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Optimal Matchings and Degree-Constrained Subgraphs:

A. ]. Goldman

(October 25, 1963)

The characterization of maximum-cardinality matchings in linear graphs, by the nonexistence of
aungmenting paths, has been extended by several authors to a similar characterization of maximum

degree-constrained subgraphs.
tion to the case of matchings.

In this paper the term graph means a finite unori-
ented linear graph. The same symbol will be used for
a graph and its edge-set. The degree d(v, G) of a vertex
yin a graph G is simply the number of edges of G which
are incident on v, with loops (edges from v to v) counted
wice. The term strict graph will be used for a graph
which is loopless and contains at most one edge joining
my pair of distinct vertices. A path in a graph is
permitted to have repeated vertices, but not repeated
edges.

Let G* be a graph with vertex-set {vi}*. A matching
in G* is a subgraph M such that d(v;, M)<1 for
]<i<n. An optimal matching is one for which the
number | M | of edges is maximnm. An augmenting
path for a matching M is a path P in G* with edges
aiernately in M and in G* — M, no end edge 2 in M, and
end vertices v such that d(v, M)=0.

A matching M which admits an augmenting path P
cannot be optimal, since the symmetric difference MAP
is 2 matching with one more edge than M. The non-
trivial converse is also true, a result due to Berge [1]3
and (in a different but equivalent form) to Norman and
Rabin [6]. We state it in the following sharp form:

THEOREM (M). Let M, and M, be matchings in a
graph G*, with | M; | < | M. |. Then M;AM. contains3e
an augmenting path for M.

An important consequence of the theorem is that
the problem of efficiently finding an optimal matching
in a graph is reduced to that of efficiently searching
for an augmenting path P of a given matching M; if the
search fails, so that no “improvement” of the form
M— MAP is possible, then no other improvement is
possible and M is optimal. (For a proof by contradic-
tion, take M; =M and M: as any optimal matching in
the theorem.) Theoretical and computational aspects
of this topic are discussed by Edmonds [4, 5] and by
Witzgall and Zahn [7].

Now let G be a graph with vertex-set {uv:}?, and
32_{81‘}? an n-vector of positive integers. We define
& degree-constrained subgraph of (G, &) to be a sub-
graph D of G such that d(v;, D) < §; for 1 < { =< n, and
—

;h‘“lllll)rted int part by the Army Research Office (Durham), CRD-AA-1L-P-3532.

3?‘?‘6 possibility that P consists of a single edge accounts for this awkward wording.
1gures in brackets indicate the literature references at the end of this paper.
1¢ word “contains” can be further sharpened to “has as a connected component’’: see
dmonds (4}
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This paper contains a proof of the extended version by direct reduc-
Possible algorithmie implications of the reduction are suggested.

consider the problem of finding such a subgraph which
is optimal in the sense that | D | is maximum. (When
all 8;=1 we are back to optimal matchings.) For this
problem, it is no loss of generality to assume that the
sets Ej; of edges joining particular vertex-pairs (vi, v;)
obey the conditions

(1) | E; l =< min (6;, 5_;) for i4j,

An augmenting path for a degree-constrained sub-
graph D is a path P in G with edges alternately in D
and G-D, no end edge in D, and either distinct end
vertices v, such that d(ve, D) < 8. — 1, or else coincident
end vertices (i.e., P a closed path) such that
d(ve, D) < 8,—2. As for matchings, it is obvious that if
D admits an augmenting path then it is not optimal, and
there is a nontrivial converse which we state in the
following sharp form:

THEOREM (DCSG): Let Dy and D. be degree-con-
strained subgraphs of (G, 8) with |Dy|<|D;|. Then
DiAD; contains an augmenting path for D,.

Berge [2] adapted the Norman-Rabin proof of the
theorem (M) to a proof of the theorem (DCSG). Zahn
(unpublished manuscript) has given a direct con-
structive proof based on ideas in the work of Edmonds.
Relevant literature includes papers [3, 5] of Edmonds.

Our purpose here is to provide a proof of the theorem
(DCSG) by (i) reduction to the historically earliest case
of matchings and (ii) application of the theorem (M).
This is done by constructing, in a way loosely motivated
by the theory of covering spaces and possibly useful
in other contexts, a strict graph G* such that the analy-
sis of D1 and Ds can be transferred to a discussion of
matchings in G*. Thus only the restriction of theorem
(M) to strict graphs will be used.

The edges of G* will be in one-to-one correspondence
with those of G, and the vertices of G* will consist of
d; “replicas’ of the vertex v; of G, for 1 <i=<n. For-
mally, the vertex-set of G* is

{wi,k): 1<i<n, 1<k<§]l.



Let E; be the set of edges of € incident on v;, with
loops (if any) appearing twice. Thus E; is the disjoint
union of (i) the sets Ey; for for i = j, and (ii) a ““doubled”
Ey. For i = jlet ¢y be an indexing of £j; by a subset of
the integers {1, 2,. . ., 8;}; this is possible by condi-
tion (1). (In general ¢ + ¢ji.) Also let ¢y be an
indexing of the edge-appearances in the doubled E;
by a subset of the integers {1, 2, . . ., 8;}, which is
possible by condition (2).

The edges of G* are constructed in one-to-one cor-
respondence with those of G as follows. Suppose an
edge e joins v; and v;in G. If i + j, associate to e an
edge e* in G* which joins the vertices (v, ¢e)) and
(vj, ¢jile)). If i = j and the symbols e* and e~ are used
for the two appearances of e in Ej, then associate to
e an edge e* in G* which joins (v, di(e™)) and (vi, pile™)).
G* has only the edges e* thus defined.

The edge-correspondence will bhe denoted
¢: G—G*. It is easily shown that G* is indeed a
strict graph, that any matching M in G* yields a degree-
constrained subgraph D= ¢~ (M) of (G, §), and that an
augmenting path P for M yields an augmenting path
¢~YP) for D.

A degree-constrained subgraph D of (G, 8), however,
yields a subgraph (D) of G* which is not necessarily a
matching. To overcome this difficulty we need only
specialize the indexings ¢;; (which so far have been
arbitrary), in a manner depending on the particular I,
and D, for which the conclusion of the theorem
(DCSG) is to be proved, so that at least ¢p(Dy) and H(Ds)
are matchings. {A way of doing this is given below.)
Then since

| $(D0) [=]Di|< | Do | =] (Do) |,

theorem (M) yields an augmenting path P for ¢(D:)
contained in ¢(D)AGD:), and ¢~ Y(P) provides the
desired augmenting path for D, contained in DAD:.

The following choice of ¢;i’s will insure that ¢(D;) and
¢(Ds) are matchings. First index the appearances in
E; of edges of D; N D, by the integers 1 through
d(vi, Dy N Ds)in any way. Then index the appearances
in E; of edges of Dy — D, by the integers d(v;, D, N Dy)
+ 1 through d(vi, D) in any way, and index the appear-
ances of edges of I, — D, by the integers d(v;, I
M D) + 1 through d(vi, Ds) in any way. FEach appear-
ance x of an edge of Dy U Ds in any Ej; (where j=11is
admitted) has now received an index, which is taken as
the value of ¢i(x). Note that any two edges of
Fi N D, have received different indices, whether they
were both in Dy N ., both in Dy—D,, or one in
D1 N D, and the other in D; — Dy, This is what makes
¢(D1) a matching, and similarly for ¢(D2). The
definition of the ¢y's can be completed by extending
them in any way to the remainder of their respective
domains. This completes the proof.

The same line of reasoning suggests how algorithms
for finding optimal degree-constrained subgraphs
might, at least in principle, be generated from algo-
rithms for finding optimal matchings. At each stage
one is trying to improve the ‘“current” degree-con-
strained subgraph D of (G, 8). Form G* as above,

. ing for at least one optimal D°, or even for at least on
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choosing the ¢;’s so that (D) is a matching. Theny,
matching-algorithm techniques to improve (D), cay
the gain back to G via ¢!, and proceed to the n
stage. The new degree-constrained subgr
D'=DA¢p~YP) is automatically such that ¢(D’) i
matching, so that the same G* (i.e., the same ¢
can be used step after step so long as augment
paths for ¢(D) are found in G*. |
Unfortunately the absence of augmenting paths
¢(D) in G* does not imply the absence of an augme
ing path for D in (G,8). That is, D may not be
optimal degree-constrained subgraph of (G, 8) eve
though ¢(D) is an optimal matching in G*. Th;
situation is readily seen to arise precisely when D hy
one or more augmenting paths P, but every one of they
is “pulled apart” by ¢ so that ¢(P) is not a path in
From the theorem (DCSG) we know that this can
happen if the ¢;’s are so chosen that ¢(D is a matcl,

D® more populous than the current D. By taking |
and 1)° as the Dy and D; of the particular indexings us
in the last proof, we see that such ¢i’s do indeei
exist; however, they are not known in advance sinc
D% is not.

It is therefore necessary, when a point is reached ¢
which ¢(D) is an optimal matching in G*, to take i
account somehow the possibility of augmenting path:
for D in G whose connectivity has been lost in il
transformation by ¢. For simplicity of descriptio
we distinguish two general classes of tactics; the
distinetion is conceptual rather than computationd
and no attempt is made to consider directly the possibl
computational implementations, comparisons, o
compromises. |

First, one might attempt to restore possible miss
connections by reindexing. What would be requi
is a systematic way of varying the ¢y’s (i.e., G*) unti
an indexing is found for which the image of D admit
an augmenting path. To indicate that the opti
mum has been achieved, a “stop rule” for this proces:
is also needed.

Second, one might try to supply the connections b
enlarging the graph G*, either initially, or gradually &
the algorithm progresses. The enlarged graph woull
no longer have G as a self-intersecting copy in the senst
of Edmonds [3].

The second policy can be illustrated in a rathe.
heavy-handed way as follows. Instead of G*, wt
employ a (itypically enormous) graph G** whost
vertex-set, like that of G¥*, is

!

{w,h): 1<i<n, 1<k<g§).

For each edge eeE;; of G (i <j), we construct a collet
tion

{61,‘1: 1=<k=<g, 1< Sj}

H

of 6:8; edges of G**; ey joins (vi, k) and (v5, 1). For each

loop eek; of G, we construct a collection

{ex 1sk<<8}




o 56— 1)/2 edges of G**; el joins (vi, k) and (v, ).
[hese are the only edges of G**. A many-to-one onto
papping Y: G**—>Gs defined by the formula Y(er) =e.
Jote that for every choice of indexings ¢y, GF=¢(G)is
q an obvious sense a subgraph of G** and ¥¢ is the
Jentity map of G.

For each matching M in G**, (M) is a degree-
.onstrained subgraph of (G, 6). Conversely, for each
1€gree-const1‘ained subgraph D of (G, 8), we can choose
he ¢i's so that ¢(D) is a matching in G* = ¢(G) and
ence in G**, with did(Dy=D. The maichings M of
;% obtained in this way are precisely those for which
he restriction §|M is one-to-one. Such matchings
1 G will be called special.

- An augmenting path P for a special matching M will
1 turn be called spectal if the matching MAP is also
pecial.  This will be the case if and only if

(P —M) N Y(M—P)

s empty and in addition the matching P-M is special.
\ special augmenting path P for M will be called strong
{ y|P is one-to-one.

Now consider the following process, which begins
vith an arbitrary special matching MY in G** (e.g.,
he null matching). At the mth stage we have a special
natching M in G**, and seek a special augmenting
sath (or if preferred even a strong special augmenting
sath) for MU, 1f such a path P is found, we form the
pecial matching M+ = M"™AP and go on to the next
tage.

THEOREM. This process terminates with a special

natching M in G** such that D = (M) is an optimal
legree-constrained subgraph of (G, 8).
For the proof, first observe that the finiteness of
4% insures termination with some special matching
1. Since M is special, ¢|M is a one-to-one mapping
f M onto the degree-constrained subgraph D=(M)
of (G, 8). If D were not optimal, there would be a
egree-constrained subgraph DY of (G, 8) such that
D| < |D°. Exploiting our freedom in selecting in-
exings, we choose ¢i;’s such that ¢(D)=M and (D)
s a matching. (A way of doing this is given below.)
Then since

| D) |=|D|<|D°|=| D],

heorem (M) yields* an augmenting path P for ¢(D),
sontained in G(D)AMD® and thus in &(G). This
oniainment guarantees that P is a strong special
ugmenting path for ¢(D)=M, contradicting the as-
umption that the process terminated with M.

The following choice of ¢;;’s will insure that ¢(Dy=M
ind that (D) is a matching. Consider any eeD N Ey,
vhere j=<j. There is a unique eneM, for which
(er)=e. Ifi<j,setdjle)=kand djle)=1[. Ii=j,
vhich implies £ < I, then set ¢s(e”) = & and dule™) = L.
[his yields ¢(D)y=M. Now fix the value of i. For
¢ach j (with j =< i admitted), the ¢y~ values assigned

* Theorem (M) specialized to strict graphs can be used even though G** is not necessarily
tiet, since we are working in the striet graph $(G).
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to appearances in E; of edges in D N DY are distinct
(since M=dd(D) is a matching) and form a subset Sj;
of {1,2,. . .,8;}. For the same reason, the union
U Sy is a disjoint union and has cardinality d(vi, D

j
N D%. Because

d(vi, D= D)=dl(vi, D) —d(v;; D N D) <& —| U Sy,
J

the appearances x of edges of D* — D in E; can be
indexed by a subset of
{1,2,. - ,55}“—USU,

J

and we can take ¢(x) to be the index of x. This makes
¢(D% a matching; the definitions of the ¢;’s can be
completed by extending them in any way to the
remainder of their respective domains. This completes
the proof, and shows that finding optimal degree-
constrained subgraphs in (G, 8) can in principle be
“reduced” to finding strong special augmenting paths
for special matchings in the very large graph G**.

This “reduction” is not quite of the form desired,
since G** will not be strict unless G is such that
|Ejl<1 for 1<i,j<n. For many situations of
interest that assumption is satisfied, and in any case
the work on matching optimization [4] does not require
strictness of the underlying graph.

It is hoped that further exploration of the ideas
presented above will lead to a computationally useful
reduction of the degree-constrained subgraph optimiza-
tion problem to the matching optimization problem or
its associated techniques. To avoid possible mis-
understanding, it should be emphasized that one
efficient algorithm for the former problem is already
known [5].

I am indebted to NBS colleagues J. Edmonds,
C. Witzgall, and C. T. Zahn, Jr., for many discussions of
their recent work in this area of combinatorial extremi-
zation. Zahn’s direct proof of the theorem (DCSG)
was the specific stimulus for this paper, and his
scrutiny of an early draft uncovered the need for
several modifications.
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