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We consider the problem of determining the mini- 
mum-weight perfect matching of n [even) points on a 
plane, i.e,, determining how to match the n points in 
pairs so as to rn~~ the sum of the distances 
between the matched points. 

This problem is of fundamental imFor%!nce in 
fmding the optimal sequence of drawing edges of a 
coM~ted graph by a rne~h~i~~ plotter; as is easgy 
confirmed, the wasted plotter-pen movement is mini- 
mized by fmding a minimum-weight, perfect matching 
of the vertices of an odd degree, adding the edges 
between the matched pairs to the original graph and 
traver~g an Eulerian p&t on the extended graph, 
where the added edges are to be traversed with the 
pen off the paper 1131. 

The algorithm [2] which exactly solves this prob- 
lem in o(n3) time seems to be too complicated from 
the practical point of view. Even approximation algo- 
rithms of 0(n2) or O(n log n) [4] wouid not be satis- 
factory for the application to plotters, since an 
Euferian path can be found i.. time linear in the num- 
ber of edges, In fact, our Monte Carlo expe~ents for 
1400 problems with 32 to 2048 points have shown 
that the strip algorithm of O(n log n) [4] requires 3 to 
10 times as much ~omput~g time as our ~~e~-t~e 
algorithms do. 

In this paper, linear-time approximation algorithms 
are proposed for the mat&ing problem on a unit 

square and the worst-case performance is ~~yzed 
~eore~~~y, The quality of an approbate solution 
is measured by the ~~so~~~e cost of the matching, i.e., 
the sum of the distances between the paired points, 
and not by the ratio of the cost to that of the exact 
opts solution. As the distance, not only the L2- 
distance (Euclidean distance) but also the L,-distance 
(maximum norm) is considered, the latter being more 
appropriate when the big time of a mechanical 
plotter is in question. 

2. Algorithm 

To be specific, we describe here ‘the serpentine 
alg@thm with tour’. It is among the several linear- 
time algorithms we have considered, and may be 
reg~ded as a ~near-tie variant of ~e.st~p agony 
in 141. 

We partition the unit square into k2 square cells by 
dividing each side into k equal parts. Each point 
belongs to one of the k2 c&Us. We determine the cell 
to which a point belongs by rn~~p~y~g the coordi- 
nates (abscissa and ornate) of the point by k and 
then truncating the fractional parts off. The cells are 
ordered in a prescribed order, called ‘the serpentine 
cell order’, as shown in Fig.. 1. We number the n p 
to fo;m a sequence which is consistent with the cell 
order. This means that points in one and the same c 
may arbitrari& be ordered among themselves, but 
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points in different cells must be ordered consistently 
with the cell order. By visiting all the points in this 
order, we construct a travelling-salesman tour, which 
obviously contains two perfect matchings for n even. 
We adopt the one with less cost for the solution. 

Provided k is taken as large in order as 6, it is 
evident that the complexity of this algorithm is O(n) 
both in time and in space. 

Input. Real array X[l : n], Y[ 1 : n]. (X[p], Y [p] = 
coordinate of the pfh point in the unit square. 

Output. Integer array PAIR[l : n]. PAIR[p] = 
index of the point matched with the pfh point. 

Working space. Integer array CELL[ 1 : k, 1 : k]. 
CELL[i, j] = index of the first point in cell (i, j) (or 0 
if the cell is empty). At Stage (1), PAIR is used for 
the lists of points belonging to respective cells; at 
Stage (2), those lists are concatenated into a single 
circular sequence (tour) according to the cell order; 
at Stage (3), the output information is made up in 
PAIR. 

Notes. The pair of functions (XINDEX(c), 
YINDEX(c)) gives the index pair (i, j) of the cell which 
is the cth in the prescribed cell order. Parameter cy is 
to be determined in Section 3. 

Algorithm 

begin 
initialize: k := ~161; set eat5 CELL[i, j] := 0, 
(i, j = 1, . . . . k); 

Oi 

(2) 

(3) 

end 

for p := 1 tondo 
i := F[p] * kl;j := [Y[p] $ kl; 
PAIR[p] 1% CELt[i, j]; CELL[i, j] := p; 

po := 0; 

for c := 1 to k* do 
q := CELL[XINDEX(c), YINDEX(c)] ; 

:= q; while PAIR[p] # 0 

PAIR[pJ := po; 
cost 1 := cost 2 := 0; p := 1; q := PAIR[p]; 

for e := t to n do 
:= distance between (X[p], Y [p]) and 
mll~ wll); 
e is odd then I[costl := cost1 t d; 

p := PAIR[qJ 1 
else [cost 2 := cost2 + d; 

q := PAIR[p] 1 
if cost 1 < cost2 then p := 1 elsep := PAIR[l]; 
fore := 1 to n/2 do 

[q := PAIR[p]; r := PAIR[q]; PAIR[q] := p; 
P := rJ 

3. Worst-case analysis 

For a furred algorithm with k* cells, let a,(k) be 
the supremum of the cosu of solutions over all pos- 
sible configurations of n given points in the unit 
square, and put 

PO = jT(Go) = min p(a). 
CY 

In the following, the cell-distance of two cells with 
respect to the serpentine cell order will mean the dif- 
ference of the cell numbers in that ordering; e.g., two 
consecutive cells are at cell-distance 1. 

An upper bound for G,(k) of the serpentine algo- 
rithm with tour can be obtained by means of the linear 
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programme with variables nj, where nj is the number 
of edges in a trave~n~s~e~~ tour which connect 
points in two cells at ce&distance j - 1 in the serpen- 
tine cell order; in pa~~ic~ar, nl denotes the number of 
edges within one and the same cells. 

in order to obtain an upper bound for %&(k) in the 
LAistance, we consider the prim& programme: 

maximize f f C C_,llj/2, 
j=l 

subject to c 
j=l 

ilj =n, 

z (j - l)+k2, 
j=t 

Rj 2 0, 

where cj = j/k is an upper bound for the L--distance 
between two points contained in two cells at cell- 
distance j - 1, The fiit constr~t is concerned with 
the number of edges in a travelling-salesman tour 
through n points, and the second with the number of 
cells, Obviously, the value f of the objective function 
ofthe optimal solution to the primal programme 
@ves an upper bound for m,(k). 

The dual ;?rogramme is then 

minimize g”nx+ k2y, 

subject to X+(i- l)Y>Cj/2 (j= 192, l **,)t 
y>O. 

As is welJ known, the value g of the objective function 
of any feasible solution of the dual progr~e is not 
smaller than 2, i.e., 

&(k)G?Gg, 

so that g can be used as an upper bound for 8&(k). In 
particular, the rn~~urn value g of the dual programme 
gives a good upper bound, which, in the present case, 
turns out to be ~~ptotic~ly tight. 

In fact, the optimal solution of the dual programme 
is easily known to be 

where and 

R+(j - l)y=Cjf2 forallj- 1,2,..., 

and 

8 = n/(2k) + k/2. 

The worstIcase analysis, above suggests that a better 
~gori~ may be obtained by rno~~~ the cell order 
so as to make Cj increase as slowly as possible as j 
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Fig. 2. The asymptotic worst-case for the serpentine algorithm 
with tour (L,-distance). 

Hence we have 

a*(k) G n/(2k) + k/2. (34 

The optimal solution of the primal programme is 
degenerate; for example, we have 

fil ‘n-k, fik+_l = k, 

fij = 0 for the other j’s, (3.2) 

which gives 

f = n/(2k) + k/2 = $* 

There is a configuration of given points, such as 
shown in Fig. 2, for which the cost of the matching 
obtained by the algorithm can be as large as (k + 
(n - k)/k)/2, since there are about k/2 edges of L-0 
length 1 and about (n - klfz edges of L,-length l/k 
in the resulting matching. This value is asymptotically 
equal to f = $ as k + 00. Therefore, the upper bound 
(3.1) is asymptotically tight; i.e., we have in the L,-,,- 
distance 
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Fig. 3. The spiral rack cell order (k: odd). 

increases. Thus we are led to another algorithm with 
‘the spiral rack cell order’ shown in Fig. 3, in place of 
‘the serpentine cell order’ in the serpentine algorithm 
with tour. The algorithm thus obtained is named ‘the 
spir;il rack algorithm with tour’. The worst-case anal- 
ysis for this cell order may be performed in a way 
similar to the above (but somewhat more complicated), 
and we actually have an improved bound in the L,- 
distance: 

@(cu) = rnin ( 1 cw3 cy 
-+-,-+- 
2a 2 4a 4 ) 

, 

PO = g/2 + 0.866 for& = 8. 

The case of the Ls-distance can be treated quite 
similarly by modifying the expressions for cj. For 
example, for the spiral rack algorithm with tour we 
have 

Do %/(2&- l)(fl+ 1 -fi)/8+ 1.014, 

in the Lz-distance. This bound would be favourably 
compared with the known best upper bound 0.707 for 
an algorithm of complexity O(n log n) [4 1. 

4. Concluding rem&s 

We proposed linear-time approximation algorithms 
for finding the minimum-weight perfect matching on 
a pla=le whose performances are nearly as good as 
those of the algoritis of higher complexity, and 
analysed the worst-case behaviour of the proposed 
algorithms by means of linear programming. From the 
practical point of view, the average-case behaviours of 
the algorithms are more important. The behaviours of 
the proposed algorithms are closer to those of the 
algorithms of higher complexity in the average case 
than in the worst case. They wfl be reported soon. 
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