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Abstract

Let G = (V,E) be a graph with positive integral edge

weights. Our problem is to find a matching of maximum

weight in G. We present a simple iterative algorithm for

this problem that uses a maximum cardinality matching al-

gorithm as a subroutine. Using the current fastest maximum

cardinality matching algorithms, we solve the maximum

weight matching problem in O(W
√
nm logn(n2/m)) time,

or in O(Wnω) time with high probability, where n = |V |,
m = |E|, W is the largest edge weight, and ω < 2.376 is

the exponent of matrix multiplication. In relatively dense

graphs, our algorithm performs better than all existing al-

gorithms with W = o(log1.5 n). Our technique hinges on

exploiting Edmonds’ matching polytope and its dual.

1 Introduction

Our input is a graph G = (V,E) with edge weights given
by the function w : E → {1, 2, · · ·W}. A matching M is
a subset of E, in which no two edges share an endpoint.
The weight of a matching M is the sum of the weights
of the edges in M . Our objective is to find a maximum
weight matching in G. Let n = |V | and m = |E|.

Matching problems lie at the core of graph theory,
polyhedral combinatorics, and linear optimization. Due
to their fundamental nature and vast applications,
researchers have made extensive efforts in the past
decades to design efficient algorithms for computing
optimal matchings. In most applications, the optimality
criterion is either maximum cardinality (i.e., W = 1) or
maximum weight. We refer the readers to the book
of Schrijver [33] for a comprehensive survey of the
performance of various matching algorithms.

In the problem of finding a maximum weight
matching in G, the fastest algorithms so far are the
O(n(m + n log n)) algorithm by Gabow [17], and the
O(m log(nW )

√
n log n · α(m,n)) algorithm by Gabow

and Tarjan [18], where α(m,n) is the inverse Ackermann
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function, and yet another algorithm of Gabow [16],
which takes O(W

√
nm) time. In fact, when the graph

is bipartite, even faster algorithms are known. See Ta-
ble 1 for a summary of the most efficient matching al-
gorithms.

The most common approach in attacking the max-
imum weight matching problem is the primal-dual
schema—often called the Hungarian method [32] in the
special case of bipartite graphs. For general graphs, this
approach was initiated by Edmonds [12] and various
later algorithms, e.g., [16, 18] can be regarded as refine-
ments of Edmonds’ algorithm. The idea is to build up
feasible primal and dual solutions simultaneously and
show that at the end, both solutions satisfy comple-
mentary slackness conditions and hence by the dual-
ity theorem, the primal solution is a maximum weight
matching.

Another approach in dealing with the maximum
weight matching problem is to maintain a feasible
matching and try to successively augment it to increase
its weight, until no more augmenting is possible. The
work of Cunningham and Marsh [7] (and also Derigs [8])
can be regarded as the representative of this approach.

1.1 Our Contributions and Technique. We will
attack the problem from a third angle—by trying to re-
duce it into W different maximum cardinality matching
problems. This will guarantee that we solve the prob-
lem in time proportional to the product of W and the
time needed for finding a maximum cardinality match-
ing. The same approach has been successfully applied
by Kao et al. [29] to bipartite graphs. Its main advan-
tage is that if there is any future improvement in the
maximum cardinality matching algorithm, then our al-
gorithm will automatically become faster.

Goldberg and Karzanov [30] gave an
O(
√
nm logn(n2/m)) time algorithm to find a maxi-

mum cardinality matching in general graphs. Using
their algorithm as a subroutine, we show the following.

Theorem 1.1. A maximum weight matching in G =
(V,E) whose edge weights come from {1, . . . ,W} can be
computed in O(W

√
nm logn(n2/m)) time, where |V | =

n and |E| = m.
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Maximum cardinality matching in bipartite graphs Maximum cardinality matching in general graphs

O(
√
nm)

Hopcroft and Karp (1971) [28],

O(
√
nm)

Blum (1990) [4],
Karzanov (1973) [30] Micali and Vazirani

(1980) [36, 43]
Gabow and Tarjan (1991) [18]

O(
√
nm logn(n2/m))

Feder and Motwani (1991) [14]
O(
√
nm logn(n2/m))

Goldberg and Karzanov
Goldberg and Kennedy (1995) [25]

(1997) [26]

O(nω)
Mucha and Sankowski

O(nω)
Mucha and Sankowski

(2004) [37], (2004) [37],
Harvey (2006) [27] Harvey (2006) [27]

Maximum weight matching in bipartite graphs Maximum weight matching in general graphs

O(W
√
nm)

Gabow (1983) [16],
O(W

√
nm) Gabow (1983) [16]Kao, Lam, Sung and Ting

(1999) [29]

O(W
√
nm logn(n2/m))

Kao, Lam, Sung and Ting
O(W

√
nm logn(n2/m)) This work

(2001) [29]

O(
√
nm log(nW ))

Gabow and Tarjan
O(m log(nW )

√
n logn · α(m,n)) Gabow and Tarjan (1991) [18](1988,1989) [20, 21]

Goldberg (1993) [24]
O(
√
nm logW ) Duan and Su (2012) [10]

Õ(Wnω) Sankowski (2006) [40] O(Wnω) This work

O(nSP+(n,m,W ))
Edmonds and Karp (1970) [13],

O(n(m+ n logn)) Gabow (1990) [17]
Tomizawa (1971) [41]

O(n2.5 log(nW )( log log n
log n )1/4)

Cheriyan and Mehlhorn
(1996) [5]

Table 1: The most efficient matching algorithms. SP+(n,m,W ) means the time needed to find a shortest path
in a directed graph with n vertices, m edges, and nonnegative integral edge weights where W is the maximum
weight.

When the graph is dense, i.e., m = Θ(n2), our
algorithm performs better than all existing algorithms
with W = o(log2.5 n). Mucha and Sankowski [37] (and
also Harvey [27]) showed that a maximum cardinality
matching in a general graph can be found in O(nω)
time, where ω < 2.376 is the exponent of matrix
multiplication, with high probability. Using such an
algorithm as a subroutine, we get the following result.

Theorem 1.2. Given a graph G = (V,E) whose edge
weights come from {1, . . . ,W}, a maximum weight
matching in G can be computed with high probability
in O(Wnω) time, where |V | = n and ω < 2.376.

When the graph is relatively dense, i.e., m =
Ω(n1.876), our algorithm is the most efficient so far
with W = o(log1.5 n). It also slightly improves on
Sankowski’s algorithm in bipartite graphs [40], which
takes Õ(Wnω) time1 for the maximum weight bipartite
matching problem.

We now highlight the main ideas of our technique.
Our algorithm proceeds in iterations. In the i-th itera-
tion, we consider the subgraph (call it Hi) consisting of
edges with weights W , W − 1, · · · , W − i+ 1 in G. Our
goal now is to construct a maximum weight matching
in Hi and we do it by computing a special maximum
cardinality matching in an unweighted graph Gi. Fur-
thermore, this maximum cardinality matching in Gi can

1The Õ notation hides a factor of logk n for some constant k.

be used to define a dual solution, which is used to define
the unweighted graph Gi+1 for the next iteration.

We analyze how the primal and dual solutions
are related to each other using Edmonds’ matching
polytope and its dual. A surprising aspect about our
technique is that the dual solution we use is not the
optimal dual solution. The benefit of using our dual
solution is that it can be computed very efficiently, using
Gallai-Edmonds decomposition theorem [11, 22]. We
show that at the end of the W iterations, the primal
solution and the dual solution satisfy complementary
slackness conditions, hence by the duality theorem, the
primal solution is optimal.

1.2 Related Work. Matching theory is a well-
studied subject and is elaborately treated in many text-
books [1, 33, 34].

In general, matching problems in general graphs are
usually much more difficult to deal with than the corre-
sponding problems in bipartite graphs. For instance, a
polynomial time algorithm for finding a maximum cardi-
nality matching in bipartite graphs can be traced back
to König [31] in 1931. For general graphs, the same
problem was not known to be in P until the seminal
paper of Edmonds [11] published in 1965, in which he
introduced the famous blossom algorithm. The blos-
som algorithm will be used as a subroutine in our algo-
rithm, so we will briefly review it in Section 2 (though
in implementation, we will instead use other faster algo-
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rithms [27, 30, 36, 37] as our subroutine.) In 1965 Ed-
monds also solved the maximum weight matching prob-
lem in general graphs [12]. Additionally, his algorithm
yields a characterization of the matching polytope, and
is widely regarded as a major breakthrough in polyhe-
dral combinatorics.

Along with bipartite graphs, there have also been
several attempts at solving matching problems in more
restricted classes of graphs, for instance, in regular
bipartite graphs [23], and in planar graphs [38]. For
bipartite graphs, Duan and Su [10] have shown in this
conference (SODA 2012) that it is possible to find a
maximum weight matching in time proportional to the
product of logW and the time needed for finding a
maximum cardinality matching.

A related line of research in weighted matchings is
to look for approximate maximum weight matchings.
For certain applications [2, 35], it may be preferable
to sacrifice optimality of the solution in exchange for
a faster algorithm. A recent breakthrough was done
by Duan and Pettie [9], who gave a near linear time
algorithm to compute a (1 − ε)-approximate solution,
for any fixed ε > 0.

2 Our Method and Preliminaries

In this section we outline our algorithm and review
the following classical concepts on which our algorithm
is based: the matching polytope, Edmonds’ blossom
algorithm, and Gallai-Edmonds decomposition.

Matching Polytope. Let Ω be the set of all odd sized
subsets of V of size at least 3, also referred to as odd
sets of vertices. For each such set B ∈ Ω, let E(B) be
the set of edges spanned by B, i.e., e = (u, v) ∈ E(B)
if u, v ∈ B. Edmonds [12] showed how to describe the
matching polytope in general graphs. The matching
polytope and its dual are given below.

The dual states that we need to cover each edge e by
assigning values to its endpoints and the odd sets that
span it. Let M be a matching and {yv}∀v∈V ∪{zB}∀B∈Ω

be a dual feasible solution in the graph G. Then by the
duality theorem, the two solutions are optimal if and
only if complementary slackness conditions are satisfied.

We state the complementary slackness conditions
below. Our maximum weight matching algorithm runs
for W iterations: in the i-th iteration, the algorithm
computes a maximum weight matching Ti in a graph
Hi = (V, Fi), where Fi = EW ∪ · · · ∪ EW+1−i. The
edge weights in Hi are given by a function w′i : Fi →
{1, . . . , i+ 1} and the final graph HW will be the same
as G and have the same weight functions, i.e., w′W = w,
thus TW is the matching that we seek. The proof that
Ti is a maximum weight matching in Hi will be via

max
∑
e∈E

wexe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

∑
e∈E(B)

xe ≤
|B| − 1

2
∀B ∈ Ω

xe ≥ 0 ∀e ∈ E.

min
∑
v∈V

yv +
∑
B∈Ω

zB
|B| − 1

2

yu + yv +
∑

B:e∈E(B)

zB ≥ we ∀e = (u, v) ∈ E

yv ≥ 0 ∀v ∈ V
zB ≥ 0 ∀B ∈ Ω

setting the dual variables yiu for all u ∈ V and ziB for
all B ∈ Ω to feasible values so that complementary
slackness conditions are obeyed.

The dual feasibility ((2.1) and (2.5)) and comple-
mentary slackness conditions ((2.2)-(2.4)) for the i-th
iteration are listed below. These conditions will be in-
variants in our algorithm and we will refer to them as
invariants (2.1)-(2.5).

yiu + yiv +
∑

B:e∈E(B)

ziB ≥ w′i(e)(2.1)

∀edges e = (u, v) in the graph Hi

yiu + yiv +
∑

B:e∈E(B)

ziB = w′i(e)(2.2)

∀edges e = (u, v) ∈ Ti
yiu > 0⇒ u is matched in Ti ∀ u ∈ V(2.3)

ziB > 0⇒ |B| − 1

2
edges(2.4)

of E(B) are in Ti ∀ B ∈ Ω

yiu ≥ 0 and ziB ≥ 0(2.5)

∀ u ∈ V and B ∈ Ω.

In the i-th iteration, the main step of our algorithm
is the following: we have a matching Ti−1 which is a
maximum weight matching inHi−1, and another match-
ing Mi−1, a maximum cardinality matching in the un-
weighted graph Gi−1, which is our working graph in the
(i − 1)-th iteration. Using Gallai-Edmonds decompo-
sition (described below) on Mi−1, roughly speaking, a
certain subset M ′i−1 of Ti−1 will be identified; M ′i−1 will
belong to the working graph Gi of the i-th iteration. In
the i-th iteration, we compute the maximum cardinality
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matching Mi by augmenting M ′i−1 in Gi. The matching
Ti will be obtained from Mi and Ni−1, where Ni−1 is
a subset of Mi−1 based on Gallai-Edmonds decomposi-
tion. The last step is to set suitable values to yiu, z

i
B for

all u ∈ V and B ∈ Ω so that these values and Ti satisfy
invariants (2.1)-(2.5).

Thus a maximum cardinality matching algorithm is
a vital subroutine in our algorithm and we overview the
blossom algorithm and Gallai-Edmonds decomposition
now. We highlight the main features of the blossom
algorithm. More details can be found in [33, 34].
Petersen [39] observed in 1891 that a matching M
is of maximum cardinality if and only if there is no
augmenting path with respect to M . It is not difficult
to detect an augmenting path with respect to a given
matching in bipartite graphs. But finding such a path
in general graphs turns out to be more challenging. To
overcome this difficulty, Edmonds introduced the idea
of opening/closing blossoms.

Definition 2.1. Let G = (V,E) be the original graph.
Let G1 = (V1, E1) be the current graph, where V1 ⊆
V ∪ Ω, a subset of the vertices and the odd sets in G.
An edge (a, b) ∈ E1, if (1) (u, v) ∈ E, (2) u = a, or
u ∈ a ∈ V1 ∩ Ω, and (3) v = b, or v ∈ b ∈ V1 ∩ Ω.

Suppose that M1 is a matching in the current graph
G1. A set of vertices B = (a1, a2, · · · , a2t+1) is a
blossom in G1 if (1) there exists a circuit traversing
the vertices in B, i.e., (ai, a(i+1) mod 2t+1

) ∈ E1 for
1 ≤ i ≤ 2t+ 1, and (2) M1(a2i) = a2i+1, for 1 ≤ i ≤ t.
The first vertex a1 is called the base of the blossom B.
(Note that a1 can be matched to some vertex in V1 \B,
or it can be left unmatched). The circuit traversing the
vertices of B is called the defining circuit of B.

Closing a blossom. Let G1 be the current
graph and M1 a matching in it. Suppose B =
(a1, a2, · · · , a2t+1) is a blossom in G1. Then closing
the blossom B means that we form a new current graph
G2 = (V2, E2), where V2 = (V1\{ai}2t+1

i=1 ) ∪ {B}, and
create a new matching M2 in G2 as follows:

M2(a) = M1(a) if a 6∈ B ∪ {M1(a1)};M2(B) = M1(a1).

Note that a blossom must be an odd set in Ω, but
not vice versa. Moreover, multiple blossoms may be
present in the current graph; which blossoms get closed
and which do not depends on the search strategy of
Edmonds’ blossom algorithm. In our discussion, an odd
set B ∈ Ω is called a blossom only if it is closed by
Edmonds’ algorithm.

Below we give a more generalized definition of
opening a blossom; the reason for such a generalization
will be explained immediately.

Definition 2.2. Opening a blossom. Let G1 =

(V1, E1) be the current graph and M1 a matching in
it. Suppose further that G1 is derived from closing a
sequence of blossoms in a subgraph G′ = (V,E′) of
the original graph G = (V,E). Assume B ∈ V1 ∩ Ω
is one of these blossoms and B = (a1, a2, · · · , a2t+1).
Then opening the blossom B means that we form a new
current graph G2 = (V2, E2), where V2 = (V1\{B}) ∪
{ai}2t+1

i=1 , and create a new matching M2 in G2 as
follows.

• M2(a) = M1(a) if a 6∈ B ∪ {M1(B)}.

• If B is unmatched in M1, then a1 is unmatched in
M2, and M2(a2i) = a2i+1,∀1 ≤ i ≤ t.

• If M1(B) = a′, ax ∈ B and (ax, a
′) ∈ E2, then for

all 1 ≤ i ≤ t, we have M2(v(x+2i−1) mod (2t+1)) =
v(x+2i) mod (2t+1) and M2(ax) = a′.

Observe that the above definition allows the follow-
ing: suppose the previous graph is G′ and let G1 be
obtained by closing a sequence of blossoms in G′. If
we add more edges to G′ to form an updated graph G,
then we still have a well-defined operation of opening a
blossom in the current graph G1.

Note that our algorithm needs such a definition: in
each iteration, we add new edges into the working graph
(which is unweighted–see the next section for details).
At the end of i-th iteration, we may need to open a
subset of blossoms which are formed in the previous
iterations. The above definition thus guarantees that
we can open the blossoms properly.

We are now ready to describe how Edmonds’ blos-
som algorithm works. In each round, it seeks to find
an augmenting path by building a Hungarian forest. In
building such a forest, a blossom may be detected. A
detected blossom is then closed and the building of the
Hungarian forest restarts with respect to the updated
graph. Note that a blossom B, once closed, can be
a part of another blossom B′ in the updated graph. In
this case, B is said to be embedded in B′. A blossom not
embedded in any other blossom is an outermost blos-
som. After the closing of blossoms, if an augmenting
path is found, then the matching is augmented along it.
Furthermore, all blossoms are re-opened (thus restoring
the graph completely) and this round is terminated.

In the last round of the blossom algorithm, no
augmenting path will be detected, even after the closing
of some blossoms. Let G̃ = (Ṽ , Ẽ) denote the final
(updated) graph, M̃ the current matching in it, F̃ the
final constructed Hungarian forest. Some of the vertices
in G̃ can indeed be blossoms that are closed. To avoid
confusion, we refer to the vertices Ṽ in G̃ as nodes.
Note that M̃ is a maximum cardinality matching in G̃;
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moreover, by Tutte-Berge formula [3, 42], if we re-open
all blossoms, then we have a maximum matching M
in the original graph G. Furthermore, the Hungarian
forest F̃ takes the following form, which encodes the
Gallai-Edmonds decomposition. (Note that there may
exist edges in Ẽ that are not present in F̃).

– A set of trees, whose roots are left unmatched
in M̃ in G̃. Each tree is composed of a set of
alternating paths starting from the root. A
node is odd (similarly, even) if there is an
alternating path of odd (resp., even) length
starting from the root to this node.
– A set of matched edges. The endpoint nodes
of these matched edges are unreachable.

Proposition 2.1. Let F̃ be the Hungarian forest found
at the end of Edmond’s blossom algorithm.

(i) If a node in G̃ is a blossom, then it must be even
and it must be an outermost blossom.

(ii) An even node has no edge in Ẽ connecting it to
another even or unreachable node.

By this proposition, all odd and unreachable nodes
are real vertices. Furthermore, by the description of
the forest, an odd vertex is matched to an even node,
while an unreachable vertex is matched to another
unreachable vertex in M̃ . Now we present the Gallai-
Edmonds decomposition theorem [11, 22].

Proposition 2.2. Let F̃ be the Hungarian forest at the
termination of Edmonds’ blossom algorithm. Let U and
O be the sets of unreachable and odd vertices, and E the
set of even nodes in F̃ . Then the following hold.

(i) All vertices in O ∪ U are matched in all maximum
cardinality matchings in G; in all such matchings,
all vertices in O are matched to vertices in E or
to vertices contained in blossoms in E, while all
vertices in U are matched to each other.

(ii) None of the edges in O × (O ∪ U) is part of any
maximum cardinality matching.

(iii) For each blossom B ∈ Ω, if B is present in G̃, then
for all maximum cardinality matchings M , exactly
|B|−1

2 edges of E(B) are a part of M .

Proof. For each vertex v ∈ V , if v ∈ O, set yv = 1;
if v ∈ U , set yv = 1/2; and if v ∈ E , or v ∈ B ∈ Ω,
and B a blossom in E , set yv = 0. Furthermore, if
B ∈ Ω is a blossom in E , let zB = 1, otherwise zB = 0.
Recall that there is no edge between an even node and

an even/unreachable node. So it can be verified that
{yv}v∈V ∪ {zB}B∈Ω is a dual feasible solution in the
original graph G. Furthermore, let M be a maximum
cardinality matching found at the end of Edmonds’
blossom algorithm. Then by complementary slackness
conditions, the edge incidence vector (xe)e∈E of M and
{yv}v∈V ∪{zB}B∈Ω are optimal dual pairs. Moreover all
of (i)—(iii) would follow from complementary slackness
conditions.

Once the Gallai-Edmonds decomposition is found,
we can then use it to define an optimal dual solution
easily as we did in the above proof. Although this
particular dual is only half-integral (it is known that
Edmond’s matching polytope is totally dual integral [7],
hence there is always an optimal integral dual), our
algorithm will make use of a {0, 1}-dual solution that
is modified from this half-integral dual solution.

3 Our algorithm

Recall that our input is G = (V,E). The edge set
E = EW ∪̇ EW−1 ∪̇ · · · ∪̇ E1, where Ei is the set of
edges in G of weight i. We will be using the following
notation throughout this section: for any graph Gi on
vertex set Vi ⊂ V ∪Ω, we use G̃i to denote the updated
graph after running the blossom algorithm on Gi, where
blossoms discovered during the algorithm get closed.
The vertex set of G̃i is Ṽi ⊂ V ∪Ω. By Gallai-Edmonds
decomposition, Ṽi can be partitioned into Oi ∪̇ Ui ∪̇ Ei.

Let Mi be the maximum cardinality matching com-
puted by the blossom algorithm in Gi. We use M̃i

to denote Mi after closing all blossoms that we dis-
covered during the course of the blossom algorithm
so that M̃i is a maximum cardinality matching in G̃i.
By the discussion after Proposition 2.1, we know that
M̃i ⊆ (Oi × Ei) ∪ (Ui × Ui).

Let X ⊆ V ∪Ω be a subset of vertices and odd sets.
We say x is an element of X if either x ∈ X ∩ V or
x ∈ B ∈ X ∩ Ω. Suppose that (u, v) ∈ E and u is an
element of X ⊆ V ∪ Ω and v an element of Y ⊆ V ∪ Ω.
We abuse notation by writing (u, v) ∈ X×Y . Similarly,
if B,B′ ∈ Ω are blossoms and there is an edge (B,B′)
in Gi (or G̃i) because B contains u ∈ V and B′ contains
v ∈ V so that (u, v) ∈ E, we often write (u, v) to denote
the edge (B,B′) whenever no confusion arises. Finally,
for convenience, let y0

u = 0 for all u ∈ V and z0
B = 0 for

all B ∈ Ω.
The algorithm. We are now ready to describe our

algorithm. The first iteration is described below.

• Let S1 be the graph (V, F1), where F1 = EW and
all edges have weight 1. That is, w1(e) = 1 for all
e ∈ EW .
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• Let G1 = S1 and V1 = V . Compute a maximum
cardinality matching M1 in G1. The blossom
algorithm also yields the graph G̃1 with vertex set
Ṽ1 and a partition of Ṽ1 = O1 ∪̇ U1 ∪̇ E1. The
matching M̃1 is of maximum cardinality in G̃1.

• The dual variables are set as follows:

– Set y1
u = y0

u + 1 = 1 for all u ∈ O1 ∪ U1, else
set y1

u = y0
u = 0.

– For every blossom B ∈ E1 (B must be outer-
most), set z1

B = z0
B + 1 = 1 (Proposition 2.1

states that there are no blossoms in O1 ∪̇ U1);
for all other odd sets B ∈ Ω, set z1

B = z0
B = 0.

Let H1 be a graph on vertex set V and edge set
F1 = EW . Let w′1 : EW → {1, 2} be the edge weight
function in H1 defined as follows. For any e ∈ EW :
set w′1(e) = 2 if e ∈ U1 × U1, else set w′1(e) = 1.
Let T̃1 = M̃1 and let T1 be the matching obtained by
opening all blossoms in T̃1. (In this particular iteration
T1 = M1. But in iterations k ≥ 2, Tk can be different
from Mk.)

Recall from Section 2 that in every iteration we
show via invariants (2.1)-(2.5) that Ti is a maximum
weight matching in the graphHi. Lemma 3.1 shows that
these invariants hold at the end of the first iteration.
Thus T1 will be a maximum weight matching in the
graph H1.

Lemma 3.1. Invariants (2.1)-(2.5) hold at the end of
the first iteration.

Proof. Invariant (2.5) is trivial. For invariant (2.1),
there are five cases on any edge e = (u, v) ∈ EW :
(i) e is spanned by an outermost blossom in B ∈ E1,
(ii) e ∈ O1 × E1, (iii) e ∈ O1 × O1, (iv) e ∈ O1 × U1,
and (v) e ∈ U1 × U1. Note that due to Proposition 2.1,
there is no edge e ∈ E1 × (E1 ∪ U1) unless e is spanned
by a blossom in E1 (which is case (i)).

In cases (i)-(iv), w′1(e) = 1. The left hand side
of invariant (2.1) will be at least 1 since at least one
of y1

u, y
1
v , z

1
B will be set to 1. In case (v), w′1(e) =

2, however both y1
u and y1

v are set to 1 here. So
invariant (2.1) is satisfied.

For invariant (2.2), recall that T1 is obtained by
opening all blossoms in T̃1 = M̃1. Let e = (u, v) ∈ T1.
If e is spanned by an outermost blossom B ∈ E1, then
w′1(e) = 1, y1

u = y1
v = 0 and z1

B = 1 and all other odd
sets B′ spanning e have z1

B′ = 0. If u is an element
of E1 and v is an element of O1, then w′1(e) = 1,
y1
u = 0, y1

v = 1, and all odd sets B spanning e have
z1
B = 0. Finally, if both u and v are elements of U1, then
w′1(e) = 2, y1

u = y1
v = 1, and all odd sets B spanning e

have z1
B = 0. In all cases, invariant (2.2) holds.

We now show invariants (2.3) and (2.4). If y1
u > 0

then u ∈ O1∪U1. The matching M̃1 matches all vertices
in O1∪U1 by Proposition 2.2. Invariants (2.3) and (2.4)
hold because T1 is obtained by opening all blossoms in
T̃1 = M̃1 (see Definition 2.2). Thus all the invariants
hold at the end of the first iteration.

The k-th iteration k, for k ≥ 2. We now describe
what happens in iteration k, where k ≥ 2. During the
k-th iteration, the graphs that we will be dealing with
are the starting graph of the k-th iteration, denoted by
Sk, and the working graph of the k-th iteration, denoted
by Gk. The starting graph Sk has V as its vertex set
while the working graph Gk has both blossoms formed
in previous iterations and real vertices in V in its vertex
set. The basic idea is that we use a matching found at
the end of the previous iteration, k − 1, as an initial
matching in the working graph Gk. We then augment
it till we have a maximum cardinality matching in Gk.
This matching can then be used to define a matching Tk
in graph Hk, in which we will maintain invariants (2.1)-
(2.5). The optimality of Tk in Hk would follow because
of the complementary slackness condition. We now
explain the details.

Starting graph. Sk = (V, Fk) has Fk = Fk−1 ∪ EW+1−k
as its edge set. Fk−1 is the edge set of the starting graph
Sk−1 of the previous iteration. The edge weight function
wk : Fk → {1, . . . , k} in Sk is defined as: for e ∈ Ei, we
have wk(e) = k + i −W , where W + 1 − k ≤ i ≤ W .
By this definition of wk, we have: (if e ∈ EW+1−k, then
assume wk−1(e) = 0)

wk(e) = wk−1(e) + 1 ∀e ∈ Fk.

Note that the graph Hk in which we will maintain
invariants (2.1)-(2.5) differs from Sk only in its edge
weight function. The former has the edge weight
function w′k while the latter has wk. We will define w′k
precisely later and we will maintain the invariant that

wk(e) ≤ w′k(e) ≤ wk(e) + 1 ∀e ∈ Fk(3.6)

in all iterations k, where 1 ≤ k ≤W .

Note that the above invariant holds for k = 1 since
w1(e) = 1 and w′1(e) is either 1 or 2 for all e ∈ F1 = EW .

Working graph. Let Vk be the union of the outermost
blossoms B formed in previous iterations 1, . . . , k − 1
with a positive value of the corresponding dual variable
zk−1
B , and those vertices of V that are outside all these

blossoms. Note that by this definition Vk is a partition
over V .

During the (k − 1)-th iteration, we would have
found the Gallai-Edmonds decomposition Ek−1, Ok−1,
and Uk−1 of the vertex set in G̃k−1 (the graph G̃k will
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be described shortly). We will maintain the following
invariant:

In any iteration k, if B is a blossom in Uk,(3.7)

then B is outermost and has zkB > 0.

Note that the above invariant holds vacuously for
k = 1 since there are no blossoms in U1. Invariant (3.7)
guarantees that each blossom in Uk−1 belongs to Vk.
Now the vertex set of Gk is defined as Vk = Vk\Uk−1.
By this definition, all the vertices/blossoms of Uk−1 are
absent from Vk, so all edges (u, v) where at least one
of u, v is an element of Uk−1 are obviously missing in
Gk. The relevance of any remaining edge e = (u, v) is
determined using the function:

δk(e) = wk(e)− yk−1
u − yk−1

v −
∑

B:e∈E(B)

zk−1
B .

The edge set of Gk consists of those edges e with
δk(e) > 0.

Let the function δk defined above be the edge weight
function of Gk. We now claim that all edges in Gk
have weight 1. This is because by invariants (2.1) and
(2.5) of the previous iteration, we have yk−1

u + yk−1
v +∑

B:(u,v)∈B z
k−1
B ≥ w′k−1(e) for all edges e in Fk (in case

e /∈ Fk−1, let w′k−1(e) = 0) and it follows from (3.6) that
wk(e) = wk−1(e) + 1 ≤ w′k−1(e) + 1. So δk(e) ≤ 1 for all
e ∈ Fk. Since no edge e with δk(e) ≤ 0 is present in Gk,
every edge e in Gk satisfies δk(e) = 1. In other words,
Gk is an unweighted graph.

Claim 1. For every outermost blossom B in Vk with
zk−1
B > 0, and for every blossom B∗ embedded in B,

every edge e in the defining circuits of B and of B∗ has
δk(e) = 1.

(For the sake of the continuity of our discussion, the
proofs of Claim 1 and Claim 2 (stated later) are given
at the end of this discussion.)

Claim 1 shows that for any blossom B ∈ Vk, the
edges in the defining circuits of B and its embedded
blossoms B∗ also pass the δk(·) test. That is why B
retains its identity as a blossom in Gk. We refer to all
the blossoms in Vk and their embedded blossoms as old
blossoms.

The initial matching M ′k−1 in Gk and the final
matching Tk in Hk. We will compute a maximum
cardinality matching Mk in the working graph Gk.
In particular, this matching has to be obtained from
augmenting a specific initial matching M ′k−1, which

is derived from the “shrunk” matching T̃k−1 of the
previous iteration.

After the maximum cardinality matching Mk in Gk
is found in this iteration, we can use it to define another
shrunk matching T̃k. The matching Tk in Hk is then
obtained by opening up all blossoms in T̃k. We now
explain the details. We first describe T̃k and then M ′k−1.

The matching T̃k is made up of 2 parts: T̃k = M̃k∪̇Ñk−1.
We define M̃k and Ñk−1 below.

• Run the blossom algorithm on Gk to find a max-
imum cardinality matching Mk in Gk. In partic-
ular, Mk has to be augmented from M ′k−1. After
the blossom algorithm is run, we have the graph
G̃k and M̃k is a maximum cardinality matching in
it. Recall that Gk has all old blossoms closed and
G̃k is Gk after also closing all the new blossoms dis-
covered while running the blossom algorithm. Also,
G̃k has vertex set Ṽk, which can be partitioned into
Ek ∪̇ Ok ∪̇ Uk. Clearly a blossom in Ek ∪̇ Ok ∪̇ Uk,
no matter old or new, is an outermost blossom.

• The matching Ñk−1 will be a subset of T̃k−1 from
the previous iteration. Precisely, let M̃k−1 ⊆ T̃k−1

be the maximum cardinality matching computed in
G̃k−1 in the previous iteration. We can partition
M̃k−1 into edges from Uk−1 × Uk−1 and edges
from Ok−1 × Ek−1, where Ṽk−1 (the vertex set of
G̃k−1) is partitioned into Ek−1 ∪̇ Ok−1 ∪̇ Uk−1. Let
Ñk−1 ⊆ M̃k−1 denote the set of edges in M̃k−1 from
Uk−1 × Uk−1.

By the above discussion, T̃k = M̃k ∪̇ Ñk−1 is a matching
on the vertex set Ṽk ∪̇ Uk−1, where M̃k is in G̃k while
Ñk−1 is in G̃k−1|Uk−1

, the subgraph of G̃k−1 restricted to
Uk−1. Now let Tk denote the matching after we open all
blossoms in T̃k. However note that our algorithm does
not specifically open all blossoms in T̃k to construct Tk
in any intermediate iteration k. We retain T̃k as it is.
It is only in the final iteration, i.e., when k = W , do we
explicitly open out all blossoms in T̃W to obtain TW .

We now explain how M ′k−1 is defined. In the (k−1)-
th iteration, we may decrease the dual variables of
certain blossoms (the details will be shown soon). If
an outermost blossom B has zk−1

B = 0, then we need to
open it. And this has to be done recursively.

Claim 2. Given the matching T̃k−1 \ Ñk−1 in G̃k−1 ∪
G̃k−2|Uk−2

(if k = 2, then G̃k−2|Uk−2
= ∅), we open

out outermost blossoms B whose dual variables zk−1
B =

0 and if their embedded blossoms B∗ ⊂ B become
outermost and zk−1

B∗ = 0, then we open them as well
and this is done recursively. Let M ′k−1 be the resulting
matching. Then, M ′k−1 is a matching on the vertex set
Vk and every edge of M ′k−1 is contained in Gk.
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Updating the dual variables. The values of the
dual variables are updated after the Gallai-Edmonds
decomposition Ṽk = Ek ∪̇ Ok ∪̇ Uk is found.

• For every u ∈ V : if u is an element of Ok∪Uk, then
set yku = yk−1

u + 1; else set yku = yk−1
u .

• For all odd sets B ∈ Ω: if B is a blossom in Ek,
set zkB = zk−1

B + 1; if B is a blossom in Ok, then

set zkB = zk−1
B − 1; else set zkB = zk−1

B . (Note that
if B is a blossom embedded in another blossom in
Ek ∪̇ Ok, zkB = zk−1

B .)

When k = W , there is one change in the setting of
the dual variables: for every u ∈ V , if u is an element
of Uk, then set yku = yk−1

u + 1/2 (note that for k < W ,
we had set yku = yk−1

u + 1 if u is an element of Uk).
Observe that if a blossom B ∈ Uk, since all new

blossoms are (embedded in) outermost blossoms in Ek
(by Proposition 2.1), B is an old blossom and B ∈ Vk.
Then from the definition of Vk, we have zk−1

B > 0 and
(3.7) holds from the way zkB is defined. Note also that
if a blossom B ∈ Ok, it may happen that zkB is down to
0. Then we need to open such a blossom (and possibly
some of its embedded blossoms) when we prepare the
next initial matching M ′k for the next iteration. (See
Claim 2).

Proof of Claim 1. We show this by induction. The
base case is k = 2. Then both B and B∗ were formed
while running the blossom algorithm in G1. Since B
is in V2, it follows from Proposition 2.1 that B has
to be in E1 and since only edges from EW are present
in G1, all the edges in the circuits defining B and B∗

have to be in EW . Let e = (u, v) be any edge in the
defining circuits of B or B∗. Then y1

u = y1
v = 0 while

z1
B = 1 (note that B∗ ⊂ B) and for any other odd set
B′ spanning e, we have z1

B′ = 0. Hence it follows that
δ2(e) = w2(e) − 1 = 2 − 1 = 1. This finishes the base
case.

For the induction step k ≥ 3, there are three
possibilities. (i) B is a blossom in Ek−1, or (ii) B
is a blossom in Ok−1 or B is embedded in another
outermost blossom B′ ∈ Ok−1 (this happens because
it is possible that B′ ∈ Ok−1 may have zk−1

B′ = 0. After
B′ is opened out, B becomes an outermost blossom with
zk−1
B > 0. Note that in this case, B′ ∈ Vk−1 because of

Proposition 2.1), or (iii) B is a blossom in Uk−2.
Let e = (u, v) be any edge in the defining circuits

of B or B∗. In case (i), either e is a part of the
working graph Gk−1, or a part of the defining circuits
of a blossom in Vk−1 or of a blossom embedded in a
blossom in Vk−1. In the first case, δk−1(e) = 1 from the
way we define the edge set of Gk−1; in the latter two

cases, induction hypothesis states that δk−1(e) = 1. In
case (ii), by induction hypothesis, we have δk−1(e) = 1.
(This holds independent of whether B ∈ Vk−1 or B ⊂
B′ ∈ Vk−1).

In cases (i) and (ii), we will establish that
(3.8)

yk−1
u +yk−1

v +
∑

β:e∈E(β)

zk−1
β = yk−2

u +yk−2
v +

∑
β:e∈E(β)

zk−2
β +1.

Note that (3.8) and the fact that wk(e) = wk−1(e)+
1 would imply δk(e) = δk−1(e) = 1 as desired.

In case (i) we have yk−1
u = yk−2

u , yk−1
v = yk−2

v , and
zk−1
B = zk−2

B + 1 while all the other odd sets β spanning

e = (u, v) have zk−1
β = zk−2

β . This yields (3.8).

In case (ii), yk−1
u = yk−2

u +1, yk−1
v = yk−2

v +1. If B is
a blossom in Ok−1, then zk−1

B = zk−2
B −1, and for all the

other odd sets β spanning e, we have zk−1
β = zk−2

β . If B
is embedded in another outermost blossom B′ ∈ Ok−1,
zk−1
B′ = zk−2

B′ − 1 and all the other odd sets β spanning

e (including B) have zk−1
β = zk−2

β . In both sub-cases,
(3.8) is satisfied.

Now we deal with case (iii). By Proposition 2.1, B ∈
Vk−2. So induction hypothesis states that δk−2(e) = 1.
Furthermore, we know that wk(e) = wk−2(e) + 2. Since
u and v are elements of Uk−2, we have yk−2

u = yk−3
u + 1,

yk−2
v = yk−3

v + 1, zk−2
B = zk−3

B , and zk−2
β = zk−3

β for
every other odd set β spanning e = (u, v). As no
vertex/blossom of Uk−2 is present in Gk−1, we have
yk−1
u = yk−2

u , yk−1
v = yk−2

v , and zk−1
β = zk−2

β for every β
that spans e. This guarantees that δk(e) = δk−2(e) = 1.

Proof of Claim 2. First observe that T̃k−1 is a
matching on Ṽk−1 ∪̇ Uk−2, which forms a partition
over V . (In the case when k = 2, let Uk−2 = ∅.)
Furthermore, T̃k−1 \ Ñk−1 is a matching on (Ṽk−1 ∪
Uk−2) \ Uk−1. Because we open up recursively the
outermost blossoms B with zk−1

B = 0 in T̃k−1 \ Ñk−1,
the resulting matching M ′k−1 is a matching among the

outermost blossoms B ∈ Ω\Uk−1 with zk−1
B > 0 and

the vertices v ∈ V not contained in any such blossom
B or any blossom in Uk−1. Clearly these blossoms and
vertices are a subset of Vk.

Next we need to show that for every edge e =
(u, v) ∈ M ′k−1, δk(e) = 1, so that e is present in
Gk. For each such edge, there are three possible
cases. Case (i): e originally resides in a blossom B
in (Ṽk−1 ∪ Uk−2) \ Uk−1. Case (ii): e ∈ Ok−1 × Ek−1.
Case (iii): e ∈ Uk−2 × Uk−2. We consider these cases
below.

• For case (i), since we only decrease the dual vari-
ables of blossoms in Ok−1, by Proposition 2.1, B is
in Vk−1 and e must be spanned by one such blos-
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som B. Claim 1 states that δk−1(e) = 1. Further-
more, as yk−1

u = yk−2
u +1, yk−1

v = yk−2
v +1, zk−1

B =

zk−2
B −1, and zk−1

B′ = zk−2
B′ for all other B′ ∈ Ω that

span e, we have δk(e) = δk−1(e)+1−(1+1−1) = 1.

• For cases (ii) and (iii), e is an edge in (Ok−1 ×
Ek−1) ∪ (Uk−2 × Uk−2). In the former case, since e
is a part of Gk−1, δk−1(e) = 1. Furthermore, since
yk−1
u = yk−2

u + 1, yk−1
v = yk−2

v , and zk−1
B = zk−2

B

for all B ∈ Ω that span e, we have δk(e) =
δk−1(e) + 1 − (1) = 1. In the latter case, we can
assume k ≥ 3. Since e is a part of Gk−2, we have
δk−2(e) = 1. As yk−1

u = yk−2
u = yk−3

u + 1 and
yk−1
v = yk−2

v = yk−3
v + 1 while zk−1

B = zk−2
B = zk−3

B

for all B ∈ Ω that spans e, we have δk(e) =
δk−2(e)+2− (1+1) = 1. This completes the proof.

3.1 Correctness of our maximum weight
matching algorithm

The graph Hk. We now define the graph Hk, in
which we show that the matching Tk and the dual
variables satisfy invariants (2.1)-(2.5). As mentioned
earlier, the graph Hk is the same as the graph Sk =
(V, Fk), except for its edge weight function w′k, defined
as follows:

• For 2 ≤ k ≤ W − 1 and any edge e = (u, v)
where both u and v are elements of Uk, we set
w′k(e) = wk(e) + 1; for all other edges e ∈ Fk, we
have w′k(e) = wk(e).

• In the final iteration, i.e., when k = W , we define
w′k(e) = wk(e) for all e ∈ FW .

Note that (3.6) always holds by the above definition of
w′k. Observe that the edge set of SW is FW = EW ∪· · ·∪
E1, which is the same as the edge set of G. The edge
weight function of SW is wW (e) = W + i −W = i, for
e ∈ Ei. Thus the edge weight function wW = w = w′W
and hence HW = SW = G. We will maintain the
invariant that Tk is a maximum weight matching in
Hk, thus TW will be a maximum weight matching in
HW = G.

The invariants. We now show that invari-
ants (2.1)-(2.5) are satisfied by Tk and the dual vari-
ables yku, z

k
B for all u ∈ V and B ∈ Ω in the graph Hk.

Lemma 3.2 shows that invariants (2.3)-(2.5) hold at the
end of the k-th iteration.

Lemma 3.2. For all u ∈ V , we have yku ≥ 0; for all
B ∈ Ω, we have zkB ≥ 0. Furthermore,

• if zkB > 0 then |B|−1
2 edges within the blossom B

are in Tk, for all blossoms B ∈ Ω;

• if yku > 0 then u is matched in Tk, for all vertices
u ∈ V .

Proof. We first show that invariant (2.5) holds. By the
algorithm, for any u ∈ V , yku is at least as large as yk−1

u .
Since y1

u ∈ {0, 1} for all u ∈ V , it follows that yku ≥ 0 for
every u ∈ V . For any odd set B ∈ Ω, z1

B ∈ {0, 1}. In
iteration k, zkB is decreased from zk−1

B only when B is a
blossom inOk. By Proposition 2.1, B ∈ Vk, since it is an
old blossom in iteration k. Since Vk contains outermost
blossoms with a positive dual variable from iteration
k − 1, we know zk−1

B > 0. Thus zkB = zk−1
B − 1 ≥ 0.

This completes the proof of invariant (2.5).
For invariant (2.4), note that Tk is obtained by

opening all blossoms in T̃k. From the way we define

opening a blossom, |B|−1
2 edges belonging to the defining

circuits of B and its embedded blossoms will be in Tk.
For invariant (2.3), suppose yku > 0 for some u ∈ V .

There are two cases here: Case (i) yk−1
u > 0, and

Case (ii) yk−1
u = 0. We consider them separately.

Case (i): If yk−1
u > 0, by invariant (2.3) in iteration

k − 1, u was matched in Tk−1. Let Nk−1 be the
matching after we open all blossoms in Ñk−1 in the
graph G̃k−1|Uk−1

. If u was an element of Uk−1, then
u was matched in Nk−1. Since Tk ⊇ Nk−1, the vertex u
is matched in Tk too. If u was not an element of Uk−1,
then u was matched by the edges of Tk−1 \ Nk−1 and
u is an element of Vk. Recall that M ′k−1 is obtained

by opening certain blossoms in T̃k−1 \ Ñk−1 in G̃k−1 ∪̇
G̃k−2|Uk−2

(when k = 2, let G̃k−2|Uk−2
= ∅). Opening

all the remaining blossoms in M ′k−1 would result in

Tk−1\Nk−1. Since M̃k is obtained by augmenting M ′k−1,

and T̃k = M̃k ∪ Ñk−1, it follows from the way we define
opening a blossom that u is matched in Tk.

Case (ii): If yk−1
u = 0, then u was necessarily an element

of Ek−1. For yku to be positive, u must have become an
element of Ok∪Uk. So either u is a vertex in Ok∪Uk or u
is a part of a blossom B ∈ Ok ∪Uk. By Proposition 2.2,
in the former case, u is matched in M̃k; in the latter
case, B is matched in M̃k. In both cases, from the way
we define opening a blossom, u remains matched in Tk.

We now show in Lemmas 3.3 and 3.4 that invari-
ants (2.1) and (2.2) are maintained.

Lemma 3.3. For all edges e = (u, v) in the graph Hk,
yku + ykv +

∑
B:e∈E(B) z

k
B ≥ w′k(e).

Proof. Recall that the edge set of Hk is Fk. If e ∈
Fk \Fk−1, i.e., if e ∈ EW+1−k, let us assume w′k−1(e) =
wk−1(e) = 0. By invariant (2.1) of the previous iteration
and the fact that all dual variables are non-negative, we
have:
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(3.9)

yk−1
u +yk−1

v +
∑

B:e∈E(B)

zk−1
B ≥ w′k−1(e) ∀e = (u, v) ∈ Fk.

It follows from (3.6) and the fact that wk−1(e) + 1 =
wk(e) that either w′k(e) = w′k−1(e)+2, or w′k−1(e)+1 ≥
w′k(e). The former case happens only when both u and
v are elements of Uk and k < W . Then yku + ykv +∑
B:e∈E(B) z

k
B = yk−1

u + yk−1
v +

∑
B:e∈E(B) z

k−1
B + 2 ≥

w′k−1(e) + 2 = w′k(e), where the inequality follows
from (3.9). In this case, invariant (2.1) holds for the
k-th iteration. From now on, we will assume that
w′k−1(e) + 1 ≥ w′k(e).

We need to consider the following cases about the
edge e = (u, v): (i) e ∈ E(B), where B is a blossom in
Ok ∪̇Ek, or a blossom in Uk when k = W , (ii) e ∈ Ṽk×Ṽk
and e is not spanned by a blossom in Ṽk, (iii) e ∈
Uk−1 × Uk−1, and (iv) e ∈ Ṽk × Uk−1. We discuss these
cases separately.

For case (i), we claim that

yku + ykv +
∑

B:e∈E(B)

zkB(3.10)

≥ yk−1
u + yk−1

v +
∑

B:e∈E(B)

zk−1
B + 1

≥ w′k−1(e) + 1 ≥ w′k(e).

Invariant (2.1) now follows. The second inequality
follows from (3.9) while the first inequality can be easily
verified from the way we define the dual variables in the
k-th iteration. (Note that for the case when e = (u, v)
is spanned by some blossom in UW , yWu = yW−1

u + 1/2
and yWv = yW−1

v + 1/2.)
For case (ii), first observe that by Proposition 2.1,

there is no edge of Gk between an element of Ek
and an element of Ek ∪ Uk. So given the edge e =
(u, v), if u is an element of Ek and v an element of
Ek ∪ Uk, then δk(e) ≤ 0, implying that yk−1

u + yk−1
v +∑

B:e∈E(B) z
k−1
B ≥ wk(e) = w′k(e). Furthermore, it is

easy to see that yku + ykv +
∑
B:e∈E(B) z

k
B ≥ yk−1

u +

yk−1
v +

∑
B:e∈E(B) z

k−1
B . Combining the two preceding

inequalities yields invariant (2.1).
By the above discussion, we can assume that either

u is an element of Ok and v is an element of Ek ∪̇Ok ∪̇Uk,
or u and v are both elements of Uk when k = W . In both
cases, we argue that (3.10) holds and invariant (2.1)
then follows: the first inequality can be easily verified
from the way we define the dual variables and the second
follows from (3.9).

For case (iii), notice that w′k(e) = w′k−1(e), yku =

yk−1
u , ykv = yk−1

v , and all the odd sets B spanning e
have zkB = zk−1

B . Now invariant (2.1) follows from (3.9).

For case (iv), u is either an element of Ek−1, or of
Ok−1, or of Uk−2. We will establish the following:

yku + ykv +
∑

B:e∈E(B)

zkB(3.11)

≥ yk−1
u + yk−1

v +
∑

B:e∈E(B)

zk−1
B

≥ w′k−1(e) + 1 ≥ w′k(e).

And invariant (2.1) would follow from (3.11). The first
inequality in (3.11) is easy to verify. We show the second
inequality in (3.11) holds by considering all possible
cases. First suppose that e ∈ Fk\Fk−1. Then by
assumption w′k−1(e) = 0. Since v ∈ Uk−1, yk−1

v ≥ 1.
As all other dual variables are non-negative, the second
inequality holds. So from now on, we can assume that
e ∈ Fk−1 and this implies that w′k−1(e) = w′k−2(e) + 1.
(In case that e ∈ Fk−1\Fk−2, let w′k−2(e) = 0). We
consider the identity of u in the following three cases:

Suppose that u is an element of Ek−1. By Proposi-
tion 2.1, there is no edge in Ek−1 × Uk−1 in G̃k−1. So
e = (u, v) does not belong to the edge set of Gk−1, im-
plying that δk−1(e) ≤ 0, and we have yk−2

u + yk−2
v +∑

B:e∈E(B) z
k−2
B ≥ wk−1(e) = w′k−1(e). From the way

we define the dual variables in the (k − 1)-th itera-
tion, yk−1

u + yk−1
v +

∑
B:e∈E(B) z

k−1
B ≥ yk−2

u + yk−2
v +∑

B:e∈E(B) z
k−2
B + 1. The second inequality of (3.11)

follows from the two preceding inequalities.
Next suppose that u is an element of Ok−1. Then

invariant (2.1) in the (k−2)-th iteration guarantees that
yk−2
u + yk−2

v +
∑
B:e∈E(B) z

k−2
B ≥ w′k−2(e). As yk−1

u =

yk−2
u + 1, yk−1

v = yk−2
v + 1, all odd sets B spanning e

have zk−1
B = zk−2

B , and w′k−2(e) + 2 = w′k−1(e) + 1, we
have the second inequality of (3.11).

Finally, assume that u is an element of Uk−2. We
can assume that k ≥ 3. We use Claim 3 here. So
yk−2
u + yk−2

v +
∑
B:e∈E(B) z

k−2
B ≥ w′k−2(e) + 1. As

yk−1
v = yk−2

v + 1, yk−1
u = yk−2

u , all odd sets B spanning
e have zk−1

B = zk−2
B , and w′k−2(e) + 2 = w′k−1(e) + 1,

the second inequality of (3.11) follows and the proof of
the whole lemma is complete.

Claim 3. For any t, where 2 ≤ t ≤W , let e = (u, v) be
an edge in Ft so that u is an element of Ut−1 and v an
element of Ut. Then yt−1

u + yt−1
v +

∑
B:e∈E(B) z

t−1
B ≥

w′t−1(e) + 1. (If e ∈ Ft\Ft−1, assume w′t−1(e) = 0.)

Proof of Claim 3. If e ∈ Ft\Ft−1, then yt−1
u ≥ 1 while

all other dual variables are non-negative. This claim
holds easily then. So from now on, we can assume that
e ∈ Ft−1. This would imply that w′t−1(e) = w′t−2(e) + 1
(In case e ∈ Ft−1\Ft−2, we can assume w′k−2(e) = 0.)
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In the following, we prove the claim by induction.
The base case is t = 2. The vertex v is an element of
O1 ∪̇ E1. However, due to Proposition 2.1, v cannot be
an element E1, since u is in U1. So v ∈ O1. The claim
holds because both y1

u = y1
v = 1 and all odd sets B

spanning e have z1
B = 0, while w′1(e) is only 1. This

finishes the base case.
By induction hypothesis, we assume that the claim

is true for all ` < t. As v is an element of Ut, there
are three cases here: Case (i): v is an element of Ot−1,
Case (ii): v is an element of Et−1, and Case (iii): v is an
element of Ut−2. We consider them separately.

Case (i): u is an element of Ut−1 and v an element
of Ot−1.

We have yt−2
u +yt−2

v +
∑
B:e∈E(B) z

t−2
B ≥ w′t−2(e) by

invariant (2.1) in the (t− 2)-th iteration. In the (t− 1)-
th iteration, yt−1

u = yt−2
u + 1, yt−1

v = yt−2
v + 1, and all

odd sets B ∈ Ω spanning e = (u, v) have zt−1
B = zt−2

B .
Now since w′t−1(e) = w′t−2(e) + 1, we prove the claim.

Case (ii): u is an element of Ut−1 and v an element
of Et−1.

By Proposition 2.1, there is no edge between Ut−1

and Et−1 in G̃t−1, it follows that δt−1(e) ≤ 0. Then
wt−1(e) ≤ yt−2

u + yt−2
v +

∑
B:e∈E(B) z

t−2
B . And yt−1

u =

yt−2
u + 1, yt−1

v = yt−2
v and all odd sets B spanning

e = (u, v) have zt−1
B = zt−2

B . Since w′t−1(e) = wt−1(e),
we prove the claim.

Case (iii): u is an element of Ut−1 and v an element
of Ut−2.

Recall that we assume e ∈ Ft−1, therefore we can
make use of the induction hypothesis: edge e = (u, v) is
slack for Ht−1. That is, yt−2

u +yt−2
v +

∑
B:e∈E(B) z

t−2
B ≥

w′t−2(e) + 1. And yt−1
u = yt−2

u + 1, yt−1
v = yt−2

v and all

odd sets B spanning e = (u, v) have zt−1
B = zt−2

B . Since
w′t−1(e) = w′t−2(e) + 1, we prove the claim.

Lemma 3.4. For all edges e = (u, v) in the matching
Tk, we have yku + ykv +

∑
B:e∈E(B) z

k
B = w′k(e).

Proof. Recall that Tk is obtained by opening all blos-
soms in T̃k = M̃k ∪̇ Ñk−1 in the graph G̃k ∪̇ G̃k−1|Uk−1

.
Let Nk−1 be the matching after we open all blossoms of
Ñk−1 in G̃k−1|Uk−1

.
First assume that e = (u, v) ∈ Nk−1. Then u

and v are elements of Uk−1. Since Nk−1 ⊆ Tk−1, it
follows from invariant (2.2) of the previous iteration
that yk−1

u + yk−1
v +

∑
B:e∈E(B) z

k−1
B = w′k−1(e). As

Uk−1 is absent from Gk, yku = yk−1
u , ykv = yk−1

v ,
and

∑
B:e∈E(B) z

k
B =

∑
B:e∈E(B) z

k−1
B . Also w′k(e) =

wk(e) = wk−1(e) + 1 = w′k−1(e). Thus it follows that

yku + ykv +
∑
B:e∈E(B) z

k
B = w′k(e).

So let us assume that e = (u, v) ∈ Tk \Nk−1. Then
e is either present in Gk as an edge, or e is a part of
the defining circuits of a blossom in Vk, or of some of
its embedded blossoms By Claim 1 and the definition of
the edge set of Gk, δk(e) = 1. This means that (3.12)
holds:

(3.12) yk−1
u + yk−1

v +
∑

B:e∈E(B)

zk−1
B = wk(e)− 1.

We have the following cases: (i) e ∈ Ek×Ok, or (ii)
e ∈ Uk×Uk, or (iii) e is a part of the defining circuits of
a blossom B ∈ Ek ∪̇ Ok ∪̇ Uk, or some of its embedded
blossoms.

For case (i), yku = yk−1
u , ykv = yk−1

v + 1, and
all odd sets B spanning e have zk−1

B = zk−2
B . Since

w′k(e) = wk(e), the tightness of e follows from (3.12).
For case (ii), all odd sets B spanning e have zk−1

B =

zk−2
B . When k < W , yku = yk−1

u + 1, ykv = yk−1
v + 1

and w′k(e) = wk(e) + 1; when k = W , yku = yk−1
u + 1/2,

ykv = yk−1
v + 1/2, and w′k(e) = wk(e). The tightness of

e follows from (3.12) and the above observations.
For case (iii), let us consider the three subcases.

• B ∈ Ek. Then yku = yk−1
u , ykv = yk−1

v , and
zkB = zk−1

B + 1. All other odd sets B′ spanning

e have zkB′ = zk−1
B′ . Also w′k(e) = wk(e). The

tightness of e = (u, v) now follows from (3.12).

• B ∈ Ok. Then yku = yk−1
u + 1, ykv = yk−1

v + 1, and
zkB = zk−1

B − 1. All other odd sets B′ spanning

e have zkB′ = zk−1
B′ . Also w′k(e) = wk(e). The

tightness of e = (u, v) now follows from (3.12).

• B ∈ Uk. All odd sets B′ (including B) spanning
e have zkB′ = zk−1

B′ . For k < W , yku = yk−1
u + 1,

ykv = yk−1
v + 1, and w′k(e) = wk(e) + 1. For

k = W , yku = yk−1
u + 1/2, ykv = yk−1

v + 1/2, and
w′k(e) = wk(e). The tightness of e in both subcases
follows from (3.12).

We have thus shown Theorem 3.1 stated below.
We can now conclude that Tk is a maximum weight
matching in Hk. Hence the matching TW returned
by our algorithm is a maximum weight matching in
HW = G.

Theorem 3.1. For every k, where 1 ≤ k ≤ W ,
invariants (2.1)-(2.5) are maintained in our algorithm.

3.2 Implementation We now discuss how to imple-
ment our algorithm efficiently. In the k-th iteration we
need to perform the following tasks.

(i) Form the working graph Gk with the vertex set Vk.
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(ii) Compute a maximum cardinality matching Mk in
Gk. For k ≥ 2, Mk is obtained by augmenting
M ′k−1.

(iii) Close the blossoms in Mk to form the matching M̃k

in the graph G̃k with the vertex set Ṽk.

(iv) Form a Hungarian forest F̃ based on G̃k and M̃k.
Determine the Gallai-Edmonds decomposition of
Ṽk = Ek ∪̇ Ok ∪̇ Uk, and define the dual variables
{yku}u∈V ∪ {zkB}B∈Ω based on this decomposition.

(v) If k < W , then form M ′k as the initial matching for
the next iteration.

Task (iv) can be done in O(m) time, since the
blossoms are closed. For task (ii), computing Mk is
straightforward if k = 1. When k ≥ 2, first find any
maximum cardinality matching and let its cardinality
be t. Create |Vk| − 2t dummy vertices and connect
each of them to all vertices in Vk left unmatched by
M ′k−1. It is easy to see that there is now a perfect
matching and we can find it by running the maximum
cardinality matching algorithm again. Moreover, the
perfect matching so found must guarantee that only the
vertices in Vk left unmatched by M ′k−1 can be matched
to dummy vertices. So this perfect matching restricted
to the rest of the vertices in Vk will be the desired
matching Mk. The entire task (ii) thus can be done
in either O(

√
nm logn(n2/m)) time [25], or it can be

done with high probability in O(nω) time [27, 37].
For task (iii), several algorithms [16, 18, 36] can

close the blossoms in O(m) time if the given matching
is already of maximum cardinality. All these algorithms
make use of the disjoint set union structure [19].

For tasks (i) and (v), we will maintain a separate
forest data structure whose roots will form a partition
over V . Initially, this forest contains all vertices in V
and each of them is a root. When we execute task (iii),
if a blossom is detected, then this blossom is a new
vertex in this forest and its children are those vertices
in V or other blossoms embedded in it. The defining
circuit of this blossom, along with the base, is also
recorded. (This will be required when we open the
blossom.) Finally, we associate each non-leaf node B in
this forest with its corresponding dual variable zB . This
information will be needed when we decide to open a
blossom or not at the end of each iteration while forming
M ′k for the next iteration. Note that since the vertices
and the blossoms form a laminar family, there can be at
most 2n− 1 vertices in this forest.

In performing task (v), i.e., recursively opening
outermost blossoms B with zkB = 0, if a blossom B is
opened, then we remove B also from this data structure.

It is easy to see that in the beginning of the k-th
iteration, the roots of the forest are exactly the vertices
of Vk for the k-th iteration. Remove the blossoms
and vertices of Uk−1 from Vk to obtain Vk. While
deciding the edge set of the working graph Gk, i.e.,
those edges e with δk(e) = 1, we can do the following:
for all edges e ∈ E, update δk(e) at the end of each
iteration (whether e is a part of the starting graph Sk
or not). Observe that in each iteration, the odd sets
B ∈ Ω whose dual variables thar are really changed
(increasing/decreasing by 1) are those of the outermost
blossoms in Ok ∪̇ Ek. By the forest data structure we
maintain, we can easily compute δk(e) for all edges
e ∈ E in O(n+m) time in each iteration.

Finally, by Definition 2.2, observe that when a
blossom B is opened—either its base is left unmatched,
or one of its vertices is matched to some other vertex
not in B, how the remaining vertices in B should be
matched to each other can be easily decided, since we
record its defining circuit. Thus Tasks (i) and (v) and
the task of maintaining this forest data structure during
the whole iteration can be done in O(n + m) time. At
the very end, using such a data structure, we can open
all blossoms to transform T̃W to TW at the end of our
algorithm. This takes O(n) time.

We have thus shown the following result.

Theorem 3.2. A maximum weight matching in G =
(V,E) whose edge weights come from {1, . . . ,W} can be
computed in time O(W · t(m,n)), where t(m,n) is the
time for computing a maximum cardinality matching in
G.

Theorems 1.1 and 1.2 stated in Section 1 follow from
the above result.
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