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Abstract-- We propose a novel method for solving the assignment problem using techniques adapted from statistical 
physics. We derive a convex effective energy function whose unique minimum corresponds to the optimal assignment. 
Steepest descent results in a continuous-time dynamical system that is guaranteed to converge arbitrarily close to 
the optimal solution. Our algorithm has an appealing economic interpretation and has very interesting connections 
to the discrete auction algorithm proposed by Bertsekas. We also derive an alternative discrete algorithm for minimizing 
the effective energy based on a theorem by Sinkhorn. 
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1. INTRODUCTION 

The assignment problem, also known as the bipartite 
weighted matching problem, is a classical combinatorial 
optimization problem. We are given N persons and N 
objects; each person-object pairing has an associated 
benefit, Aia, corresponding to the benefit that the ith 
person associates with the ath object. The goal is to 
assign exactly one object to each person so that the 
resulting one-to-one correspondence maximizes the 
total benefit. Each possible assignment can be thought 
of as an N X N permutation matrix so that the space 
of all admissible assignments is isomorphic to Su, the 
group of all permutations of N elements. Mathemati- 
cally, we want to find the permutation 7r E SN that 
max imi ze s  the benefit function: 

N N 
B~[II] = Z A,an,a = Z A~a,a (1) 

i,a=l a=l 

where II indicates the permutation matrix correspond- 
ing to the permutation ~r ~ SN, that is, the i , j t h  entry 

Acknowledgements: We would like to acknowledge support from 
DARPA and the Air Force with contracts AFOSR-89-0506 and 
F49620-92-J-0466. We also thank the Brown, Harvard, and M.I.T. 
Center for Intelligent Control Systems for a United States Army Re- 
search Office Grant Number DAAL03-86-C-0171 and for providing 
an exceptionally stimulating working environment. We would also 
like to thank Roger Brockett, Leonid Faybusovich, and David Mum- 
ford for helpful conversations. 

Requests for reprints should be sent to J. J. Kosowsky, Division 
of Applied Sciences, Harvard University, Cambridge, MA 02138. 

of II is 6i,~). 1 The best known algorithm for solving 
the assignment problem is the so-called Hungarian 
Method that requires O(N 4) operations and was first 
proposed by Kuhn ( 1955 ). Over the years, many other 
polynomial time algorithms have been developed. In 
1979, Bertsekas proposed the auction algorithm for 
finding the optimal assignment (Bertsekas, 1981 ). Both 
theoretical analysis and computational experience have 
shown the auction algorithm to be superior to all of its 
principal competitors, especially when the benefit ma- 
trix is sparse (Bertsekas & Castafion, 1989; Bertsekas 
& Eckstein, 1988; Bertsekas & Tsitsiklis, 1989). 

All of  these algorithms use iterative methods for 
finding the optimal assignment from the discrete fea- 
sible set of N! possible assignments. However, we pro- 
pose to use continuous-time dynamical systems, mo- 
tivated by statistical physics, to solve the assignment 
problem. 

Statistical physics techniques, and deterministic an- 
nealing in particular, have proven very useful in mo- 
tivating heuristic algorithms for solving a wide range 
of optimization problems (Hopfield & Tank, 1985; 
Durbin & Willshaw, 1987; Peterson & S6derberg, 1989; 
Simic, 1990; Yuille, 1990). Statistical physics provides 
a unified framework for modeling diverse problems in 
vision and brain development in which many existing 

Because the group of permutation matrices is naturally iso- 
morphic with the permutation group of N elements, we will generally 
not distinguish between the two. 
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theories appear as special cases and new interrelation- 
ships become evident (Geiger & Girosi, 1991; Yuille, 
1990). 

Although statistical mechanics methods have been 
very successful empirically, the convergence of these 
algorithms to the optimal solution has only been proved 
in simple cases. We propose a novel continuous-time 
deterministic algorithm that is guaranteed to converge 
to the optimal assignment in bounded time. Moreover, 
the proposed algorithm exhibits many intriguing sim- 
ilarities to Bertsekas' iterative auction algorithm. We 
also show how an iterative algorithm based on a theo- 
rem by Sinkhorn can be derived from our statistical 
physics framework. 

In Section 2, we use statistical physics to construct 
an effective energy and use steepest descent to derive 
an algorithm for solving the assignment problem. We 
then prove convergence to the optimal solution and 
demonstrate the algorithm's practicality by performing 
computer simulations. In Section 3, we discuss simi- 
larities to the auction algorithm. We also suggest two 
alternative methods for minimizing the effective energy: 
temperature tracking and a discrete iterative algorithm 
based upon a classical theorem by Sinkhorn. Finally, 
in Section 4, we summarize recent results that bound 
how fast the algorithm will converge. 

2. CONSTRUCTION AND PROOF OF THE 
ALGORITHM 

In this section, we derive an effective energy for the 
assignment problem and prove that generically the en- 
ergy function has a unique minimum corresponding 
to the optimal solution. 

This effective energy, which we denote as the P-En- 
ergy, Ep, will be shown to have the following form: 

Ep[P: 13] = ~ ~ log e ~(A~°-e") + Ea P~" (2) 

The P-Energy admits a very simple economic inter- 
pretation, discussed further in Section 3. The {Aia } 
measure the benefit that the ith person receives by 
owning the ath object. Each person wishes to own the 
object that maximizes the benefit that inevitably leads 
to conflicts because several people may prefer the same 
object. Prices are introduced for each object, so that 
the net benefit becomes {Ai~ - P~ } where P~ represents 
the price of the ath object. Minimizing Ep[ P :/3] with 
respect to P corresponds to adjusting the prices, in a 
way reminiscent of the laws of supply and demand, so 
that there are no remaining conflicts. As discussed in 
Section 3, this minimization formulation is similar to 
the auction algorithm proposed by Bertsekas ( 1981 ). 

In the first subsection, we use saddle point techniques 
to obtain the P-Energy as a function of N Lagrange 
multipliers { Pa } and the temperature parameter T. We 

show in the second subsection that the P-Energy is 
weakly convex, bounded below, and hence has a unique 
minimum up to a constant translation invariance. In 
the third subsection, we derive bounds on the P-Energy 
and its trajectories as a function of temperature and 
prove that steepest descent on the P-Energy at finite 
nonzero temperature solves the assignment problem. 
Finally, we present simulation results in the final sub- 
section. 

2.1. Deriving the P-Energy 

This subsection motivates our introduction of the P- 
Energy (2) by showing how it can be derived from the 
saddle point approximation to a statistical physics sys- 
tem. Readers willing to accept the P-Energy without 
this statistical physics motivation can skip to the sub- 
sequent subsections that prove that minimizing this P- 
Energy does indeed solve the assignment problem. 

We first reformulate the assignment problem ( 1 ) by 
introducing an N × N decision matrix of binary vari- 
ables { V i a  } . Let {Ai~} denote the benefit matrix. We 
minimize the energy function 

N 

Aass[ V] : B,ss[ V] = ~ V~aA,~, (3) 
i,a-I 

with respect to the binary decision matrix { V~a }, subject 
to the constraint that there is a unique 1 in each row 
and each column. This minimization problem is clearly 
equivalent to our original formulation of maximizing 
the benefit function ~ x a : l  A,~(a)a where ~r is an element 
of SN, the permutation group of N elements. 

In statistical physics (e.g., see Parisi, 1988), one 
considers a system in thermal equilibrium at finite 
temperature. The Gibbs distribution represents the 
probability of the system existing in any specific state. 
The most probable state is the one with lowest energy; 
at zero temperature it occurs with probability one. 
Hence, minimizing the energy function is equivalent 
to finding the most probable state. Note that this sta- 
tistical formulation is the basis for simulated annealing 
( Kirkpatrick, Gelatt, & Vecchi, 1983 ). 

We define the Gibbs distribution (e.g., see Parisi, 
1988), 

P[ v] : I e ~L~Lvj (4) 
Z 

where /3 = ( 1 / T )  is an inverse temperature. Z is a 
normalization constant, called the partition function, 
and is given by 

z = ~ e ,E~[vl (5) 
v 

where the sum is taken over all admissible configura- 
tions V. For the assignment problem, admissible con- 
figurations are those that satisfy the above row and col- 
umn constraints. 
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Let { ~ria } denote the expected value of the { Via } 
with respect to the Gibbs distribution. In statistical 
physics, the { ~ria } are called the mean fields. It is 
straightforward to verify that 

17~ 1 O log Z (6) 
OAia 

As T = ( 1//3) --~ 0, the mean fields minimize the energy 
function and hence correspond to solutions of the as- 
signment problem. 

Unfortunately, it is usually not possible to use the 
above partition function to calculate the mean fields 
because we typically cannot compute the partition 
function analytically. Instead, we may derive a saddle 
point approximation to it. Recall (e.g., see Amit, 1989 ) 
that this approximation includes the dominant contri- 
bution to the partition function and is generically exact 
as the temperature goes to zero. For the assignment 
problem, this approximation is justified because we 
prove in Section 2.3 that the saddle point is unique 
and corresponds to the minimum energy state and 
hence the optimal assignment as the temperature goes 
to zero. 

To obtain the saddle point approximation, we adapt 
a technique from Peterson and S6derberg (1989). We 
embed the space of binary decision matrices into gl (N,  
R), the space of N × N matrices over R, and rewrite 
the partition function as 

Z = ~, f [dS]e -ae-ts' I I  6(Sia- Via), (7) 
v ,J i,a 

where we sum over all configurations { V,~ } satisfying 
the following row and column constraints: (i) for all i, 
there exists a unique a such that V,~ = 1, (ii) for all a 
there exists a unique i such that Via = 1. These row 
and column conditions encapsulate the fact that the 
space of admissible binary decision matrices is precisely 
the set of permutation matrices. 

Using Fourier theory, we can represent a delta func- 
tion as an integral of an exponential, 6(x) = ( l / 2 r )  
f l  e-WX dw, where the integral is taken along the imag- 
inary axis. We can thus replace the delta functions in 
eqn (7) by integrals in the Fourier variables { Uia }.  We 
will drop constant factors, such as ( 1 / 27r) because they 
only scale the partition function by a constant inde- 
pendent of/3. Imposing the column constraints by add- 
ing an additional vector of delta functions in the inte- 
gral, we get that 

Z =  ~v f f~ [dS][dU]e-~E"'tSle-Y"~ v,.(s,.-v,.) 

where we can now sum over all configurations satisfying 
just the row constraints. We can once again replace the 
delta functions by their Fourier representations, thereby 

introducing a new set of auxiliary variables { Pa } and 
yielding 

Z= ~v f fl fl [dS][dU][dP]e-°E'aSle-Ei'a Uia(Sia--Via) 

X e x'e'~x~s'-') (9) 

We can now explicitly impose the row constraints by 
interchanging the order of summation and integration 
and then computing the summation over all states, V, 
satisfying these row constraints. The resulting sum- 
mation yields 

E e z'" v,ov, o = E 1-I eX" v,oV, o 
v V i 

= e z, log¢X, eUia) ( 1 0 )  

Combining these results gives 

Z =  f f t  ft [dS][dU][dP]e-aE°nts'v'Vl' (l l) 

where the effective energy Eeer, is then 

1 E¢ff[S, U, P: HI = Eass[ S] + ~ ~ SiaVia 

- ~  ~ ,og(~ eV,°)+ ~aPa(~ iX ia - -1 ) .  (12) 

Note that we have rescaled the variables Pa ~ ( 1/~)Po, 
so that the critical values of P will scale properly with 
/3 = 1/T.  In Kosowsky and Yuille (1991), we show 
that with this change of variables, I P~ I is bounded by 
maxi,aAia as/3 --~ ~ .  

We apply saddle point approximation to the parti- 
tion function (11 ) by determining the critical points 
of the effective energy. 

OEeff _ Aia + 1 0 - aSi-----~ -~ Via + Pa, (13a) 

OE~r 1 1 e U'~ 
0 au,~ - ~ S,a ~ Y~a e v'b' (13b) 

aEofr 0 ~ S~a - 1. (13c) OPa 

Equation (13c) suggests that we can interpret the { Pa } 
as Lagrange multipliers enforcing the column con- 
straints ~i Sia = 1 for all a. 

By rewriting eqn (13a) as Uia =/3(Aia - Pa), we can 
eliminate { Uia }, obtaining the following simultaneous 
equations 

et~tAi.-eo) 
Sia ~b e a(ai~-e~) ' W, a 

S,a = 1, Vi. (14) i 
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We can further eliminate the { Si~ } variables, resulting 
in a set of N simultaneous equations for the N un- 
knowns { Po } 

~ ZbCt~(A,~_eb)- 1,  V a .  (15) 

Given a vector { P~ } solving the above simultaneous 
equations, we can use eqns (14) and (13a) to recover 
the corresponding values for { Sia } and { U/a }. Thus, 
the critical points of the effective energy are completely 
characterized by solutions to eqn ( 15 ). 

Equation (14), shows that { Si~ } takes values in the 
range [0, 1]. We will prove in Section 2.3 that as T = 
1 / ~ ~ 0, the matrix { Sio } converges to a permutation 
matrix representing the optimal assignment. Observe 
that eqns (14) and ( 15 ) are invariant under the constant 
translation { P~ } ~ { P, + K}, where K is an arbitrary 
constant. This translational degree of freedom leaves 
{ Si~ } and the effective energy, E~e, unchanged. 

A general property of the saddle point approxima- 
tion (e.g., see Amit, 1989) is that the mean of { V~, } is 
approximated by the value of { S~a } at the saddle. We 
will prove that in the limit/3 --+ oc, the matrix { S~ } 
converges to the solution of the assignment problem. 
To analyze the saddle point approximation, it is con- 
venient to express the effective energy as a function of 
{P, } alone by using the saddle point equations (13a) 
and (13b) to eliminate { Si~ } and { Usa }. This yields 

def 
Ep[ P : {3] = - Eefr[ S( P), U(P), P :/3] 

, ( ) = ~ l o g  ~ e  o(A~"?°) + ~P~,~ (16) 

which we call the P-Energy. 2 The P-Energy is thus sim- 
ply the negative of the effective energy made stationary 
with respect to { Si~ } and { U~ }. Because differentiating 
eqn ( 16 ) with respect to { P~ } recovers eqn ( 15 ), we 
conclude that the effective energy, Eefr, and the P-En- 
ergy, Ep, have equivalent critical points. Observe that 
the P-Energy is also invariant under the constant trans- 
lation { P~ } ~ { P, + K }, where K is any constant. 

2.2. Weak Convexity of P-Energy 

The following theorem shows that the P-Energy is 
weakly convex and bounded below; hence, it has a 
unique minimum that can be found by a simple steepest 
descent algorithm. 

THEOREM 1. The Hessian of Ep[ P :/3] is positive semi- 
definite with ( N - 1 ) positive eigenvalues and 1 zero 
eigenvalue. Furthermore, the eigenvector corresponding 

2 Consistent with the notation of statistical physics, we have in- 
troduced a minus sign to insure that solving the assignment problem 
corresponds to minimizing rather than maximizing an energy function. 

to the zero eigenvalue is ( 1 . . . . .  1 ) and thus corresponds 
to the constant translation invariance of the P-Energy. 

Moreover, the P-Energy is bounded below by 
1 - N l o g N +  ~A~, (17) 

i,a 

and hence has a unique minimum up to constant trans- 
lation invariance. 

Proof See Appendix 1. • 
Now, consider the steepest descent equation, 

dP~ _ dEp[ P~ ] 
dt dP, 

C~( Aia Pa) 
= ~ Zc e z(A~" P') 1 (18) 

N 
- Z S,a-  1. (19) 

i I 

Because the P-Energy has a unique minimum up to 
constant translation invariance, steepest descent is 
guaranteed to converge to the minimum. Note that 
~a dPJd t  = 0 and hence, ~a ea is constant along tra- 
jectories, thereby fixing the translation invariance. 

2.3. Bounds on P-Energy 

We use the notation {/5 (/~)} to denote the value of 
{ P~ } at the P-Energy minimum at fixed inverse tem- 
perature/~ = 1/T.  We will often abbreviate this no- 
tation as {/5} when fixed inverse temperature is 
implied. 

Recalling that ~ S,~ = 1, we can rewrite the P- 
Energy as 

Ep[P, {3] = 2 Sialog ~ e ~(A~ e~) + • pa. (20) 
\ b a 

Now, using eqn (14) to substitute ~b e e(Ai°-Pb) = 
e~(Aia-ea)/Sia and then simplifying, we get that 

-Ev[P, T= ;] = Eass[S(P)] 

+ T S~(P)log S~(P) + Pa S~a -- 1 . (21) 
t,a=l a = l  

This form of the P-Energy has an intuitive physical 
interpretation as the negative of the free energy for the 
corresponding statistical physics system. The first term 
is the original assignment energy, the second is - T  
times a standard entropy term, and the third imposes 
constraints via Lagrange multipliers. 

THEOREM 2. At a minimum of the P-Energy, 

0 <_ Ep[P(T), T] - B~[S(I~(T), T)] < TNlogN. (22) 

Proof See Appendix 2. • 
A matrix is said to be doubly stochastic if all of its 

entries are positive and if each of its rows and each of 
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its columns sum to one. A famous theorem by Birkhoff 
(1946), states that the space o fN  × N doubly stochastic 
matrices is equal to the permutation polytope formed 
by the convex hull of the N! permutation matrices. Us- 
ing eqn (14), we know that at a minimum of the P- 
Energy, S~a[P, T] is a doubly stochastic matrix. Because 
the assignment problem is a linear optimization prob- 
lem and the permutation polytope is convex, we con- 
clude that at any temperature, T, 

N 

B~{S[FI, T]} = ~ AiaSia[fi, T] < B*a~ (23) 
i,a = 1 

d e f  
where B*~ - max,Esu Z N=I Ai,~(i) denotes the total ben- 
efit of the optimal assignment. 

Before proceeding, we need the following technical 
lemma. 

LEMMA 3. For any choice of { P~ }, 
N N 

lim Ep[P, T] = ~ max(Ai~ - P~) + ~ P~. (24) 
T ~ 0  i= I a a= 1 

Proof See Appendix 2. • 
We will now prove that the optimal assignment ben- 

efit, B*~ equals the zero temperature limit of the P- 
Energy. 

THEOREM 4. 

B*~ = Ep[/5, T = 0] (25) 

= min[ X m a x ( A i a -  Pa)"4- ~ ea ( 2 6 )  
P k i = l  a ~ l  

where Ep[P, T = 01 = minpeRuEp[P, T = 0]. 

Proof See Appendix 2. • 
This theorem shows that in the zero temperature 

limit, the minimum of the P-Energy corresponds to the 
optimal assignment benefit. This result thus confirms 
the validity of our statistical physics approach and the 
saddle-point approximation in particular. 

The following theorem puts bounds on the relation- 
ships among the minimum of the P-Energy at a fixed 
temperature, the corresponding assignment benefit and 
the optimal assignment benefit. In particular, we see 
how well the minimum of the P-Energy at nonzero 
temperature approximates the optimal assignment 
benefit. 

THEOREM 5. Let P = fi( T) be the P-vector minimizing 
P-Energy at fixed temperature, T, and let B*~ represent 
the benefit of the optimal assignment. Then, 

dEp[P(T), T] 1 
I. O~ dT =-~{Ep[P(T), T] 

- B~[s(P(T), T)]} < NlogN 
2. B*  < Ep[P, T] < B* + TNIogN 
3. B* - TNlogN< B~[S(P, T)] < B*.  

Proof See Appendix 2. • 
For additional inequalities bounding the P-Energy 

and the P-vectors, see Kosowsky and Yuille ( 1991 ) and 
Yuille and Kosowsky ( 1991 ). 

Observe that { Si~(P, T) } denotes the unique doubly 
stochastic matrix associated with the minimum of the 
P-Energy at temperature T. The next theorem bounds 
how close this doubly stochastic matrix { Sia(P, T) } is 
to the permutation matrix, II*, representing the optimal 
solution to the assignment problem, as a function of 
temperature. In particular, we see that as the temper- 
ature tends to zero, S~a(P, T) "-~ II*. 

THEOREM 6. Suppose that the assignment problem as- 
sociated with the N × N benefit matrix { Aia } admits 
a unique optimal solution, { II*a }. Let A equal the dif- 
ference in total benefit between the optimal solution and 
the second best solution. Then, 

TN log N 
max[II*a - S i a ( e  , T)I --< - -  (27) 

i,a m 

So, in particular, 
d e f  

IIs* = lim Sia[/~(T), T] = S,~(fi, 0). (28) 
T ~ 0  

Proof. See Appendix 2. • 
Before proving our main result, we pause to intro- 

duce the following terminology. We will say that a 
square matrix is row (column) dominant if in every 
row (column), the maximum element occurs in a dif- 
ferent column (row); furthermore, we will say that the 
matrix is strictly row (column) dominant if the maxi- 
mum in each row (column) is unique. It is clear that 
the assignment problem is trivially solvable for a strictly 
row or column dominant benefit matrix. For example, 
in a strictly row dominant matrix, the optimal assign- 
ment corresponds to each person choosing his favorite 
object because there are no conflicts. Moreover, it is 
easily checked that the optimal assignment associated 
with an arbitrary benefit matrix is unchanged if we add 
a constant vector to each row or column of the benefit 
matrix. Specifically, if {Aia } is an N × Nbenefit matrix 
and { Pa } and { Qi } are N-vectors, then the matrix { Aia 
+ Q~ - Pa } yields the same optimal assignment as the 
original benefit matrix, although the corresponding 
optimal assignment benefits differ by Z~Y=I (Qj - ~ ) .  
Economically, P~ can be interpreted as the price of the 
ath object and Qj can be thought of as a wage paid to 
the ith person. 

Now, we can use the previous results to find bounds 
on the temperature required to recover the optimal as- 
signment from the P-Energy minimum. In particular, 
we show that minimizing the P-Energy at sufficiently 
low temperature yields a vector of prices { Pa } that 
converts the benefit matrix into the easily solvable row 
dominant form. 
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THEOREM 7. Suppose that the assignment problem as- 
sociated with the N X N benefit matrix { Aia } admits 
a unique optimal solution. Let A equal the difference 
in net benefit between the optimal solution and the sec- 
ond best solution. Then, rounding-off each of  the entries 
of  Si~[ P, T] to the nearest integer yields the permutation 
matrix that solves the assignment problem whenever 

A 
T <  - -  (29) 2N log N" 

In fact, the matrix { Aia - Pa( T )  } is strictly row dom- 
inant, and hence, the ith person is assigned the object 
a that maximizes {Aia - Pa(T)  }. 

I f  all the entries o f  the benefit matrix are scaled to 
be integers, then A >__ 1 and it suffices to have 

1 T <  - -  (30) 2N log N" 

Proof See Appendix 2. • 
For fixed precision matrices, the temperature re- 

quired for convergence is thus O( 1 /N log N). Because 
having a unique optimum to the assignment problem 
is the generic case, we conclude that at sufficiently low 
temperature T, we can solve the generic assignment 
problem by performing steepest descent on the P-En- 
ergy at fixed temperature T. Simply fix an arbitrary 
initial condition for the { P~ } vector and then integrate 
the steepest descent equation 

dPa e ¢lIAia Pa(t)] 
- ~ ~c e #[A'c-t'c(t)] 1. (31 ) dt 

We are then guaranteed to obtain the unique solution 
to the assignment problem by rounding off each 
term of the matrix l im t~[S ia ( t )  = eO[Aia-Pa(t)]/ 
~c  e#[Aic-e~(t)l] to the nearest binary value. 

2.4 .  S i m u l a t i o n s  

In order to confirm our theoretical results, we simulated 
the steepest descent eqn (19) using fifth order adaptive 
step size Runge-Kutta (e.g., see Press, Flannery, Teu- 
kolsky, & Vetterling, 1988). Because the steepest de- 
scent equation as written above contains ratios of po- 
tentially large exponentials that will tend to introduce 
numerical inaccuracies, we rewrote the descent equa- 
tion as follows 

dPa 1 
- Z - 1 ( 3 2 )  dt i I + ~'b÷ a eB(Aib-Po-Aia+Pa) " 

The number of simulation steps required to solve the 
steepest descent problem is roughly proportional to/3 
because we know from eqn (A.I)  that a2Ep/aPaaPb 
scales linearly with ft. 

The sample benefit matrices consisted of uniformly 
distributed random integers between 0 and 2047. 
Because all the entries were integers, we set A = 

1 and used Theorem 7 to fix the temperature T = 
1/ (2N log N). We ran simulations on benefit matrices 
ranging in size between 2 X 2 and 150 X 150 with 
unique optimal assignments. The descent algorithm 
yielded the correct optimal assignment in every trial. 
In Figure la and b, we plot the evolution of the prices 
along the steepest descent path for a 10 X 10 and a 100 
× 100 benefit matrix, respectively. 

To speed up the simulations, we implemented the 
following temperature scaling descent algorithm. Start 
at a relatively high temperature, say T = 1, and begin 
steepest descent. Continue the descent while decreasing 
the temperature according to an annealing schedule. 
For example, each time the steepest descent equation 
begins to converge, that is, the derivative approaches 
zero, halve the temperature T until the critical tem- 
perature T = A / ( 2 N  log N) is reached. This scaling 
method significantly speeds up the descent simulation 
because the energy landscape becomes sharper as T --~ 
0, slowing down machine simulation. Because /~(T) 
converges as T -~ 0, it is beneficial to get a quick ap- 
proximation o f / ~ ( T )  at high temperature when the 
energy landscape is smoother and then refine the ap- 
proximations at successively lower temperatures. The 
gain in performance is quite sensitive to the choice of 
annealing schedule. In practice, the heuristic method 
of halving the temperature improved performance by 
more than two orders of magnitude allowing us easily 
to solve assignment problems up to size 400 × 400. In 
Figure 2a and b, we show the evolution of the P-vector 
with temperature scaling as a function of Runge-Kutta 
steps for the same sample 10 × 10 and 100 X 100 
benefit matrices as before. 

There are three possible criteria that we can use to 
determine when to stop the steepest descent simulation 
and still be guaranteed that we can recover the optimal 
assignment. One possibility, is to use the bounds on 
the gradient of the P-Energy derived in Yuille and 
Kosowsky (1991) to determine when we are suffi- 
ciently close to the P-Energy minimum to allow round- 
ing off to succeed. Alternatively, we could simply run 
the steepest descent equations for the time bound de- 
scribed in Section 4 and then round off to the nearest 
binary matrix. The final possibility is to continue the 
descent until the matrix {Aia - Pa } becomes strictly 
row dominant and then stop and solve the correspond- 
ing trivial assignment problem. This final option gives 
the earliest stopping time because the other criteria 
cannot be satisfied until { Aia - Pa } is strictly row dom- 
inant. 

3. COMPARISON TO OTHER ASSIGNMENT 
ALGORITHMS 

3 .1 .  B e r t s e k a s '  A u c t i o n  A l g o r i t h m  

Our saddle point statistical physics model has many 
interesting parallels to the fast auction algorithm of 
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Bertsekas (1981 ). We will first present a short sum- 
mary of the auction algorithm. The auction algorithm 
solves the assignment problem by constructing a vector 
{Pa } such that the matrix {A~a - Pa } is strictly row 
dominant. 

According to Bertsekas' scheme, we interpret the 
entry Aia as the benefit that the ith person receives by 
owning the ath object, and we consider Pa to be the 
price of the ath object. Person i is said to be happy with 
object b at the reigning price structure { Pa }, if 

Aih - -  Pb >-- max(Ai~ - P~). (33) 
a 

Given some fixed e > 0, the person is e-almost happy 
if 

Aih - -  Pb >-- max(Ai~ - P~) - e. (34) 
a 

To solve the assignment problem it is clearly sufficient 
to find a distribution of prices such that all persons are 
happy. If e _< A / N  whereas before A is the difference 
in total benefit between the best and second best as- 
signments, then Bertsekas shows that it is sufficient for 
all persons to be e-almost happy. This notion of almost 
optimality is called epsilon-complementary slackness. 

The prices are adjusted by the following procedure 
until everyone is e-almost happy. 
1. Assign each person a unique object. 
2. Fix an arbitrary price vector { P~ }. 
3. Pick a personj  who is not e-almost happy. Let aj be 

the object that the person values most at the current 
price level. Specifically, 

aj = arg max (Aj~ - P~). (35) 
a~{l ,2  . . . . .  n} 

4. Person j exchanges the object with the person cur- 
rently assigned to object aj. 

5. The price Pa, of object aj is raised by the amount 

(Aj~ i - P a j )  - max(Ajb -- Pb) + e. (36) 
b÷ aj 

6. Continue with step 3 until everyone is e-almost 
happy. 
We can view this procedure as analogous to a stan- 

dard auction. Any player who can increase the benefit 
by more than e by exchanging objects, switches objects 
and then raises the bid on the newly chosen object until 
the player is within e of being indifferent between the 
two objects considered most valuable. If e is greater 
than zero, then this procedure will always terminate. 
Once an object is exchanged, it will continue to be as- 
signed to people who are e-almost happy with the object; 
furthermore, because the price of an object increases 
by at least e with each exchange, every object that is 
not e-almost happily assigned will eventually be ex- 
changed as the other objects become relatively more 
expensive. 

Ife is greater than zero and less than A / N ,  then the 
procedure converges to an assignment that makes ev- 

eryone happy and thus yields an assignment that max- 
imizes the total benefit. To prove this assertion, Bert- 
sekas introduces the following dual minimization 
problem (Bertsekas, 1990). Minimize over all { Pa } E 
R ~, the dual energy 

N N 

k)u,,[{P,}]- Z max(A,~- P,) + • Pa (37) 
i l a a - I  

Bertsekas shows that in the limit as e goes to zero, 

B * =  min Z max(A,~-P~)+ P~ = ~ A ~ , )  (38) 
I Pa} Lt:l a I i = 1  

where B*~ is the optimal assignment benefit and ~- is 
the permutation computed by the auction algorithm. 

3.2. Comparison of Our Algorithm With the 
Auction Algorithm 

There are many evident similarities between Bertsekas' 
auction algorithm and our proposed algorithm. Both 
methods introduce a vector { Pa } whose underlying 
purpose is to transform the original benefit matrix into 
a row dominant matrix, thereby revealing the optimal 
assignment. Bertsekas motivates the introduction of the 
{ P~ } vector by interpreting them as prices or bids in 
his auction analogy. In our model, the { Pa } s were first 
introduced in eqn (9) and were interpreted as a vector 
of Lagrange multipliers enforcing the constraint that 
each object is assigned to exactly one person. 

In the spirit of Bertsekas, if we interpret the { Pa } s 
in our model as prices, then our steepest descent al- 
gorithm can be given the following appealing economic 
interpretation. The entry S i a  = e ~ ( A " - P a ) / ~ b  e~(A'b-Pb) 
can be thought of as the relative utility that person i 
gets by choosing object a over all the other objects. 
Z N= ~ Si~ is then the total demand associated with object 
a. The total supply of each object at any price level is 
rigidly fixed at one. The steepest descent equation 

dpo = Z S , , - I  (39) 
a l l  i l  

now makes perfect sense! If total demand for object a 
exceeds the rigid supply, then raise its price; if supply 
exceeds demand, then lower the price. Equilibrium oc- 
curs when supply equals demand. Because our descent 
algorithm so nicely illustrates Adam Smith's (Smith, 
1778 ) famous law of supply and demand, we will call 
our algorithm, the invisible hand algorithm. 

In order to prove convergence, both algorithms con- 
vert the original problem of maximizing the assignment 
benefit over all N! possible assignments to a dual prob- 
lem of minimizing a dual energy function over the set 
of all N-vectors { Pa }. In our approach, we introduce 
the P-Energy and then prove that steepest descent on 
the P-Energy solves the assignment problem; Bertsekas 
uses his dual energy function to show that the auction 
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algorithm yields the optimal assignment. Most strik- 
ingly, referring to Lemma 3, we note that the P-Energy 
at zero temperature is precisely Bertsekas' dual energy 
function, Ed~! It then follows from Theorem 4 that 
minimizing the P-Energy at zero temperature or equiv- 
alently minimizing Bertsekas' dual energy function 
maximizes the assignment benefit function and solves 
the assignment problem. Bertsekas then uses the dual 
energy function and the notion of e-complementary 
slackness to show that the auction algorithm gives the 
optimal assignment for sufficiently small positive values 
of e. Similarly, in our proofs, we show that steepest 
descent at a sufficiently small fixed nonzero tempera- 
ture suffices to solve the assignment problem. Thus, 
both Bertsekas' e parameter and our temperature pa- 
rameter are used to achieve an almost opt imal  solution 
that for sufficiently small values of the parameter cor- 
responds to the optimal assignment. 

The number of bidding rounds required for the auc- 
tion algorithm to terminate is roughly inversely pro- 
portional to the value of e because e determines the 
minimum bid increment. To speed up the auction al- 
gorithm Bertsekas suggests using e-scaling. Specifically, 
beginning with a large value for e, the auction algorithm 
is run several times using successively smaller values 
ofe until e < A / N .  The resulting prices from each cycle 
are used as the initial conditions for the prices in the 
succeeding cycle. As described in Section 2.4, a similar 
notion of temperature scaling applies to our invisible 
hand algorithm. We use the steepest descent equation 
to minimize the P-energy at successively lower tem- 
peratures until the temperature satisfies the bound of 
Theorem 7. After each descent iteration, the resulting 
equilibrium prices are used as the initial price distri- 
bution for the next cycle. 

3.3. Tracking Down the High Temperature Solution 

Instead of following the steepest descent path for the 
P-energy at successively lower temperatures, we could 
find the unique minimum of the P-Energy at T = 1//3 
,> 1 and then follow the trajectory of the { Pa } s that 
minimize the P-Energy as the temperature decreases. 
Recall that at any fixed temperature, the following sys- 
tem of equations 

eO(Aia-Pa) 
1, Va, (40) 

i ~ b  efl(Aib-Pb) 

determines the unique (up to constant translation) 
vector { Pa } that minimizes the P-Energy, At high tem- 
peratures, T = 1//3 ,> 1, we can solve for { P~ } to first 
order in/3 by using a Taylor series expansion. 

[i + {3(A~a - ea)l 1 - ~ (A~b -- Pt,) 
i 

=N+O(/32).  (41) 

Hence, 

1 Z<A,o-Po)- Z, <42) 
and 

1 1 
Po(fl) = ~ .  ~ A,: - ~ Z A,~ + O(~), (43) 

• " i,b 

where we have fixed the translation invariance so that 
N a=l Pa = 0. By fixing/3 to be suffÉciently small, we 

can to any desired degree of accuracy solve explicitly 
for the vector P(/3) that minimizes the P-Energy, Ep[P, 
/3]. Now at any fixed/3, the minimum of the P-Energy 
is determined by solutions of 

OEp[ P({3), {31 0. (44) 
ae, 

We want to track the solutions as a function of/3. Dif- 
ferentiating with respect to/3 gives 

02Ep  k ~" OZEp dPb 
O. (45) 

OP:O{3 ~ OPaOPb d{3 

Because the Hessian of Ep is always positive semidefi- 
nite, except for the unimportant translation freedom, 
we can solve for dPo/d/3 once we have fixed the trans- 
lation invariance by setting Y~a P: = constant. Finally, 
by integrating dPb(/3)/d/3, we can track the minimum 
as/3 increases. By Theorem 7, we know that for suffi- 
ciently large/3, the matrix {Ai: - P:(/3) } is strictly row 
dominant allowing the optimal assignment to be re- 
covered easily. 

This temperature tracking method is reminiscent of 
simulated annealing (Kirkpatrick et al., 1983) in the 
sense that we decrease the temperature of a statistical 
system to find its global minimum, but we emphasize 
that our method is deterministic not stochastic and that 
the rate of descent is not restricted by an annealing 
schedule. Moreover, as shown in Yuille and Kosowsky 
( 1991 ), our temperature tracking approach is analo- 
gous to interior point methods of Karmakar (1990) 
and Faybusovich ( 1991 ). Consequently, this similarity 
suggests an intriguing connection between deterministic 
annealing and interior point methods. 

In a forthcoming paper (Yuille & Kosowsky, 1994), 
we show that we can find/3min < /3m~ < Oe such that 
if we begin at/3 =/3rain with the fixed initial conditions 
Pa (/3rain) = 0 for all a and track the trajectory of constant 
P-Energy gradient, OEv[P:(/3), ~31lOP: = constant, as 
/3 increases to/3max, then we can recover the optimal 
assignment by rounding offthe final value of { Si,[P(fl) ,  
/3] } to a binary matrix. 

3.4. Iterative Algorithm for Minimizing P-Energy 

In both the invisible hand algorithm and in the above 
temperature tracking scheme, we find a solution to eqn 
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( 15 ) and thus solve the assignment problem by follow- 
ing the trajectory of a continuous dynamical system. 
Applying a general result due to Sinkhorn (1964) on 
doubly stochastic matrices, 3 we can instead find an it- 
erative algorithm that solves eqn ( 15 ) at any fixed tem- 
perature and thus, in particular, at sufficiently low tem- 
perature, solves the assignment problem temperature. 
Sinkhorn proves the following theorem: 

THEOREM 8 ( S i n k h o r n ) .  Given a strictly positive N × 
N matrix M, there exists a unique corresponding doubly 
stochastic matrix 0 M = EMD, where D and E are 
strictly positive diagonal matrices and are themselves 
unique up to a multiplicative scale factor. Moreover, the 
iterative process of  alternatively normalizing the rows 
and column of M to each sum to 1, converges to the 
corresponding doubly stochastic matrix 0 g. 

Note that since 0 g is doubly stochastic, 

1 
Eii ( 46 )  

~a'- I Mia  Oaa " 

Now, because {e ~Aio } is a strictly positive matrix that 
we identify with { Mia }, we conclude that Sinkhorn's 
iterative procedure yields a vector {P, = - ( 1 /  
/3)log(Daa) }, which is unique up to the constant trans- 
lation invariance {P,} ~ {P~ + K}, such that 

d e f  e~,(A~a Pa) 
Sia - Z~'=j e ~(A'C Pc) (47)  

is doubly stochastic and hence solves eqn (15). Because 
this procedure works for arbitrary/3, we conclude that 
Sinkhorn's method can be adapted to yield an iterative 
solution to the assignment problem. Conversely, be- 
cause any positive matrix M can be expressed as e ~'o 
where Aia = ( 1/13)log Mi,, we conclude from Theorem 
1, that the steepest descent eqn (19) converges to { P~ } 
such that Sia (P) is the unique doubly stochastic matrix 
corresponding to M. So, 0 M = EMD,  where { D a a  } = 
{e -~e° } and { Eli } = 1 / ~  Mice -Èe~. Hence, Theorem 
1 can be interpreted as a simple new proofofSinkhorn's 
theorem. 

3.5, Simulations 

In practice, on finite precision machines, a direct ap- 
plication of Sinkhorn's method leads to numerical 
overflow problems. The difficulty is that the exponent 
/3Ai, tends to be so large that the resulting exponential 
overflows. Furthermore, even if we avoid overflow, we 
still end up alternatingly normalizing the rows and the 
columns by very large numbers, which is numerically 
unstable. In fact, using standard double precision 
arithmetic, this direct approach only worked when the 

3 We would like to thank D. Mumford for bringing this result to 
our attention. 
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benefit matrix was no larger than about 7 X 7 and when 
the (integer) entries did not exceed order 10. 

These numerical difficulties can be avoided by 
adapting the temperature scaling approach of  Section 
2.4 to Sinkhorn's method. To preserve numerical ac- 
curacy, at each iteration we write the normalized matrix 
as e-aO'eaA~ae -aea, where Qi corresponds to normaliz- 
ing the ith row and Pa corresponds to normalizing the 
ath column. When we normalize the rows, we additively 
adjust the vector { Qi } and when we normalize the col- 
umns, we additively adjust the vector { P~ }. The tem- 
perature scaling Sinkhorn algorithm then proceeds as 
follows. First choose/3 = 1 / T sufficiently small so that 
maxi,~/3 I Aial is of order one and initialize a i  = ea = 
0. At each fixed value of/3, alternatively normalize the 
rows and columns until the resulting matrix is almost 
doubly stochastic. Then, if 13 is less than the critical 
inverse temperature, 2Nlog N/A, double/3 and proceed 
once again to normalize the rows and columns using 
the previous values for { Qi } and { P~ } as the initial 
conditions; otherwise, we are done and we can recover 
the optimal assignment by rounding off the entries of  
the now nearly doubly stochastic matrix. Note that this 
method of successively halving the temperature is the 
exact analog of the simple annealing schedule proposed 
in Section 2.4. Other annealing schedules are possible, 
yielding somewhat different performances. 

On benefit matrices consisting of uniformly distrib- 
uted random integers between 0 and 2047, this tem- 
perature scaling Sinkhorn approach worked well on 
matrices up to about 400 × 400. Experimentally, this 
Sinkhorn-type algorithm runs more than 10 times faster 
than Runge-Kutta  simulations of the temperature 
scaling steepest descent approach described in Section 
2.4. In Figure 2a and b, we show the evolution of  the 
price vector, P, as a function of Sinkhorn steps, using 
temperature scaling, for the same sample 10 × 10 and 
1 O0 × 1 O0 benefit matrices as before. 

4. BOUNDS ON TIME CONVERGENCE 
In Section 2, we showed that for sufficiently low tem- 
perature, the optimal assignment can be recovered at 
a minimum of the P-Energy. We will now prove that 
the optimal assignment can be recovered as long as we 
are in a neighborhood of the P-Energy minimum or 
equivalently, because the P-Energy is convex, as long 
as the gradient of  the P-Energy, V E p  = { OEe/OPa }, is 
sufficiently small. In particular, this will show that the 
optimal assignment can be recovered by following the 
steepest descent trajectory for a finite predetermined 
amount  of time. To this end, we must extend the results 
of the Section 2.3 to prove bounds on the P-Energy 
and assignment benefit function in the neighborhood 
of a minimum of the P-Energy. 

THEOREM 9. Suppose { Aia } is any N × N benefit matrix 
with a unique optimal assignment, II*, and N >- 4. Let 

A equal the benefit difference between the optimal and 
second best assignments. ITIIVEp[ P," T] II -< c, then for 
all i and a, 

NElog N [ [4,  
I Sia(P, T) - IIi*l < 8 . /e /z[max Ai+ - min Aia ) 

/~ L l i,a i,a 

+ Tl°gN- l+ l -e  e}+ T I o g N ] + e N l o g ( N - 1 ) ( 4 8 )  

Proof See Yuille and Kosowsky ( 1991 ). • 
This theorem shows that provided the temperature 

is sufficiently small, we do not need to get to the min- 
imum ofEp. Instead, we can put a threshold on IIVEpII 
and stop the descent as soon as this threshold is reached. 
This will only take finite time because, as Ep is convex, 
we can put a lower bound on the rate of decrease of 
Ep. Specifically, 

THEOREM 10. Suppose {Aia } is any N × N benefit 
matrix with a unique optimal assignment and N >_ 3. 
Let A equal the benefit difference between the optimal 
and second best assignments. Fix temperature 

A 
T < 64N2(log N) 2 . (49) 

/ f  
1 

[IVEe[P; T] II < 64N21og N (50) 

then, we can recover the optimal assignment by rounding 
off { Sia( P, T)}  to the nearest binary matrix. 

In particular, i f  we use steepest descent and start at 
P = O, then convergence is guaranteed in time 

t < 4096NS(log N)2[ T log N 

+ (maxAia-  minAia)]. (51) 
ha i,a 

Proof See Appendix 3. • 
Thus, we can always find a sufficiently low temper- 

ature at which steepest descent is guaranteed to con- 
verge to the unique optimal assignment in polynomial 
time (in N). Note that eqn ( 51 ) refers to the time for 
the analog dynamical system to converge. This notion 
of polynomial time convergence should not be confused 
with the standard measure of complexity used in com- 
puter science or with the amount  of CPU time it takes 
to simulate the descent equation on a digital computer. 

5. CONCLUSION 

In this paper, we have used statistical physics to con- 
struct a weakly convex effective energy function pa- 
rameterized by temperature. We proved that for suffi- 
ciently low temperature, the unique minimum of the 
effective energy corresponds to an optimal solution of 
an associated assignment problem. The resulting con- 
tinuous-time dynamical system induced by gradient 
descent can be used to solve this classic combinatorial 
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problem.  Convert ing discrete problems  into dynamica l  
systems is desirable because this process yields inher-  
ently paral le l izable  a lgor i thms suggestive of  neura l  
computa t ion .  

Moreover, this effective energy construct ion provides 
a bridge between statistical phys i c s /neu ra l  network 
ideas, S inkhorn ' s  results about  doubly  stochastic ma-  
trices, and Bertsekas '  discrete op t imiza t ion  auct ion al- 
gor i thm.  Indeed,  S inkhorn ' s  i terative a lgor i thm can be 
applied to min imize  the effective energy and hence solve 
the ass ignment  p rob lem;  conversely, our  dynamica l  
system can solve S inkhorn ' s  p rob lem.  The  s imilar i t ies  
between the effective energy cons t ruc t ion  and the auc- 
t ion a lgor i thm are striking, our  Lagrange mult ipl iers  
cor respond to Bertsekas '  prices, and  his dual  p rob lem 
is precisely our  effective energy at zero tempera ture .  
Finally, steepest descent  on the effective energy admi ts  
an elegant economic  in terpre ta t ion  reminiscent  o f  
A d a m  Smi th ' s  invisible hand.  

Al though statistical physics and related neura l  net- 
work techniques have been successfully appl ied  to yield 
good heurist ic a lgor i thms for solving combina to r ia l  
p rob lems  such as the traveling sa lesman prob lem,  rig- 
orous proofs of  convergence have been lacking. In this 
paper, we proved convergence in the context  of  the as- 
s ignment problem.  We also presented t ime convergence 
bounds  for the invisible hand algori thm that  are proved 
in greater  detail  in an extension of  this paper  (Yuil le  
& Kosowsky, 1991 ). In a fo r thcoming  paper  (Yuil le  & 
Kosowsky, 1994), we extend our  results to prove con- 
vergence for a general  class of  op t imiza t ion  p rob lems  
and demons t ra te  s imilar i t ies  to in ter ior  po in t  algo- 
r i thms  and bar r i e r  funct ion methods .  
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APPENDIX 1 

Proof of Theorem 1. We first prove that the P-Energy is weakly convex, 
by showing that the Hessian 

1 O2Ep e~C,t,o co, { e0~a,~-e~, 1 
flOP, OPh- ~ ~ t  b~h E ~  e')] (A.I) 

is positive semidefinite. From eqn ( 14 ), we obtain 

1 O2Ep 
- -  - Z Si,(Gb S,b). (A.2) fl OPaOPh i 

Let {x,} bean arbitrary vectoc then 

1 02Ep 

a,b t a,b 

(A.3) 

We will show that the summand is nonnegative for each i. Recall the 
Cauchy-Schwarz inequality 

(A.4) 

where equality holds if and only if {J~} and {gv} are co-linear. We 
apply this for each i, settingf~ = x~ (S~a) and g, = (S~i,) and noting 
that the { S,a } are all positive by eqn (14). This yields 
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(A.5) 

since X~ Si~ = 1. Hence, ( 1/13) E~,o (02Er/OPaOPo)xaxt, is nonnegative 
for all vectors { xa }, so the Hessian is indeed positive semidefinite. 
By Cauchy-Schwarz, equality holds only when { x~ } oc ( 1 . . . . .  1 ). 
This eigenvector corresponds to the translation invariance { P~ } 
{P~ + K}. 

We will now show that the P-Energy is bounded below. Without 
loss of generality, we fix the translation degree of freedom by imposing 
the condition Z~ P, = O. Then Ep can be rewritten as 

1 1 eaA'~e -ae') 
a 

(A.6) 

Consider the term Z~ eaa~e -ae'. Because Z~ P~ = 0, this term is 
bounded below, but not above (send one P~ to minus infinity and the 
others to plus infinity). Using Lagrange multipliers to impose the 
constraint Z~ P~ = 0, we calculate that the lower bound on each term 
is Ne (elm ~ A~, which occurs when e -~eo = e t(~/N) x~ Xde-aX,o" Hence, 
Ep is bounded below by ( 1/f l)N log N + Zi,~ Aia. 

We conclude that since Ep is weakly convex and bounded below, 
it has a unique minimum up to a constant translation invariance. • 

A P P E N D I X  2 

Proof of Theorem 2. At a minimum of the P-Energy, ~ Si~ = 1, so 

Ep[P, T] - B , [S(P ,  T)] 
N 

= - T  22 S,a(P, T)log S~a(P, T). (A.7) 
i,a- 1 

Using Lagrange multipliers to minimize Z~,~ S J o g  S,~ subject to 
the constraints Y.~ S~ = 1 for all i and S~. >- 0 for all i, a, we conclude 
that 

0 < - ~  S~logS~a<<.NlogN. • (A.8) 
i,a 

Proof of Lemma 3. 

limEp[P'T]=lim[T~'l°g(r-o r~o[ i ~a e('/r)(&"-eD) + ~a Pa} 

N N 
= ~ m a x ( A g o + P ~ ) +  ~P~ .  • 

i=1 a a = l  

Proof of Theorem 4. We will first prove that B *  < Ep[/~, T = 0]. 
Now for any choice of a" E Su and for all { P~ } @ R" 

N N 

Z Ai,(i) = Z (Ai,(i) - P,,(i)) + P~ 
i=1 i= l  a = l  

where the final equality follows from Lemma 3. Hence, 

B ~  = max A .(i) -< rain max(A/. - P~) + P~ 
7rESN i=1 {Pa a = l  

: m i n  Ep[P, T : 0 ]  
P 

= Ee[P, T =  0], 

where/~ denotes the vector minimizing the P-Energy at T = 0. 
The converse inequality follows by applying eqns (A.7) and (23) 

at T = 0 to get that 

Ev[/~, T = 0] = Z Ai, S,~[fi, T = 01 < B * .  • (A.9) 
i,a 

Proof of Theorem 5. Using the chain rule, 

dEe[P, T] OEp + .~ OEe dP~ 
dT OT ~ cgP. dT 

= OE___£ 
OT'  

recalling that we are at a minimum 
I/3, 

dEp[ P, T] 
dT 

of the P-Energy, Setting T = 

32 OEp[P, T = 1/3] 
o3 

~,a (Ai. - P.)e a<A'-~;°) 

: ~ ( E p [ e ,  Z ] -  ~ e a -  ~ (dia-- ea)aia[ if, Z'  I 1 \  a i,a I 

= L {PAP, T] - B . t S ( P ,  T)]} T (A.lO) 

where we have used the fact that at equilibrium, Z~ S~a = 1. The 
proof of the first inequality is then completed by referring to the 
bounds in Theorem 2. 

The second inequality follows by integrating the first inequality, 
and substituting the result of Theorem 4. The third inequality follows 
from the second using eqns (A.7) and (A.8). • 

Proof of Theorem 6. Set B *  = B~[{IIi*}]  and let B ~  = 
B~[ { II 2, } ] denote the total benefit of the second best assignment, 
{ H ~* }. Because we are assuming that there exists a unique optimum 
to the assignment problem, A = B *  - B ~  is strictly positive, Now 
S~a(P, T) is a doubly stochastic matrix and hence belongs to the 
permutation polytope, the convex hull of the permutation matrices. 
So, we can write 

S,a( /5 ,  T )  = • t . n , . ,  ( A . I I )  
~su 

where, t, > 0 and Z,~s,, t ,  = 1. 
Suppose there exist j ,  b E { 1, 2 . . . .  N} such that TN log N/A < 

1II7~ - sMP, T)I.  If IITb = 1 then 

TN log N 
- - < 1 -  Z t , H j b = ( 1 - t , . )  - 22 t , H / o < l - t , . ,  

A ~'~sN ~ S ~ r - ~ *  

while if II~ = 0 then 

TN log N 
- - <  Z t.rlje= 22 t . r l j b < l - t . . .  

A ~ S s  ~ S N -  r *  

Hence, in either case 

TN log N 
- -  < 1 - t . . .  ( A . 1 2 )  

A 

Now, 

Bm[S(fi, T)] = Z AiaSia(P, T) 
i,a 

mESN-- { r*  } - i,a 

< t . .B*  + (I - t . . )B~  = B *  - (1 - t . ' )A.  



Applying the bounds from Theorem 5, we get a contradiction 

TN log N TN log N 
- -  < 1 - t . .  < - -  ( A . 1 3 )  

A A 

Hence, we conclude that 

max] II*, - S~,(P, T)I - < TXlog N (A.14) 
t,a A 

So, the entries of  {S~o(P, T)} converge uniformly to the optimal 
assignment permutation as the temperature goes to zero• • 

Proof of Theorem 7. The proof follows trivially from Theorem 6 
because rounding off to the nearest integer will yield the optimal 
assignment whenever 

1 
maxlII*o - Si~(P, T)I < - .  (A.15) 

i,a 2 

Because rounding offgives the optimal assignment, we know that for 
each row i there exists a unique a such that Si~(ts, T) > ~, (i.e. object 
a is assigned to person i). By eqn (14), 

eC~(Aib It, Ai.+Pa) = _ _  1 < 1. ( A I 6 )  
b#a Sta 

Hence, for all b # a. 

Aia P a  > Aib -- P h ,  

so, { A ,  - P~ } is indeed strictly row dominant. 

(A.17) 

A P P E N D I X  3 

Proof'of Theorem 10. As in the proof of Theorem 7, if I Si.(P, T) 
- II ~a I < ½, then we can recover the optimal assignment by rounding 
off. This condition can be enforced by requiring that the four terms 
on the right-hand side of eqn (48) are all less -~• For the third term 
we need, 

A 
T < 64N2(log N) 2 . (A. 18 ) 

Similarly, for the first term we require, 

A 
e <  (A.19) 

128NZ(log N) ( maxi,~Ai~ - mini,~A,~) " 

J. J. Kosowsky and A. L. Yuille 

Now, the fourth term is less than ~ if 

1 
e <  

8 N l o g ( N -  1) 
(A.20) 

Finally, for the second term, [8N2(log N)T log(N - l + e)/(  1 - 
e ) ] /A < -~ will follow from eqn (A.18), provided e < I / (N  + 1). 
Because N >_ 3, eqn (A.20) in turn ensures that e < 1 / (N + 1 ), so 
that the second relation is automatically satisfied. 

Now, we can bound 

A < 2(max A,. - min Aia). (A.21) 
i,a t.a 

It then follows that eqns (A.19) and (A.20) are satisfied i fe  < 1/ 
(64N21og N). Thus, convergence is assured if. 

A 
T < 64N2(log N) 2 

1 
IIVEp[P; T] II ~ o4:~t'--'2"og N (A.22) 

The convergence time for this dynamical system can now be esti- 
mated. Using the chain rule, dEp[P( T)]/dt = VEp[P( T) ] -  dP/dt, 
and the steepest descent equation, dP/dt = -VEp[P(  T)], we observe 
that dEp[ P(7") ] / dt = - I[ V Ep[ P (T )  ] t[ 2. Recalling that the P-Energy 
is convex, it follows that after (Ep [P = 0, T] - Ep[P( T)])/e 2 units 
of time we can descend to a point where [[VEp[P( T)]  [[ < e. Using 
Lagrange multipliers, it can be shown that Ep [P = 0, T] = B~[S(0 ) ]  
- T ~,,a St~(0)log S~(0) is bounded above by (TN log N + N 
maxi,~At~). By Theorem 5, Ep[ P( T)] is bounded below by N min~,~Ai~. 
Hence, 

Ep [P = 0. T] - Ep[ P (T) ]  

<_ TN log N + N ( m a x  .4;a - m i n  A ; a ) .  
i.a i,a 

(A.23) 

So, if we fix 

A 
T _< 64N2(log N,  ~) (A.24) 

and set e = 1/(64N21og N),  then we have convergence in time 

t _< 4096NS(Iog N)2( T log N + (max Aia - rain Aia)). • (A.25) 
l,a 


