the fact that no neighboring basic solution is cheaper 
than E, it is C and not E which represents the over-all least cost solution. 

ing the degenerate case, even when the fixed charges are constant, if the basic computational 
routine is approximate. However, somewhat trivially, we can be sure that we are moving in 
the right direction from a current approximation. This result will be dignified with the name 
of theorem although it is little more than common sense. 

It is inevitable that there can be no general theorem assuring an optimal solution cover- 

THEOREM 3: Given a fixed-charge problem with constant fixed charges on all routes, 
let 3. be a distribution with average'transport cost A involving N shipments, and let x?: be 
a distribution with average transport cost A with N' < N shipments. Then x?. involves less 
total cost than x.. 

1 11 

11 

11 - 
PROOF: The total costs involved are 

A CEi + NK > A  CEi + N'K. 
i i 
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q y  Recall now that a degenerate distribu- 
tion is one in which fewer than m + n - 1 
routes are  used. Such distributions are pos- 
sible i f ,  and only i f ,  there are two subsets S 
and T of the excesses and requirements, 
respectively, such that 

C E. = C R. 
J -  i ES j e ~  

On the assumption that the average transpor- 
tation cost resulting from the approximation 
techniques used is not changed significantly 
by slight alterations in the excesses and 
requirements, it is clear by Theorem 3 that 
forcing degeneracy decreases total costs . 
Two complementary remarks remain to be 
made. 

I '  
Figure 2 

The first deals with the difficulties involved in recognizing rather than forcing degen- 
eracy. A rough estimate of the number of comparisons needed to check the equality above is 
provided by f (2" - 2) (2" - 2). (This is merely the number of nontrivial subsets of excesses 
compared with the number of nontrivial subsets of requirements. In one case, only one set 
of each complementary pair need be used; hence the factor of 1/2.) This estimate can be 
reduced somewhat by a partial order of the subsets involved, a subset being built one element 
at a time until it exceeds or equals a given comparison subset from the other class. Thus, we 
need never go past the point where the comparison subset is exceeded or equaled, and a large 
number of comparisons is avoided. At  best, however, the number of comparisons is usually 
prohibitive. 

The second observation deals with the method adopted for forcing degeneracy. In any 
method of constructing a feasible solution which adds one shipment at each stage, in order to 
achieve the total of m + n - 1 shipments, it must exhaust exactly one current excess or fulfill 
one current requirement until the last stage. Then, because of the balance equation CEi = CR 
both an excess and a requirement are  cancelled. The method for forcing degeneracy proposed 
in the main body of this report is based on the fact that it cancels both an excess and a require- 
ment with one shipment. The alterations in the given excesses and requirements are  bounded 
by the factor A. This method is only the first in a class of methods in which higher order 
comparisons are  made. For example, we could ask: 

j' 

IS E + E  - R . Z 2 A  ? 
il i2 3 

If this holds, we would increase both Ei and E 

force a degeneracy. TP'? is illustrated in the following example: 

by an amount less than or equal to A and 
1 i 2  
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E2 

E3  

E4 

3 

3 

3 
- - 

6 

A = 1 .  

8 7  

4 0  

4 0  

0 0  

0 7  

Here E l  and E2  can be increased by A = 1 to make them add up 
degeneracy. 

to R1, thus producing a 

These higher-order partial sums were not recommended for two reasons: (1) they 
require more complicated programming than seems feasible on the electronic computers 
available in most Navy installations, and (2) the order in which the partial sums a re  con- 
structed is unlikely to coincide with the least cost entries which are at the heart of SMALC. 
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