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1. Introduction 

Let G = (S, T, E) be a bipartite-graph, where S U T 
is the set of nodes (S n T = 8) and E is the set of 
edges, E c S X T. Let S = {ur , . . . . II,}, T = {VI, . . . . vt} 
(A t), and 1 E I= e. An (S, T) matching is a subset M 
of E such that no two edges in M have a common end- 
point. 

A maximum matching is a matching of maximum 
cardinality. The set of nodes which take part in such 
a maximum matching is denoted by Nodes(G) and 
the cardinality of the matching is denoted by Card(G). 
Note that Nodes(G) is not unique, but Card(G) is 
unique. There is an O(e& algorithm to find a maxi- 
mum matching [3 1. When e = O(st) (i.e., the graph is 
dense), O(e&) = Q(sl*s t). 

Let A = (aij) be an s X t matrix over a given ring. 
A matching of cardinality r in A is a set of r nonzero 
entries of A, with at most one entry chosen from each 
row and column. The cardinality of a maximal match- 
ing in A is denoted by Card(A). 

Let F be any field, and let G = (S, T, E) be given. 
With each edge (ui, vj) in E we associate a variable xij, 
and with the graph G we associate a matrix AG = (aii) 
defined by: 

aij = 

if (ui, vi) in E, 

otherwise. 

* This re‘warch was supported in part by NSF Grant MCS78- In Section 2, we present a deterministic algorithm 
01736. which replaces each xu in AG by an integer, thus ob- 

Note that there is an obvious one-to-one correspon- 
dence between the matchings in G and AG . In partic- 
ular, Card(G) = Card(A&. 

Let F[xiijr 9 .a.) xi,j,] denote the ring of p01~_ 
nomials with e variables over F. Then one can easily 
verify the following claim. 

Claim 1. AG has a matching of cardinality r if and 
only if the rank of & over F[xi,j, 9 . . . . xi,j, ] is 
greater or equal to r. The rows and columns of a maxi- 
mal nonsingular square submatrix of AG correspond 
to the nodes of a maximal matching in G. 

In this paper, we present two algorithms for fmd- 
ing a maximal nonsingular square submatrix of AG 
(or, equivalently, Card(G) and Nodes(G)) in O(s@“’ t) 
arithmetic operations, where O(nfl) is the complexity 
of matrix multiplication. The best bound on /3 cur- 
rently claimed is 2.49+, and recent developments may 
reduce this bound further [5]. Our algorithms use the 
following result in [4]: 

Theorem 1. There is an O(s@-’ t) algorithm to find a 
maximal nonsingular square submatrix of any s X t 
matrix (s Q t). 

Note that a direct application of Theorem 1 to the 
matrix AG yields an algorithm whose complexity is 
larger than O(rkp t), since the elements of AG are 
variables and not numbers. 
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taining an integer matrix A;; satisfying rank(Ab) = 
rank(Ac). The integers in AL are, however, very 
large, and hence the bitwise complexity of the algo- 
rithm (using exact arithmetic [I]) is large. In Section 
3, we develop a probabilistic algorithm (for the same 
task) which generates random numbers for A&. The 
numbers are relatively small, and rank(Ab) = rank(AG) 
with probability *. Both algorithms use Theorem 1 
to fmd a maximal nonsingular square submatrix of 
A&. The dimension and the set of rows and columns 
making up the maximal nonsingular square submatrix 
correspond to Card(G) and Nodes(G), respectively. 
We note that our algorithms, like other algorithms 
which solve graph problems by fast matrix multipli- 
cation (e.g. the shortest path problem [7,8]), do not 
provide the full constructive solution to the maximal 
matching problem since they do not construct the 
arcs which take part in a maximal matching. (In 
[7,8], O(n@) algorithms to find the set of all minimum 
distances of an n-node graph, with integer distances 
and without negative-cost cycles, are given. The algo- 
rithms, which also use exact arithmetic on very small 
numbers do not find the set of shortest paths.) 

2. The deterministic algorithm 

Deftition. A sequence (ci , . . . . c,) of integers is a 
2-sequence if it satisfies the following: 

(a) ce 3 29 
(b) c+_~ > $ (i = 2, . . . . e). 
A 2-mati is a matrix whose nonzero elements, 

when ordered row by row, form a 2-sequence. Note 
that every submatrix of a 2-matrix is a 2-matrix. 

Example. The following is a a-matrix: 

0 18 
[ 3 4 2’ 

Lemma. Let A be an r X r a-matrix such that Card(A)= 
r. Then rank(A) = r (i.e., A is nonsingular) *. 

Proof. The proof is an induction on r, and for each r, 
an induction on k = number of nonzero elements in A. 
Clearly, for each r, k b r, and if k = r then A is non- 
singular (since, in this case, 1 det(A) I= llizl q, where 
a1 , . . . . a, are the nonzero elements of A). 

+ A is nonsingular if and only if det(A) # 0. 

Assume that the lemma holds for r and k (k < r2). 
We shall prove that it also holds for r and k + 1. To 
simplify the discussion we shall assume that b = all 
is the largest element in A. Denote by Aij the minor 
obtained by deleting row i and column j from A. We 
consider 3 cases: 

Case 1. det(Ai 1) = 0. In this case, by the induction 
hypothesis for r - 1, Card(Ar r) C r - 1, which means 
that al 1 does not belong to any matching of cardi- 
nality r in A. Hence, by substituting all = 0, a matrix 
A’ is obtained and Card(A’) = Card(A) = r, det(A’) = 
det(A). Since A’ has only k nonzero entries, the lem- 
ma holds for A’ by the induction on k: and hence it 
also holds for A. 

Case 2. al 1 is the only nonzero element in row A1 . 
In this case, I det(A) I = all I det(All) 1, and 
Card(Ar r) = r - 1, which implies (by induction on r) 
that det(Ar r) # 0. Hence det(A) # 0. 

Case 3. det(Ai 1) # 0 and there are at least 2 non- 
zero elements in Al. In this case (note that b = al 1): 

Since I det(A, l) 13 1, det(A) # 0 if b > Zj’=, arj X 

I det(AIj) I. 
Let A = (8ij) be the matrix obtained by substitut- 

ingall =OinA.LetIPi=~,+***t gi,,andletpibe 
the product of the nonzero elements in row i of A. 
Since all the nonzero Q’s are at least 2, we have that 
Qi G pi. Also, since all the &j’s are nonnegative 

5 arj 1 det(Arj) 1 G fI Qi . 
j=2 i=l 

Combining the inequalities, we get 

t r r 

C alj 1 det(Arj) I < II Jzi 4 fl pi 
j=2 i=l i=l 

CoroIIary 1. Let A be an m X n 2-matrix. Then 
Card(A) = rank(A). Moreover, if A’ is any r X r sub- 
matrix of A with Card(A’) = r, then rank(A’) = r. 

Proof. Since every submatrix of a 2-matrix is a 
2.matrix, Lemma i apTlies to any submatrix A’ satis- 
fying the hypothesis above. 
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Let AG be the matrix defined in the previous sec- 
tion. By the discussion following Theorem 1 and by 
Corollary 1, if the matrix Ah obtained by replacing 
the variables of AG by integers is a a-matrix, then 
Card(G) and Nodes(G) can be found in O(s@- ’ t) 
arithmetic operations. Thus, we have: 

Theorem 2. There is an aigorithm which finds, for 
each bipartite graph G(S, T, E), Card(G) ano 
Nodes(G) in O(S~-~ t) arithmetic operations. 

Proof. Let Xl, . . . . x, be the nonzero elements in AG, 
ordered by rows. Compute the integers cl 3 l **9 c, by: 
c, = 2, ci_r = c; (i := e, e - 1, . . . . 2) and let A& be 
the matrix obtained by replacing each Xi in AG by Ci. 

The result follows from the discussion above, noting 
that A;; is a a-matrix. 

3, The probabilistic algorithm 

Definition. Let p(xr , . . . . x,) be a polynomial with e 
variables. Then p is of semi-degree I if it is of degree 
at most 1 in each of its variables. 

Example. x + xy is of semi-degree 1, while x2 + y is 
not. 

Let E=(Ciljl, as-, Ci,j,) be an e-tuple of constants 
from F. Then AG@) is the matrix obtained from AG 
by replacing xikjk by cikjk for k = 1,2, . . . . e. 

Claim 2. Let rank(AG) = r. Then there is a nonzero 
polynomial p(xi, jr, . . . . qej,) of semi-degree 1 such 
that for c = (Ci, j,, . . . . Ci,je), if p(Z) # 0 then 
rank(A&)) = r. 

Proof. Let p be the sum of all the determinants of 
r X r submatrices of AG . 

Lemma 2. Let p(xt , . . . . x,) be of semi-degree 1. Let 
C be a set of constants in F with 1 C 1. IN, and let 
Ce = C X **a X C (e times). Then p(e) # 0 for at least 
(m - l)e elements in Ce, 

Proof. The proof is an induction on e. For e = 1, the 
lemma follows trivM.ly from the observation that a 
one-variable polynomial of degree 1 hns 1 root. 

14 

Assume the lemma holds for e 3 1, and consider a 
nonzero polynomial p(xr , . . . . x,, ~e+~) of semi-degree 
1. Then there exists an e + 1 tuple (cl, . . . . c,, ~1) 
such that p(ci , . . . . c,, ce+r ) # 0. Hence, the poly- 
nomial p(x 1, :.., x, , cti 1) = $(x1 , . . . . h) is nonzero 
and is of semi-degree 1. Hence, by induction hypoth- 
esis, there are at least (m - l)e e-tuples (cr , . . . . ce) 
in Ce such that $(cr , . . . . c,) = p(ci Y l -*, cm %tl) + 0. 
For each such tuple, the one-variable polynomial 

SXe+l) = p(c1 , . . . . ce, x& is nonzero and of semi- 
degree 1. Hence, there are at least m - 1 elements 
ccl m C such that F&r) = p(q) . . . . c,, ccl )#O. 
The lemma follows. 

Note. It was pointed out by the referee that a 
result similar to Lemma 2 appeared in [Z]. 

Corollary 2. Let G, AG be as above, and let C be of 
cardinal&y at least 2e. Let E be an element chosen at 
random from Ce. Then rank(A&)) = r with proba- 
bility Z, l/2. 

Proof. Let 1 C 1 = .m. Then by Claim 2 and Lemma 2 
above, rank(A&)) = r for at least (m - l)e elements 
ln Ce. Assuming that each E has the same probability 
of being chosen, we get that this probability is not 
smaller than 

(m - Qe 

. me 
= (l-33 (I -3a/2* 

The probabilistic algorithm for maximal bipartite 
matching is given below. F is a field containing at 
least 2e elements, and C 5 F, 1 C I= 2e. 

Step 1. Generate a random 5 in C? 
Step 2. Find a nwc,imal nonsingular squar,e sub- 

matrix in AG@). Denote this submatrix by A, 
Step 3. T,he dimension and the set of rows and 

columns of A correspond to Card(G) and Nodes(G), 
respectively. Stop. 

The probability that the output matching is maxi- 
mum >1/2. This follows from the fact that 
rank(A&)) = rank(&) with probability >l/2, and 
that the cardinahty of the matching is equal to 
~@(AG@)). 

By running the a@rithm above k times we have 

Theorem 3. There is a probabilistic aIgorithm which 
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finds for a bipartite graph, G = (S, T, E), Card(G) and 
Nodes(G) with probability 3(1 - l/2k) in time 
O(ks@‘%),wheres=1SIandt=!TI. 

Remark The bitwise complexity of the algorithm 
above (i.e., the number of bit operations required to 
execute it - see [I]) may depend on the field F: 
Step 2 of the algorithm may require inversion of 
order s matrices [4]. Hence, if we take F to be the 
field of rational numbers (with C = ( 1,2, . . . . 2e) , 
say), then numbers whose representations are as large 
as sloge may occur during the computation. Perhaps 
a better idea is to take F = GF(p) for some prime 

2a. To do this we fust generate random numbers 
between 2e and 2e’ and test them for primality by a 
probabilistic algorithm (see, e.g., [a]), until a prime p 
is found. This requires time which is polynomial in 
log e. The computation is then carried out modulo p. 
The bitwise complexity of multiplication (mod p) is 
at most O(log’ p). Finding a-r (mod p) can be carried 
out by applying a gcd algorithm which finds integers 
x and y such that ax + py = 1. aoL (mod p) is equal to 
x (mod p). Using Euclid’s algorithm for gcd requires 
O(log’ p) bit operations, which gives an O(n@ log’ n) 
time bound for the probabilistic algorithm. This 
bound can be improved slightly by using fast algo- 
rithms for integer arithmetic (see e.g. [ 11, sects. 7,8). 
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