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INTRODUCTION 
The purpose of this note is to add some insight into the already known relationships 

among the three problems mentioned in the title. In considering the shortest path through a 
network from some initial vertex to a terminal vertex, we shall confine ourselves to those 
cases in which the sum of the lengths of the edges around any cycle is nonnegative. Most, 
though not all, algorithms for solving the shortest path problem make such a presumption. 

That the shortest path problem may be posed in the format of an assignment problem is 
well known, at least in folklore, and we will, for the sake of completeness, indicate how this is 
done. Further, that transportation problems may be solved by performing a succession of 
shortest path problems is also well known, the general principle being that expounded on page 
121 of the monograph [l]. What we shall show is that, for the case of assignment and trans- 
portation problems, one can be even more stringent in specifying the succession of shortest 
path problems to be solved than what the principle expounded in [l] permits. For example, we 
shall show that one can do an nxn  assignment problem by solving a succession of shortest 
path problems on vertices specified in advance. 

THE ASSIGNMENT PROBLEM 
We assume that the assignment problem is given in the following form: 
We are  required to minimize 

where 

x = (x..) 
9 

is a square matrix of order n, with nonnegative entries, and 
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Now, let us assume that we have a directed graph with vertices 1,. . . , n + 1, where the dis- 
tance from i to j is a real number d.. ; these numbers satisfy the cycle condition mentioned 
in the introduction, and we wish to find t!e shortest path from vertex 1 to vertex n + 1. We 
set up an assignment problem where the rows correspond to the vertices from 1 to n, the 
columns correspond to the vertices from 2 to n + 1, and the "c. ." are as indicated in the fol- 
lowing diagram: 

1J 

u 

2 3 . . .  n n+ 1 

1 

2 

n 

The reason is as follows: It should be clear that the given assignment problem of order n is 
essentially the same as the assignment problem of order n + 1 given in the following diagram: 

1 2 . . .  n n+ 1 

1 

2 

n 

n+  1 

Now, in order to solve the larger assignment problem, we seek a permutation matrix of order 
n -P 1 whose inner product with the given matrix is as small as possible. In the larger problem, 
the minimizing permutation can be expressed as a product of disjoint cycles. Further, it is 
apparent from the large matrix that the cycle which contains 1 must return to 1 from n t 1, 
thereby picking out the sum of distances along some path from 1 to n + 1. Furthermore, all 
other cycles may be taken to be degenerate because the condition on the sum of the d.. in any 
cycle tells us that it is optimal to make all other cycles consist of each of one element, thereby 
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incurring an additional "c. ." of 0. Thus, we see that solving the larger assignment problem 
is, on the one hand, equivalent to finding the shortest path and, on the other hand, equivalent to 
solving the smaller assignment problem. 

Now, we propose to show how this process can be reversed, in a sense. Suppose we be- 
gin with an arbitrary assignment problem (2)) and let us assume that we have solved the assign- 
ment problem of order r (1 2 r < n) corresponding to the lower left r X r sub-matrix. Assume, 
for the sake of ease of notation, that the minimizing permutation occurred on the main diagonal 
of that sub-matrix. Then, on the n x n matrix C, perform the following operations: 

4 

Subtract cnmr+ ,1 from the (n - r+ l ) th  row of C, 

subtract c ~ - ~ + ~  ,2 from the (n- r+  z ) ~  row of C, 

... 
subtract c from the nth row of C. n,r 

As is well known, this operation does not change the original assignment problem. Further- 
more, if we consider the assignment problem of order r + 1 given by the lower left-hand 
square of order r + 1 in the new matrix, it has the appearance of (2)) and appears to be a 
shortest path problem on r + 1 vertices. Furthermore, the cycle condition is satisfied; other- 
wise, we would not have solved the assignment problem of order r. 

shortest path problems of smaller order. 
In this way, one can solve an assignment problem of order n, by successively solving 

TRANSPORTATION PROBLEMS 
We now consider the application of a similar idea to transportation problems. We shall 

assume (with no loss of generality) that the transportation problem is given in the following 
form: Minimize 

where C = (c..) is an m x n matrix of given constants, al , . . . , a, are given nonnegative in- 

tegers, n = c ai , and X = (x..) satisfies x.. 2 0, 
9 

9 4 

The intuitive idea behind this method is to treat each column of X successively, and 
dispose of the unit x.. to be disposed of in that column in the most economical way. Now, we 

13 
can certainly begin in this fashion until, for some i, as many as ai of the columns have been 
assigned to row i. Af te r  that, it may turn out that the cheapest assignment of some subsequent 
column may also be in row i, and it will not then be possible to complete the intuitive scheme. 
What will replace the intuitive scheme is the solution of a shortest path problem, involving at 
most m + 1 points. Then, we shall show that one can use the solution to this problem to mod- 
ify the matrix of C in such a way that it will appear that the selected elements a re  stillminimal 
in their respective columns. 
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To explain this in detail, let us assume that the first k columns have been disposed of, 
and let C.. (j = 1,. . . , k) be the least (and selected) c.. in its respective column. For ease of 
notation, let us also assume that al elements have been selected in row 1 . . . , at elements 
have been selected in row t, but fewer than ai elements have been selected in row i, 
i = t + 1,. . . , m. We now define a shortest path problem on t + 2 vertices. In order to define 
the problem, we  must give the distances between the points. First, 

4 11 

and 

doi = cia+l for i = 1, .  . . , t , 

d O , t + l  = T;y ‘i,k+l . 

Further, for t + 1 > i > 0, t + 1 > j > 0, we define d.. = cc, if row i has never been selected 
and d.. = min c - It is understood that the only candidates in this minimization occur 

for those differences corresponding to columns p where row i has been selected. Note that, 
since all distances not involving the point 0 a re  nonnegative, the cycle condition is satisfied. 
Finally, for 

11 
1~ k?$1 jp - ciP * 

t + l > i > O ,  

if row i has ever been selected, otherwise infinity. 
For most methods of de- 

termining the shortest path (see, for example, pp. 130 ff .  of [l]), one derives as well the short- 
est distance from 0 to any point. Let IIo = 0, I$, . . . , I$+, be the shortest distance from 0 
to each point. Subtract 111 from the first row of C ,  . . . , subtract Ilt from the tth row of C. 
Subtract nt+, from the remaining rows of C. 

Also, make the following adjustments in selected elements: If the shortest path from 
0 to t + 1 is the path io = 0, i l ,  i 2 , .  . . , ir = t + 1, and if 

Now, determine the shortest path from 0 to the point t + 1. 

d..  = c  
i0,i1 il,k+l * 

then select the new element in position (il , k+ 1) to represent the k + lth column, and change 
the selected positions in column p1 , p2,.  . . , from (il , pl), (i2, p2), . . . , (ir-l, pr-l) to 
(ipP1L (ig, P& * * * 2 or 9 Pr-& respectively. 
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To prove the validity of this change, we must show that, after the matrix C has been 
transformed in the manner described, and after some of the selected elements have been 
changed in the manner described, then all selected elements are still minimal in their columns, 
and that, for each row i, the ith row has been chosen no more than ai times. The last stipu- 
lation is, of course, obvious, s o  let us prove the first. To do th is ,  it is sufficient to show that 
every previously selected element is still minimal in its column, and that every newly selected 
element is also minimal in its column. To show that every previously selected element is 
minimal, let us use the fact that the distances I$ must satisfy the inequality (*) Hi+ dij 2 IIj . 
Suppose C. any other element in the pth column. We have (**)d.. 5 

In the transformed matrix, the new elements in position (i, p) and (j, p) respec- 
jp - IIj . We must show tively a r e  c. - ni and c 

were selected and c - 1P jp 11 - 
‘jp - ‘ip. 

1P 

but 

(***) cip - rIi 2 cjp - [ I j  ) 

C. - II. 2 c - II. + d.. by (*) 

z c  - n . + c  - c  
1P 1 iP 1 11 

ip 1 jp ip (by (**)I 

To show that the new selected elements are also minimal in their respective columns, let us 
first consider the (k + l)th column. It is clear that the selected element will be 0 after the 
transformation, and all other elements will be nonnegative, by virtue of (*) with i = 0. For the 
other columns where the selected elements have been changed, note that (*) and (**) will be 
equations, when c is a newly selected element, so that (***) will also be an equation. jp 

This completes the discussion. 
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