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New Primal and Dual Matching Heuristics 1 

M. Jiinger 2 and W. Pul leyblank 3 

Abstract. We describe a new heuristic for constructing a minimum-cost perfect matching designed 
for problems on complete graphs whose cost functions satisfy the triangle inequality (e.g., Euclidean 
problems): The running time for an n node problem is O(n log n) after a minimum-cost spanning tree 
is constructed. We also describe a procedure which, added to Kruskal's algorithm, produces a lower 
bound on the size of any perfect matching. This bound is based on a dual problem which has the 
following geometric interpretation for Euclidean problems: Pack nonoverlapping disks centered at the 
nodes and moats surrounding odd sets of nodes so as to maximize the sum of the disk radii and moat 
widths. 

Key Words. Matching, Heuristics, Moat packing, Minimum spanning tree. 

1. Introduction. In an undirected graph  G = (V, E) with edge weights w e for e 6 E 
the matching  problem consists of  determining a set M _ E of  pairwise nonadjacent  
edges with min imum (maximum) total weight w ( M )  .'= ~ e ~ u  we. The matching  M 
is called perfect  if M meets every node in V, i.e., V = U M.  Edmonds  (1965b) has 
given an algori thm for the (perfect) matching problem which can be implemented  
to run in O(I VI a) time. Fo r  m a n y  practical applicat ion s on large graphs, the 
running time of Edmonds ' s  a lgor i thm is extremely long. So a considerable amoun t  
of work  has been devoted to the s tudy of  faster approximat ive algorithms. In  
particular, m a n y  heuristics for the Euclidean perfect-matching problem in the 
plane have been proposed  and analyzed with respect to their performance and 
complexity. Here, the nodes in V are assumed to be points in the Euclidean plane 
and the distance dij between two points  i = (x~, Yi) a n d  j = (x j, y j) is assumed to 

be the Euclidean distance dij = ~ / ( x  i - X j) 2 + (Yi - yj)a. Fo r  simplicity, we assume 
that  all points  in V lie in the unit square, i.e., each point  i = (x~, Yi)has 0 < x~ < 1 
and 0 < y~ < 1. If  e = uv is an edge of  a graph defined on these points, we let d(e) 
denote  duv. 

M a n y  real-world combinator ia l  opt imizat ion problems are Euclidean problems. 
A notable  example is the minimizat ion of  pen movemen t  on a mechanical  plotter, 
see Reingold and Tar jan  (1981) and Iri et al. (1983). Fur thermore ,  m a n y  combina-  
torial opt imizat ion problems arising in the context of  VLSI  design are Euclidean. 
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A fast approximative Euclidean matching algorithm is also useful for efficient 
versions of Christofides' heuristic for the traveling salesman problem (see 
Christofides, 1976; Cornurjols and Nemhauser, 1978) and for Chinese postman 
heuristics (see Grigoriadis and Kalantari, 1985a). In addition, such heuristics can 
be expected to produce good starting solutions in exact primal matching algo- 
rithms, like those by Cunningham and March (1978), Derigs (1986), and Grrtschel 
and Holland (1985). 

Approximative algorithms for the Euclidean matching problem on the unit 
square (as well as the more general case where the edge weights are only assumed 
to satisfy the triangle inequality) have been designed by many authors. The 
heuristics may be classified with respect to their worst-case time complexity, 
average-case time complexity, worst-case weight of the heuristic solution, and 
expected weight of the heuristic solution, assuming a certain (usually uniform) 
distribution of the n points on the unit square. A compilation of most known 
results for a large selection of matching heuristics can be found in Avis (1983). 

It follows from the results of Beardwood et al. (1959) that a constant # exists 
such that the expected weight of a Euclidean matching of n uniformly distributed 
points in the unit square is #n/-n (see Papadimitriou, 1977). Papadimitriou also 
showed that 0.25 < # < 0.40106 and conjectured # ~ 0.35. Based on extensive 
computational experiments, Weber and Liebling (1985) report the approximate 
value # ~ 0.3189. 

The best expected performance we could find in the literature for heuristics is 
that of the STRIP heuristic (Papadimitriou, 1977) which runs in time O(n log n). 
More precisely, if P is a set of n points uniformly distributed in the unit square, 
then the expected weight of the matching produced by STRIP is 0.474w/~ + o(,r 
(see Supowit et al., 1980). An upper bound on the worst-case performance of 
0.707n/n + O(1) is also derived in the same reference. 

Computational results for O(n) and O(n log n) heuristics can be found in Iri et 
al. (1983). Here it turns out that the STRIP heuristic outperforms all tested 
linear-time heuristics when applied to large real-world problems. 

Another heuristic of time complexity O(n log n), called the Minimum Spanning 
Tree Heuristic (MSTH) has been proposed by Papadimitriou (see Supowit et al., 
1980). MSTH works for the more general case where the n points are only assumed 
to satisfy the triangle inequality (but then the time complexity is O(n2)), and the 
relative performance guarantee WMs.rn/WopT < n/2 is proved. Here Woe x and WMSTH 
stand for the minimum and approximative weights, respectively. In addition, the 
bound n/2 can be achieved asymptotically. 

Grigoriadis and Kalantari (1985a, b) observe that "MSTH is optimal in the 
sense that, for most computational models of interest, the worst-case time complex- 
ity of any heuristic that produces an approximative solution with a finite ratio 
bound is f~(n 2) for general weights and f~(n log n) for Euclidean problems." Based 
on our own computational experiments, we found that Papadimitriou's heuristic 
delivers matchings with an average weight of about 0.358x/-n for n uniformly 
distributed points, i.e., significantly better values than STRIP, which is of the same 
time complexity. 
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In Section 2 we propose another O(n log n) heuristic for minimum Euclidean 
matching, which is also based on a minimum-length spanning tree. Our main 
motivation is the following, It delivers solutions with an observed average weight 

of about 0.338v/n for n uniformly distributed points, yet runs in about the same 
time as MSTH for our test problems of sizes up to 10,000 nodes. If we assume 
that Weber's and Liebling's estimate for the weight of the minimum matching 
of 0.3189 is correct, then this would mean that we are only about 6% above 
the optimum. In Section 3 we describe a companion heuristic which produces a 
lower bound on the value of the optimum solution. This gives an "individualized" 
quality guarantee of the kind "The heuristic solution is at most p percent above 
the optimum." For uniformly distributed random problems we obtain p ~ 22. 
However, the quality guarantee is much better on many real-world problems. 

2. A Primal Heuristic. Our method proceeds as follows. If the number of points 
is less than some threshold, usually four, six, or eight, then the problem is solved 
exactly. If not, a minimum-cost spanning tree T is constructed on the points. The 
longest nonpendent edge uv of T is found and removed, thereby partit ioning T 
into T~ and To, where u ~ V(T,) and v ~ V(T~). If the number of nodes in each of T~ 
and T~ is even, then the algorithm is applied recursively to the nodesets of each 
of T, and To. The result is the union of the two perfect matchings thereby found. 

If the number of nodes in each of T., Tv is odd, then we proceed as follows (see 
Figure 2.1). First, apply the algorithm to V(T.)u {v}. In the matching M1 
produced, some node w ~ V(T,) will be matched with v. Now recursively apply the 
algorithm to V(Tv)~ {w}, Let M 2 be the matching produced. We return the 
matching (M l \ {vw}) u M2. 

Note that we do not have to recompute the minimum-cost spanning tree for 
each recursive call. If J V(T,)I and I V(T~)I are even, then T, and T~ will be minimum 
spanning trees of V(T,) and V(To), respectively. If I V(T,)I and I V(T~)I are odd, then 
T, plus the edge uv will be a minimum-cost spanning tree of V(T,) u {v}. In order 
to obtain a minimum-cost spanning tree of T o u {w}, we must find the node t of 
T~ nearest to w. We then add edge tw to Tv. We refer to this algorithm as DUST 
(Decomposition Using Spanning Trees). 

Our main theorem of this section is that DUST can be implemented so that its 
running time for Euclidean perfect-matching problems is O(n log n). More gener- 
ally, its running time for any perfect-matching problem is O(n log n), after a 
minimum-cost spanning tree has been found in the original graph. We first describe 
the necessary data structures. 

Let V be a finite set of n points in R 2. The Voronoi diagram is a set of I VI 
regions, where the region S, for v e V consists of all those points in R 2, for which 
v is the nearest member of V. Then each S~ will be a (closed) convex polyhedron 
in R z. Two regions Sv, S w for which ISv n Swl > 1 are called adjacent. The Delaunay 
trianoulation is the graph constructed on the node set of V where two members 
of V are adjacent if and only if the corresponding regions are adjacent. Note that 
the "Delaunay triangulation" is planar, but not necessarily a triangulation. 
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Shamos (1975) showed that the Voronoi diagram (and, therefore, the Delaunay 
triangulation) can be constructed in time O(n log n), where all arithmetic calcula- 
tions are assumed to take constant time. Moreover, the edgeset of a minimum-cost 
spanning tree of V is contained in the edgeset of the Delaunay triangulation. (See 
also Mehlhorn, 1984.) Ohya  et al. (1984) describe an algorithm for constructing 
the Voronoi diagram whose running time is O(n 2) in the worst case, but whose 
experimentally observed running time is only O(n) on the average when applied 
to n uniformly distributed points in the Euclidean unit square. This was the method 
we used in our tests. Recently Sugihara and Iri (1988), Sugihara (1988), and Jiinger 
et al. (1991) have developed variations of this method which avoid the problems 
of numerical instability encountered in the original. 

Tarjan (1983) describes how Kruskal's algorithm for obtaining a minimum-cost 
spanning tree in a graph G = (V, E) can be implemented in time O(IE[ log IEI). 
Initially, each node is considered to be a separate component. The edges are 
considered in order of increasing cost. If an edge joins two nodes of the same 
component, then it is discarded. If it joins two nodes of different components, then 
the edge is added to the tree and the components are merged. 

Before giving the detailed description of the algorithm, we note two preliminary 
facts. 

LEMMA 2.1. I f  F is a set of eight or more points in the Euclidean plane, then any 
Euclidean minimum-length spanning tree contains a nonpendent edge. 

PROOF. Let T be a minimum-cost spanning tree and suppose there is no 
nonpendent edge. Then T is a star with a center node r, and since I V\{r}l _> 7, 
there are nodes w and v such that the edges in T joining w and v to r form 
an angle ct of less than 60 ~ See Figure 2.2. Let x = dr, and let y = dwr and 
assume x < y. Then dv 2 = (x sin (X) 2 "~- (y - x c o s  6)  2 = x 2 + y2 _ 2xy cos 6. Since 
0 ~ < ct < 60 ~ cos �9 > 1. Using this, plus the fact that y _> x, we obtain do 2 < y2 
which contradicts T being a minimum-cost spanning tree. []  

The second lemma shows that when we perform an odd split in the course of the 
algorithm, we obtain a minimum-cost spanning tree by adding the one extra node 
to its nearest neighbor on the other side. 

X V 

.Ow 

Fig. 2.2. Necessity of nonpendent edge. 
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Fig. 2.3. Proof of Lemma 2.2. 

LEMMA 2.2. Let  T be a minimum-cost spanning t ree  and let vv' be an edge. Let  
u ~ V(T~) and let u' be the nearest node in V(T~,). Then T = T~, w {uu'} is a 
minimum-cost spanning tree on V(T~,) w {u}. 

PROOF. Suppose not. Then there is an edge st which when added to T creates 
a cycle C containing an edge longer than st. Because T was a minimum-cost 
spanning tree, T~, is a minimum-cost spanning tree on V(T~,), so C must contain 
uu', plus an edge uw between u and some node of Tv, different from u'. (That is, 
st = uw.) Let pq be the longest edge in C. Then dpq > duw > du,,. The edge pq 
must either belong to the path in T~, joining w to v' or the path joining u' to v', 
since it is contained in the path joining w to u'. However, this means that it belongs 
to the cycle created when we add either uw or uu' to T, see Figure 2.3. This 
contradicts T being a minimum-cost spanning tree. [] 

In order to achieve the claimed running time, we construct the following 
structure while the minimum-cost spanning tree algorithm is being run. Let E = 
{el ,  e2, ..., en-1} be the edgeset of the minimum-cost spanning tree, where d(ci) < 
d(ei+l) for 1 _< i < n - 2. A leaf of  T is an edge of T for which an endnode has 
degree one in T. Let V be the nodeset of T, i.e., of our original problem. 

We use an auxiliary rooted binary tree B(T)  to locate the longest (nonpendent) 
edge of T. We refer to the nodes of B(T) as b-nodes. We construct B(T), during 
the running of Kruskal's algorithm as follows: 

(2.1) If a component K of the forest constructed so far has no edges, then 
the corresponding tree B(K) is empty. 

(2.2) If we merge two components by adding an edge e j, then we construct 
a new b-node corresponding to e j, and give it children corresponding 
to the binary trees representing the two merged components. 
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Then B(T) will satisfy the following: 

(2.3) The b-nodes of B(T) correspond to the edges of T. 

(2.4) For each b-node j of B(T), if e(j) is the corresponding edge of T, then 
d(e(j)) > d(e(i)), for any edge e(i) corresponding to any descendent 
b-node i ofj .  

Note that (2.4) implies that the longest edge of T occurs at the root of B(T). See 
Figure 2.4. The letter beside each node is for identification and the number beside 
each edge is its length. 

The structure B(T) is only used to locate the longest edge of T We maintain a 
separate "graph representation" of T which allows us to manipulate its structure. 
It must permit us to determine the neighbors of any node, or, equivalently, the 
incident edges, plus add and delete nodes and edges efficiently. 

4 

4 7 " 

7 

3 

Fig. 2.4. Auxiliary tree B(T). 



364 M. J/inger and W. Pulleyblank 

When a node w is added to a subtree Tv during an odd split, we mark w, to 
indicate this fact. This is because we know that the length of the unique edge of 
the tree incident with w is longer than any nonpendent edge of the tree, and we 
will have to recognize this fact at one point. 

The main procedure of our algorithm is called DUST (Decomposition Using 
Spanning Trees). This makes use of a recursive subroutine MATCH(T, B(T)). The 
subroutine is passed the spanning tree T as well as its associated structure B(T). 
It will return the set of pairs of nodes comprising a perfect matching on V. We 
may assume that this matching is represented by a function PAIR(v) which gives, 
for each node v, the node with which it is matched. 

DUST (Decomposition Using Spanning Trees) 
lnput: An even cardinality set S of points in the Euclidean plane. 
Output: A perfect matching of S. 

1. Construct the Delaunay triangulation for S. 
2. Construct a minimum-cost spanning tree T on S, and the associated 

binary tree B(T). 
3. Call MATCH(T, B(T)). 

Procedure MATCH(T, B(T)) 

1. If I Vt < limit, for some fixed limit (4, 6, or 8 usually) we use an exact 
algorithm (e.g., enumeration) to construct a minimum-cost perfect 
matching and return. 
(I VI > limit.) Let l q )=  uv be the edge corresponding to the root j of 
B(T). Let T, and T~ be the subtrees of T, containing u and v, 
respectively, obtained when we delete edge uv from T. We now use 
the graph representation of T to scan these two subtrees in parallel. 
As soon as we know the number k of nodes in the smaller part, we 
terminate the scan. If k = 1, i.e., uv is a leaf of T, we rePlace j with its 
unique child in B(T) and repeat the scan. If k > 2 is even, we go to 
Step 3. If k > 3 is odd, we go to Step 4. 

3. (Even Split.) Let B" and B v be the child subtrees in B(T) ofj .  (Either 
or both may be empty, but if either T, or T~ has at least eight nodes, 
then the corresponding B" or B v will be nonempty (see Lemma 2.1).) 
Call MATCH(Tu, B") and MATCH(Tv, B v) and return the union of the 
two matchings produced. 
(Odd Split.) Assume [V(Tu)] > [V(T~)[. Let B u and B v be the child 
subtrees in B(T) of j. Let T'u be obtained from T, by adjoining the 
edge uv. Call MATCH(T'u, B"). In the matching M 1 returned, let 
w = PAIR(v). 

Scan T~ to find the node w' nearest to w. Let T'v be formed by adding 
ww' to Tv. M a r k  w to indicate that it was added during an odd split. 
By Lemma 2.2, T'v is a minimum-cost spanning tree on its nodeset. 

Check to see whether w' is a pendent node of T, added at a previous 
iteration of Step 4. If so, we know that the length of the edge w't 
joining w' to another node of T, is greater than any nonpendent edge, 

. 

. 
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and so, after attaching ww', this edge w't will be the next chosen for 
a split, which will be even. Add the edge ww' to the matching, and 
remove w't from Tv. Then call MATCH(Tv\{w't} ,  Bv). Let M2 be the 
matching returned. Return ml\{VW} w {ww'} w m2.  

If w' is not a pendent node of T~, then we simply call 

MATCH(T~ w {ww', By} ). 

Let M 2 be the matching returned. Return M 1 \{v, w} w M 2. 

Before proving an upper bound on the running time of this algorithm, we make 
one preliminary observation regarding the auxiliary data structure B(T). It is never 
changed in the course of the algorithm. Indeed, in the entire course of the 
algorithm, it is scanned once. The important property is that the highest node 
with two children always corresponds to the largest nonpendent edge in the 
appropriate tree. If we add a new node to a tree during an odd split, then the new 
node becomes pendent, so we do not have to update B(T). However, if we add a 
new node w during an odd split, it may happen that the node w' to which it was 
attached had been added during a previous execution of Step 4, and so, when we 
add w, w' is no longer a leaf and this fact should be reflected in B(T). This is why, 
in this case, we effectively perform the next recursive call immediately. The next 
split would be the even split on the edge w't. Therefore one recursive call would 
be on {w, w'}, which would be matched together. We simply pair  them off, then 
make the next call on the tree with these nodes removed. In this way, B(T) still 
performs properly. 

THEOREM 2.3. When D U S T  is applied to a set V o f  n (even) nodes, the running 
time is O(n log n). 

PROOF. Let 
nodes, except 

t(n) be the time required by MATCH when applied to a set of n 
for the time scanning B(T). Then t(n) is defined by the recurrence 

c for n < 8, 

t(n) <_ t(k + l) + t(n - k + l) + extra for n > 8 .  

Here "extra"  denotes the time incurred apart from the recursive calls. We assume 
that the split results in a tree T u with n - k nodes and a tree T~ with k nodes, and 
k < _ n - k .  

The time accounted for in "extra"  includes the following: 

(i) Location of the largest edge in T. 
This is accounted for separately. 

(ii) Determination of which of T, and T~ is smaller. 
This is done by scanning both trees in parallel, and stopping when one is 
completed. Thus this time is O(k). 

(iii) Choice of the node w' to which w -- PAIR(v) must be attached. 
This is done by scanning the smaller part, so the time is O(k). 
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(iv) Updating T, and T~ by adding or removing at most two edges. 
This requires constant time. 

Therefore "extra" is O(k), so t(n) satisfies the recurrence 

t ( n ) < c '  for n < 8 ,  
(2.5) 

t ( n ) < < _ t ( k + l ) + t ( n - k + l ) + c ' k  for n > 8 ,  

for some constant r We prove inductively that this implies 

(2.6) t(n) < c'(n - 2)log(n - 2) + c' for all n _> 8, 

proving the result. 
Substitute (2.6) for k and n - k into (2.5). We obtain 

t(n) < c '(k - 1)log(k - 1) -t- c'(n - k - 1)log(n - k - 1) + c'k: 

Since k < n/2,  

Since k > 1, 

Therefore, 

l o g ( k -  1) < log((n - 2)/2) = log(n - 2) - 1. 

l o g ( n -  k -  1) < log(n - 2 ) .  

t(n) <_ c'(k - 1)[log(n - 2) - I] + c'(n - k - 1)log(n - 2) + c'k 

= c'(n --  2)log(n -- 2) + c', 

as required. 
The other time required by DUST includes constructing the Delaunay triangula- 

tion, finding the minimum-cost spanning tree, and scanning B(T) .  The first two 
activities require O(n log n) and the latter O(n). Therefore, the total running time 
is O(n log n) as asserted. [] 

While developing this algorithm, we tried several variations in order to simplify 
the odd split. For  example, when we have an odd split uv into Tu and T~, we could 
simply apply MATCH to T, u {uv} and T~ u {uv} .  Let M1 and M2 be the two 
matchings produced. If uv ~ M I  and M2, then return Mt  u M 2. If uv ~ M a  but 
uv r M 2, then return M ~ \ { u v }  w M z. If uv belongs to neither M 1 nor m2, then 
remove the edges incident with u and v from M 1 and M2, yielding M'~ and M~. 
Now return M'~ w M~ plus a minimum-cost perfect matching on u, v together with 
the other four unmatched nodes. 

This variation has the advantage that the extra work required during an odd 
split now has constant time. Therefore, the running time of the algorithm, after 
construction of the Delaunay triangulation and minimum-cost spanning tree, 
becomes linear in n. However, our computational experience was that this 
variation did not provide as good solutions as DUST. 
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Fig. 3.1. Optimal disk packing and perfect matching. 

3. Individual Quality Guarantees. In this section we introduce a dual geometric 
problem to that of constructing a minimum-length perfect matching. It has two 
important properties. First, every feasible solution provides a lower bound on the 
length of any perfect matching. Second, if we find a best feasible solution, then 
this bound will exactly equal the minimum length of a perfect matching. 

In general, we do not know a better way to solve this dual problem optimally 
than to solve the minimum perfect-matching problem exactly. However, in the 
second part of this section we describe a method for constructing a feasible solution 
to this dual problem based upon Kruskal's minimum-cost spanning-tree algo- 
rithm. Our experience has been that these bounds are usually quite good for 
Euclidean problems. The gap between the length of the matching produced by 
DUST and the value of this bound is typically 10%-20%. The computational 
results are discussed in the last section. 

Consider a Euclidean minimum-length perfect-matching problem for an even 
cardinality set V of points. Suppose, for each v ~ V, we construct a closed disk Dv 
centered at v of radius rv, such that no two disks overlap, that is, have interior 
points in common. If we represented a perfect matching M of V by line segments 
between the matched pairs of nodes, then each disk D~ would contain a length of 
at least r~ of the segment incident with v. Therefore the length of this matching is 
at least ~wv  rv. Thus a first dual problem would be to construct nonoverlapping 
disks centered at the points, such that the sum of the radii is maximized. 

Consider the examples of Figures 3.1 and 3.2. In the first case we were able to 
construct an optimal disk packing which proved optimality of the displayed perfect 
matching. In the second, although we exhibit an optimal packing, the sum of the 

Fig. 3.2. Optimal disk packing bound not tight. 

@ 
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Fig. 3.3. 

radii is much less than the minimum length of a perfect matching. (Note that for 
the bound to be tight, each matching line segment must be completely accounted 
for by disk radii.) 

In order to close this gap, we introduce one new type of object. Let I and ]~r 
be compact subsets of the plane such that I is contained in the interior of ~t. Let 
E = R2\interior()~qt). Let M = )~t\interior(I). We say that M is a moat of width WM 
with interior I and exterior E if 

(3.1) each of / ,  E contains an odd number of members of V and M contains 
no members of V, 

(3.2) The infimum of the distances between points x e I and y e E is w M, 

see Figure 3.3. Our definition permits moats to be very general. However, the ones 
we use have a special structure which we describe later. 

Since each of / ,  E contains an odd number of points of V, in any perfect matching, 
at least one member of V in I must be matched with a member in E. Hence, some 
segment representing the matching must have length at least w M in M. Therefore, 
if N is a set of disks centered at the members of V and ~g is a set of moats such 
that no two members of ~ w J / /over lap  each other, then ~ v  r~ + ~ t ~  wM is 
a lower bound on the length of a minimum-length perfect matching. We shall see 
that this bound is tight for an optimum disk/moat packing. 

Edmonds (1965a, b) proved that the minimum-length perfect-matching problem 
can be solved as the linear program 

rain y" du~ xuv 
u , v ~ V  

x,v_>l  for all S ~ 2 ,  
ueS, wV\S  

Y', x,v = 1 for all u e V, 
v e V ,  u~-v 

x , v > 0  for all u, veV, u r  

where ~ = {S ~ VI3 _< IS[ _< I Vl - 3, ISl odd}. Edmonds proved that every basic 
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solution to this linear program is 0-1 valued, i.e., the incidence vector of a perfect 
matching. 

The dual linear program is 

(3.3) 

max ~" r~+ ~ W s 
w V  S c ~  

,, + rv + 
s ~ &  I{u,v} n sI = 1 

Ws < d.~ for all u, v c V, 

w s > O  for all S ~ .  

Edmonds's proof  consisted of a polynomial algorithm which solved both pro- 
grams. The optimum solution r*, w* produced by the dual problem has the 
following important property. The subset of those S c .~ for which w~ > 0 forms 
a nested family That  is, if w* > 0 and w* > 0, then S n T = ~ or S _ T or T ___ S. 

THEOREM 3.1. Let M be a minimum-length perfect matching for an even cardinality 
set V of points in the Euclidean plane. Then a set ~ of disks centered at the members 
of V and ~ /  of moats exists such that the members of ~ u J / a r e  nonoverlapping 
and Y',o:~ r~ + ~ s ~  Ws equals the length of M. 

PROOF. Apply Edmonds's theorem to obtain a minimum-length perfect matching 
M* and an optimum dual solution r*, w* such that w* is nested. First, suppose 
that r* < 0 for some v c V. We could permit disks of negative radius, but this would 
detract from the geometric result, and is unnecessary. Instead we modify the 
solution so that all radii become nonnegative. 

Let 5: = {Sc~]w* > 0}. Define a new nested family 5 e' equal to {{u}luc 
V\{v}}, plus, for each S ES:, whichever of S or V\S does not contain v. 
For  convenience of notation, for u~ V\{v}, define w~*} = r*. Now let U = 
{u ~ V\{v} ]}-'s~se, i(~,v}nsl= 1 w~ = d,~}. That  is, U consists of every node u ~ V \ { v }  
for which the length of the line segment joining u to v is completely accounted 
for by moats and disks. Since some pair uv for u c U is in M*, we must have 
U r ~ .  Suppose that there were distinct maximal members S 1 and S 2 of 50' 
containing members u 1 and u 2 of U, respectively. Then 

dulI~2 ~_~ d,,v + d.2~ (by the triangle inequality) 

< r.* + r.* + y" + 
s e 5  ~', ISn {ua,v}l = 1 S~5: ' ,  IS n {u 2, v}l= 1 

= r,* + r,* + ~ w~. 
S~5 a', ISn {ul,uZ}l = I 

The last equality holds because S 1 and S 2 a r e  maximal members of 5 e' and v 
belongs to no member of 5".  However, this contradicts (3.3), i.e., feasibility Of r* 
and w*. Therefore there must be a unique maximal member S of 5 a' which contains 
a member u of U. (We may have S = {u}.) Since d,v > 0, we must have w~ > 0. 
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Now increase r* by s and decrease w~' by e until one of three things happens: 

(i) r* reaches zero, in which case we can continue to fix up another member v' 
of V having rv, < 0, if one exists. 

(ii) w~' becomes zero, in which case we delete S from 5 e' and repeat the process. 
(iii) Some new node u' enters U. 

However, in the last case we would immediately find two maximal members of 
5 r containing nodes of U, which, as we have seen, would contradict feasibility. 

Therefore we can repeat this process, each time reducing the size of 5 r until 
we raise r* to zero: Repeating, we can obtain equivalent r* and w*, such 
that w*, r* > O. Note moreover that the changes we make do not change the value 

2wv + 
Now we construct the moats and disks as follows. For  each w V, construct a disk 

Dv of radius r* centered at v. For  each S �9 6 ~, construct a moat  M s surrounding 
the nodes of S as follows. For  each v �9 S define p~ = r* + ~ r ~ s , r ~ :  w} and let 
~ = p~ + w~. Let S~ be a disk of radius po centered at v and let S~ be a disk of 
radius ~ centered at v. Then the moat Ms is defined as M s = U ~ s  ~gv\U~s S~, 
see Figure 3.4. The width of the moat is just w*. 

Feasibility of r*, w* ensures that the disks and moats thereby constructed will 
be nonoverlapping. Optimality of M*, r*, and w* ensures that the length of M* 
equals exactly the sum of the disk radii plus the moat widths. [] 

Now we describe a fast heuristic method for constructing a disk and moat 
packing, which will give us a lower bound. It is based on the minimum-cost 
spanning-tree algorithm. 

Choose an arbitrary node ~ and consider the following pair of dual linear 
programs: 

(LP) max ~2 2Ws 
~r 

(3,4) Z 
S ~_ HlSc~{u,v}l= l 

(3.5) Z 
S c V,v~S 

Ws<-d.v for all u, v~V, 

Ws = e for all v e V, 

w s > O  for all S ~  V, 

c~ unrestricted. 

u ~: v, 

(DLP) 

(3.6) 

min ~ d.vx.v 

y( V) = o, 

Xuv ~ 0 

y~ unrestricted 

if ~r 
if OeS, 

for all 

for all 
fo_r all 

S_~V, 

u, veV ,  u r  
v E V .  
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Fig. 3.4. Moat construction. 

Problem (LP) is a variant on the disk/moat packing problem we have studied 
in this section. The differences are that: 

(i) We can construct moats surrounding any set of nodes, not just odd sets. 
(ii) We must "balance" the packing in that (3.5) requires that the sum of the 

widths of the sets of moats surrounding each node be equal. 
(iii) The objective function ignores the moats surrounding one node z3 (the choice 

of which does not matter by (ii)), but doubles the rest. 

Surprisingly, problem (DLP) is just the minimum-cost spanning-tree problem, 
slightly disguised. Kruskars  algorithm with minor modifications will build opti- 
mum solutions to both linear programs. 

First, consider (LP). Recall Kruskal's algorithm builds a minimum-cost span- 
ning-tree by starting with the shortest edge and then adding successively the 
shortest remaining edge which produces no cycle until n - 1 edges are chosen. 
When a tree edge t is added, it connects nodes in two trees T 1 and T a previously 
connected. 

We build a solution w to (LP) as we go, starting with w = 0. At each stage, for 
each tree T that we have built, all nodes v of T will satisfy ~ w s  Ws -- ~(T) = 0 
where ~(T) equals one-half of the length of a longest edge of T, respectively ~(T) = 0 
if T has only one node. 

Now suppose we add edge t joining nodes u 1 �9 T~ and u 2 �9 7"1. We construct a 
moat  of width �89 - ~(T~) around Ti for i = 1, 2. (Since d.~,2 is at least as great 
as the length of the longest edge in 7"1 (resp. T2) these widths are nonnegative.) 
Let ~ ( T ) =  1 ~d,,~2, where T is the new tree produced. It is clear that when we 
terminate, w satisfies (3.4) and (3.5) with ct equal to one-half of the length of a 
longest edge of T, the minimum-cost spanning tree produced. Note that the 
solution w satisfies (3.4) with equality for every edge of T. 

Now we construct a feasible solution to (DLP). Let x,v = 0 if uv is not an edge 
of T and let x,v = 1 if uv is an edge of T. Choose arbitrarily some node ~ of T. 
Orient all edges of T toward ~3. For  each v �9 V, define y~ equal to the outdegree of 
v (in T) minus its indegree. Using induction on T, we can prove that this is a 
feasible solution to (DLP). Since x, ,  = 1 only for edges in T, for every such u, v 
(3.4) holds with equality. Again, using induction, we can show that (3.6) holds with 
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equality for all S _ V with w s > 0. (Show that it holds for two node trees, start 
with an arbitrary tree, remove one pendent node, apply induction.) 

Therefore, these solutions satisfy the complementary slackness conditions for 
optimality, and we have the following. 

THEOREM 3.2. The optimal solutions to (DLP) are incidence vectors of  minimum- 
cost  spanning trees with node variables (Yv) equal to outdegrees minus indegrees, 
after all edges have been oriented toward an arbitrary root. 

Of particular interest to us is t h e  solution to (LP), for it provides a feasible 
solution to the disk/moat  packing associated with the minimum-length perfect- 
matching problem. 

TREOREM 3.3. Let T be a minimum-cost spanning tree of length d(T) and let w*, 
c~(T) be an optimum solution of the linear program (LP), constructed during the 
running of Kruskars algorithm. Then every perfect matching has length at least 
�89 + a(T) - ~lsl . . . .  w*. 

PROOF. If we set w~ = 0 for all S such that I SI is even, then w~ is a feasible set 
of moat  widths. Thus, if M* is a minimum-length perfect matching, then 

d(M) >_ ~ w~ 
ISlodd 

= E w Z -  E 
S ISleven 

= E wZ + E wZ- E wZ 
v(~S yES ISIeven 

= �89 + ~(T)-- ~ w*. [] 
ISleven 

Note that we can compute w* and ~(T) without changing the runtime of 
Kruskal 's  algorithm, hence this bound can be calculated very quickly. 

Figure 3.5 shows an example on 10 nodes. We display a minimum-length 
spanning tree along with an opt imum dual solution where the r* are the radii of 
the circles around the nodes and the w* are the width of the moats  around node 
sets. In this example, we have 

d25 = 30, d34 = 40, d45 = 10, 

d68 = 20, d78 = 40, dT,lO = 30, d89 = 10, 

d14 = 20, 

d57 = 70, 

and therefore 

r 1 = 10, 

r 6 = 10, 

r 2 =  15, r 3 = 2 0 ,  r 4 = 5 ,  r 5 = 5 ,  

r 7 = 15, r 8 = 5, r 9 = 5, rio = 15, 

w{4,5 } -- 5, w{1,4,5 } = 5, w{1,2,4,5 ) = 5, 

w{1,2.3,4,5 ~ = 15, w{7,1o~ = 5, W{8,9 } = 5, 

W{6,8,9 } = 10, W{6,7,8,9,10} ~-- 15. 



New Primal and Dual Matching Heuristics 373 

10 

Fig. 3.5. Minimum spanning tree and moat packing. 

The minimum spanning tree has length 270 and the lower bound for the minimum 
matching we get from Theorem 3.3 is 150. 

Figure 3.6 displays a minimum-length matching along with all radii and all 
moats for odd cardinality node sets. (The Ws for the even cardinality node sets are 
set to zero.) We have c12 = 32 and c36 = 76, so the matching has length 158. The 
lower bound of 150 proves that the matching is at most about 5% offthe optimum, 
and there is a gap of 2 on the edge (1, 2) and a gap of 6 on the edge (3, 6) in the 
dual solution. Without losing dual feasibility, we can increase 

r 2 to  16 

w~L4,5~ to 6 

W{ 1,2,3,4,5 } to 18 

W{6,7,8,9,10} to  18 

to establish the complementary slackness conditions also for the matching, which 
gives an optimality proof as  displayed in Figure 3.7. 

It remains an open problem to find an efficient way of doing this kind of 
improvement of the lower bound. Given a set of n nonoverlapping disks and moats 
in the plane, is it possible in, say O(n log n) time to increase some disks and moats 
in such a way that they become maximal, i.e., every one is in a tight distance 
constraint? 
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Finally, note that although we have used geometric intuition to explain the 
lower bound, it is completely general. The bound of Theorem 3.3 is valid for all 
objective functions. 

In Jiinger and Pulleyblank (1993) we give a survey of applications of these disk 
and moat packing ideas to a variety of combinatorial optimization problems. 
Recently, Goemans and Williamson (1992) showed that these methods could be 
extended to obtain an O(n 2) log n 2-approximation algorithm for perfect-matching 
problems whose costs satisfy the triangle inequality. 

4. Computational Results. We have implemented the DUST heuristic along with 
the individual quality guarantee procedure described in Section 4 as a Pascal 
program. The Delaunay triangulation is computed with the incremental quater- 
nary bucketing algorithm by Ohya et aL (1984). The spanning tree is computed 
with Kruskal's algorithm on the Delaunay graph using a heap as the priority 
queue and Tarjan's fast union-find technique. Very little code is added in this part 
to obtain the lower bound as described in Section 3. Finally, the matching is 
computed as described in Section 2. 

Using our computer implementation we made several computational experi- 
ments on a Sun SPARCstationl +. 

In a first set we generated random problem instances with n points chosen 
uniformly and independently in the unit square for n = 1000, 2000 . . . . .  10,000, ten 
instances of each size. The running times are displayed in Figure 4.1. We show 
minima, maxima, and averages. The problem instances are still small enough to 
make the timing behavior appear linear. As outlined in the Introduction, we 

seconds (SPARCstationl+) 

25 

20 

15 

10 

total time 

~ y  time 

I000 2000 3000 4000 5000 6000 7000 8000 9000 i0000 

number of node 
Fig. 4.1. Time on random problems. 
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Fig. 4.3. Street map of Kanto district: 

Finally, we repeated a study made by Asano et al. (1985) for the Kanto 
district map of Japan. The task is to plot the map of the main streets shown 
in Figure 4.3 on a mechanical plotter in as little time as possible. If the street 
network on the map were connected, this would amount  to finding a minimum- 
length perfect matching on all points of the map where an odd number of streets 
intersect or a street ends. The graph as shown, augmented by the matching edges, 
is then Eulerian, and the pen, starting and ending at any point inside the drawing, 
would traverse an Eulerian cycle, lifted up whenever traversing matching edges. 

Unfortunately, the main street network on the map is not connected. In fact, 
there are 15 connected components, a very big one, a small one corresponding to 
Oshima island, and 13 very small ones, one for another small island and 12 on 
the borders of the map. The plotting problem for such unconnected maps can be 
reduced to a rural postman problem which is NP-hard. It can still be solved in 
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polynomial time for a connected map plus an origin outside the map where the 
pen starts and ends its tour (see Gr6tschel et al., 1991). 

In our case we computed the shortest 15 "artificial streets" connecting the big 
component to the small ones, including the origin outside the map. After that, the 
map is connected and we have 4026 odd degree points defining our matching 
instance. Our program computed the solution shown in Figure 4.4 in 8.66 seconds. 
This matching is 7.4% above the optimum which was computed by W. Cook in 
about 6 minutes on a Sun SPARCstationl + (personal communication) with a 
new implementation of Edmonds's blossom-shrinking algorithm for Euclidean 
instances. 

We should point out here that in this real-world application the time the pen 
needs to move between two points on the plane is much better approximated if 
we measure the distance of the two points in Maximum (Loo) metric rather than 
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Euclidean metric as done here. O u r  current  implementat ion cannot  handle  this. 
(However, an L~  implementat ion should run even faster, because the running time 
is domina ted  by the De launay  graph  computa t ion  which is easier in this case.) 
Using our  solution, we have measured the "l if ted-up" pen movement ,  including 
the 15 artificial streets, in Lo~ metric, and get 6.52 m if the plot is 60 c m x  60 cm 
as described in Asano et al. (1985), where a 13.62-m solution was obtained using 
the ~ rack"  matching  heuristic. 
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