
Algorithmica (1995) 13:357 380 Algorithmica
�9 1995 Springer-VerlagNew York Inc.

New Primal and Dual Matching Heuristics 1

M. Jiinger 2 and W. Pul leyblank 3

Abstract. We describe a new heuristic for constructing a minimum-cost perfect matching designed
for problems on complete graphs whose cost functions satisfy the triangle inequality (e.g., Euclidean
problems): The running time for an n node problem is O(n log n) after a minimum-cost spanning tree
is constructed. We also describe a procedure which, added to Kruskal's algorithm, produces a lower
bound on the size of any perfect matching. This bound is based on a dual problem which has the
following geometric interpretation for Euclidean problems: Pack nonoverlapping disks centered at the
nodes and moats surrounding odd sets of nodes so as to maximize the sum of the disk radii and moat
widths.

Key Words. Matching, Heuristics, Moat packing, Minimum spanning tree.

1. Introduction. In an undirected graph G = (V, E) with edge weights w e for e 6 E
the matching problem consists of determining a set M _ E of pairwise nonadjacent
edges with min imum (maximum) total weight w (M) .'= ~ e ~ u we. The matching M
is called perfect if M meets every node in V, i.e., V = U M. Edmonds (1965b) has
given an algori thm for the (perfect) matching problem which can be implemented
to run in O(I VI a) time. Fo r m a n y practical applicat ion s on large graphs, the
running time of Edmonds ' s a lgor i thm is extremely long. So a considerable amoun t
of work has been devoted to the s tudy of faster approximat ive algorithms. In
particular, m a n y heuristics for the Euclidean perfect-matching problem in the
plane have been proposed and analyzed with respect to their performance and
complexity. Here, the nodes in V are assumed to be points in the Euclidean plane
and the distance dij between two points i = (x~, Yi) a n d j = (x j, y j) is assumed to

be the Euclidean distance dij = ~ / (x i - X j) 2 + (Yi - yj)a. Fo r simplicity, we assume
that all points in V lie in the unit square, i.e., each point i = (x~, Yi)has 0 < x~ < 1
and 0 < y~ < 1. If e = uv is an edge of a graph defined on these points, we let d(e)
denote duv.

M a n y real-world combinator ia l opt imizat ion problems are Euclidean problems.
A notable example is the minimizat ion of pen movemen t on a mechanical plotter,
see Reingold and Tar jan (1981) and Iri et al. (1983). Fur thermore , m a n y combina-
torial opt imizat ion problems arising in the context of VLSI design are Euclidean.

1 This research was supported in part by the Natural Sciences and Engineering Research Council of
Canada.
z Institut fiir Informatik, Universit~it zu K61n, Pohligstrasse 1, D-5000 Krln 51, Germany:
3 International Business Machine Corporation, Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598, USA.

Received February 3, 1992; revised May 20, 1993. Communicated by C. H. Papadimitriou.

358 M. Jiinger and W. Pulleyblank

A fast approximative Euclidean matching algorithm is also useful for efficient
versions of Christofides' heuristic for the traveling salesman problem (see
Christofides, 1976; Cornurjols and Nemhauser, 1978) and for Chinese postman
heuristics (see Grigoriadis and Kalantari, 1985a). In addition, such heuristics can
be expected to produce good starting solutions in exact primal matching algo-
rithms, like those by Cunningham and March (1978), Derigs (1986), and Grrtschel
and Holland (1985).

Approximative algorithms for the Euclidean matching problem on the unit
square (as well as the more general case where the edge weights are only assumed
to satisfy the triangle inequality) have been designed by many authors. The
heuristics may be classified with respect to their worst-case time complexity,
average-case time complexity, worst-case weight of the heuristic solution, and
expected weight of the heuristic solution, assuming a certain (usually uniform)
distribution of the n points on the unit square. A compilation of most known
results for a large selection of matching heuristics can be found in Avis (1983).

It follows from the results of Beardwood et al. (1959) that a constant # exists
such that the expected weight of a Euclidean matching of n uniformly distributed
points in the unit square is #n/-n (see Papadimitriou, 1977). Papadimitriou also
showed that 0.25 < # < 0.40106 and conjectured # ~ 0.35. Based on extensive
computational experiments, Weber and Liebling (1985) report the approximate
value # ~ 0.3189.

The best expected performance we could find in the literature for heuristics is
that of the STRIP heuristic (Papadimitriou, 1977) which runs in time O(n log n).
More precisely, if P is a set of n points uniformly distributed in the unit square,
then the expected weight of the matching produced by STRIP is 0.474w/~ + o(,r
(see Supowit et al., 1980). An upper bound on the worst-case performance of
0.707n/n + O(1) is also derived in the same reference.

Computational results for O(n) and O(n log n) heuristics can be found in Iri et
al. (1983). Here it turns out that the STRIP heuristic outperforms all tested
linear-time heuristics when applied to large real-world problems.

Another heuristic of time complexity O(n log n), called the Minimum Spanning
Tree Heuristic (MSTH) has been proposed by Papadimitriou (see Supowit et al.,
1980). MSTH works for the more general case where the n points are only assumed
to satisfy the triangle inequality (but then the time complexity is O(n2)), and the
relative performance guarantee WMs.rn/WopT < n/2 is proved. Here Woe x and WMSTH
stand for the minimum and approximative weights, respectively. In addition, the
bound n/2 can be achieved asymptotically.

Grigoriadis and Kalantari (1985a, b) observe that "MSTH is optimal in the
sense that, for most computational models of interest, the worst-case time complex-
ity of any heuristic that produces an approximative solution with a finite ratio
bound is f~(n 2) for general weights and f~(n log n) for Euclidean problems." Based
on our own computational experiments, we found that Papadimitriou's heuristic
delivers matchings with an average weight of about 0.358x/-n for n uniformly
distributed points, i.e., significantly better values than STRIP, which is of the same
time complexity.

New Primal and Dual Matching Heuristics 359

In Section 2 we propose another O(n log n) heuristic for minimum Euclidean
matching, which is also based on a minimum-length spanning tree. Our main
motivation is the following, It delivers solutions with an observed average weight

of about 0.338v/n for n uniformly distributed points, yet runs in about the same
time as MSTH for our test problems of sizes up to 10,000 nodes. If we assume
that Weber's and Liebling's estimate for the weight of the minimum matching
of 0.3189 is correct, then this would mean that we are only about 6% above
the optimum. In Section 3 we describe a companion heuristic which produces a
lower bound on the value of the optimum solution. This gives an "individualized"
quality guarantee of the kind "The heuristic solution is at most p percent above
the optimum." For uniformly distributed random problems we obtain p ~ 22.
However, the quality guarantee is much better on many real-world problems.

2. A Primal Heuristic. Our method proceeds as follows. If the number of points
is less than some threshold, usually four, six, or eight, then the problem is solved
exactly. If not, a minimum-cost spanning tree T is constructed on the points. The
longest nonpendent edge uv of T is found and removed, thereby partit ioning T
into T~ and To, where u ~ V(T,) and v ~ V(T~). If the number of nodes in each of T~
and T~ is even, then the algorithm is applied recursively to the nodesets of each
of T, and To. The result is the union of the two perfect matchings thereby found.

If the number of nodes in each of T., Tv is odd, then we proceed as follows (see
Figure 2.1). First, apply the algorithm to V(T.)u {v}. In the matching M1
produced, some node w ~ V(T,) will be matched with v. Now recursively apply the
algorithm to V(Tv)~ {w}, Let M 2 be the matching produced. We return the
matching (M l \ {vw}) u M2.

Note that we do not have to recompute the minimum-cost spanning tree for
each recursive call. If J V(T,)I and I V(T~)I are even, then T, and T~ will be minimum
spanning trees of V(T,) and V(To), respectively. If I V(T,)I and I V(T~)I are odd, then
T, plus the edge uv will be a minimum-cost spanning tree of V(T,) u {v}. In order
to obtain a minimum-cost spanning tree of T o u {w}, we must find the node t of
T~ nearest to w. We then add edge tw to Tv. We refer to this algorithm as DUST
(Decomposition Using Spanning Trees).

Our main theorem of this section is that DUST can be implemented so that its
running time for Euclidean perfect-matching problems is O(n log n). More gener-
ally, its running time for any perfect-matching problem is O(n log n), after a
minimum-cost spanning tree has been found in the original graph. We first describe
the necessary data structures.

Let V be a finite set of n points in R 2. The Voronoi diagram is a set of I VI
regions, where the region S, for v e V consists of all those points in R 2, for which
v is the nearest member of V. Then each S~ will be a (closed) convex polyhedron
in R z. Two regions Sv, S w for which ISv n Swl > 1 are called adjacent. The Delaunay
trianoulation is the graph constructed on the node set of V where two members
of V are adjacent if and only if the corresponding regions are adjacent. Note that
the "Delaunay triangulation" is planar, but not necessarily a triangulation.

360 M. J i inger and W. Pu l l eyb lank

.ss '~

s / ~ \ I

,,' o, r ' ,
J ! _ .

I / 1 , \ - , o ,,
, O " \ i N -" /
I \ ,' N / . . / I
I \ / ~ ,'
; \ / .: Y _ % /
', wb / ~ 1 ~:,, . / j ~. . ,s '

s �9
d, ~' N,

V(T~) u (v)

)
�9 I

w ~ I I 7" " ' /

v(To) u (~)

/

l
Fig. 2.1. O d d split.

New Primal and Dual Matching Heuristics 361

Shamos (1975) showed that the Voronoi diagram (and, therefore, the Delaunay
triangulation) can be constructed in time O(n log n), where all arithmetic calcula-
tions are assumed to take constant time. Moreover, the edgeset of a minimum-cost
spanning tree of V is contained in the edgeset of the Delaunay triangulation. (See
also Mehlhorn, 1984.) Ohya et al. (1984) describe an algorithm for constructing
the Voronoi diagram whose running time is O(n 2) in the worst case, but whose
experimentally observed running time is only O(n) on the average when applied
to n uniformly distributed points in the Euclidean unit square. This was the method
we used in our tests. Recently Sugihara and Iri (1988), Sugihara (1988), and Jiinger
et al. (1991) have developed variations of this method which avoid the problems
of numerical instability encountered in the original.

Tarjan (1983) describes how Kruskal's algorithm for obtaining a minimum-cost
spanning tree in a graph G = (V, E) can be implemented in time O(IE[log IEI).
Initially, each node is considered to be a separate component. The edges are
considered in order of increasing cost. If an edge joins two nodes of the same
component, then it is discarded. If it joins two nodes of different components, then
the edge is added to the tree and the components are merged.

Before giving the detailed description of the algorithm, we note two preliminary
facts.

LEMMA 2.1. I f F is a set of eight or more points in the Euclidean plane, then any
Euclidean minimum-length spanning tree contains a nonpendent edge.

PROOF. Let T be a minimum-cost spanning tree and suppose there is no
nonpendent edge. Then T is a star with a center node r, and since I V\{r}l _> 7,
there are nodes w and v such that the edges in T joining w and v to r form
an angle ct of less than 60 ~ See Figure 2.2. Let x = dr, and let y = dwr and
assume x < y. Then dv 2 = (x sin (X) 2 "~- (y - x c o s 6) 2 = x 2 + y2 _ 2xy cos 6. Since
0 ~ < ct < 60 ~ cos �9 > 1. Using this, plus the fact that y _> x, we obtain do 2 < y2
which contradicts T being a minimum-cost spanning tree. []

The second lemma shows that when we perform an odd split in the course of the
algorithm, we obtain a minimum-cost spanning tree by adding the one extra node
to its nearest neighbor on the other side.

X V

.Ow

Fig. 2.2. Necessity of nonpendent edge.

362 M. Jfinger and W. Pulleyblank

V

T~

.7.' , J

l { ~'%

i W o ~ ",

"'~ - - ~ i I

Fig. 2.3. Proof of Lemma 2.2.

LEMMA 2.2. Let T be a minimum-cost spanning t ree and let vv' be an edge. Let
u ~ V(T~) and let u' be the nearest node in V(T~,). Then T = T~, w {uu'} is a
minimum-cost spanning tree on V(T~,) w {u}.

PROOF. Suppose not. Then there is an edge st which when added to T creates
a cycle C containing an edge longer than st. Because T was a minimum-cost
spanning tree, T~, is a minimum-cost spanning tree on V(T~,), so C must contain
uu', plus an edge uw between u and some node of Tv, different from u'. (That is,
st = uw.) Let pq be the longest edge in C. Then dpq > duw > du,,. The edge pq
must either belong to the path in T~, joining w to v' or the path joining u' to v',
since it is contained in the path joining w to u'. However, this means that it belongs
to the cycle created when we add either uw or uu' to T, see Figure 2.3. This
contradicts T being a minimum-cost spanning tree. []

In order to achieve the claimed running time, we construct the following
structure while the minimum-cost spanning tree algorithm is being run. Let E =
{el , e2, ..., en-1} be the edgeset of the minimum-cost spanning tree, where d(ci) <
d(ei+l) for 1 _< i < n - 2. A leaf of T is an edge of T for which an endnode has
degree one in T. Let V be the nodeset of T, i.e., of our original problem.

We use an auxiliary rooted binary tree B(T) to locate the longest (nonpendent)
edge of T. We refer to the nodes of B(T) as b-nodes. We construct B(T), during
the running of Kruskal's algorithm as follows:

(2.1) If a component K of the forest constructed so far has no edges, then
the corresponding tree B(K) is empty.

(2.2) If we merge two components by adding an edge e j, then we construct
a new b-node corresponding to e j, and give it children corresponding
to the binary trees representing the two merged components.

New Primal and Dual Matching Heuristics 363

Then B(T) will satisfy the following:

(2.3) The b-nodes of B(T) correspond to the edges of T.

(2.4) For each b-node j of B(T), if e(j) is the corresponding edge of T, then
d(e(j)) > d(e(i)), for any edge e(i) corresponding to any descendent
b-node i ofj .

Note that (2.4) implies that the longest edge of T occurs at the root of B(T). See
Figure 2.4. The letter beside each node is for identification and the number beside
each edge is its length.

The structure B(T) is only used to locate the longest edge of T We maintain a
separate "graph representation" of T which allows us to manipulate its structure.
It must permit us to determine the neighbors of any node, or, equivalently, the
incident edges, plus add and delete nodes and edges efficiently.

4

4 7 "

7

3

Fig. 2.4. Auxiliary tree B(T).

364 M. J/inger and W. Pulleyblank

When a node w is added to a subtree Tv during an odd split, we mark w, to
indicate this fact. This is because we know that the length of the unique edge of
the tree incident with w is longer than any nonpendent edge of the tree, and we
will have to recognize this fact at one point.

The main procedure of our algorithm is called DUST (Decomposition Using
Spanning Trees). This makes use of a recursive subroutine MATCH(T, B(T)). The
subroutine is passed the spanning tree T as well as its associated structure B(T).
It will return the set of pairs of nodes comprising a perfect matching on V. We
may assume that this matching is represented by a function PAIR(v) which gives,
for each node v, the node with which it is matched.

DUST (Decomposition Using Spanning Trees)
lnput: An even cardinality set S of points in the Euclidean plane.
Output: A perfect matching of S.

1. Construct the Delaunay triangulation for S.
2. Construct a minimum-cost spanning tree T on S, and the associated

binary tree B(T).
3. Call MATCH(T, B(T)).

Procedure MATCH(T, B(T))

1. If I Vt < limit, for some fixed limit (4, 6, or 8 usually) we use an exact
algorithm (e.g., enumeration) to construct a minimum-cost perfect
matching and return.
(I VI > limit.) Let l q)= uv be the edge corresponding to the root j of
B(T). Let T, and T~ be the subtrees of T, containing u and v,
respectively, obtained when we delete edge uv from T. We now use
the graph representation of T to scan these two subtrees in parallel.
As soon as we know the number k of nodes in the smaller part, we
terminate the scan. If k = 1, i.e., uv is a leaf of T, we rePlace j with its
unique child in B(T) and repeat the scan. If k > 2 is even, we go to
Step 3. If k > 3 is odd, we go to Step 4.

3. (Even Split.) Let B" and B v be the child subtrees in B(T) ofj . (Either
or both may be empty, but if either T, or T~ has at least eight nodes,
then the corresponding B" or B v will be nonempty (see Lemma 2.1).)
Call MATCH(Tu, B") and MATCH(Tv, B v) and return the union of the
two matchings produced.
(Odd Split.) Assume [V(Tu)] > [V(T~)[. Let B u and B v be the child
subtrees in B(T) of j. Let T'u be obtained from T, by adjoining the
edge uv. Call MATCH(T'u, B"). In the matching M 1 returned, let
w = PAIR(v).

Scan T~ to find the node w' nearest to w. Let T'v be formed by adding
ww' to Tv. M a r k w to indicate that it was added during an odd split.
By Lemma 2.2, T'v is a minimum-cost spanning tree on its nodeset.

Check to see whether w' is a pendent node of T, added at a previous
iteration of Step 4. If so, we know that the length of the edge w't
joining w' to another node of T, is greater than any nonpendent edge,

.

.

New Primal and Dual Matching Heuristics 365

and so, after attaching ww', this edge w't will be the next chosen for
a split, which will be even. Add the edge ww' to the matching, and
remove w't from Tv. Then call MATCH(Tv\{w't} , Bv). Let M2 be the
matching returned. Return ml\{VW} w {ww'} w m2.

If w' is not a pendent node of T~, then we simply call

MATCH(T~ w {ww', By}).

Let M 2 be the matching returned. Return M 1 \{v, w} w M 2.

Before proving an upper bound on the running time of this algorithm, we make
one preliminary observation regarding the auxiliary data structure B(T). It is never
changed in the course of the algorithm. Indeed, in the entire course of the
algorithm, it is scanned once. The important property is that the highest node
with two children always corresponds to the largest nonpendent edge in the
appropriate tree. If we add a new node to a tree during an odd split, then the new
node becomes pendent, so we do not have to update B(T). However, if we add a
new node w during an odd split, it may happen that the node w' to which it was
attached had been added during a previous execution of Step 4, and so, when we
add w, w' is no longer a leaf and this fact should be reflected in B(T). This is why,
in this case, we effectively perform the next recursive call immediately. The next
split would be the even split on the edge w't. Therefore one recursive call would
be on {w, w'}, which would be matched together. We simply pair them off, then
make the next call on the tree with these nodes removed. In this way, B(T) still
performs properly.

THEOREM 2.3. When D U S T is applied to a set V o f n (even) nodes, the running
time is O(n log n).

PROOF. Let
nodes, except

t(n) be the time required by MATCH when applied to a set of n
for the time scanning B(T). Then t(n) is defined by the recurrence

c for n < 8,

t(n) <_ t(k + l) + t(n - k + l) + extra for n > 8 .

Here "extra" denotes the time incurred apart from the recursive calls. We assume
that the split results in a tree T u with n - k nodes and a tree T~ with k nodes, and
k < _ n - k .

The time accounted for in "extra" includes the following:

(i) Location of the largest edge in T.
This is accounted for separately.

(ii) Determination of which of T, and T~ is smaller.
This is done by scanning both trees in parallel, and stopping when one is
completed. Thus this time is O(k).

(iii) Choice of the node w' to which w -- PAIR(v) must be attached.
This is done by scanning the smaller part, so the time is O(k).

366 M. Jiinger and W. Pulleyblank

(iv) Updating T, and T~ by adding or removing at most two edges.
This requires constant time.

Therefore "extra" is O(k), so t(n) satisfies the recurrence

t (n) < c ' for n < 8 ,
(2.5)

t (n) < < _ t (k + l) + t (n - k + l) + c ' k for n > 8 ,

for some constant r We prove inductively that this implies

(2.6) t(n) < c'(n - 2)log(n - 2) + c' for all n _> 8,

proving the result.
Substitute (2.6) for k and n - k into (2.5). We obtain

t(n) < c '(k - 1)log(k - 1) -t- c'(n - k - 1)log(n - k - 1) + c'k:

Since k < n/2,

Since k > 1,

Therefore,

l o g (k - 1) < log((n - 2)/2) = log(n - 2) - 1.

l o g (n - k - 1) < log(n - 2) .

t(n) <_ c'(k - 1)[log(n - 2) - I] + c'(n - k - 1)log(n - 2) + c'k

= c'(n -- 2)log(n -- 2) + c',

as required.
The other time required by DUST includes constructing the Delaunay triangula-

tion, finding the minimum-cost spanning tree, and scanning B(T) . The first two
activities require O(n log n) and the latter O(n). Therefore, the total running time
is O(n log n) as asserted. []

While developing this algorithm, we tried several variations in order to simplify
the odd split. For example, when we have an odd split uv into Tu and T~, we could
simply apply MATCH to T, u {uv} and T~ u {uv} . Let M1 and M2 be the two
matchings produced. If uv ~ M I and M2, then return Mt u M 2. If uv ~ M a but
uv r M 2, then return M ~ \ { u v } w M z. If uv belongs to neither M 1 nor m2, then
remove the edges incident with u and v from M 1 and M2, yielding M'~ and M~.
Now return M'~ w M~ plus a minimum-cost perfect matching on u, v together with
the other four unmatched nodes.

This variation has the advantage that the extra work required during an odd
split now has constant time. Therefore, the running time of the algorithm, after
construction of the Delaunay triangulation and minimum-cost spanning tree,
becomes linear in n. However, our computational experience was that this
variation did not provide as good solutions as DUST.

New Primal and Dual Matching Heuristics 367

Fig. 3.1. Optimal disk packing and perfect matching.

3. Individual Quality Guarantees. In this section we introduce a dual geometric
problem to that of constructing a minimum-length perfect matching. It has two
important properties. First, every feasible solution provides a lower bound on the
length of any perfect matching. Second, if we find a best feasible solution, then
this bound will exactly equal the minimum length of a perfect matching.

In general, we do not know a better way to solve this dual problem optimally
than to solve the minimum perfect-matching problem exactly. However, in the
second part of this section we describe a method for constructing a feasible solution
to this dual problem based upon Kruskal's minimum-cost spanning-tree algo-
rithm. Our experience has been that these bounds are usually quite good for
Euclidean problems. The gap between the length of the matching produced by
DUST and the value of this bound is typically 10%-20%. The computational
results are discussed in the last section.

Consider a Euclidean minimum-length perfect-matching problem for an even
cardinality set V of points. Suppose, for each v ~ V, we construct a closed disk Dv
centered at v of radius rv, such that no two disks overlap, that is, have interior
points in common. If we represented a perfect matching M of V by line segments
between the matched pairs of nodes, then each disk D~ would contain a length of
at least r~ of the segment incident with v. Therefore the length of this matching is
at least ~wv rv. Thus a first dual problem would be to construct nonoverlapping
disks centered at the points, such that the sum of the radii is maximized.

Consider the examples of Figures 3.1 and 3.2. In the first case we were able to
construct an optimal disk packing which proved optimality of the displayed perfect
matching. In the second, although we exhibit an optimal packing, the sum of the

Fig. 3.2. Optimal disk packing bound not tight.

@

368 M. Jtinger and W. Pulleyblank

, O O

O

Fig. 3.3.

radii is much less than the minimum length of a perfect matching. (Note that for
the bound to be tight, each matching line segment must be completely accounted
for by disk radii.)

In order to close this gap, we introduce one new type of object. Let I and]~r
be compact subsets of the plane such that I is contained in the interior of ~t. Let
E = R2\interior()~qt). Let M =)~t\interior(I). We say that M is a moat of width WM
with interior I and exterior E if

(3.1) each of / , E contains an odd number of members of V and M contains
no members of V,

(3.2) The infimum of the distances between points x e I and y e E is w M,

see Figure 3.3. Our definition permits moats to be very general. However, the ones
we use have a special structure which we describe later.

Since each of / , E contains an odd number of points of V, in any perfect matching,
at least one member of V in I must be matched with a member in E. Hence, some
segment representing the matching must have length at least w M in M. Therefore,
if N is a set of disks centered at the members of V and ~g is a set of moats such
that no two members of ~ w J / /over lap each other, then ~ v r~ + ~ t ~ wM is
a lower bound on the length of a minimum-length perfect matching. We shall see
that this bound is tight for an optimum disk/moat packing.

Edmonds (1965a, b) proved that the minimum-length perfect-matching problem
can be solved as the linear program

rain y" du~ xuv
u , v ~ V

x,v_>l for all S ~ 2 ,
ueS, wV\S

Y', x,v = 1 for all u e V,
v e V , u~-v

x , v > 0 for all u, veV, u r

where ~ = {S ~ VI3 _< IS[_< I Vl - 3, ISl odd}. Edmonds proved that every basic

N e w P r i m a l a n d D u a l M a t c h i n g H e u r i s t i c s 3 6 9

solution to this linear program is 0-1 valued, i.e., the incidence vector of a perfect
matching.

The dual linear program is

(3.3)

max ~" r~+ ~ W s
w V S c ~

,, + rv +
s ~ & I{u,v} n sI = 1

Ws < d.~ for all u, v c V,

w s > O for all S ~ .

Edmonds's proof consisted of a polynomial algorithm which solved both pro-
grams. The optimum solution r*, w* produced by the dual problem has the
following important property. The subset of those S c .~ for which w~ > 0 forms
a nested family That is, if w* > 0 and w* > 0, then S n T = ~ or S _ T or T ___ S.

THEOREM 3.1. Let M be a minimum-length perfect matching for an even cardinality
set V of points in the Euclidean plane. Then a set ~ of disks centered at the members
of V and ~ / of moats exists such that the members of ~ u J / a r e nonoverlapping
and Y',o:~ r~ + ~ s ~ Ws equals the length of M.

PROOF. Apply Edmonds's theorem to obtain a minimum-length perfect matching
M* and an optimum dual solution r*, w* such that w* is nested. First, suppose
that r* < 0 for some v c V. We could permit disks of negative radius, but this would
detract from the geometric result, and is unnecessary. Instead we modify the
solution so that all radii become nonnegative.

Let 5: = {Sc~]w* > 0}. Define a new nested family 5 e' equal to {{u}luc
V\{v}}, plus, for each S ES:, whichever of S or V\S does not contain v.
For convenience of notation, for u~ V\{v}, define w~*} = r*. Now let U =
{u ~ V\{v}]}-'s~se, i(~,v}nsl= 1 w~ = d,~}. That is, U consists of every node u ~ V \ { v }
for which the length of the line segment joining u to v is completely accounted
for by moats and disks. Since some pair uv for u c U is in M*, we must have
U r ~ . Suppose that there were distinct maximal members S 1 and S 2 of 50'
containing members u 1 and u 2 of U, respectively. Then

dulI~2 ~_~ d,,v + d.2~ (by the triangle inequality)

< r.* + r.* + y" +
s e 5 ~', ISn {ua,v}l = 1 S~5: ' , IS n {u 2, v}l= 1

= r,* + r,* + ~ w~.
S~5 a', ISn {ul,uZ}l = I

The last equality holds because S 1 and S 2 a r e maximal members of 5 e' and v
belongs to no member of 5". However, this contradicts (3.3), i.e., feasibility Of r*
and w*. Therefore there must be a unique maximal member S of 5 a' which contains
a member u of U. (We may have S = {u}.) Since d,v > 0, we must have w~ > 0.

370 M. J/inger and W. Pulleyblank

Now increase r* by s and decrease w~' by e until one of three things happens:

(i) r* reaches zero, in which case we can continue to fix up another member v'
of V having rv, < 0, if one exists.

(ii) w~' becomes zero, in which case we delete S from 5 e' and repeat the process.
(iii) Some new node u' enters U.

However, in the last case we would immediately find two maximal members of
5 r containing nodes of U, which, as we have seen, would contradict feasibility.

Therefore we can repeat this process, each time reducing the size of 5 r until
we raise r* to zero: Repeating, we can obtain equivalent r* and w*, such
that w*, r* > O. Note moreover that the changes we make do not change the value

2wv +
Now we construct the moats and disks as follows. For each w V, construct a disk

Dv of radius r* centered at v. For each S �9 6 ~, construct a moat M s surrounding
the nodes of S as follows. For each v �9 S define p~ = r* + ~ r ~ s , r ~ : w} and let
~ = p~ + w~. Let S~ be a disk of radius po centered at v and let S~ be a disk of
radius ~ centered at v. Then the moat Ms is defined as M s = U ~ s ~gv\U~s S~,
see Figure 3.4. The width of the moat is just w*.

Feasibility of r*, w* ensures that the disks and moats thereby constructed will
be nonoverlapping. Optimality of M*, r*, and w* ensures that the length of M*
equals exactly the sum of the disk radii plus the moat widths. []

Now we describe a fast heuristic method for constructing a disk and moat
packing, which will give us a lower bound. It is based on the minimum-cost
spanning-tree algorithm.

Choose an arbitrary node ~ and consider the following pair of dual linear
programs:

(LP) max ~2 2Ws
~r

(3,4) Z
S ~_ HlSc~{u,v}l= l

(3.5) Z
S c V,v~S

Ws<-d.v for all u, v~V,

Ws = e for all v e V,

w s > O for all S ~ V,

c~ unrestricted.

u ~: v,

(DLP)

(3.6)

min ~ d.vx.v

y(V) = o,

Xuv ~ 0

y~ unrestricted

if ~r
if OeS,

for all

for all
fo_r all

S_~V,

u, veV , u r
v E V .

New Primal and Dual Matching Heuristics 371

Fig. 3.4. Moat construction.

Problem (LP) is a variant on the disk/moat packing problem we have studied
in this section. The differences are that:

(i) We can construct moats surrounding any set of nodes, not just odd sets.
(ii) We must "balance" the packing in that (3.5) requires that the sum of the

widths of the sets of moats surrounding each node be equal.
(iii) The objective function ignores the moats surrounding one node z3 (the choice

of which does not matter by (ii)), but doubles the rest.

Surprisingly, problem (DLP) is just the minimum-cost spanning-tree problem,
slightly disguised. Kruskars algorithm with minor modifications will build opti-
mum solutions to both linear programs.

First, consider (LP). Recall Kruskal's algorithm builds a minimum-cost span-
ning-tree by starting with the shortest edge and then adding successively the
shortest remaining edge which produces no cycle until n - 1 edges are chosen.
When a tree edge t is added, it connects nodes in two trees T 1 and T a previously
connected.

We build a solution w to (LP) as we go, starting with w = 0. At each stage, for
each tree T that we have built, all nodes v of T will satisfy ~ w s Ws -- ~(T) = 0
where ~(T) equals one-half of the length of a longest edge of T, respectively ~(T) = 0
if T has only one node.

Now suppose we add edge t joining nodes u 1 �9 T~ and u 2 �9 7"1. We construct a
moat of width �89 - ~(T~) around Ti for i = 1, 2. (Since d.~,2 is at least as great
as the length of the longest edge in 7"1 (resp. T2) these widths are nonnegative.)
Let ~ (T) = 1 ~d,,~2, where T is the new tree produced. It is clear that when we
terminate, w satisfies (3.4) and (3.5) with ct equal to one-half of the length of a
longest edge of T, the minimum-cost spanning tree produced. Note that the
solution w satisfies (3.4) with equality for every edge of T.

Now we construct a feasible solution to (DLP). Let x,v = 0 if uv is not an edge
of T and let x,v = 1 if uv is an edge of T. Choose arbitrarily some node ~ of T.
Orient all edges of T toward ~3. For each v �9 V, define y~ equal to the outdegree of
v (in T) minus its indegree. Using induction on T, we can prove that this is a
feasible solution to (DLP). Since x, , = 1 only for edges in T, for every such u, v
(3.4) holds with equality. Again, using induction, we can show that (3.6) holds with

372 M. Jiinger and W. Pulleyblank

equality for all S _ V with w s > 0. (Show that it holds for two node trees, start
with an arbitrary tree, remove one pendent node, apply induction.)

Therefore, these solutions satisfy the complementary slackness conditions for
optimality, and we have the following.

THEOREM 3.2. The optimal solutions to (DLP) are incidence vectors of minimum-
cost spanning trees with node variables (Yv) equal to outdegrees minus indegrees,
after all edges have been oriented toward an arbitrary root.

Of particular interest to us is t h e solution to (LP), for it provides a feasible
solution to the disk/moat packing associated with the minimum-length perfect-
matching problem.

TREOREM 3.3. Let T be a minimum-cost spanning tree of length d(T) and let w*,
c~(T) be an optimum solution of the linear program (LP), constructed during the
running of Kruskars algorithm. Then every perfect matching has length at least
�89 + a(T) - ~lsl w*.

PROOF. If we set w~ = 0 for all S such that I SI is even, then w~ is a feasible set
of moat widths. Thus, if M* is a minimum-length perfect matching, then

d(M) >_ ~ w~
ISlodd

= E w Z - E
S ISleven

= E wZ + E wZ- E wZ
v(~S yES ISIeven

= �89 + ~(T)-- ~ w*. []
ISleven

Note that we can compute w* and ~(T) without changing the runtime of
Kruskal 's algorithm, hence this bound can be calculated very quickly.

Figure 3.5 shows an example on 10 nodes. We display a minimum-length
spanning tree along with an opt imum dual solution where the r* are the radii of
the circles around the nodes and the w* are the width of the moats around node
sets. In this example, we have

d25 = 30, d34 = 40, d45 = 10,

d68 = 20, d78 = 40, dT,lO = 30, d89 = 10,

d14 = 20,

d57 = 70,

and therefore

r 1 = 10,

r 6 = 10,

r 2 = 15, r 3 = 2 0 , r 4 = 5 , r 5 = 5 ,

r 7 = 15, r 8 = 5, r 9 = 5, rio = 15,

w{4,5 } -- 5, w{1,4,5 } = 5, w{1,2,4,5) = 5,

w{1,2.3,4,5 ~ = 15, w{7,1o~ = 5, W{8,9 } = 5,

W{6,8,9 } = 10, W{6,7,8,9,10} ~-- 15.

New Primal and Dual Matching Heuristics 373

10

Fig. 3.5. Minimum spanning tree and moat packing.

The minimum spanning tree has length 270 and the lower bound for the minimum
matching we get from Theorem 3.3 is 150.

Figure 3.6 displays a minimum-length matching along with all radii and all
moats for odd cardinality node sets. (The Ws for the even cardinality node sets are
set to zero.) We have c12 = 32 and c36 = 76, so the matching has length 158. The
lower bound of 150 proves that the matching is at most about 5% offthe optimum,
and there is a gap of 2 on the edge (1, 2) and a gap of 6 on the edge (3, 6) in the
dual solution. Without losing dual feasibility, we can increase

r 2 to 16

w~L4,5~ to 6

W{ 1,2,3,4,5 } to 18

W{6,7,8,9,10} to 18

to establish the complementary slackness conditions also for the matching, which
gives an optimality proof as displayed in Figure 3.7.

It remains an open problem to find an efficient way of doing this kind of
improvement of the lower bound. Given a set of n nonoverlapping disks and moats
in the plane, is it possible in, say O(n log n) time to increase some disks and moats
in such a way that they become maximal, i.e., every one is in a tight distance
constraint?

i
/I

r~

C
~ pi

q
~

~J

New Primal and Dual Matching Heuristics 375

Finally, note that although we have used geometric intuition to explain the
lower bound, it is completely general. The bound of Theorem 3.3 is valid for all
objective functions.

In Jiinger and Pulleyblank (1993) we give a survey of applications of these disk
and moat packing ideas to a variety of combinatorial optimization problems.
Recently, Goemans and Williamson (1992) showed that these methods could be
extended to obtain an O(n 2) log n 2-approximation algorithm for perfect-matching
problems whose costs satisfy the triangle inequality.

4. Computational Results. We have implemented the DUST heuristic along with
the individual quality guarantee procedure described in Section 4 as a Pascal
program. The Delaunay triangulation is computed with the incremental quater-
nary bucketing algorithm by Ohya et aL (1984). The spanning tree is computed
with Kruskal's algorithm on the Delaunay graph using a heap as the priority
queue and Tarjan's fast union-find technique. Very little code is added in this part
to obtain the lower bound as described in Section 3. Finally, the matching is
computed as described in Section 2.

Using our computer implementation we made several computational experi-
ments on a Sun SPARCstationl +.

In a first set we generated random problem instances with n points chosen
uniformly and independently in the unit square for n = 1000, 2000 10,000, ten
instances of each size. The running times are displayed in Figure 4.1. We show
minima, maxima, and averages. The problem instances are still small enough to
make the timing behavior appear linear. As outlined in the Introduction, we

seconds (SPARCstationl+)

25

20

15

10

total time

~ y time

I000 2000 3000 4000 5000 6000 7000 8000 9000 i0000

number of node
Fig. 4.1. Time on random problems.

O.__IO

O-----.O

lo o

/I

I
I/ I
, 1

1
t

I I

"m~176 g:l!~ "['I' "~!~1

?

/

\ /1

�9 puooos ~6"0 se~ otu!~ uo.t~e}ndtuoo ie]ol oq~L ",tJO %E'I gI uo '}oej u! 's! qo.tq~a pug
'mntu!~do oq} ,tjo %9 ~sotu ~e oq ol oo~ueaen~ ueo o~a qo!q~ 'Z'lr o:m~!A u! u~oqs
gu.~qoletu oql polndtuoo om qo!qm aoj ~ uetusoles ~tttlOAe31 oql jo oouelgu.t
K~!o-E171r S,lOqosl.o.a D aop!suoo o~a 'oldtUgxo leo!d~l e s V ,'o:,I.q-p.t:t~,, o:te slu!od
mep oql oaoq~ 'soouelsu.~ plao~-IeOa s poaeqs oq ol }ou stuoos ~laodoad s!q&

�9 suotlg!aop paepums [ictus
~aOA peq saoqtunu qloa ,,'mntu!ldo oql oAoqe %EE,, ~I uo SOAIg oo~ueagng ~}.qgnb
ienp!A!pu! ano pug tuntu!ldo oql OAOqe %9 moqe oar qo!qax suo!mlOS pou!mqo

}lu~Iq~o[lnd "Rk pug .io$u.nf "IN 9L~

New Primal and Dual Matching Heuristics 377

Fig. 4.3. Street map of Kanto district:

Finally, we repeated a study made by Asano et al. (1985) for the Kanto
district map of Japan. The task is to plot the map of the main streets shown
in Figure 4.3 on a mechanical plotter in as little time as possible. If the street
network on the map were connected, this would amount to finding a minimum-
length perfect matching on all points of the map where an odd number of streets
intersect or a street ends. The graph as shown, augmented by the matching edges,
is then Eulerian, and the pen, starting and ending at any point inside the drawing,
would traverse an Eulerian cycle, lifted up whenever traversing matching edges.

Unfortunately, the main street network on the map is not connected. In fact,
there are 15 connected components, a very big one, a small one corresponding to
Oshima island, and 13 very small ones, one for another small island and 12 on
the borders of the map. The plotting problem for such unconnected maps can be
reduced to a rural postman problem which is NP-hard. It can still be solved in

378 M. Jfinger and W. Pulleyblank

polynomial time for a connected map plus an origin outside the map where the
pen starts and ends its tour (see Gr6tschel et al., 1991).

In our case we computed the shortest 15 "artificial streets" connecting the big
component to the small ones, including the origin outside the map. After that, the
map is connected and we have 4026 odd degree points defining our matching
instance. Our program computed the solution shown in Figure 4.4 in 8.66 seconds.
This matching is 7.4% above the optimum which was computed by W. Cook in
about 6 minutes on a Sun SPARCstationl + (personal communication) with a
new implementation of Edmonds's blossom-shrinking algorithm for Euclidean
instances.

We should point out here that in this real-world application the time the pen
needs to move between two points on the plane is much better approximated if
we measure the distance of the two points in Maximum (Loo) metric rather than

,/ - , - : . \ - ~ / , . ", \ 5 \ , , - - . - , / ., ,
~. - - I " ~ " / i ,, I i : 1~_ l _ | , x . _/ i __ . A (/
/'" " ' \ \ / " \ / I " 1 / f ~'~ / \ / - "~" �9

~ - / " .4, - ~ ' t~- x ~ ' ~ ~ \ / ~ '~ ' ..-:'~--

" / \ �9 / ~ , . - I . ~ = . / " " \ " ' < ' - ~ ' ~ < ~ f . - - . " - ~ t - - " - - ' . l ~ I �9 - - -

/"1 \ ~ , . . \ , . , . I , . - % , : ,.~(_ . , ; - . , . , . ' : . . - . . / ,, ~ , , _ / . . ,_- " ~ , , . ~ ,~ ._

L ' \ -',,--'~ / , ; " 2 , - ~ ; ' ; . " ~ . I ' - ' : , - . ' > , " , " - ' \ ' \ -
/ \/ ~ l ' l ,~'.t- = . 14 ~." " ~1 ..--..r "z~"<. x) " ~ [z

~__. - _=. , :>~ . - : ' : ; ' / , / ; >_.~/I " --'/ ~ " / -
�9 , ~., 3,_,r') , / : ,, ..,, , -'. '

, / ' \ ' , ' , / " . ' { "\ t - x ~ \ . , " ~ - / / ~ "

/ \ \ . . - , . . . : , " ,~..,_..,_, , . . ~ . ~ "--

- ;" - ~ " ' " " ~ ' i < r"-~ -["" / ' I / i ," / "~ , i - - (.j,~* ' 7 / ' /

\ , - ~ , \ - - ~ . .

i-I r, ' , / \ / "

k\. .- 7 \

. \ r" /,

~_ k?. _

' ~ I -"'~\
I .,7-

~2 \ / .

/ i 1 ~ " ' , > " ~ / ~
. , / . - . - -

. / \ / ~ . - i , /
- ,I , ' - \ - . ~ - - . , ~ (

- - - 4 - / / J

I / "

Fig. 4.4. D U S T matching.

New Primal and Dual Matching Heuristics 379

Euclidean metric as done here. O u r current implementat ion cannot handle this.
(However, an L~ implementat ion should run even faster, because the running time
is domina ted by the De launay graph computa t ion which is easier in this case.)
Using our solution, we have measured the "l if ted-up" pen movement , including
the 15 artificial streets, in Lo~ metric, and get 6.52 m if the plot is 60 c m x 60 cm
as described in Asano et al. (1985), where a 13.62-m solution was obtained using
the ~ rack" matching heuristic.

Acknowledgments. We would like to thank Doris Zepf of the Universi ty of
Augsburg for coding and debugging the qua ternary bucketing algori thm for the
De launay tr iangulation, Bill C o o k of Bellcore for solving the 4026-point match ing
problems to optimality, M a s a o Iri and Kokichi Sugihara of the University of
T o k y o for providing the da ta of the K a n t o district map, and Petra Mutzel of the
Universi ty of Cologne for careful reading of a prel iminary version.

References

Aho, A. V., Hopcroft, J. E., and Ullman, D. U. (1974). The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

Asano, T., Edahiro, M., Imai, H., Iri, M., and Murota, K. (1985). Practical use of bucketing techniques
in computational geometry. In: G. T. Toussaint (ed.), Computational Geometry, North-Holland,
Amsterdam, 1985, pp. 153-195.

Avis, D. (1983). A survey of heuristics for the weighted matching problem. Networks, 13 (1983), 475~93.
Beardwood, J., Halton, J. H., and Hammersley, J. M. (1959). The shortest path through many points.

proceedings of the Cambridge Philosophical Society, 55 (1959), 299-327.
Christofides, N. (1976). Worst case analysis of a new heuristic for the travelling salesman problem.

Technical Report, Graduate School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh, PA, 1976.

Cornurjols, G., and Nemhauser, G. L. (1978). Tight bounds for Christofides' traveling salesman
heuristic. Mathematical Programming, 14 (1978), 116-121.

Cunningham, W. H., and Marsh, A. (1978). A primal algorithm for optimum matching. Mathematical
Programming Study, 8 (1978), 50-72.

Derigs, U. (1986). Solving large scale matching problems efficiently--a new primal matching approach.
Networks, 16 (1986), 1-16.

Edmonds, J. (1965a). Paths, trees and flowers. Canadian Journal of Mathematics, 17 (1965), 449~57.
Edmonds, J. (1965b). Maximum matching and a polyhedron with 0-1 vertices. Journal of Research of

the National Bureau of Standards, 69B (1965), 125-130.
Goemans, M. X., and Williamson, D. P. (1992). A general approximation technique for constrained

forest problems. Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
Association for Computing Machinery, New York, 1992, pp. 307-316.

Grigoriadis, M. D., and Kalantari, B. (1985a). A lower bound to the complexity of Euclidean and
rectilinear matching algorithms. Technical Report LCSR-TR-69, Department of Computer Sci-
ence, Rutgers University, New Brunswick, NJ, 1985.

Grigoriadis, M. D., and Kalantari, B. (1985b). A new class of heuristic algorithms for weighted perfect
matching. Technical Report LCSR-TR-76, Department of Computer Science, Rutgers University,
New Brunswick, NJ, 1985.

Grrtschel, M., and Holland, O. (1985). Solving matching problems with linear programming. Mathema-
tical Programming, 33 (1985), 243-259.

Grrtschel, M., Jiinger, M., and Reinelt, G. (1991). Optimal control of plotting and drilling machines:
a case study. ZOR--Methods and Models of Operations Research, 35 (1991), 61-84.

380 M. Jfinger and W. Pulleyblank

Iri, M., Murota, K., and Matsui, S. (1983). Heuristics for planar minimum weight perfect matchings.
Networks, 13 (1983), 67-92.

Jiinger, M., and Pulleyblank, W. R. (1993). Geometric duality and combinatorial Optimization. In:
s. D. Chatterji, B. Fuchssteiner, U. Kulisch, and R. Liedl (eds.), Jahrbuch Oberblick Mathematik
1993, Vieweg, Braunschweig/Wiesbaden, 1993, pp. 1-24.

Jiinger, M., Reinelt, G., and Zepf, D. (1991). Computing correct Delaunay triangulations. Computing,
47 (1991), 43-49.

Mehlhorn, K. (1984). Data Structures and Algorithms 3: Multi-Dimensional Searching and Computational
Geometry. Springer-Verlag, Berlin, 1984.

Ohya, T., Iri, M., and Murota, K. (1984). Improvements of the incremental method for the Voronoi
diagram with computational comparison of various algorithms. Journal of the Operations Research
Society of Japan, 27 (1984), 306-337.

Papadimitriou, C. H. (1977). The probabilistic analysis of matching heuristics. Proceedings of the 15th
Allerton Conference on Communication, Control and Computing, 1977, pp. 368-378.

Reingold, E. M., and Tarjan, R. E. (1981). On a greedy heuristic for complete matching. SIAM Journal
on Computimd, 10 (1981), 676-681.

Shamos, M. I. (1975). Geometric complexity. Proceedings of the 7th Annual ACM Symposium on Theory
of Computing, 1975, pp. 224-233.

Shamos, M. I., and Hoey, D. (1975). Closest point problems. Proceedings of the 16th IEEE Annual
Symposium on the Foundations of Computer Science, 1975, pp. 151-162.

Sugihara, K. (1988). A simple method for avoiding numerical errors and degeneracy in Voronoi diagram
construction. Research Memorandum RMI 88-14, Faculty of Engineering, University of Tokyo,
1988.

Sugihara, K., and Iri, M. (1988). Geometric algorithms in finite precision arithmetic. Research
Memorandum RMI 88-10, Faculty of Engineering, University of Tokyo, 1988.

Supowit, K. J., Plaisted, D. A., and Reingold, E. M. (1980). Heuristics for weighted perfect matching.
Proceedings of the 12th Annual ACM Symposium on Theory of Computing, 1980, pp. 398-419.

Tarjan, R. E. (1983). Data structures and network algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1983.

Weber, M., and Liebling, T. M. (1985). Euclidean matching problems and the Metropolis algorithm.
Technical Report, Drpartment de Mathrmatiques, EPF Lausanne, 1985.

