Volume 12, number 4

INFORMATION PROCESSING LETTERS

13 August 1981

LINEAR-TIME APPROXIMATION ALGORITHMS FOR FINDING THE MINIMUM-WEIGHT PERFECT

MATCHING ON A PLANE

Masao IRI, Kazuo MUROTA and Shouichi MATSUI

Department of Mathematical Engineering and fnstrumentation Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,

Tokyo, Japan 113

Received 20 October 1980; revised version received 20 February 1981

Approximation algorithms, minimum-weight matching, computational complexity, graphics

1. Introduction

We consider the problem of determining the mini-
mum-weight perfect matching of n (even) points on a
plane, i.e., determining how to match the n points in
pairs so as to minimize the sum of the distances
between the matched points.

This problem is of fundamental importance in
finding the optimal sequence of drawing edges of a
connected graph by a mechanical plotter; as is easily
confirmed, the wasted plotter-pen movement is mini-
mized by finding a minimum-weight perfect matching
of the vertices of an odd degree, adding the edges
between the matched pairs to the original graph and
traversing an Eulerian path on the extended graph,
where the added edges are to be traversed with the
pen off the paper {1,3].

The algorithm [2] which exactly solves this prob-
lem in O(n?) time seems to be too complicated from
the practical point of view. Even approximation algo-
rithms of O(n?) or O(n log n) [4] would not be satis-
factory for the application to plotters, since an
Eulerian patl: can be found in time linear in the num-
ber of edges. In fact, our Monte Carlo experiments for
1400 problems with 32 to 2048 points have shown
that the strip algorithm of O(n log n) [4] requires 3 to
10 times as much computing time as our linear-time
algorithins do.

In this paper, linear-time approximation algorithms
are proposed for the matching problem on a unit

206

square and the worst-case performance is analyzed
theoretically. The quality of an approximate solution
is measured by the absolute cost of the matching, i.e.,
the sur of the distances between the paired points,
and not by the ratio of the cost to that of the exact
optimal solution. As the distance, not only the L,-
distance (Euclidean distance) but also the L..-distance
(maximum norm) is considered, the latter being more
appropriate when the running time of a mechanical
plotter is in question.

2. Algorithm

To be specific, we describe hers ‘the serpentine
algorithm with tour’. It is among the several linear-
time algorithms we have considered, and may be
regarded as a linear-time variant of the strip algorithm
in [4].

We partition the unit square into k? square cells by
dividing each side into k equal parts. Each point
belongs to one of the k? cells. We determine the cell
to which a point belongs by multiplying the coordi-
nates (abscissa and ordinate) of the point by k and
then truncating the fractional parts off. The cells are
ordered in a prescribed order, called ‘the serpentine
cell order’, as shown in Fig. 1. We number the n point§
to foum a sequence which is consistent with the cell
order. This means that points in one and the same ceﬂ
may arbitrarily be ordered among themselves, but
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Fig. 1. The serpentine cell order.

points in different cells must be ordered consistently
with the cell order. By visiting all the points in this
order, we construct a travelling-salesman tour, which
obviously contains two perfect matchings for n even.
We adopt the one with less cost for the solution.

Provided k is taken as large in order as +/n, it is
evident that the complexity of this algorithm is O(n)
both in time and in space.

Input. Real array X[1 : n], Y[1 : n}. X[p}, Y[p] =
coordinate of the p* point in the unit square.

Output. Integer array PAIR[1 : n]. PAIR{p] =
index of the point matched with the p*® point.

Working space. Integer array CELL[1:k, 1: k].
CELLIi, j] = index of the first point in cell (i, j) (or 0
if the cell is empty). At Stage (1), PAIR is used for
the lists of points belonging to respective cells; at
Stage (2), those lists are concatenated into a single
circular sequence (tour) according to the cell order;
at Stage (3), the output information is made up in
PAIR.

Notes. The pair of functions (XINDEX(c),
YINDEX(c)) gives the index pair (i, j) of the cell which
is the ct? in the prescribed cell order. Parameter a is
to be determined in Section 3.
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Algorithm
begin
initialize: k :=a| v/n |; set ¢ach CELL([j, j] := 0,
(,j=1,..,k);

1 fon:p :=1tondo

i:= [X[p] *k}j:= [Y[p] #k];
| PAIR[p] := CELL{j, j}; CELLIi, j] := p;
(2) po:=0;

forc:=1tok? do

[q := CELL[XINDEX(c), YINDEX(c)];
if q# 0 then [[if po =0 thenp, i=q
else PAIR[p] :=gq;
p := q; while PAIR[p] #0
do p :=PAIR[p];

PAIR[p] :=po;
(3) costl := cost 2 :=0;p :=1;q := PAIR[p];
fore:=!tondo

[d := distance between (X[p], Y[p]) and

(X[ql, Y[ql);
if e is odd then [costl := costl +d;

p :=PAIR[q]]
else [[cost2:=cost2 +d;
q :=PAIR|p]]

if cost1 <cost2 then p := 1 else p := PAIR[1];
fore :=1ton/2 do
[q := PAIR[p]; r := PAIR[q]; PAIR[q] :=p;
p:=r1]
end

3. Worst-case analysis

For a fixed algorithm with k? cells, let M, (k) be
the supremum of the costs of solutions over all pos-
sible configurations of n given points in the unit
square, and put

(@) = lim Mn(a\/a)/\/ﬁ,

n—co

Ho = pr(@o) = min a(a).

In the following, the cell-distance of two cells with
respect to the serpentine cell order will mean the dif-
ference of the cell numbers in that ordering; e.g., two
consecutive cells are at cell-distance 1.

An upper bound for M, (k) of the serpentine algo-
rithm with tour can be obtained by means of the linear
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programme with variables n;, where n; is the number
of edges in a travelling-salesman tour which connect
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tine cell order; in pariicular, n; denotes the number of
edges within one and the same cells. _

In order to obtain an upper bound for M, (k) in the
l...-distance, we consider the primal programme:

maximize f= 2 cny/2,
=1

A
£z nj=n,
=1

?.;{ G-n;<k?,

subject to

n,- = 0,

where c; = j/k is an upper bound for the L..-distance
between two points contained in two cells at cell-
distance j — 1. The first constraint is concerned with
the number of edges in a travelling-salesman tour
through n points, and the second with the number of
celis, Obviously, the value f of the objective function
of the optimal solution to the primal programme
gives an upper bound for M, (k).

The dual programme is then

minimize g=nx +Kk2y,
subjectto x+(— 1)y > 2 (=1,2,..),
y=0.

As is well known, the value g of the objective function
of any feasible sclution of the dual programme is not
smaller than fie.,

so that g can be used as an upper bound for M, (k). In
particular, the minimum value g of the dual programme
gives a good upper bound, which, jn the present case,
turns out to be asymptotically tight.

In fact, the optimal solution of the dual programme
is easily known to be

where

X+(G—1)y=cj/2 forallj=1,2,.
and

£=2/(2k) + k/2.
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Fig. 2. The asymptotic worst-case for the serpentine algorithm
with tour (L-distance).

Hence we have
1\71“(1() <n/(2k) +k/2.

The optimal solution of the primal programme is
degenerate; for example, we have

@3.1)

ﬁl =n'—k, ﬁk‘l’_] =k,
fi;=0  for the other j’s, (3-2)
which gives

f=n/K)+k/2=§

There is a configuration of given points, such as
shown in Fig. 2, for which the cost of the matching
obtained by the algorithm can be as large as (k +
(n — k)/Kk)/2, since there are about k/2 edges of L..-
length 1 and about (n — k)/2 edges of L..-length 1/k
in the resulting matching. This value is asymptotically
equal to f = § as k — o, Therefore, the upper bound
(3.1) is asymptotically tight; i.e., we have in the L.,-
distance

— 1 o
=
() '3

and

Ho =1 fOl'Eg=1.

The worst-case analysis above suggests that a better
algorithm may be obtained by modifying the cell order
50 as to make c; increase as slowly as possible as j
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Fig. 3. The spiral rack cell order (k: odd).

increases. Thus we are led to another algorithm with
‘the spiral rack cell order’ shown in Fig. 3, in place of
‘the serpentine cell order’ in the serpentine algorithm
with tour. The algorithm thus obtained is named ‘the
spiral rack algorithm with tour’. The worst-case anal-
ysis for this cell order may be performed in a way

similar to the above (but somewhat more complicated),

and we actually have an improved bound in the L..-
distance:

()= min(—l—-l-g -§—+9—)
H 2 24a 4)

To =v3/2%0.866 fora,=4/3.

The case of the L,-distance can be treated quite
similarly by modifying the expressions for c;. For
example, for the spiral rack algorithm with tour we
have

To SV(V5 - 1)V/13 + 1 —+/5)/8 = 1.014,
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in the L, -distance. This bound would be favourably
compared with the known best upper bound 0.707 for
an algorithm of complexity O(n log n) [4].

4. Concluding remarks

We proposed linear-tirne approximation algorithms
for finding the minimum-weight perfect matching on
a plaae whose performances are nearly as good as
those of the algorithms of higher complexity, and
analysed the worst-case behaviour of the proposed
algorithms by means of linear programming. From the
practical point of view, the average-case behaviours of
the algorithms are more important. The behaviours of
the proposed algorithms are closer to those of the
algorithms of higher complexity in the average case
than in the worst case. They will be reported soon.
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