
9

Linear Time Approximation Algorithms
for Degree Constrained Subgraph Problems

Stefan Hougardy

Summary. Many real-world problems require graphs of such large size that polyno-
mial time algorithms are too costly as soon as their runtime is superlinear. Examples
include problems in VLSI-design or problems in bioinformatics. For such problems
the question arises: What is the best solution that can be obtained in linear time?
We survey linear time approximation algorithms for some classical problems from
combinatorial optimization, e.g. matchings and branchings.

9.1 Introduction

For many combinatorial optimization problems arising from real-world applications,
efficient, i.e., polynomial time algorithms are known for computing an optimum so-
lution. However, there exist several applications for which the input size can easily
exceed 109. In such cases polynomial time algorithms with a runtime that is quadratic
or even higher are much too slow. It is therefore desirable to have faster algorithms
that not necessarily find an optimum solution.

An approximation algorithm for a combinatorial optimization problem is an al-
gorithm that for any possible input returns some feasible solution. An approximation
algorithm has an approximation ratio of c if for any input it returns a solution with
value at least c times the value of an optimum solution (in this paper we will consider
maximization problems only).

For most reasonable problems the lowest possible runtime for a deterministic
algorithm is linear, as at least the whole input must be read. In this paper we are in-
terested in approximation algorithms that achieve this linear runtime. Moreover, we
are interested here only in approximation algorithms that achieve a constant approxi-
mation ratio. The reason for the latter requirement is that in practice solutions that are
far away from an optimum solution are quite useless. Thus, even an approximation
ratio of 1/2 may be too bad for a given application. However, as the approximation
ratio is a guarantee for the worst case, in practice approximation algorithms with

186 S. Hougardy

constant approximation ratios usually deliver solutions that are very close to the op-
timum. For example the greedy algorithm for the MAXIMUM WEIGHT MATCHING

PROBLEM has an approximation ratio of 1/2 but its solutions are usually within 5%
of the optimum solution (Drake and Hougardy 2003a).

Linear time approximation algorithms offer several benefits against exact algo-
rithms.

1. The most obvious benefit is its runtime: Exact algorithms even if their runtime
is polynomial may simply be too slow to be applicable.

2. Linear time approximation algorithms are usually simpler than their exact coun-
terparts. This not only means that the algorithms are simpler, but also their proofs
of correctness may be simpler.

3. The implementation of linear time approximation algorithms can be much sim-
pler than for exact algorithms. This is the main reason why in many applications
approximation algorithms are used, even though exact algorithms would be fast
enough (see for example Avis 1978).

4. There is another major reason, why in many applications approximation al-
gorithms are used for combinatorial optimization problems even though exact
algorithms would be fast enough: If the algorithm is used as a subroutine in
some heuristic that does not give any performance guarantee, it may be a waste
of time to compute exact solutions. In some cases one might even observe the
weird effect that an exact solution yields results that are inferior to approximate
solutions.

5. Finally, approximation algorithms can avoid problems with floating point arith-
metic. In Althaus and Mehlhorn (1998) such a problem is analyzed for the
maximum flow problem using a preflow-push algorithm. These unexpected dif-
ficulties may always occur when using floating point arithmetic in exact algo-
rithms.

Of course, an algorithm with linear runtime may turn out to be completely use-
less in practice. A famous such example is the algorithm of Bodlaender (1996) for
determining the treewidth of a graph. More precisely, if k is fixed, then for a given
graph G the algorithm of Bodlaender finds in linear time a tree decomposition of
width at most k, or decides that the treewidth of G exceeds k. A huge constant is
involved in the linear runtime of Bodlaenders algorithm. Therefore, this algorithm is
not feasible in practice, even not for k = 4.

All linear time algorithms that we present in this paper have constants in their
runtime that are small, which means that they are at least not larger than the constants
involved in the runtime of exact algorithms for the problem.

In this survey we will cover linear time deterministic algorithms only. There are
related subjects as for example nearly linear time algorithms, sublinear time algo-
rithms, or linear time randomized algorithms which we will not discuss in this paper.
In the following the notion linear time algorithm always means a deterministic linear
time algorithm.

9 Linear Time Algorithms for Degree Constrained Subgraph Problems 187

9.1.1 A Technique for Obtaining Linear Runtime

There exists one general approach for obtaining linear time approximation algo-
rithms for combinatorial optimization problems. Several exact algorithms for these
problems work in phases, where each phase has linear runtime. Examples are the
matching algorithm of Micali and Vazirani (1980) which needs O(

√
n) phases, each

phase can be accomplished in O(m), or the algorithm of Ford and Fulkerson (1956)
for computing a flow of maximum value, where in each phase one flow augmenting
path is computed in O(m).

A simple way to turn such algorithms into linear time approximation algorithms
is to simply stop after executing a constant number of phases. We will call this ap-
proach the phase bounding approach. This approach clearly results in linear time
approximation algorithms, however, it is not at all clear what approximation ratio it
achieves. One can prove for example (see below) that the phase bounding approach
applied to the matching algorithm of Micali and Vazirani (1980) achieves an ap-
proximation ratio, that can be arbitrarily close to 1. However, the phase bounding
approach applied to Ford and Fulkerson’s maximum flow algorithm cannot guaran-
tee any constant approximation ratio larger than 0.

The phase bounding approach while it can produce linear time approximation
algorithms with constant approximation ratio misses one of the advantages that we
listed above, namely to be much simpler than exact algorithms. Nevertheless, in cases
where no other approach is known to yield similar results we do at least know what
approximation ratio can be achieved in linear time. Such a result should be con-
sidered as a stimulation to look for simpler algorithms that do not use the phase
bounding approach.

9.2 Matchings

A matching M in a graph G = (V ,E) is a subset of the edges of G such that
no two edges in M are incident to the same vertex. A perfect matching in G is a
matching M such that each vertex of G is contained in an edge of M . Computing a
(perfect) matching that is optimal with respect to certain side constraints is one of
the fundamental problems in combinatorial optimization.

The first polynomial time matching algorithms date back to the papers of Kőnig
and Egerváry from 1931 (Frank 2005) which resulted in the famous Hungarian
method for bipartite graphs due to Kuhn (1955). A major breakthrough was Ed-
monds’ polynomial time algorithm for the MAXIMUM WEIGHT MATCHING PROB-
LEM (Edmonds 1965). Edmonds introduced in his paper for the first time the notion
of a ’good’ algorithm which led to the definition of the class P of polynomially time
solvable problems.

Given a matching M in a graph G = (V ,E), we say that a vertex x is matched
if {x, y} ∈ M for some y ∈ V and free otherwise. An M-augmenting path is a sim-
ple path P = v0, v1, . . . , vk such that the endpoints v0 and vk are free, {vi, vi+1} ∈
E(G) and the edges of P are alternately in E(G) \ M and M . The length of a path

188 S. Hougardy

is defined as the number of edges contained in it. As the endpoints of an augmenting
path are free this implies that an augmenting path has odd length. Given an augment-
ing path, one can augment the matching M by deleting from M the edges on the path
that are in M , and adding all of the other edges on the path to M . This results in a
matching with one more edge. A well known result that is the basis of many match-
ing algorithms says that the absence of an augmenting path implies optimality of the
current matching. This result was proved by Petersen (1891) and first formulated in
the language of modern graph theory by Berge (1957).

Theorem 2.1 (Petersen 1891; Berge 1957). A matching M has maximum size if and
only if there exists no M-augmenting path.

9.2.1 Maximum Cardinality Matchings

The maximum cardinality matching problem simply asks for a matching of maxi-
mum size in an unweighted undirected graph. As a special case it contains the ques-
tion whether a given graph has a perfect matching.

CARDINALITY MATCHING PROBLEM

Input: An undirected graph G.
Output: A maximum cardinality matching in G.

The fastest known deterministic algorithm for the CARDINALITY MATCHING

PROBLEM is due to Goldberg and Karzanov (2004) and has runtime O(
√

nm ·
log(n2/m)/ log n) (see also Fremuth-Paeger and Jungnickel 2003). It makes use
of graph compression techniques that have been developed by Feder and Motwani
(1995). For dense graphs Mucha and Sankowski (2004) presented a faster random-
ized algorithm which has been simplified by Harvey (2006).

We will show that the phase bounding approach can be used to get a linear
time approximation algorithm for the CARDINALITY MATCHING PROBLEM with
approximation ratio arbitrarily close to 1. The next lemma is the key to prove such
a result. It says that if a matching does not admit short augmenting paths then its
cardinality must be close to the cardinality of a maximum cardinality matching. This
result is due to Hopcroft and Karp (1973) but has been rediscovered several times,
e.g., (Fischer et al. 1993) or (Hassin and Lahav 1994).

Lemma 2.2 (Hopcroft and Karp 1973). If M is a matching in a graph G such that
every M-augmenting path has length at least 2k − 1 then

|M| ≥ k − 1

k
· |M∗|,

where M∗ denotes a maximum cardinality matching in G.

Proof. Suppose the matching M does not admit augmenting paths of length less
than k. Consider the symmetric difference between M and M∗. It contains |M∗|−|M|

9 Linear Time Algorithms for Degree Constrained Subgraph Problems 189

vertex disjoint M-augmenting paths. Since each of these paths contains at least k −1
edges of M , we have

|M| ≥ k − 1

k
· |M∗|. ��

For the phase bounding approach one can make use of the maximum cardinality
matching algorithm due to Micali and Vazirani (1980), see also (Vazirani 1994; Blum
1990) and (Gabow and Tarjan 1991). Their algorithm constructs in each phase a
maximal set of vertex disjoint augmenting paths. Each phase can be implemented in
O(m) time. The size of the shortest augmenting path strictly increases from a phase
to the next. Thus, by applying Lemma 2.2 one gets the following result which was
first observed by Gabow and Tarjan (1988).

Theorem 2.3 (Gabow and Tarjan 1988). For every fixed ε > 0 there exists an
algorithm that computes a matching of size at least (1 − ε) · |M∗| in linear time.

The number of phases needed to obtain a maximum cardinality matching is
O(

√
n). One can easily construct instances where this number of phases is needed.

In practice it turns out that usually a much fewer number of phases suffices to find a
maximum cardinality matching in a graph. This observation can be proved for cer-
tain graph instances rigorously. A first such result is due to Motwani (1994). It has
been improved by Bast et al. (2006) who proved the following statement.

Theorem 2.4 (Bast et al. 2006). In G
n, 33

n
the algorithm of Micali and Vazirani ter-

minates with high probability after O(log n) phases.

Here, G
n, 33

n
denotes a random graph on n vertices where each edge is in the

graph with probability 33
n

.
Theorem 2.3 shows that one can find in linear time a matching whose cardinality

is arbitrarily close to the cardinality of a maximum cardinality matching. However,
as we used the phase bounding approach to get this result, the algorithm is not sim-
pler than the exact one. Therefore we will consider here alternative approaches to
compute large matchings in linear time.

One such approach is to simply compute a maximal matching. A matching M

is called maximal if for all e ∈ E(G) \ M the set M ∪ {e} is not a matching. For
maximal matchings we get the following simple result in the special case k = 2 of
Lemma 2.2.

Lemma 2.5. If M is a maximal matching and M∗ a maximum cardinality matching
then |M| ≥ 1

2 · |M∗|.
Maximal matchings can easily be computed in linear time: start with M = ∅ and

for each e ∈ E(G) add e to M if both endpoints of e are free. Therefore, Lemma 2.5
immediately implies a very simple linear time approximation algorithm for the CAR-
DINALITY MATCHING PROBLEM with approximation ratio 1/2. It is easily seen that
this approximation ratio is tight (see Fig. 9.1).

190 S. Hougardy

Fig. 9.1. An example where a maximum matching is twice as large as a maximal matching
(bold edges)

Fig. 9.2. An example where a maximum matching is asymptotically twice as large as a maxi-
mal matching (bold edges) that considers vertex degrees

Figure 9.1 suggest that it should be a good idea to consider the degrees when
computing a maximal matching: First sort in linear time the vertices in increasing
order by their degrees and then compute a maximal matching by choosing as the
next edge one that is incident to a vertex of currently lowest degree. This approach
is often used in practice (Karypis and Kumar 1998) and usually yields better results.
But as Fig. 9.2 shows this approach does not improve the approximation ratio.

A better approximation ratio than 1/2 can be achieved by a simple algorithm that
results from an algorithm of Drake Vinkemeier and Hougardy (2005) for the MAXI-
MUM WEIGHT MATCHING PROBLEM by specializing it to the unweighted case. The
slightly complicated computation of ’good’ augmentations that is needed in their al-
gorithm becomes completely trivial in the unweighted case. This way one obtains
a simple linear time approximation algorithm for the CARDINALITY MATCHING

PROBLEM with an approximation ratio arbitrarily close to 2/3.
However, one can obtain even an approximation ratio of 4/5 in the unweighted

case. For this we will make use of the following result of Hopcroft and Karp (1973).

Lemma 2.6 (Hopcroft and Karp 1973). Let M be a matching in a graph G such
that every M-augmenting path has length at least k. If P is a maximal set of vertex

9 Linear Time Algorithms for Degree Constrained Subgraph Problems 191

Fig. 9.3. How to find a maximal set of vertex disjoint augmenting paths of length 7 in linear
time

disjoint M-augmenting paths of length k then after augmenting all paths in P the
shortest augmenting path in the new matching has length at least k + 2.

A maximal set of vertex disjoint M-augmenting paths of length k can be found
in linear time for small k.

Lemma 2.7. Let M be a matching in a graph G. For k ≤ 7 a maximal set of vertex
disjoint M-augmenting paths of length k can be found in linear time.

Proof. We prove the result here for k = 7 only. The proof shows that the statement
also holds for smaller k. Let M be a matching in G such that each M-augmenting
path has length at least 7. For each edge in M we check whether it is the middle edge
of an M-augmenting path of length 7 in G.

Let e = {x, y} ∈ M be such an edge. Then we scan all matched neighbors of
y. For each such neighbor, say y′, we scan its incident edge {y′, y′′} ∈ M . This
can be done in time proportional to the degree of y. Similarly, we scan all possible
neighbors x′ and incident edges {x′, x′′} ∈ M of x in time proportional to the degree
of x (see Fig. 9.3).

Now we simply have to look for a vertex y′′ that has a free neighbor y′′′ and a
vertex x′′ that has a free neighbor x′′′. This clearly can be done in time proportional
to the sum of the degrees of vertex x and y. However, we need to be a bit careful, as
the vertices y′, y′′, y′′′ and x′, x′′, x′′′ need not to be distinct. Therefore we proceed
as follows: If there is a vertex y′′ that has at least two free neighbors and there is
an edge {x′, x′′} different from {y′, y′′} such that x′′ has a free neighbor then we
have found an M-augmenting path of length 7 in time proportional to the sum of the
degree of x and y. If all y′′ have only one free neighbor, we check whether there
are at least two different such neighbors. If so, we can find an M-augmenting path
of length 7 as soon as there is a vertex x′′ on the other side. If all vertices y′′ are
adjacent to the same free vertex we also can easily check whether an M-augmenting
path of length seven can be found.

Therefore we can find an M-augmenting path of length 7 with the edge {x, y} in
the middle in time proportional to the sum of the degrees of x and y. Thus, a maximal
vertex disjoint set of such paths can be found in linear time. ��

As a consequence of Lemma 2.6 and Lemma 2.7 we get a linear time algorithm
with approximation ratio 4/5 for the CARDINALITY MATCHING PROBLEM.

192 S. Hougardy

Theorem 2.8. If M∗ is a maximum cardinality matching then a matching M with
|M| ≥ 4

5 · |M∗| can be computed in linear time.

Better approximation algorithms can be obtained in the special case of bounded
degree graphs. In this case one easily can check for all augmenting paths up to a fixed
length k containing a given vertex x in constant time. More precisely: if all vertex
degrees are bounded by a constant B, then there can exist at most Bk paths of length
k containing a given vertex. Therefore, one gets a simple linear time approximation
algorithm for bounded degree graphs with approximation ratio arbitrarily close to 1.
However, as this approach involves the constant Bk in the runtime it is not useful in
practice.

9.2.2 Maximum Weight Matchings

Given a graph G = (V ,E) and a weight function c : E(G) → R, the weight of
a matching M ⊆ E is defined as w(M) := ∑

e∈M w(e). The MAXIMUM WEIGHT

MATCHING PROBLEM now asks for a matching of maximum weight. The CARDI-
NALITY MATCHING PROBLEM is a special case of this problem where all weights
are equal.

MAXIMUM WEIGHT MATCHING PROBLEM

Input: An undirected graph G and edge weights c : E(G) → R.
Output: A maximum weight matching in G.

The fastest known algorithm for the MAXIMUM WEIGHT MATCHING PROB-
LEM is due to Gabow (1990) and has runtime O(nm + n2 log n). However, this al-
gorithm involves rather complicated data structures that prevent it from being useful
in practice. The fastest implementations known today for solving the MAXIMUM

WEIGHT MATCHING PROBLEM are due to Cook and Rohe (1999) respectively
Mehlhorn and Schäfer (2002). These algorithms have a worst case runtime of O(n3)

respectively O(nm log n). Under the assumption that all edge weights are integers
in the range [1..N] Gabow and Tarjan (1991) presented an algorithm with runtime
O(

√
n log nα(m, n)m log(Nn)), where α is the inverse of Ackermann’s function.

The greedy algorithm for the MAXIMUM WEIGHT MATCHING PROBLEM is a
very simple approximation algorithm that achieves an approximation ratio of 1/2
(Jenkyns 1976; Korte and Hausmann 1978; Avis 1978). This algorithm simply sorts
the edges by decreasing weight and then computes a maximal matching using this
ordering. The runtime of the greedy algorithm is O(m log n) as sorting the edges
requires this amount of time. Surprisingly, for long time no linear time approxima-
tion algorithm for the MAXIMUM WEIGHT MATCHING PROBLEM was known that
achieves a constant approximation ratio strictly larger than zero. The first such al-
gorithm was presented by Preis (1999). The idea of this algorithm is that instead of
using the heaviest edge in each step it is enough to consider a locally heaviest edge,
i.e., an edge that is heavier than all adjacent edges. Using this approach it is easy to

9 Linear Time Algorithms for Degree Constrained Subgraph Problems 193

PathGrowingAlgorithm (G = (V , E), w : E → R+)

1 M1 := ∅, M2 := ∅, i := 1
2 while E �= ∅ do begin
3 choose x ∈ V of degree at least 1 arbitrarily
4 while x has a neighbor do begin
5 let {x, y} be the heaviest edge incident to x

6 add {x, y} to Mi

7 i := 3 − i

8 remove x from G

9 x := y

10 end
11 end
12 return max(w(M1), w(M2))

Fig. 9.4. The Path Growing Algorithm for finding maximum weight matchings

see that the algorithm achieves an approximation ratio of 1/2. However, it is quite
complicated to prove that its runtime is indeed linear.

Drake and Hougardy (2003a) presented a much simpler linear time approxima-
tion algorithm for the MAXIMUM WEIGHT MATCHING PROBLEM with approxima-
tion ratio 1/2. This algorithm is called the Path Growing Algorithm and is shown
in Fig. 9.4. Its idea is to simultaneously compute two matchings and for the heavier
of these two matchings the algorithm guarantees that its weight is at least half the
weight of a maximum weight matching.

It is easily seen that the runtime of the Path Growing Algorithm is linear (Drake
and Hougardy 2003a). The next result shows the correctness of the algorithm.

Theorem 2.9 (Drake and Hougardy 2003a). The Path Growing Algorithm has a
performance ratio of 1/2.

Proof. For the analysis of the performance ratio we will assign each edge of the
graph to some vertex of the graph in the following way. Whenever a vertex is re-
moved in line 8 of the algorithm all edges which are currently incident to that vertex
x are assigned to x. This way each edge of G is assigned to exactly one vertex of G.
Note that there might be vertices in G that have no edges assigned to them.

Now consider a maximum weight matching M in G. As M must not contain two
incident edges, all edges of M are assigned to different vertices of G. In each step of
the algorithm the heaviest edge that was currently incident to vertex x is chosen in
line 5 of the algorithm and added to M1 or M2. Therefore the weight of M1 ∪ M2 is
at least as large as the weight of M . As

max(w(M1), w(M2)) ≥ 1

2
w(M1 ∪ M2) ≥ 1

2
w(M)

the weight returned by the Path Growing Algorithm is at least half the weight of the
optimal solution. ��

194 S. Hougardy

It turns out that the greedy algorithm, the algorithm of Preis, and the Path Grow-
ing Algorithm of Drake and Hougardy are in practice much better than the approx-
imation factor of 1/2 suggests. In Drake and Hougardy (2003a) it is shown that the
solution found by these algorithms is typically about 5% away from the weight of
an optimum solution. For the Path Growing Algorithm one even can get a guarantee
that the solution found by the algorithm is strictly larger than the approximation ratio
of 1/2. This is due to the fact that this algorithm computes two different matchings
for which it guarantees that the sum of the weights of these two matchings is at least
as large as the weight of an optimum solution. Therefore we have the following ob-
servation which allows to get a better guarantee how far the solution returned by the
Path Growing Algorithm is away from an optimum solution.

Lemma 2.10. The matching M returned by the Path Growing Algorithm has weight
at least

max{w(M1), w(M2)}
w(M1) + w(M2)

· w(M∗),

where M∗ is a maximum weight matching.

Note that we have 1
2 ≤ max{w(M1),w(M2)}

w(M1)+w(M2)
≤ 1. This means that the Path Growing

Algorithm might even return a matching M and a guarantee that this matching M is
a maximum weight matching.

Drake Vinkemeier and Hougardy (2005) improved on the Path Growing Al-
gorithm by presenting a linear time approximation algorithm for the MAXIMUM

WEIGHT MATCHING PROBLEM that achieves an approximation ratio arbitrarily
close to 2/3. This approximation ratio is the best that is currently known to be achiev-
able in linear time.

Theorem 2.11 (Drake Vinkemeier and Hougardy 2005). For every fixed ε > 0
there exists a linear time algorithm that computes a matching of weight at least
(2/3 − ε) · w(M∗) where M∗ is a maximum weight matching.

Pettie and Sanders (2004) improved on this result by presenting another linear
time 2/3 − ε approximation algorithm for the MAXIMUM WEIGHT MATCHING

PROBLEM whose runtime has a better dependence on ε.

9.2.3 Minimum Weight Perfect Matchings

Computing a perfect matching of maximum or minimum weight is a problem that
appears quite often in applications. The maximum and minimum perfect matching
problem can easily be transformed into each other by just negating the edge weights.

MINIMUM WEIGHT PERFECT MATCHING PROBLEM

Input: An undirected graph G and edge weights c : E(G) → R.
Output: A minimum weight perfect matching in G or a proof that

G has no perfect matching.

9 Linear Time Algorithms for Degree Constrained Subgraph Problems 195

There is a simple reduction that allows to formulate the MAXIMUM WEIGHT

MATCHING PROBLEM as a MAXIMUM WEIGHT PERFECT MATCHING PROBLEM.
Take a copy G′ of the input graph G and connect each vertex in G by an edge of
weight 0 with its copy in G′. Then a maximum weight perfect matching in the new
graph corresponds to a maximum weight matching in G (the weights differ exactly
by a factor of 2).

This is a simple reduction that can be performed in linear time, unfortunately
it does not preserve approximation ratios. However, we cannot expect to find any
such reduction as every algorithm that finds an approximate solution to the MIN-
IMUM WEIGHT PERFECT MATCHING PROBLEM must at least be able to decide
whether the graph has a perfect matching. The fastest algorithm for doing so has
runtime O(

√
nm log(n2/m)/ log n) (Goldberg and Karzanov 2004). Therefore lin-

ear time approximation algorithms with constant approximation ratios do not exist
for the MINIMUM WEIGHT PERFECT MATCHING PROBLEM unless one can decide
in linear time whether a given graph has a perfect matching.

9.3 Degree Constrained Subgraphs

Let G = (V ,E) be an undirected graph and b : V (G) → N a degree constraint
for every vertex. A subgraph H of G is a degree constrained subgraph for G with
respect to b, if the degree of each vertex x in H is at most b(x). We consider here the
problems of finding a degree constrained subgraph with the largest possible number
of edges and a weighted version of this problem. A degree constrained subgraph
is also known as b-matching. A subset M ⊂ E is called a b-matching if for all
v ∈ V (G) the number of edges in M incident to v is at most b(v). For the special
case that b(v) = 1 for all v ∈ V (G) the b-matching is a matching. Therefore, the
degree constrained subgraph problems are generalizations of matching problems. As
the connections to matching problems are quite strong, we prefer here the notion of
b-matchings instead of degree constrained subgraphs.

CARDINALITY b-MATCHING PROBLEM

Input: An undirected graph G and b : V (G) → N.
Output: A maximum cardinality b-matching in G.

The CARDINALITY b-MATCHING PROBLEM can be reduced to the CARDINAL-
ITY MATCHING PROBLEM by the following reduction which is due to Shiloach
(1981): Replace each vertex v of degree d(v) by d(v) copies, such that each edge
incident to v uses another copy of v. Then add additional b(v) vertices for each ver-
tex v that are completely connected to the d(v) copies of v. Figure 9.5 shows an
example for this reduction.

Let G be an arbitrary graph with n vertices and m edges and let G′ be the graph
that results from this reduction. Then it is not difficult to prove that a matching in G′
of size α+m corresponds to a b-matching in G of size α (Shiloach 1981). The graph

196 S. Hougardy

Fig. 9.5. An example illustrating the reduction of a b-matching problem to a matching problem

G′ has O(m) vertices and O(Bm) edges, where B = maxv∈V (G){b(v)}. For constant
B this reduction leads to a b-matching algorithm with runtime O(m3/2) by using
the algorithm of Micali and Vazirani (1980). For non-constant B the fastest known
algorithm for the CARDINALITY b-MATCHING PROBLEM has runtime O(nm log n)

and is due to Gabow (1983).
Unfortunately the above reduction does not preserve approximation ratios. There-

fore, even for constant B we cannot use the constant factor approximation algo-
rithms for the CARDINALITY MATCHING PROBLEM to obtain such algorithms for
the CARDINALITY b-MATCHING PROBLEM. Instead, we directly have to adapt
the approximation algorithms to the CARDINALITY b-MATCHING PROBLEM.
A b-matching M in a graph G = (V ,E) is called maximal if M ∪ {e} is not
a b-matching for all e ∈ E \ M . A maximal b-matching can easily be computed in
linear time: Start with M = ∅ and for each e ∈ E(G) add e to M if this does not vio-
late the degree conditions. The following result shows that this already gives a linear
time 1/2-approximation algorithm for the CARDINALITY b-MATCHING PROBLEM.

Theorem 3.1. The CARDINALITY b-MATCHING PROBLEM can be solved in linear
time with approximation ratio 1

2 .

Proof. As observed above a maximal b-matching can be computed in linear time.
Thus we simply have to prove that if M∗ is a maximum cardinality b-matching and
M is a maximal b-matching then |M| ≥ 1

2 · |M∗|. By S we denote all vertices v such
that there are exactly b(v) edges of M incident to v. Then every edge in M∗ must
have at least one endpoint in S as otherwise M is not maximal. As for each vertex
v ∈ S there are at most b(v) edges of M∗ incident to v and each edge in M is incident
to at most two vertices in S we have:

|M∗| ≤
∑

v∈S

b(v) ≤ 2 · |M|

which proves the approximation ratio of 1/2. ��
We now also consider a weighted version of the b-matching problem.

MAXIMUM WEIGHT b-MATCHING PROBLEM

Input: An undirected graph G and edge weights c : E(G) → R.
Output: A maximum weight b-matching in G.

9 Linear Time Algorithms for Degree Constrained Subgraph Problems 197

For the weighted version of the b-matching problem one can use the above
mentioned reduction of Shiloach (1981) to get a MAXIMUM WEIGHT MATCHING

PROBLEM. Again, faster algorithms are possible by adapting algorithms for the
MAXIMUM WEIGHT MATCHING PROBLEM directly to the MAXIMUM WEIGHT

b-MATCHING PROBLEM. This has been done by Gabow (1983) who obtained the
currently fastest algorithm for the MAXIMUM WEIGHT b-MATCHING PROBLEM.
His algorithm has runtime O(m2 log n). It is easily seen that the Greedy algorithm
for the MAXIMUM WEIGHT b-MATCHING PROBLEM achieves an approximation
ratio of 1/2 and has runtime O(m log n) (Avis 1978).

Linear time approximation algorithms for the MAXIMUM WEIGHT b-MATCHING

PROBLEM are known only for the case that b(x) is bounded by some constant for all
x ∈ V (G). In this case Mestre (2006) obtained the following result by adapting an
algorithm of Drake and Hougardy (2003b) for the MAXIMUM WEIGHT MATCHING

PROBLEM to the MAXIMUM WEIGHT b-MATCHING PROBLEM.

Theorem 3.2 (Mestre 2006). If b(x) is bounded by some constant for all x ∈ V (G)

then the MAXIMUM WEIGHT b-MATCHING PROBLEM can be solved in linear time
with approximation ratio 1

2 .

9.4 Branchings

A branching is a directed graph without circuits such that each vertex has indegree
at most one. Computing branchings of maximum weight is one of the classical prob-
lems in combinatorial optimization.

MAXIMUM WEIGHT BRANCHING PROBLEM

Input: A directed graph G and edge weights c : E(G) → R.
Output: A maximum weight branching in G.

Edmonds (1967) and independently Chu and Liu (1965) and Bock (1971) gave
the first polynomial time algorithms for computing a maximum weight branching.
Later Gabow et al. (1986) showed that Edmond’s algorithm can be implemented in
O(m + n log n) time. This is already quite close to a linear time algorithm but from
a practical point of view one is still interested in simpler linear time approximation
algorithms for the MAXIMUM WEIGHT BRANCHING PROBLEM.

One such algorithm is given by the following greedy approach: Start with an
empty branching B and sort the edges by decreasing weight. Now check for each
edge one by one whether its addition violates the degree condition. If not then add
it to B. Now one can destroy each circuit that might appear by removing the light-
est edge from each circuit. This can be done in linear time. As each circuit has at
least two edges, the algorithm has an approximation ratio of 1/2. The total runtime
is linear, as sorting of the edges is actually not required: simply take the heaviest
incoming edge for each vertex.

198 S. Hougardy

This result can be improved by applying the phase bounding approach to Ed-
monds’ algorithm. This has been observed by Ziegler (2008). He obtained the fol-
lowing result.

Theorem 4.1 (Ziegler 2008). For every ε > 0 there exists a linear time approxi-
mation algorithm for the MAXIMUM WEIGHT BRANCHING PROBLEM that has an
approximation ratio of 1 − ε.

Acknowledgement

I am grateful to an anonymous referee for several useful comments.

References

Althaus, E., Mehlhorn, K.: Maximum network flow with floating point arithmetic. Inf. Process.
Lett. 66(3), 109–113 (1998)

Avis, D.: Two greedy heuristics for the weighted matching problem. Congr. Numer. XXI, 65–
76 (1978). Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph
Theory, and Computing (1978)

Bast, H., Mehlhorn, K., Schäfer, G., Tamaki, H.: Matching algorithms are fast in sparse ran-
dom graphs. Theory Comput. Syst. 39(1), 3–14 (2006)

Berge, C.: Two theorems in graph theory. Proc. Natl. Acad. Sci. U.S.A. 43(9), 842–844 (1957)
Blum, N.: A new approach to maximum matching in general graphs. In: Proc. of 17th ICALP

(1990). Lecture Notes in Computer Science, vol. 443, pp. 586–597. Springer, Berlin (1990)
Bock, F.: An algorithm to construct a minimum directed spanning tree in a directed network.

In: Avi Itzhak, B. (ed.) Developments in Operations Research, Proceedings of the Third
Annual Israel Conference on Operations Research, July 1969, vol. 1, pp. 29–44. Gordon
and Breach, New York (1971). Paper 1-2

Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput. 25(6), 1305–1317 (1996)

Chu, Y.-J., Liu, T.-H.: On the shortest arborescence of a directed graph. Sci. Sin. 14(10),
1396–1400 (1965)

Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. Comput.
11(2), 138–148 (1999)

Drake, D.E., Hougardy, S.: Linear time local improvements for weighted matchings in graphs.
In: Jansen, K. et al. (eds.) International Workshop on Experimental and Efficient Algo-
rithms (WEA) 2003. Lecture Notes in Computer Science, vol. 2647, pp. 107–119. Springer,
Berlin (2003a)

Drake, D.E., Hougardy, S.: A simple approximation algorithm for the weighted matching
problem. Inf. Process. Lett. 85(4), 211–213 (2003b)

Drake Vinkemeier, D.E., Hougardy, S.: A linear-time approximation algorithm for weighted
matchings in graphs. ACM Trans. Algorithms 1(1), 107–122 (2005)

Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand., B Math. Math. Phys. 71(4), 233–

240 (1967)
Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up algorithms.

J. Comput. Syst. Sci. 51(2), 261–272 (1995)

9 Linear Time Algorithms for Degree Constrained Subgraph Problems 199

Fischer, T., Goldberg, A.V., Haglin, D.J., Plotkin, S.: Approximating matchings in parallel.
Inf. Process. Lett. 46(3), 115–118 (1993)

Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404
(1956)

Frank, A.: On Kuhn’s Hungarian method—a tribute from Hungary. Nav. Res. Logist. 52(1),
2–5 (2005)

Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows. VIII. A revised theory of phase-
ordered algorithms and the O(

√
nm log(n2/m)/ log n) bound for the nonbipartite cardi-

nality matching problem. Networks 41(3), 137–142 (2003)
Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected

network flow problems. In: STOC ’83: Proceedings of the Fifteenth Annual ACM Sympo-
sium on Theory of Computing, pp. 448–456. ACM Press, New York (1983)

Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with link-
ing. In: SODA ’90: Proceedings of the First Annual ACM–SIAM Symposium on Discrete
Algorithms, pp. 434–443. SIAM, Philadelphia (1990)

Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems. J. Algo-
rithms 9(3), 411–417 (1988)

Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph-matching problems.
J. Assoc. Comput. Mach. 38(4), 815–853 (1991)

Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E.: Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. Combinatorica 6(2), 109–122 (1986)

Goldberg, A.V., Karzanov, A.V.: Maximum skew-symmetric flows and matchings. Math. Pro-
gram. 100(3), 537–568 (2004)

Harvey, N.J.A.: Algebraic structures and algorithms for matching and matroid problems. In:
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pp. 531–542. IEEE Computer Society, Washington (2006)

Hassin, R., Lahav (Haddad), S.: Maximizing the number of unused colors in the vertex color-
ing problem. Inf. Process. Lett. 52(2), 87–90 (1994)

Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput. 2(4), 225–231 (1973)

Jenkyns, T.A.: The efficacy of the greedy algorithm. Congr. Numer. 17, 341–350 (1976)
Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel

Distrib. Comput. 48(1), 96–129 (1998)
Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. Ann.

Discrete Math. 2, 65–74 (1978)
Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–

97 (1955)
Mehlhorn, K., Schäfer, G.: Implementation of O(nm log n) weighted matchings in general

graphs: the power of data structures. ACM J. Exp. Algorithmics 7, 4 (2002)
Mestre, J.: Greedy in approximation algorithms. In: Azar, Y., Erlebach, T. (eds.) ESA 2006.

Lecture Notes in Computer Science, vol. 4168, pp. 528–539. Springer, Berlin (2006)
Micali, S., Vazirani, V.V.: An O(

√|v| · |E|) algorithm for finding maximum matching in
general graphs. In: Proc. of 21st Annual Symposium on Foundations of Computer Science
(21st FOCS, Syracuse, New York, 1980), pp. 17–27 (1980)

Motwani, R.: Average-case analysis of algorithms for matchings and related problems. J. As-
soc. Comput. Mach. 41(6), 1329–1356 (1994)

Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: Proceedings of
the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04), pp.
248–255. IEEE Computer Society, Washington (2004)

200 S. Hougardy

Petersen, J.: Die Theorie der regulären Graphs. Acta Math. 15(1), 193–220 (1891)
Pettie, S., Sanders, P.: A simpler linear time 2/3 − ε approximation for maximum weight

matching. Inf. Process. Lett. 91(6), 271–276 (2004)
Preis, R.: Linear time 1

2 -approximation algorithm for maximum weighted matching in general
graphs. In: Meinel, C., Tison, S. (eds.) Symposium on Theoretical Aspects in Computer
Science (STACS). Lecture Notes in Computer Science, vol. 1563, pp. 259–269. Springer,
Berlin (1999)

Shiloach, Y.: Another look at the degree constrained subgraph problem. Inf. Process. Lett.
12(2), 89–92 (1981)

Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness of the
O(

√
V E) general graph maximum matching algorithm. Combinatorica 14(1), 71–109

(1994)
Ziegler, V.: Approximating optimum branchings in linear time. Technical report, Humboldt-

Universität zu Berlin, Institut für Informatik (2008)

	Linear Time Approximation Algorithms for Degree Constrained Subgraph Problems
	Introduction
	A Technique for Obtaining Linear Runtime

	Matchings
	Maximum Cardinality Matchings
	Maximum Weight Matchings
	Minimum Weight Perfect Matchings

	Degree Constrained Subgraphs
	Branchings
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

