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We show that the problem of constructing a perfect matching in a graph is in the complexity 
class Random NC; i.e., the problem is solvable in polylog time by a randomized parallel algorithm 
using a polynomial-bounded number of processors. We also show that several related problems 
lie in Random NC. These include: 

(i) Constructing a perfect matching of maximum weight in a graph whose edge weights are 
given in unary notation; 
(ii) Constructing a maximum-cardinality matching; 

(iii) Constructing a matching covering a set of vertices of maximum weight in a graph whose 
vertex weights are given in binary; 
(iv) Constructing a maximum s - t  flow in a directed graph whose edge weights are given in 
unary, 

I. Introduction 

In this paper we show that  the problem o f  constructing a perfect matching 
in a graph  is in the complexity class R a n d o m  N C ;  i.e., the problem is solvable in 
polylog time by a randomized  parallel algori lhm using a polynomial -bounded num-  
ber o f  processors. We also show that  several related problems lie in R a n d o m  NC.  
These include: 

(i) Constructing a perfect matching o f  maximum weight in a graph  whose edge 
weights are given in unary  nota t ion;  
(ii) Construct ing a maximum-cardinal i ty  matching;  

(iii) Construct ing a matching covering a set o f  vertices o f  max imum weight in 
a graph  whose vertex weights are given in b inary;  
(iv) Construct ing a maximum s - t  flow in a directed graph whose edge weights 
are given in unary.  

Our  results are based on a theorem o f  Tutte [15] showing that  a graph has 
a perfect matching if and only if the determinant o f  a certain skew-symmetric matrix 
with indeterminates as elements is not  identically zero. Around  1979 Lovhsz [ t i ]  
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suggested that Tutte's Theorem, combined with a fundamental randomized tech- 
nique for testing whether a matrix with polynomial entries has a nonzero deter- 
minant [13], provides a simple polynomial-time randomized algorithm for testing 
whether a graph has a perfect matching. In 1982 Borodin, von zur Gathen and 
Hopcroft [3] observed that, since the problem of computing the determinant of a 
numerical matrix lies in NC, a parallel algorilhm can be constructed based on Lov~sz's 
approach. This algorithm establishes that the problem of deciding whether a graph 
contains a perfect matching lies in the complexity class Random NC, but leaves 
open the question of whether a parallel algorithm of comparable efficiency exists 
for constructing a perfect matching in a graph that is known to have such a matching. 
In 1984 Rabin and Vazirani [12], using clever algebraic techniques related to Tutte's 
Theorem, gave an attractive randomized polynomial-time sequential algorithm for 
constructing a maximum matching. They also observed that if a graph has a unique 
perfect matching then the problem of finding it lies in NC. The special case of find- 
ing a perfect matching in an interval graph was shown to be in Random-NC by 
Kozen, Vazirani and Vazirani [10]. 

The additional ingredient that allowed us to obtain a Random-NC parallel 
algorithm for constructing a perfect n~.atching in an arbitrary graph was the intro- 
duction of a useful set function called Rank. Our result is based on a Random-NC 
reduction of the matching problem to the problem of computing the Rank function, 
and on a Random-NC algorithm for computing the Rank of sets. 

2. The perfect matching algorithm 

We present the perfect matching algorithm in three stages. First we reduce 
the problem of finding a perfect matching to the problem of identifying a large set 
of redundant edges in a graph that has a perfect matching and is not very sparse. 
We say that a set of edges in a graph that has a perfect matching is redundant if 
the removal of these edges results in a graph that still has a perfect matching. We 
then show that a random-NC procedure can construct a large set of redundant 
edges provided that a certain integer-valued function, called the rank, which is 
defined over all subsets of edges in the graph, is computable in random-NC. Finally 
we give a random-NC algorithm for computing the rank function. 

2.1. A high level description of the algorithm 

Let IG=(IV, IE) denote the input graph. The procedure Find-Perfect- 
Matching uses three main variables M, V and E. 

The set variable M collects the edges that the procedure designates for the 
output matching. In contrast with the classical matching algorithms, our procedure 
never retreats from partial solutions. Once an edge is added to the set M it remains 
there until the procedure terminates, and it appears in the final output. 

Throughout the execution of the procedure the variable V stores the set of 
vertices that are not yet covered by the matching M. The set E stores a subset of the 
set of edges connecting vertices in V; these are the edges that are still candidates 
for inclusion in the matching. 
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We start the procedure with M = 0 ,  V=IV, and E=IE. If the input graph 
IG has a perfect matching then with probability 1-o(1)  the following property 
holds throughout the execution of the procedure: 

The graph G=(V, E) has a perfeet matching. 
If this condition is ever violated the procedure will fail to produce a perfect matching 
in IG. On the other hand, if the condition remains true then it suffices for the algo- 
rithm to consider edges in the set E, since the set M together with a perfect matching 
in G is clearly a perfect matching in the input graph IG. 

Procedure Find-Perfect-Matching (V, E, M);  
while [EI~O do 

if IEI <(3/4)1VI then [G is sparse] 
find a set NM, [NM[ _->(I/4)[ V[, of edges that lie in every perfect matching; 
M ~ MU NM; 
V~- V-{vertices covered by NM}; 
E*- {(v, u)l(v, u)CE, v, uE V}; 

else [G is not sparse] 
Find-Redundant-Set(RE); 
[with probability fl>O, IREI =>o~[E[] 
E * - E - R E ;  

end. 

The main while loop of the procedure is executed until the set E is empty. 
Assuming that the graph (V, E) always has perfect matching, this implies that the 
set V is also empty, thus, that the variable M stores a perfect matching in 1(7,. 

Each iteration of the while loop tries to decrease the size of the set E by a 
constant factor. The execution distinguishes between two cases: 

Case a. IE[<(3/4)IVI, (the graph G=(V,E)  is sparse). Since G has a per- 
fect matching, the degrees of all its vertices are at least 1. However, ]E[<(3/4)J VI, 
thus at least (1/2)[ V[ vertices have degree exactly 1. If an edge is incident to a vertex 
with degree 1 this edge is included in any perfect matching in this graph. Thus we 
can identify at least (1/4)1V] edges that can be added to the set M and the remaining 
graph (V', E'), defined by the vertices in V that are not covered by the new matching 
edges, has a perfect matching. Furthermore, [E'I =<[E]--(1/4)]VI--<--(2/3)IE[, and 
the computation can be done in O(1) steps using O(lE1) processors. 

Case b. [El =>(3/4)[V[. This case, which is the novel part of the algorithm, 
is solved by the probabilistic procedure Find-Redundant-Set. With probability 
l -o(I /[EI  2) the procedure produces a set RE such that the graph (V, E - R E )  
has a perfect matching. With probability /3:>0, hREI=>~[EI for some ~:>0. Thus 
with probability /~:>0 the procedure reduces the size of our problem by a constant 
factor. 

The analysis of the number of iterations of the while loop required to create 
a perfect matching requires a fact from probability theory. 
Fact 1. [1] Let X be a random variable distributed as the number of successes in n 
independent Bernoulli trials with probability of success p. I f  0 < a <  I then P[X <- 
<:-(1-a) np]<exp ( -1 /Z  a2 np) . I 
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Lemma 2.1. I f  there are constants ~, f l>0  such that with probability at least [3 a call 
to the procedure Find-Redundant-Set identifies at least a fraction ~ of the edges 
in E as redundant, then, uniformly for all problem instances, the expected number 
of iterations of the while loop within this procedure is O(log E), and, moreover, for 
some c > 0  and d > 0  the number of iterations of the while loop is bounded above by 
d log E with probability 1 - 0 (E- c). 

Proof. We may assume without loss of generality that ~=<1/3. Call an iteration 
of the while loop a success if it disposes of at least ~tEI edges, either by determining 
that they lie in every perfect matching (Case a) or determining that they are redun- 
dant (Case b). Then every iteration in which Case a occurs is necessarily a success, 
and every iteration in which Case b occurs is a success with probability at least/L 
Let q = (1 -e ) -1 .  The number of successes required to reduce the number of edges 
to 1, starting from an initial edge set E, is at most log,~ IEI, and hence the number 
of successes required to complete the entire computation is at most 1 +log,  ]E[. 
Since each iteration has probability of success at least [3, independently of the out- 
comes of all previous iterations, the expected number of iterations is at most 
[3-1(l+log~[EI). Moreover, the number of successes in the first 2[3-11ognlEI 
iterations is a random variable that stochastically dominates the number of successes 
in 2/3-z log, [EI independent Bornoulli trials wilh probability of success [3. Applying 
Fact 1, we find that the probability of having log~ IEI or fewer successes in the 
first 213-11og, IEI iterations is at most exp(-(1/8)log,  IE[)=[EI -C, where c =  
=(81n~1)-1>0. Hence, with probability 1-1El -~ procedure Find-Perfect- 
Matching terminates within 2/3 -1 log, IEI iterations. 

As we have mentioned before, the probability that a call to the procedure 
Find-Perfect-Matching fails to find a perfect matching is o(1). Since this bound 
on the failure probability is independent of the input, and sice we can check at the 
end of the procedure whether M is a perfect matching, we can simply repeat the 
procedure until a perfect matching is found. This leads to the following randomized 
algorithm, which finds a perfect matching in polylog expected time in any graph 
in which such a matching exists. 

Perfect Matching Algorithm 

M~-0;  
while [M] < [IVI/2 

V~IV;  
E*-IE; 

Find-Perfect-Matching (V, E, M);  
end. 

and 

2.2. Identifying a large set of redundant edges 

Given a graph G=(V, E) such that 
1. G has a perfect matching, 

2. E>-3/4IVI, 
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we need to find a set REC_E such that 
1. [RE[->~IEI for some a>O 

and 
2. ( V , E - R E )  has a perfect matching. 

Our algorithm uses a powerful integer-valued function defined over all sub- 
sets of edges in G. 

Definition 2.1. Let PM denote the set of perfect matchings in the graph G. For any 
set S c= E define 

Rank(S)  = Max ISNA[. 
A C P M  

In words Rank(S)  is an integer giving the maximum number of edges from 
S that occur together in a perfect matching of G. 

We use the Rank function in the following way. 

Lemma 2.2. For a fixed SC=E, let RE={eEE-SIRank(SU{e})=Rank(S)} .  I f  
G=(V, E) has a perfect matching then so does G'=(V, E - R E ) .  

Proof. If  R a n k ( S ) = k  then there is a perfect matching A in G such that ISNAI =k.  
If Rank(SU{e})=Rank(S) then (SU{e})nA=SnA and e is not in A. This 
argument holds simultaneously for all the edges in RE; therefore removing the set 
RE leaves the graph with at least one perfect matching, the set A. | 

Example. Suppose the graph G is a cycle consisting of the successive edges 1, 2, 3, 
4, 5, 6. Then _PM consists of the two sets {1,3, 5} and {2, 4. 6}. Hence, for any set S, 
Rank(S)=Max( lSN {1, 3, 5}1, ]SN {2, 4, 6} ). Consider the  set S =  {1, 2, 3}. Then 
Rank(S)=2  and RE= {4, 6}. Note that the deletion of edges 4 and 6 does not 
destroy the perfect matching {1, 3, 5}. 

To guarantee a uniform lower bound on the probability that the set RE is 
large enough, we use the following procedure: 

Procedure Find-Redundant-Set; 

begin 

end. 

choose a random number i from the uniform distribution over the range 
{1, ..., 5/6[E1}; 
choose a S C_E from the uniform distribution over the / - -e lement  subsets 
of E; 
RE+- {eEE-SIRank(SU {e}) = Rank(S)}  

Lemma 2.3. There are constants ct,/~>0 such that Prob {[REI-->c~IEI}=>/3. 

Proof. Let IV] =n ,  [El =m,  and let Pi denote the probability that for a set S drawn 
at random fi'om the/--element subsets of E, and for an edge drawn at random from 
E -  S, Rank(SU {e}) = Rank(S) + 1. 

We can think of  a random set S as being constructed by a sequence of i ran- 
dom choices (without repetitions) from the set E. Rank(S) is then equal to the num- 
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Obviously 
write 

ber of times the Rank was increased when a new random edge was added to the set 
S. Thus, 

i--1 
E [Rank(S)] = Z Pj. is[ =~ j=o 

Rank(E) =n/2,  since the graph has a perfect matching, so we can 

(5/6)m m--1 n 4 
~ '  P1 <-- ~ '  p j = R a n k ( E )  . . . .  m. j=a j=o 2 = 6 

Using this upper bound on ~ pj we can compute a lower bound for the ave- 
rage size of the set RE produced by our procedure. The size i of  the set S is chosen 
uniformly from the range 1 . . . . .  (5/6)m. When a random set S of size i is chosen, 
the probability that a random edge e 6 E - S  is added to the set RE is 1 -p~. There 
are always at least m/6 edges in E - S ,  therefore 

> ( 5  (516)m) 1 (5/6)~ 1 1 1 1 
E[ IREI ]  = 5 Z (1-pl)--~-m = T m -  i71 p' - ~ T 6  m" 

i = 1  
- - m  
6 

Let ~t=l/60, then 
m 

2Ft,n <= E[IREI] = ~ j (Prob{]REI  = j}) =< 
j = l  

<= pm(Prob{IRE] < pro}) + m(Prob {]REI ~- pro}), 

which implies that 
2pro <= pm + m Prob {IREI --> ~m}, 

o r  {, 1 } , 
Prob R E [ ~  m >- - ~ .  | 

Lemma 2.4. I f  Rank(S)  is computable in fl([EI) steps using hl(IE[) processors' 
,,here f~ and h~ are monotone nondecreasing functions, then Find-Redundant-Set 
is computable in ft(IE[) +O(1)  steps using IE[hl(lEI) processors. 

Proof. The simultaneous computation of Rank(S) and of Rank(SO{e}) for all 
e in E - S  requires f~([E[) steps using [E[hl(IE[) processors. The determination 
of RE once these Rank computations have been done requires O(1) steps using 
O(IED processors. I 

2.3. Computing the rank function 

For simplicity of presentation we first give a solution for the case where the 
input graph is bipartite. We then explain how the general case is handled. 

Let G =  (U, V, E) denote a bipartite graph with edge set E and n vertices 
in each part. Let U =  {u~, u2 . . . .  , u,} be the vertex set of  one part and V= {vl, v~ . . . .  
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.... v,}, the vertex set of the other part. Associate with each edge {u~, v j} an in- 
determinate x,.j, and let B=(b~j) be an n×n matrix of indeterminates defined by 
the following rule: 

b,j.={01 i if {ul, vi}EE 
if {ul, vi}([E. 

Edmonds [5] has observed that G has a perfect matching if and only if det(B) 
0. This is true because each of the n! terms in the sum 

~ '  sign (a)IIbi.~(i~ 
a E S  n 

is a product of n entries in B that correspond to the edges of one of the n! perfect 
matchings in the complete bipartite graph. If all the edges of a perfect matching 
exist in G than the corresponding term in det(B) is not identically zero; otherwise 
one of the entries is zero and Hb~,,(i~=O. It is easy to verify that monomiats can 
not cancel each other in this summation, and therefore de t (B)~0  if and only 
if G has a perfect matching. 

To compute the Rank of a given set SEE we refine this argument. Define 
the matrix B[SI = (b s) as follows: 

YXij if {ui, vj}~ S 
bS = / ; i  i if {ul, vj}EE-S 

if {ul, vj}~E. 

I.e. B[S] is derived from the matrix B by tagging all entries that correspond to edges 
in S with a new variable y. 

Each non-zero monomial in det(B[S]) corresponds to a perfect matching 
in G. The degree in y of a monomial is equal to the number of elements from S that 
participate in the corresponding perfect matching. Again monomials can not cancel 
each other, hence the degree in y of det(B[S]) is equal to that of the monomial with 
the maximum degree in y, which in turn is equal to the maximum number of elements 
from S that participate in a perfect matching in G, i.e., to Rank(S). 

So in order to compute Rank(S) we have to compute the degree in y of the 
multivariate polynomial det(B[S]). Rewriting det(B[S]) as a polynomial in y, we get 

det (B[S]) = ~ '  Qt [{xij}] y', 
t = 0  

and Rank(S)=Max{tlQ,~O}. Unfortunately, we can not test directly whether 
Qt, which is a polynomial in up to IEI indeterminates, is identically zero. Instead, 
we use a well-known probabilistic method. 

Theorem 2.1. (Schwartz) [13] Let Ot denote the vahte of the polynomial Qt when 
each indeterminate in Qt is replaced by a random integer in the range 1 . . . . .  J. 
I f  Qt~O then Prob{Qt=O}<-lE[/J. | 

Let/7[S] denote the matrix B[S] after all its indeterminates, except ).,,have 
been replaced by random integers. To compute the Qt's we have to compute det (B[S]) 
as a polynomial in one variable y. 
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Theorem 2.2. (Borodin, Cook, Pippenger) [2]. The determinant of an n×n matrix 
of  polynomials with a constant number of variables and the degree of  each matrix 
element bounded by n can be computed in O(log z n) steps using O(n 4'~) processors. 

We can now summarize the algorithm for computing the Rank function in 
the bipartite case. 

Procedure Rank(S); 
begin 

construct the matrix B[S]--[bj,-- s . 
replace each indeterminate x~j by a random integer in the range 1, ..., IlEI4; 

t .  compute de t ( /~ [S] )=~  _ , y ,  
t 

Rank(S)  = Max {tlO,#O}; 
end. 

In the case of a general graph our method of computing the rank function 
relies on the following theorem of Tutte. 

Theorem 2.3. (Tutte) [15]. Let G=(V, E) denote a general graph with vertex set 
V= {1, 2 . . . .  , n} and define the skew-symmetric matrix B=(bij) as follows: 

Xij if {i,j}~E and i < j 
b ~ j = - o i J  if {i,j}EE cmd i > j  

if {i,j}~E. 
Then G has a pe~fect if  and only if  det (B)~0 .  | 

Tutte's theorem can be extended to yield an algorithm for computing the 
Rank function in general graphs. 

Theorem 2.4. Let G = (V,E), S ~ E, and define the matrix B[S] = [b~j] as follows: 

yx~l if {i,j}ES and i < j  
J -  yx,j if  {i, j}~ s a .a  i > j 

b ~ = )  x,j if { i , j } ~ E - S  and i < j  

[-o"  fif and ,> j  
Then Rank(S) is equal to half of the degree in y of det(B[S]). 
Proof. Let P be the set of all permutations a of {l, 2 . . . .  , n} such that, for all i, 
b~,~(o#0. We classify these permutations according to their cycle structures. Since 
all elements on the main diagonal are 0, no permutation in P contains a cycle of 
length 1. Let OP be the set of all permutations in P which contain at least one odd 
cycle and let EP be the set of all permutations in S in which all cycles are of even 
length. Then P is the disjoint union of OP and EP. Let M be the set of all permuta- 
tions in P such that every cycle is of length 2. Then Mc=EP, and the permutations 
in M are in one-to-one correspondence with the perfect matchings in G. 

We have 
det (B[S]) = ~ ,  sign (a) H bi,,(o. 

a ~ P  i 
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We shall show that the contribution of  the permutations containing odd cycles to 
det (B[S]) is equal to zero; i.e., that 

~ '  sign (a) H bi, o~i) = 0. 
a E O P  i 

We shall partition the permutations containing odd cycles into pairs, such that the 
two permutations in each pair make a net contribution of zero to the determinant. 
Let a be a permutation containing at least one odd cycle. Let i be the least element 
of {1, 2, ..., n} occurring in an odd cycle of a, and let C be the odd cycle containing i. 
Then a is paired with a permutation 6 which is the same as a except that the cycle 
C is reversed. Thus ff is defined as follows: if .1"([ C then ~(j)=a(j ) ;  if jEC then 
f f ( j)=a-l(j) .  It is easy to verify that this rule partitions OP into pairs, and that 
each pair makes a net contribution of  zero to the determinant. 

Call an ordered pair ( i , j )  an S- -pa i r  if {i,j} is an edge in S. Then the 
S--pairs  correspond to the entries in the matrix B[S] which involve variable y. 
Associated with each permutation a in EP is the term sign (a) H bi,,(o. This term 

i 
is a nonzero monomial in the variables {xij} and y. Define the y--degree of a as the 
degree o f y  in this monomial. Then the ),--degree of a is just the number of S--pairs  
in a, i.e. the number of S--pairs  (i, a(i)). 

We shall show that, for every permutation aEEP there exists a permutation 
rEM such that the y--degree of z is greater than or equal to the y--degree of  a. 
To construct z, partition the pairs (i, a(i)), i=1 ,  2, ..., n into two sets, called the 
odd pairs and the even pairs, in such a way that, (i, a(i)) is an odd pair if and only 
if (cr(i), a(a(i))) is an even pair. In other words, the partition is chosen so that, 
in the traversal of any cycle of a, odd pairs and even pairs alternate. Such a partition 
is possible because all the cycles in a are even. Assume wilhout loss of generality 
that the set of odd pairs in a contains at least as many S--pairs  as does the set of 
even pairs in a. If the y--degree of  a is d, then the set of odd pairs contains at least 
d/2 S--pairs.  Now define r by the following rule: if  (i, a(i)) is an odd pair then 
z(i)=a(i) and z(a(i))=i. Then ~ lies in M and the y--degree of z is at least d. 

Each permutation in M corresponds to a perfect matching in G, and the y - -  
degree of  this permutation is twice the number of  edges from S in this perfect match- 
ing. Hence, using the result proven in the last paragraph, the maximum y--degree 
of any permutation is just twice the rank of  S. To show that the de~ee  of y in 
det (B [S]) is twice the rank of  S, we need to show that the permutations of maximum 
y--degree make a nonzero net contribution to det (B[S]). But this is clear, since 
there exists a permutation in M among those of  maximum y--degree,  and its mono- 
rnial is not cancelled by the monomial of any other permutation. II 

Thus, using the probabilistic method of Schwartz and the algorithm of Boro- 
din, Cook and Pippenger, we have a Random-NC algorithm for computing the rank 
of a set of vertices in a general graph. 

Lemma 2.5. 1. The procedure Rank is exceuted in O(log 2 [VI) steps using O(IVI 4's) 
processors. 
2. The probability that the proeedure Rank fails to compute the correct value of  Rank (S) 
is bounded by O(]IE[-3), and this event does not depend on the input. 1 
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Combining now the results of Lemmas 2.1--2.5 we have 

Theorem 2.5. For any input graph IG:( IV,  IE): 
1. The proce&o'e Find-Perfect-Matching uses O([IV[ 6"5) processors and termi- 
nates n'ithin O(log 3 I/El) steps with probability 1 -[IEI -~ for some c>0. 
2. The probability that the procedure fails to produce a perfect matching when applied 
to a graph that possesses one is bounded by [1El -1. I 

3. Further results 

In this section we derive Random-NC algorithms for several further prob- 
lems related to matching and network flows. We begin by giving such an algorithm 
for finding a perfect matching of maximum weight in an edge-weighted graph G= 
=(IV, IE, co), when the edge-weights r~)({i,./}) are given in unary. 

Definition 3.1. Let M W  denote the set of perfect matchings of maximum weight in 
the weighted graph G=(V, E, o~). For any set SC=E define 

Rankw(S) = Max [SAA[. 
A ~ M W  

In words Rankw(S) is an integer giving the maximum number of edges from 
S that participate in a perfect matching of maximum weight in G. 

It is easy to verify that running the procedure Find-Perfect-Matching 
with the new rank function computes the desired perfect matching in an expected 
number of iterations of order log [EI. The only difficulty is to show that the new 
Rankw function is computable in Random NC. The following theorem, in combi- 
nation with Theorem 2.2, establishes this fact. 

Theorem 3.1. Let G=(V,E,  ~o), S~:E, and define the matrix B[S] as follows: 

[ yz~'xu if {i,j}ES, i < j ,  and co({/,j})=w 
[-yz~x , j  if {i,j}ES, i > j ,  and co({i,j})=w 

b S = {  z~'x~j if { i , j }EE-S,  i < j ,  and w({ i , j } )=w 
[-zWxij if {i , j}CE-S,  i > j ,  and o,({i , j})=w 
I 0  if {i,j}.~ E. 

Let det(B[S])=z~ Qtz I and let L=Max {tlQt~0}. 
l 

1. The the maximum weight of a petfect matching in G is L/2. 
2. Rankw(S) is equal to half the degree in y of QL, the coefficient of  z L. 1 

The proof of Theorem 3.1 is quite similar to that of Theorem 2.4. First it is 
shown that the permutations containing odd cycles make a net contribution of zero 
to det (B[S]). Then attention is restricted to EP, the set of permutations with all 
cycles even that make a nonzero contribution to det(B[S]). Let L be the highest 
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degree to which z occurs in the monomial associated with such a permutation, and 
let d be the highest degree of y that occurs in a monomial that is of  degree L in z. 
It is shown that, among the permutations whose monomials are of degree L in z 
and of  degree d in y, there is at least one whose cycles are all of  length 2. Such a per- 
mutation is shown to correspond to a matching of weight L/2  containing d/2 edges 
from S; moreover, it is shown that this matching is of maximum weight and, among 
matchings of  maximum weight, has a maximum number of edges from S. Finally, 
it is shown that the monomials of degree L in z and d in y associated with permu- 
tations in E P  make a nonzero net contribution to det(B[S]), so that the polynomial 
det(B[S]) is of degree L in z, and the coefficient of z in this polynomial is of degree 
d in  y. 

In the following paragraphs we use the technique of reducibility to show that 
further matching and flow problems lie in Random NC. All the reductions mentioned 
below can be performed in logspace. 

1. Maximum cardinality matching. The problem of  constructing a maximum 
cardinality matching in a graph G with vertex set V and edge set E is easily reduced 
to the problem of constructing a perfect matching of maximum weight in a graph 
G' with vertex set V in which each edge has weight zero or one. We can assume 
that [VI is even. In this reduction G' is the complete graph on vertex set V; edge 
{i,j} of the complete graph receives weight one if {i , j}  lies in E, and weight zero 
otherwise. This reduction shows that the maximum cardinality matching problem 
lies in Random-NC. (A different reduction for this problem is given in [12]). 

2. Vertex weighted matching. The vertex-weighted matching problem is in 
Random NC even when the weights of the vertices are given in binary notation. 
In this problem we are given a graph G with vertex set V in which each vertex v has 
a positive weight w(v). We seek a matching that covers a set of  vertices of maximum 
total weight. 

This problem can be approached with the help of rnatroid theory. The results 
from matroid theory that we require can be found in the comprehensive reference 
[16]. Call a set of vertices S independent if there is a matching that covers all the 
vertices in S; then our goal is to construct an independent set of maximum weight. 
Let I be the family of all independent sets. The structure (V, 1) is a matroid. In this 
matroid, the rank of  a set of  vertices S is just the maximum number of  vertices 
from S that are covered by a matching. A maximum-weight independent set T in 
a matroid can be constructed by the following rule: let the elements be vl, v2, ..., Vtv I 
in order of  decreasing weight; then, for i =  1, 2, ..., I VI, v~ lies in T if and only if 
Rank ({vl, t'2 . . . .  , vi})>Rank ({vl, v2 . . . .  , vi-~}). Once T is known, the desired 
matching is constructed by finding a perfect matching in the subgraph of  G induced 
by T, using the main algorithm of this paper. 

Thus, a Random-NC algorilhm for the vertex-weighted matching problem 
is at hand provided we can give a Random-NC algorithm for computing the rank 
of  a set of vertices in this matroid. But the problem of  computing Rank(S)  is easily 
reduced to that of determining a maximum-weight perfect matching in a graph K 
with vertex set V whose edges are of weight 0, 1 and 2. We can assume without loss 
of  generality that the given graph G = (V, E) has an even number of vertices. The 
graph K is the complete graph on vertex set V. If  edge {i , j}  does not lie in E then 
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{i,j} is given weight 0; if {i,./} lies in E, then the weight of {i,j} is ]St') {i,j}]. Clearly, 
the maximum weight of a perfect matching in K is the rank of S. Thus we have 
shown that the vertex-weighted matching problem lies in Random NC. 

3. Network flow. First, consider the problem of constructing a maximum s - t  
flow in a directed graph in which each edge has capacity I. There is a classical re- 
duction of this problem to the problem of constructing a maxinmm matching in 
a bipartite graph, as follows. Let the flow network be G~(V,  E), with source s and 
sink t. We may assume that s has in-degree 0 and t has out-degree 0. The reduction 
constructs a bipartite graph H with bipartition (V~, V~). Each part of the bipartition 
is a copy of the edge set of G. Thus, Va= {(e, 1)[effE} and V_~= {(e, 2)[effE}. If  
the head of edge e is also the tail of edger( i .e . ,  e=(i , j )  and f = ( j ,  k) for some 
i , j  and k) then H contains and edge between (e, 1) and (f ,  2). If an edge e in G is 
incident with neither s nor t, then H has an edge from (e,1) to (e, 2). Then a maxi- 
mum matching in H yields a maximum flow in G according to the following rule: 
edge e carries a flow of 1 if and only if (e, 1) is matched with some vertex (f ,  2), 
where eCf,  or (e, 2) is matched with some vertex (f ,  1), where e ~ f  The reduction 
just given extends easily to the case in which the flow network has edges with integer 
capacities, provided these capacities are given in unary. The idea is to replace each 
edge {i,.i}, of capacity c, with c parallel edges from i to j ,  each of capacity 1. All 
capacities in the resulting network are 1, and thus the reduction to bipartite matching 
applies. Thus, we have shown that the following problem is in Random NC: construct 
a maximum s - t  flow in a directed flow network whose edge capacities are given 
in unary. 

We summarize the constructions and reductions given in this section by a 
theorem. 

Theorem 3.2. The following problems lie in Random-NC: 
(i) Constructing a perfect matching of maximum weight in a graph whose edge 

weights are given in unary; 
(ii) Constructing a maxhnum matchh~g; 

(iii) Constructing a matching covering a set of vertices of maximum weight in a graph 
whose vertex weights are given h7 binary; 
(iv) Constructing a maximum s - t  flow in a directed graph whose edge weights are 
given in unary. | 

Our result about network flows stands in interesting contrast to the following 
result due to Goldschlager, Shaw and Staples [7]: the problem of constructing a 
maximum s - t  flow in a directed flow network with edge capacities given in binary 
is complete in P with respect to logspace reductions. Since it is generally believed 
that such complete problems do not lie in Random NC, it appears that the parallel 
complexity of the max-flow problem depends critically on whether the capacities 
are given in unary or in binary. Nevertheless, the following result can be given: 

Theorem 3.3. There is a randomized parallel algorithm to construct a maxhnum 
s - t  flow in a directed network whose edge weights are given in binary, such that the 
number of processors used is bounded by a polynomial in the number of vertices, and 
the time used is O((log V) k log C), where C is the largest capacity of any edge and 
k is a constant. I 
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This result is proved by combining the methods of the present paper with 
the E d m o n d s - - K a r p  scaling technique [6]. Of  course the result does not place the 
problem in Random NC, since log C is a linear, rather than polylogarithmic, func- 
tion of the number  of  bits needed to express C in binary. 

4. Discussion 

Each of the randomized algorithms given in this paper has a small probability 
of  giving an erroneous result; for example, procedure Find-Perfect-Matching 
may fail to produce a perfect matching in a graph that possesses one, and therefore 
its failure does not indicate with certainty that no perfect matching e~sts. Running 
the algorithm many times in parallel can reduce the probability of  error to an ex- 
ponentially low level, but can never eradicate it entirely. Howard Karloff [8] has 
given a Random NC algorithm for the odd-set cover problem, which is the "dual" 
of  the matching problem. As Karloff  points out, this result can be combined with 
our algorithms to yield algorithms for the perfect matching problem and the maxi- 
mum matching problem which run in polylog expected time and always give the 
correct result; i.e., Las Vegas algorithms rather than Monte Carlo algorithms. 

It remains an open question whether randomization can be dispensed with 
entirely in these problems. It would be very nice to show that the problem of deciding 
whether a graph has a perfect matching lies in NC, and even nicer to show that the 
problem of constructing a perfect matching lies in NC. 

Finally, the investigations reported here have led us into a broader study of  
the relation between decision problems and search problems; the results of  that 
study are reported in the companion paper [9]. 
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