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Abstract. Periodic global updates of dual variables have been shown to yield a substantial speed
advantage in implementations of push-relabel algorithms for the maximum flow and minimum cost
flow problems. In this paper, we show that in the context of the bipartite matching and assignment
problems, global updates yield a theoretical improvement as well. For bipartite matching, a push-

relabel algorithm that uses global updates runs in O
(√

nm
log(n2/m)

logn

)
time (matching the best bound

known) and performs worse by a factor of
√
n without the updates. A similar result holds for the

assignment problem, for which an algorithm that assumes integer costs in the range [−C, . . . , C ] and
that runs in time O(

√
nm log(nC)) (matching the best cost-scaling bound known) is presented.
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1. Introduction. The push-relabel method [10, 13] is the best currently known
method for solving the maximum flow problem [1, 2, 19]. This method extends to
the minimum cost flow problem using cost-scaling [10, 14], and an implementation
of this technique has proven very competitive on a wide class of problems [11]. In
both contexts, the idea of periodic global updates of node distances or prices has been
critical in obtaining the best running times in practice.

Several algorithms for the bipartite matching problem run in O(
√
nm) time.1 The

first algorithm proved to achieve this bound was proposed by Hopcroft and Karp [15].
Karzanov [17, 16] and Even and Tarjan [5] proved that the blocking flow algorithm
of Dinic [4] runs in this time when applied to the bipartite matching problem. Two-
phase algorithms based on a combination of the push-relabel method [13] and the
augmenting path method [7] were proposed in [12, 20].

Feder and Motwani [6] give a “graph compression” technique that combines with

the algorithm of Dinic to yield an O
(√

nm log(n2/m)
log n

)
algorithm. This is the best time

bound known for the problem.
The most relevant theoretical results on the assignment problem are as follows.

The best currently known strongly polynomial time bound of O
(
n(m + n logn)

)
is

achieved by the classical Hungarian method of Kuhn [18]. Under the assumption
that the input costs are integers in the range [−C, . . . , C ], Gabow and Tarjan [9]
use cost-scaling and blocking flow techniques to obtain an O

(√
nm log(nC)

)
time

algorithm. An algorithm using an idea similar to global updates with the same running
time appeared in [8]. Two-phase algorithms with the same running time appeared
in [12, 20]. The first phase of these algorithms is based on the push-relabel method and
the second phase is based on the successive augmentation approach. Our algorithm
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for the assignment problem runs in O
(√

nm log(nC)
)
, and like the other algorithms

with this time bound, it is based on cost-scaling, assumes that the input costs are
integers, and is not strongly polynomial.

We show that algorithms based on the push-relabel method with global updates
match the best bounds for the bipartite matching and assignment problems. Our
results are based on the following new selection strategies: the minimum distance
strategy in the bipartite matching case and minimum price change strategy in the
assignment problem case. We also prove that the algorithms perform significantly
worse without global updates. Similar results can be obtained for maximum and
minimum cost flows in networks with unit capacities. Our results are a step toward
a theoretical justification of the use of global update heuristics in practice.

This paper is organized as follows. Section 2 gives definitions relevant to bipartite
matching and maximum flow. Section 3 outlines the push-relabel method for maxi-
mum flow and shows its application to bipartite matching. In section 4, we present
an O(

√
nm) time bound for the bipartite matching algorithm with global updates,

and in Section 5 we show how to apply Feder and Motwani’s techniques to improve

the algorithm’s performance to O
(√

nm log(n2/m)
log n

)
. Section 6 shows that without

global updates, the bipartite matching algorithm performs poorly. Section 7 gives
definitions relevant to the assignment problem and minimum cost flow. In section 8,
we describe the cost-scaling push-relabel method for minimum cost flow and apply
the method to the assignment problem. Sections 9 and 10 generalize the bipartite
matching results to the assignment problem. In section 11, we give our conclusions
and suggest directions for further research.

2. Bipartite matching and maximum flow. Let G = (V = X ∪ Y,E) be an
undirected bipartite graph, let n = |V |+2 (the additive constant being, for notational
convenience, in the reduction to come), and let m = |E|. A matching in G is a subset
of edges M ⊆ E that have no node in common. The cardinality of the matching is
|M |. The bipartite matching problem is to find a maximum cardinality matching.

The conventions we assume for the maximum flow problem are as follows: Let
G = ({s, t} ∪ V,E) be a digraph with an integer-valued capacity u(a) associated with
each arc2 a ∈ E. We assume that a ∈ E ⇒ aR ∈ E (where aR denotes the reverse of
arc a). A pseudoflow is a function f : E → R satisfying the following for each a ∈ E:

• f(a) = −f(aR) (flow antisymmetry constraints);
• f(a) ≤ u(a) (capacity constraints).

The antisymmetry constraints are for notational convenience only, and we will often
take advantage of this fact by mentioning only those arcs with nonnegative flow; in
every case, the antisymmetry constraints are satisfied simply by setting the reverse
arc’s flow to the appropriate value. For a pseudoflow f and a node v, the excess
flow into v, denoted ef (v), is defined by ef (v) =

∑
(u,v)∈E f(u, v). A preflow is a

pseudoflow with the property that the excess of every node except s is nonnegative.
A node v 6= t with ef (v) > 0 is called active.

A flow is a pseudoflow f such that, for each node v ∈ V , ef (v) = 0. Observe
that a preflow f is a flow if and only if there are no active nodes. The maximum flow
problem is to find a flow maximizing ef (t).

2Sometimes we refer to an arc a by its endpoints, e.g., (v, w). This is ambiguous if there are
multiple arcs from v to w. An alternative is to refer to v as the tail of a and to w as the head of a,
which is precise but inconvenient.



GLOBAL PRICE UPDATES HELP 553

s t

Given Matching Instance

Bipartite Matching Instance Corresponding Maximum Flow Instance

(Reverse arcs not shown)

Fig. 3.1. Reduction from bipartite matching to maximum flow.

3. The push-relabel method for bipartite matching. We reduce the bi-
partite matching problem to the maximum flow problem in a standard way. For
brevity, we mention only the “forward” arcs in the flow network; to each such arc
we give unit capacity. The “reverse” arcs have capacity zero. Given an instance
G =

(
V = X ∪ Y,E

)
of the bipartite matching problem, we construct an instance(

G = ({s, t} ∪ V,E), u
)

of the maximum flow problem by

• setting V = V ;
• for each node v ∈ X, placing arc (s, v) in E;
• for each node v ∈ Y , placing arc (v, t) in E;
• for each edge {v, w} ∈ E with v ∈ X and w ∈ Y , placing arc (v, w) in E.

A graph obtained by this reduction is called a matching network (see Figure 3.1).
Note that if G is a matching network, then for any integral pseudoflow f and for
any arc a ∈ E, u(a), f(a) ∈ {0, 1}. Indeed, any integral flow in G can be interpreted
conveniently as a matching in G; the matching is exactly the edges corresponding to
those arcs a ∈ X × Y with f(a) = 1. It is a well-known fact [7] that a maximum flow
in G corresponds to a maximum matching in G.

For a given pseudoflow f , the residual capacity of an arc a ∈ E is uf (a) =
u(a) − f(a). The set of residual arcs Ef contains the arcs a ∈ E with f(a) < u(a).
The residual graph Gf = (V,Ef ) is the graph induced by the residual arcs. The
augmented residual graph G=

f has the same nodes and arcs as G but is associated
with the capacity function uf . The point of defining G=

f is to meaningfully discuss
pseudoflows that obey the residual capacity constraints. Since the residual graph lacks
arcs a with uf (a) = 0, it can lack reverse arcs that are assumed by the definition of
a pseudoflow.

A distance labeling is a function d : V → Z+. We say a distance labeling d is valid
with respect to a pseudoflow f if d(t) = 0, d(s) = n and, for every arc (v, w) ∈ Ef ,
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push(v, w).
send a unit of flow from v to w.

end.

relabel(v).

replace d(v) by min(v,w)∈Ef

{
d(w) + 1

}
end.

Fig. 3.2. The push and relabel operations.

d(v) ≤ d(w)+1. Those residual arcs (v, w) with the property that d(v) = d(w)+1 are
called admissible arcs, and the admissible graph GA = (V,EA) is the graph induced
by the admissible arcs. It is straightforward to see that GA is acyclic for any valid
distance labeling.

We begin with a high-level description of the generic push-relabel algorithm for
maximum flow specialized to the case of matching networks. The algorithm starts
with the zero flow, then sets f(s, v) = 1 for every v ∈ X. For an initial distance
labeling, the algorithm sets d(s) = n and d(t) = 0 and, for every v ∈ V , sets d(v) = 0.
Then the algorithm applies push and relabel operations in any order until the current
pseudoflow is a flow. The push and relabel operations, described below, preserve the
properties that the current pseudoflow f is a preflow and that the current distance
labeling d is valid with respect to f .

The push operation applies to an admissible arc (v, w) whose tail node v is active.
It consists of “pushing” a unit of flow along the arc, i.e., increasing f(v, w) by one,
increasing ef (w) by one, and decreasing ef (v) by one. The relabel operation applies
to an active node v that is not the tail of any admissible arc. It consists of changing
v’s distance label so that v is the tail of at least one admissible arc, i.e., setting d(v) to
the largest value that preserves the validity of the distance labeling. See Figure 3.2.

Our analysis of the push-relabel method is based on the following facts. (See [13]
for details; note that arcs in a matching network have unit capacities and thus
push(v, w) saturates the arc (v, w)).

• For all nodes v, we have 0 ≤ d(v) ≤ 2n.
• Distance labels do not decrease during the computation.
• relabel(v) increases d(v).
• The number of relabel operations during the computation is O(n) per node.
• The work involved in relabel operations is O(nm).
• If a node v is relabeled t times during a computation segment, then the

number of pushes from v is at most (t+ 1)× degree(v).
• The number of push operations during the computation is O(nm).

The above facts imply that any push-relabel algorithm runs in O(nm) time given
that the work involved in selecting the next operation to apply does not exceed the
work involved in applying these operations. This can be easily achieved using the
following simple data structure (see [13] for details). We maintain a current arc for
every node. Initially, the first arc in the node’s arc list is current. When pushing
flow excess out of a node v, we push it on v’s current arc if the arc is admissible, or
advance the current arc to the next arc on the arc list. When there are no more arcs
on the list, we relabel v and set v’s current arc to the first arc on v’s arc list.
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4. Global updates and the minimum distance discharge algorithm. In
this section, we specify an ordering of the push and relabel operations that yields
certain desirable properties. We also introduce global distance updates and show
that the algorithm resulting from our operation ordering and global update strategy
runs in O(

√
nm) time.

For any nodes v, w, let dw(v) denote the breadth-first-search distance from v to
w in the (directed) residual graph of the current preflow. If w is unreachable from v
in the residual graph, dw(v) is infinite. Setting d(v) = min

{
dt(v), n+ds(v)

}
for every

node v ∈ V is called a global update operation. This operation also sets the current
arc of every node to the node’s first arc. Such an operation can be accomplished with
O(m) work that amounts to two breadth-first-search computations. Validity of the
resulting distance labeling is a straightforward consequence of the definition. Note
that a global update cannot decrease any node’s distance label [13].

The ordering of operations we use is called minimum distance discharge. It con-
sists of repeatedly choosing an active node whose distance label is minimum among
all active nodes and, if there is an admissible arc leaving that node, pushing a unit of
flow along the admissible arc; otherwise we relabel the node. For the sake of efficient
implementation and easy generalization to the weighted case, we formulate this selec-
tion strategy in a slightly different (but equivalent) way and use this formulation to
guide the implementation and analysis. The intuition is that we select a unit of excess
at an active node with a minimum distance label and process that unit of excess until
a relabeling occurs or the excess reaches s or t. In the event of a relabeling, the new
distance label may be small enough to guarantee that the same excess still has the
minimum label; if so, we avoid the work associated with finding the next excess to
process. This scheme’s important properties generalize to the weighted case, and it
allows us to show easily that the work done in active node selection is not too great.

To implement this selection rule, we maintain a collection of buckets, b0, . . . , b2n;
each bi contains the active nodes with distance label i, except possibly one which is
currently being processed. During execution, we maintain µ, which is the index of the
bucket from which we selected the most recent unit of excess. If the new distance label
is no more than µ when we relabel a node, we know that node still has a minimum
distance label among the active nodes, so we continue processing the same unit of
excess.

In addition, we perform periodic global updates. The first global update is per-
formed immediately after the preflow is initialized. After each push and relabel oper-
ation, the algorithm checks the following two conditions and performs a global update
if both conditions hold:

• Since the most recent update, at least one unit of excess has reached s or t.
• Since the most recent update, the algorithm has done at least m work in push

and relabel operations.

Immediately after each global update, we rebuild the buckets in O(n) time and set
µ to zero. The following lemma shows that the algorithm does little extra work in
selecting nodes to process.

Lemma 4.1. Between two consecutive global updates, the algorithm does O(n)
work in examining empty buckets.

Proof. The proof is immediate, because µ decreases only when it is set to zero
after an update, and there are 2n+ 1 = O(n) buckets.

We will denote by Γ(f, d) (or simply Γ) the minimum distance label of an active
node with respect to the pseudoflow f and the distance labeling d. We let Γmax denote
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Fig. 4.1. Accounting for work when 0 ≤ Γmax ≤ n.

the maximum value reached by Γ during the algorithm so far. Note that Γmax is often
equal to µ; we use separate names mainly to emphasize that µ is maintained by the
implementation, while Γmax is an abstract quantity with relevance to the analysis
regardless of the implementation details.

Figure 4.1 represents the structure underlying our analysis of the minimum dis-
tance discharge algorithm. (Strictly speaking, the figure shows only half of the anal-
ysis; the other half, when Γmax > n, is essentially similar.) The horizontal axis
corresponds to the value of Γmax, which increases as the algorithm proceeds, and the
vertical axis corresponds to the distance label of the node currently being processed.
Our analysis hinges on a parameter k, in the range 2 ≤ k ≤ n, to be chosen later. We
divide the execution of the algorithm into four stages. In the first two stages, excesses
are moved to t; in the final two stages, excesses that cannot reach t return to s. We
analyze the first stage of each pair using the following lemma.

Lemma 4.2. The minimum distance discharge algorithm expends O(km) work
during the periods when Γmax ∈ [0, k] and Γmax ∈ [n, n+ k].

Proof. First, note that if Γmax falls in the first interval of interest, Γ must lie in
that interval as well. This relationship also holds for the second interval after a global
update is performed, since Γmax ≥ n implies that no excess can reach t. Because the
work from the beginning of the second interval until the price update is performed is
O(m), it is enough to show that the time spent by the algorithm during periods when
Γ ∈ [0, k] and Γ ∈ [n, n+ k] is in O(km). Note that the periods defined in terms of Γ
may not represent contiguous intervals during the execution of the algorithm.

Each node can be relabeled at most k + 1 times when Γ ∈ [0, k] and similarly
for Γ ∈ [n, n + k]. Hence the relabelings and pushes require O(km) work. The
observations that a global update requires O(m) work and that during each period
there are O(k) global updates complete the proof.
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To study the behavior of the algorithm during the remainder of its execution, we
exploit the structure of matching networks by appealing to a combinatorial lemma.
The following lemma is a special case of a well-known decomposition theorem [7] (also
see [5]). The proof depends mainly on the fact that for a matching network G, the
in-degree of v ∈ X in Gf is 1− ef (v) and the out-degree of w ∈ Y in Gf is 1 + ef (w)
for any integral pseudoflow f .

Lemma 4.3. Any integral pseudoflow f in the augmented residual graph of an
integral flow g in a matching network can be decomposed into cycles and simple paths
that are pairwise node-disjoint, except at the endpoints of the paths, such that each
element in the decomposition carries one unit of flow. Each path is from a node v
with ef (v) < 0 (v can be t) to a node w with ef (w) > 0 (w can be s).

Lemma 4.3 allows us to show that when Γmax is outside the intervals covered by
Lemma 4.2, the amount of excess the algorithm must process is small.

Given a preflow f , we define the residual flow value to be the total excess that
can reach t in Gf .

Lemma 4.4. If Γmax ≥ k > 2, the residual flow value is at most n/(k − 1) if G
is a matching network.

Proof. Note that the residual flow value never increases during an execution of
the algorithm, and consider the pair (f, d) such that Γ(f, d) ≥ k for the first time
during the execution. Let f∗ be a maximum flow in G, and let f ′ = f∗− f . Now −f ′
is a pseudoflow in G=

f∗ and can therefore be decomposed into cycles and paths as in
Lemma 4.3. Such a decomposition of −f ′ induces the obvious decomposition on f ′

with all the paths and cycles reversed and excesses negated. Because Γ ≥ k and d is a
valid distance labeling with respect to f , any path in Gf from an active node to t must
contain at least k+1 nodes. In particular, the excess-to-t paths in the decomposition
of f ′ contain at least k+1 nodes each and are node-disjoint except for their endpoints.
Since G contains only n nodes, there can be no more than (n−2)/(k−1) < n/(k−1)
such paths. Since f∗ is a maximum flow, the amount of excess that can reach t in Gf

is no more than n/(k − 1).

The proof of the next lemma is similar.

Lemma 4.5. If Γmax ≥ n + k > n + 2 during an execution of the minimum
distance discharge algorithm with global updates on a matching network, the total
excess at nodes in V is at most n/(k − 1).

The following lemma shows an important property of the rules we use to trigger
global update operations, namely, that during a period when the algorithm does Θ(m)
work at least one unit of excess is guaranteed to reach s or t.

Lemma 4.6. Between any two consecutive global update operations, the algorithm
does Θ(m) work.

Proof. According to the two conditions that trigger a global update, it suffices
to show that immediately after an update, the work done in moving a unit of excess
to s or t is O(m). For every node v, at least one of ds(v), dt(v) is finite. Therefore,
immediately after a global update at least one admissible arc leaves every node except
s and t, by definition of the global update operation. Recall that the admissible
graph is acyclic, so the first unit of excess processed by the algorithm immediately
after a global update arrives at t or at s before any relabeling occurs, and does so
along a simple path. Consider the path taken by the flow unit to s or t. The work
performed while moving the unit along the path is proportional to the length of the
path plus the number of times current arcs of nodes on the path are advanced. This
O(n+m) = O(m) work is performed before the first condition for a global update is
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met.

Following an amount of additional work bounded above by m+O(n), plus work
proportional to that for a push or relabel operation, another global update opera-
tion will be triggered. Clearly a push or relabel takes O(m) work and the lemma
follows.

We are ready to prove the main result of this section.

Theorem 4.7. The minimum distance discharge algorithm with global updates
computes a maximum flow in a matching network (and hence a maximum cardinality
bipartite matching) in O(

√
nm) time.

Proof. By Lemma 4.2, the total work done by the algorithm when Γmax ∈ [0, k] and
Γmax ∈ [n, n + k] is O(km). By Lemmas 4.4 and 4.5, the amount of excess processed
when Γmax falls outside these bounds is at most 2n/(k − 1). From Lemma 4.6 we
conclude that the work done in processing this excess is O(nm/k). Hence the time
bound for the minimum distance discharge algorithm is O

(
km+ nm/k

)
. Choosing

k = Θ(
√
n ) to balance the two terms, we see that the minimum distance discharge

algorithm with global updates runs in O(
√
nm) time.

5. Improved performance through graph compression. Feder and Mot-
wani [6] give an algorithm that runs in o(

√
nm) time and produces a compressed

representation G
∗

= (V ∪W,E
∗
) of a bipartite graph in which all adjacency infor-

mation is preserved, but that has asymptotically fewer edges if the original graph
G = (V ,E) is dense. This graph consists of all the original nodes of X and Y , as
well as a set of additional nodes W . An edge {x, y} appears in E if and only if either

{x, y} ∈ E
∗

or G
∗

contains a length-two path from x to y through some node of W .

The following theorem is slightly specialized from Feder and Motwani’s Theo-
rem 3.1 [6], which details the performance of their algorithm Compress.

Theorem 5.1. Let δ ∈ (0, 1) and let G = (V = X ∪ Y,E) be an undirected
bipartite graph with |X| = |Y | = n and |E| = m ≥ n2−δ. Then algorithm Compress

computes a compressed representation G
∗

= (V ∪ W,E
∗
) of G with m∗ = |E∗| =

O
(
mδ−1 log(n2/m)

log n

)
in time O(mnδ log2 n). The number of nodes in W is O(mnδ−1).

In particular, we choose a constant δ < 1/2; then the compressed representation

is computed in time o(
√
nm) and has m∗ = O

(
m log(n2/m)

log n

)
edges.

Given a compressed representation G
∗

of G, we can compute a flow network G∗

in which there is a correspondence between flows in G∗ and matchings in G. The only
differences from the reduction of section 3 are that each edge {x,w} with x ∈ X and
w ∈ W gives an arc (x,w), and each edge {w, y} with w ∈ W and y ∈ Y gives an
arc (w, y). As in section 3, we have a relationship between matchings in the original
graph G and flows in G∗, but now the correspondence is not one-to-one as it was
before. Nevertheless, it remains true here that given a flow f with ef (t) = c in G∗, we
can find a matching of cardinality c in G using only O(n) time in a straightforward
way.

The performance improvement that we gain comes from using the graph com-
pression step as preprocessing; we will show that the minimum distance discharge
algorithm with global updates runs in time O(

√
nm∗) on the flow network G∗ corre-

sponding to the compressed representation G
∗

of a bipartite graph G. In other words,
the speedup results only from the reduced number of edges, not from changes within
the minimum distance discharge algorithm.

To prove the performance bound, we must generalize certain lemmas from sec-
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tion 4 to networks with the structure of compressed representations. Let n∗ = n+ |W |
be the number of nodes in the maximum flow problem derived from the compressed
representation of the input graph. Lemma 4.2 is independent of the input network’s
structure, as are Lemma 4.6 and Lemma 4.1. These three lemmas give us their con-
clusions for compressed representations where we substitute n∗ for n and m∗ for m in
their statements and proofs. An analogue to Lemma 4.3 holds in a flow network de-
rived from a compressed representation; this will extend Lemmas 4.4 and 4.5, allowing
us to conclude the improved time bound.

Lemma 5.2. Any integral pseudoflow f in the augmented residual graph of an
integral flow g in the flow graph of a compressed representation can be decomposed into
cycles and simple paths that are pairwise node-disjoint at nodes of X and Y , except
at the endpoints of the paths, such that each element of the decomposition carries one
unit of flow. Each path is from a node v with ef (v) < 0 (v can be t) to a node w with
ef (w) > 0 (w can be s).

Proof. As with matching networks, the in-degree of v ∈ X is 1 − ef (v) and the
out-degree of y ∈ Y is 1 + ef (y), so the standard proof of Lemma 4.3 extends to this
case.

The following lemma is analogous to Lemma 4.4.

Lemma 5.3. If Γmax ≥ k > 2, the residual flow value is at most 2n/(k − 2) if G∗

is a compressed representation.

Proof. The proof follows as in the case of Lemma 4.4, except that here an excess-
to-t path in the decomposition of f ′ must contain at least k/2 nodes of V . Since
V contains only n nodes, there can be no more than 2n/(k − 2) such paths, and so
because f∗ is a maximum flow, the amount of excess that can reach t in G∗f is no
more than 2n/(k − 2).

The following lemma is analogous to Lemma 4.5, and its proof is similar to the
proof of Lemma 5.3.

Lemma 5.4. If Γmax ≥ n∗ + k > n∗ + 2 during an execution of the minimum
distance discharge algorithm with global updates on a compressed representation, the
total excess at nodes in V ∪W is at most 2n/(k − 2).

Using the same reasoning as in Theorem 4.7, we have the following theorem.

Theorem 5.5. The minimum distance discharge algorithm with global updates
computes a maximum flow in the network corresponding to a compressed representa-
tion with m∗ edges in O(

√
nm∗) time.

To complete our time bound for the bipartite matching problem we must dispense
with some technical restrictions in Theorem 5.1, namely, the requirements that |X| =
|Y | = n and that m ≥ n2−δ. The former condition is easily met by adding nodes to
whichever of X, Y is the smaller set, so their cardinalities are equal. These “dummy”
nodes are incident to no edges. As for the remaining condition, observe that our time
bound does not suffer if we simply forego the compression step and apply the result of
section 4 in the case where m < n2−δ. To see this, recall that we chose δ < 1/2, and

note that 1 ≤ m < n2−δ implies log(n2/m)
log n = Θ(1). So we have the following theorem.

Theorem 5.6. The minimum distance discharge algorithm with graph com-
pression and global updates computes a maximum cardinality bipartite matching in

O
(√

nm log(n2/m)
log n

)
time.

This bound matches that of Feder and Motwani for Dinic’s algorithm.

6. Minimum distance discharge algorithm without global updates. In
this section we describe a family of graphs on which the minimum distance discharge
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1. Initialization establishes |X| units of excess, one at each node of X;

2. Nodes of X are relabeled one-by-one, so all v ∈ X have d(v) = 1;

3. While ef (t) < |Y |,
3.1. a unit of excess moves from some node v ∈ X to some node w ∈ Y with

d(w) = 0;
3.2. w is relabeled so that d(w) = 1;
3.3. The unit of excess moves from w to t, increasing ef (t) by one.

4. A single node, x1 with ef (x1) = 1, is relabeled so that d(x1) = 2.

5. `← 1.

6. While ` ≤ n,

Remark: All nodes v ∈ V now have d(v) = ` with the exception of the one
node x` ∈ X, which has d(x`) = `+1 and ef (x`) = 1; all excesses are at nodes
of X;

6.1. All nodes with excess, except the single node x`, are relabeled one-by-one so
that all v ∈ X with ef (v) = 1 have d(v) = `+ 1;

6.2. While some node y ∈ Y has d(y) = `,
6.2.1. A unit of excess is pushed from a node in X to y;
6.2.2. y is relabeled so d(y) = `+ 1;
6.2.3. The unit of excess at y is pushed to a node x ∈ X with d(x) = `;
6.2.4. x is relabeled so that if some node in Y still has distance label `,

d(x) = `+ 1;
otherwise
d(x) = `+ 2 and x`+1 ← x;

6.3. `← `+ 1;

7. Excesses are pushed one-by-one from nodes in X (labeled n+ 1) to s.

Fig. 6.1. The minimum distance discharge execution on bad examples.

algorithm without global updates requires Ω(nm) time (for values of m between Θ(n)
and Θ(n2)). This shows that the updates improve the worst-case running time of the
algorithm. The goal of our construction is to admit an execution of the algorithm in
which each relabeling changes a node’s distance label by O(1). Under this condition
the execution will have to perform Ω(n2) relabelings, and these relabelings will require
Ω(nm) time.

Given ñ ∈ Z and m̃ ∈ [1, ñ2/4], we construct a graph G as follows: G is the
complete bipartite graph with V = X ∪ Y , where

X =

{
1, 2, . . . ,

⌈
ñ+

√
ñ2 − 4m̃

2

⌉}
and Y =

{
1, 2, . . . ,

⌊
ñ−√

ñ2 − 4m̃

2

⌋}
.

It is straightforward to check that this graph has n = ñ+O(1) nodes andm = m̃+O(ñ)
edges. Note that |X| > |Y |.

Figure 6.1 describes an execution of the minimum distance discharge algorithm
on G—the matching network derived from G—that requires Ω(nm) time. With more
complicated but unilluminating analysis, it is possible to show that every execution
of the minimum distance discharge algorithm on G requires Ω(nm) time.

It is straightforward to verify that in the execution outlined, all processing takes
place at active nodes whose distance labels are minimum among the active nodes.
The algorithm performs poorly because during the execution, no relabeling changes a
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distance label by more than two. Hence the execution uses Θ(nm) work in the course
of its Θ(n2) relabelings, and we have the following theorem.

Theorem 6.1. For any function m(n) in the range n ≤ m(n) < n2/4, there
exists an infinite family of instances of the bipartite matching problem having Θ(n)
nodes and Θ

(
m(n)

)
edges on which the minimum distance discharge algorithm without

global updates runs in Ω
(
nm(n)

)
time.

7. Minimum cost circulation and assignment problems. Given a weight
function c : E → R and a set of edges M , we define the weight of M to be the sum
of weights of edges in M . The assignment problem is to find a maximum cardinality
matching of minimum weight. We assume that the costs are integers in the range
[ 0, . . . , C ] where C ≥ 1. (Note that we can always make the costs nonnegative by
adding an appropriate number to all arc costs.)

For the minimum cost circulation problem, we adopt the following framework.
We are given a graph G = (V,E), with an integer-valued capacity function as before.
In addition to the capacity function, we are given an integer-valued cost c(a) for each
arc a ∈ E.

We assume c(a) = −c(aR) for every arc a. A circulation is a pseudoflow f with
the property that ef (v) = 0 for every node v ∈ V . (The absence of a distinguished
source and sink accounts for the difference in nomenclature between a circulation and
a flow.) We will say that a node v with ef (v) < 0 has a deficit.

The cost of a pseudoflow f is given by c(f) =
∑

f(a)>0 c(a)f(a). The minimum
cost circulation problem is to find a circulation of minimum cost.

8. The push-relabel method for the assignment problem. We reduce the
assignment problem to the minimum cost circulation problem as follows. As in the
unweighted case, we mention only “forward” arcs, each of which we give unit capacity.
The “reverse” arcs have zero capacity and obey cost antisymmetry. Given an instance(
G = (V = X ∪ Y,E), c

)
of the assignment problem, we construct an instance

(
G =

({s, t} ∪ V,E), u, c
)

of the minimum cost circulation problem by

• creating special nodes s and t, and setting V = V ∪ {s, t};
• for each node v ∈ X, placing arc (s, v) in E and defining c(s, v) = −nC;
• for each node v ∈ Y , placing arc (v, t) in E and defining c(v, t) = 0;
• for each edge {v, w} ∈ E with v ∈ X, placing arc (v, w) in E and defining
c(v, w) = c(v, w);

• placing n/2 arcs (t, s) in E and defining c(t, s) = 0.

If G is obtained by this reduction (see Figure 8.1), we can interpret an integral cir-
culation in G as a matching in G just as we did in the bipartite matching case.
Furthermore, it is easy to verify that a minimum cost circulation in G corresponds to
a maximum matching of minimum weight in G.

A price function is a function p : V → R. For a given price function p, the reduced
cost of an arc (v, w) is cp(v, w) = c(v, w) + p(v)− p(w).

Let U = X∪{t}. Note that all arcs in E have one endpoint in U and one endpoint
in its complement. Define EU to be the set of arcs whose tail node is in U .

For a constant ε ≥ 0, a pseudoflow f is said to be ε-optimal with respect to a price
function p if, for every residual arc a ∈ Ef , we have

{
a ∈ EU ⇒ cp(a) ≥ 0,
a /∈ EU ⇒ cp(a) ≥ −2ε.
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Given Assignment Instance

t s

Assignment Problem Instance Corresponding Minimum Cost Circulation Instance

Given Costs

Large Negative Costs

Zero Costs

Fig. 8.1. Reduction from assignment to minimum cost circulation.

A pseudoflow f is ε-optimal if f is ε-optimal with respect to some price function p. If
the arc costs are integers and ε < 1/n, any ε-optimal circulation is optimal.

For a given f and p, an arc a ∈ Ef is admissible iff{
a ∈ EU and cp(a) < ε or
a /∈ EU and cp(a) < −ε.

The admissible graph GA = (V,EA) is the graph induced by the admissible arcs.
These asymmetric definitions of ε-optimality and admissibility are natural in the

context of the assignment problem. They have the benefit that the complementary
slackness conditions are violated on O(n) arcs (corresponding to the matched arcs).
For the symmetric definition, complementary slackness can be violated on Ω(m) arcs.

First we give a high-level description of the successive approximation algorithm
(see Figure 8.2). The algorithm starts with ε = C, f(a) = 0 for all a ∈ E, and
p(v) = 0 for all v ∈ V . At the beginning of every iteration, the algorithm divides ε by
a constant factor α and saturates all arcs a with cp(a) < 0. The iteration modifies f
and p so that f is a circulation that is (ε/α)-optimal with respect to p. When ε < 1/n,
f is optimal and the algorithm terminates. The number of iterations of the algorithm
is 1 + blogα(nC)c.

Reducing ε is the task of the subroutine refine. The input to refine is ε, f , and
p such that (except in the first iteration) circulation f is ε-optimal with respect to p.
The output from refine is ε′ = ε/α, a circulation f , and a price function p such that
f is ε′-optimal with respect to p. At the first iteration, the zero flow is not C-optimal
with respect to the zero price function, but because every simple path in the residual
graph has cost of at least −nC, standard results about refine remain true.

The generic refine subroutine (described in Figure 8.3) begins by decreasing the
value of ε and setting f to saturate all residual arcs with negative reduced cost.

This converts f into an ε-optimal pseudoflow (indeed, into a 0-optimal pseudo-
flow). Then the subroutine converts f into an ε-optimal circulation by applying a
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procedure min-cost(V,E, u, c);
[initialization]
ε← C ; ∀v, p(v)← 0; ∀a, f(a)← 0;
[loop]
while ε ≥ 1/n do

(ε, f, p)← refine(ε, f, p);
return(f);

end.

Fig. 8.2. The cost-scaling algorithm.

procedure refine(ε, f, p);
[initialization]
ε← ε/α;
∀a ∈ E with cp(a) < 0, f(a)← u(a);
[loop]
while f is not a circulation

apply a push or a relabel operation;
return(ε, f, p);

end.

Fig. 8.3. The generic refine subroutine.

push(v, w).
send a unit of flow from v to w.

end.

relabel(v).
if v ∈ U

then replace p(v) by max(v,w)∈Ef

{
p(w)− c(v, w)

}
else replace p(v) by max(v,w)∈Ef

{
p(w)− c(v, w)− 2ε

}
end.

Fig. 8.4. The push and relabel operations.

sequence of push and relabel operations, each of which preserves ε-optimality. The
generic algorithm does not specify the order in which these operations are applied.
Next, we describe the push and relabel operations for the unit-capacity case.

As in the maximum flow case, a push operation applies to an admissible arc (v, w)
whose tail node v is active, and consists of pushing one unit of flow from v to w. A
relabel operation applies to an active node v that is not the tail of any admissible arc.
The operation sets p(v) to the smallest value allowed by the ε-optimality constraints,
namely max(v,w)∈Ef

{
p(w) − c(v, w)

}
if v ∈ U , or max(v,w)∈Ef

{
p(w) − c(v, w) − 2ε

}
otherwise. Figure 8.4 gives the push and relabel operations.

The analysis of cost-scaling push-relabel algorithms is based on the following
facts [12, 14]. During a scaling iteration

• no node price increases;
• every relabeling decreases a node price by at least ε;
• for any v ∈ V , p(v) decreases by O(nε).
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9. Global updates and the minimum change discharge algorithm. In
this section, we generalize the ideas of minimum distance discharge and global updates
to the context of the minimum cost circulation problem and analyze the algorithm
that embodies these generalizations.

We analyze a single execution of refine, and to simplify our notation, we make
some assumptions that do not affect the results. We assume that the price function is
identically zero at the beginning of the iteration. Our analysis goes through without
this assumption, but the required condition can be achieved at no increased asymp-
totic cost by replacing the arc costs with their reduced costs and setting the node
prices to zero in the first step of refine.

Under the assumption that each iteration begins with the zero price function,
the price change of a node v during an iteration is δ(v) = b−p(v)/εc. By analogy
to the matching case, we define Γ(f, p) = minef (v)>0

{
δ(v)

}
, and let Γmax denote the

maximum value attained by Γ(f, p) so far in this iteration. The minimum change
discharge strategy consists of repeatedly selecting a unit of excess at an active node
v with δ(v) = Γ and processing that unit until it cancels some deficit or until a
relabeling occurs. We implement this strategy as in the unweighted case. Observe
that no node’s price changes by more than 2αnε during refine, so a collection of 2αn+1
buckets b0, . . . , b2αn is sufficient to keep every active node v in bδ(v). As before, the
algorithm maintains the index µ of the lowest-numbered nonempty bucket and avoids
bucket access except immediately after a deficit is canceled or a relabeling of a node
v sets δ(v) > µ.

In the weighted context, a global update takes the form of setting each node
price so that GA is acyclic, there is a path in GA from every excess to some deficit
(a node v with ef (v) < 0) and every node reachable in GA from a node with excess
lies on such a path. This amounts to a modified shortest-paths computation and
can be done in O(m) time using ideas from Dial’s work [3]. At every refine, the
first global update is performed immediately after saturating all residual arcs with
negative reduced cost. After each push and relabel operation, the algorithm checks
the following two conditions and performs a global update if both conditions hold:

• Since the most recent update, at least one unit of excess has canceled some
deficit.

• Since the most recent update, the algorithm has done at least m work in push
and relabel operations.

We developed global updates from an implementation heuristic for the minimum cost
circulation problem [11], but in retrospect they prove similar in the assignment context
to the one-processor Hungarian Search technique developed in [8].

Immediately after each global update, the algorithm rebuilds the buckets in O(n)
time and sets µ to zero. As in the unweighted case, we have the following easy bound
on the extra work done by the algorithm in selecting nodes to process.

Lemma 9.1. Between two consecutive global updates, the algorithm does O(n)
work in examining empty buckets.

Figure 9.1 represents the main ideas behind our analysis of an iteration of the
minimum change discharge algorithm. The diagram differs from Figure 4.1 because
we must account for pushes and relabelings that occur at nodes with large values of
δ when Γmax is small. Such operations could not arise in the matching algorithm but
are possible here.

We begin our analysis with a lemma that is essentially similar to Lemma 4.2.

Lemma 9.2. The algorithm does O(km) work in the course of relabel operations
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Fig. 9.1. Accounting for work in the minimum change discharge algorithm.

on nodes v obeying δ(v) ≤ k and push operations from those nodes.

Proof. A node v can be relabeled at most k + 1 times while δ(v) ≤ k, so the
relabelings of such nodes and the pushes from them require O(km) work.

To analyze our algorithm for the assignment problem, we must overcome two
main difficulties that were not present in the matching case. First, we can do push
and relabel operations at nodes whose price changes are large even when Γmax is small;
this work is not bounded by Lemma 9.2 and we must account for it. Second, our
analysis of the period when Γmax is large in the unweighted case does not generalize
because it is not true that δ(v) gives a bound on the breadth-first-search distance
from v to a deficit in the residual graph.

Lemma 9.4 is crucial in resolving both of these issues, and to prove it we use the
following standard result which is analogous to Lemma 4.3.

Lemma 9.3. Given a matching network G and an integral circulation g, any
integral pseudoflow f in Gg can be decomposed into

• cycles, and
• paths, each from a node u with ef (u) < 0 to a node v with ef (v) > 0,

where all the elements of the decomposition are pairwise node-disjoint except at s, t,
and the endpoints of the paths, and each element carries one unit of flow.

We denote a path from node u to node v in such a decomposition by (u ; v).

The following lemma is similar in spirit to those in [8] and [12], although the single-
phase push-relabel framework of our algorithm changes the structure of the proof. Let
E(f) denote the total excess in pseudoflow f , i.e.,

∑
ef (v)>0 ef (v). When no confusion

arises, we simply use E to denote the total excess in the current pseudoflow. The
lemma depends on the (αε)-optimality of the circulation produced by the previous
iteration of refine, so it holds only in the second and subsequent scaling iterations.
Because the zero circulation is not C-optimal with respect to the zero price function,
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we need different phrasing to accomplish the same task in the first iteration. The
differences are mainly technical, so the first-iteration lemmas and their proofs are
confined to Appendix A.

Lemma 9.4. At any point during an execution of refine other than the first,
E × Γmax ≤ 2

(
(5 + α)n− 1

)
.

Proof. Let c denote the (reduced) arc cost function at the beginning of this
execution of refine, and let G = (V,E) denote the augmented residual graph at the
same instant. For simplicity in the following analysis, we view a pseudoflow as an
entity in this graph G. Let f ′, p′ be the current pseudoflow and price function, and
let f , p be the pseudoflow and price function at the most recent point during the
execution of refine when Γ(f, p) = Γmax. Since E(f) ≥ E(f ′) and Γ(f, p) ≥ Γ(f ′, p′),
it is enough to prove the lemma for f , p. We have

E(f)× Γmax ≤
∑

ef (v)>0

δ(v)ef (v).

From the definition of δ, then,

E(f)× Γmax × ε ≤ −
∑

ef (v)>0

p(v)ef (v).

We will complete our proof by showing that

−
∑

ef (v)>0

p(v)ef (v) = cp(f)− c(f)

and then deriving an upper bound on this quantity.
By the definition of the reduced costs,

cp(f)− c(f) =
∑

f(v,w)>0

(
p(v)− p(w)

)
f(v, w).

Letting P be a decomposition of f into paths and cycles according to Lemma 9.3 and
noting that cycles make no contribution to the sum, we can rewrite this expression as∑

(u;v)∈P
(p(u)− p(v)).

Since nodes u with ef (u) < 0 are never relabeled, p(u) = 0 for such a node, and we
have

cp(f)− c(f) = −
∑

(u;v)∈P
p(v).

Because the decomposition P must account for all of f ’s excesses and deficits, we can
rewrite

cp(f)− c(f) = −
∑

ef (v)>0

p(v)ef (v).

Now we derive an upper bound on cp(f) − c(f). It is straightforward to verify
that for any matching network G and integral circulation g, the residual graph Gg has
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exactly n arcs a /∈ EU , and so from the fact that the execution of refine begins with
the augmented residual graph of an (αε)-optimal circulation, we deduce that there
are at most n negative-cost arcs in E. Because each of these arcs has cost at least
−2αε, we have c(f) ≥ −2αnε. Hence cp(f)− c(f) ≤ cp(f) + 2αnε.

Now consider cp(f). Clearly, f(a) > 0 ⇒ aR ∈ Ef , and ε-optimality of f with
respect to p says that aR ∈ Ef ⇒ cp(a

R) ≥ −2ε. Since cp(a
R) = −cp(a), we have

f(a) > 0 ⇒ cp(a) ≤ 2ε. Recalling our decomposition P into cycles and paths from
deficits to excesses, observe that cp(f) =

∑
P∈P cp(P ). Let ν(P ) denote the interior

of a path P , i.e., the path minus its endpoints and initial and final arcs, and let ∂(P )
denote the set containing the initial and final arcs of P . If P is a cycle, ν(P ) = P
and ∂(P ) = ∅. We can write

cp(f) =
∑
P∈P

cp
(
ν(P )

)
+
∑
P∈P

cp
(
∂(P )

)
.

The total number of arcs not incident to s or t in the cycles and path interiors is
at most n by node-disjointness, and the number of arcs incident to s or t is at most
2n − 1. Also, the total excess is never more than n, so the initial and final arcs of
the paths number no more than 2n. And because each arc carrying positive flow has
reduced cost at most 2ε, we have cp(f) ≤ (n+ 2n− 1 + 2n)2ε = (5n− 1)2ε.

Therefore, cp(f) − c(f) ≤ 2
(
(5 + α)n − 1

)
ε, and we have E(f) × Γmax ≤ 2

(
(5 +

α)n− 1
)
.

Corollary 9.5. Γmax ≥ k implies E = O(n/k).

We use the following lemma to show that when Γmax is small, we do a limited
amount of work at nodes whose price changes are large.

Lemma 9.6. While Γmax ≤ k, the amount of work done in relabelings at nodes v
with δ(v) > k and pushes from those nodes is O(n2/k).

Proof. For convenience, we say a node that gets relabeled under the conditions
of the lemma is a bad node. We process a given node v either because we selected a
unit of excess at v or because the most recent operation was a push from one of v’s
neighbors to v. If a unit of v’s excess is selected, we have δ(v) ≤ Γmax (indeed without
global updates, δ(v) = Γmax), which implies δ(v) ≤ k, so v cannot be a bad node. In
the second case, the unit of excess just pushed to v will remain at v until Γmax ≥ δ(v)
because the condition δ(v) > µ will cause excess at a different node to be selected
immediately after v is relabeled. We cannot select v’s excess until Γmax ≥ δ(v), and
at such a time, Corollary 9.5 shows that the total excess remaining is O(n/k). Since
each relabeling of a bad node leaves a unit of excess that must remain at that node
until Γmax ≥ k, the number of relabelings of bad nodes is O(n/k). Because every
node has degree at most n, the work done in pushes and relabelings at bad nodes is
O(n2/k).

Recall that the algorithm initiates a global update only after a unit of excess has
canceled some deficit since the last global update. The next lemma, analogous to
Lemma 4.6, shows that this rule cannot introduce too great a delay.

Lemma 9.7. Between any two consecutive global update operations, the algorithm
does Θ(m) work.

Proof. As in the unweighted case, it suffices to show that the algorithm does
O(m) work in canceling a deficit immediately after a global update operation, and
O(m) work in selecting nodes to process. The definition of a global update operation
suffices to ensure that a unit of excess reaches some deficit immediately after a global
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update and before any relabeling occurs, and Lemma 9.1 shows that the extra work
done between global updates in selecting nodes to process is O(n).

Lemmas 9.2 and 9.6 show that the algorithm takes O(km + n2/k) time when
Γmax ≤ k. Corollary 9.5 says that when Γmax ≥ k, the total excess remaining is
O(n/k), and Lemma 9.7 shows that O(m) work suffices to cancel each unit of excess
remaining. Therefore the total work in an execution of refine is O

(
km+n2/k+nm/k

)
,

and choosing k = Θ(
√
n ) gives a O(

√
nm) time bound on an execution of refine. The

overall time bound follows from the O(log(nC)) bound on the number of scaling
iterations, giving the following theorem.

Theorem 9.8. The minimum change discharge algorithm with global updates
computes a minimum cost circulation in a matching network in O

(√
nm log(nC)

)
time.

Graph compression methods [6] do not apply to graphs with weights because the
compressed graph preserves only adjacency information and cannot encode arbitrary
edge weights. Hence the Feder–Motwani techniques cannot improve performance in
the assignment problem context.

10. Minimum change discharge algorithm without global updates. We
present a family of assignment instances on which we show that refine, without global
updates, performs Ω(nm) work in the first scaling iteration under the minimum change
discharge selection rule. Hence this family of matching networks suffices to show that
global updates account for an asymptotic difference in running time.

The family of assignment instances on which we show that refine, without global
updates, takes Ω(nm) time is structurally the same as the family of bad examples we
used in the unweighted case, except that each weighted example has two additional
nodes and one additional edge. The costs of the edges present in the unweighted
example are zero, and there are two extra nodes connected only to each other, sharing
an edge with cost α. These two nodes and the edge between them are present only to
establish the initial value of ε and the costs of arcs introduced in the reduction, and
are ignored in our description of the execution.

At the beginning of the first scaling iteration, ε = α. The iteration starts by
setting ε = 1. From this point on, the execution is similar to the execution of the
minimum distance discharge algorithm given in section 6, but the details differ because
of the asymmetric definitions of ε-optimality and admissibility that we use in the
weighted case.

Figure 9.2 details an execution of the minimum change discharge algorithm with-
out global updates. As in the unweighted case, every relabeling changes a node price
by at most two and the algorithm does Ω(n2) relabelings. Consequently, the relabel-
ings require Ω(nm) work, and we have the following theorem.

Theorem 10.1. For any function m(n) in the range n ≤ m(n) < n2/4, there
exists an infinite family of instances of the assignment problem having Θ(n) nodes
and Θ

(
m(n)

)
edges on which the minimum change discharge implementation of refine

without global updates runs in Ω
(
nm(n)

)
time.

11. Conclusions and open questions. We have presented algorithms that

achieve the best time bounds known for bipartite matching, i.e., O
(√

nm log(n2/m)
log n

)
,

and for the assignment problem in the cost-scaling context, i.e., O (
√
nm log(nC)).

We have also given examples to show that without global updates, the algorithms
perform worse. Hence we conclude that global updates can be a useful tool in the
theoretical development of algorithms.
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1. Initialization establishes |X| units of excess, one at each node of X.

2. While some node w ∈ Y has no excess,

2.1. a unit of excess moves from a node of X to w;
2.2. w is relabeled so that p(w) = −2.

Remark: Now every node of Y has one unit of excess.

3. Active nodes in X are relabeled one-by-one so that each has price −2.

4. A unit of excess moves from the most recently relabeled node of X to a node of Y ,
then to t, and on to cancel a unit of deficit at s.

5. While more than one node of Y has excess,

5.1. A unit of excess moves to t and thence to s from a node of Y ;

6. The remaining unit of excess at a node of Y moves to a node v ∈ X with p(v) = 0,
and v is relabeled so that p(v) = −2.

7. `← 1.

8. While ` ≤ αn/2− 1,

Remark: All excesses are at nodes of X, and these nodes have price −2`; all
other nodes in X have price −2`+ 2; all nodes in Y have price −2`.

8.1. A unit of excess is selected, and while some node x ∈ X has p(x) = −2`+ 2,
• the selected unit moves from some active node v to w, a neighbor of x in
Gf (for a given x there is a unique such w);

• the unit of excess moves from w to x;
• x is relabeled so p(x) = −2`.

Remark: Now all nodes in X ∪ Y have price −2`; all excesses are at nodes of
X.

8.2. While some node w ∈ Y has p(w) = −2` and some node v ∈ X has ef (v) = 1,
• a unit of excess moves from v to w;
• w is relabeled so p(w) = −2`− 2.

Remark: The following loop is executed only if |X| < 2|Y |. All active nodes
in Y have price −2`− 2, and all other nodes in Y have price −2`.

8.3. If a node in Y has price −2`, a unit of excess is selected, and while some node
y ∈ Y has p(y) = −2`,
• the selected unit moves from some w ∈ Y with ef (w) = 1 to v ∈ X with
p(v) = −2`, and then to y;

• y is relabeled so p(y) = −2`− 2.
Remark: The following loop is executed only if |X| > 2|Y |.

8.4. For each node v ∈ X with ef (v) = 1,
• v is relabeled so p(v) = max

{
−2`− 2,−αn

}
.

8.5. For each node w ∈ Y with ef (w) = 1,
• a unit of excess moves from w to v ∈ X with p(v) = −2`;
• v is relabeled so p(v) = max

{
−2`− 2,−αn

}
.

8.6. `← `+ 1.

9. Excesses move one-by-one from active nodes in X (which have price −αn) to s.

Fig. 9.2. The minimum change discharge execution on bad examples.

We have shown a family of assignment instances on which refine, without global
updates, performs poorly, but the poor performance seems to hinge on details of
the reduction, so it happens only in the first scaling iteration. An interesting open
question is the existence of a family of instances of the assignment problem on which
refine uses Ω(nm) time in every scaling iteration.
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Appendix A. The first scaling iteration. Let G be the network produced by
reducing an assignment problem instance to the minimum cost circulation problem as
in section 8. When refine initializes by saturating all negative arcs in this network, the
only deficit created will be at s by our assumption that the input costs are nonnegative.

For a pseudoflow f in G, define Et(f) to be the amount of f ’s excess that can
reach s by passing through t. Et(f) corresponds to the residual flow value in the
unweighted case (see section 4).

The (αε)-optimality of the initial flow and price function played an important role
in the proof of Lemma 9.4, specifically by lower-bounding the initial cost of any arc
that currently carries a unit of flow. In contrast, the first scaling iteration may have
many arcs that carry flow and have extremely negative costs relative to ε, specifically
those arcs of the form (s, v) introduced by the reduction. But to counter this difficulty,
the first iteration has an advantage that later iterations lack: an upper bound (in terms
of ε) on the initial cost of every residual arc in the network. Specifically, recall that
the value of ε in the first iteration is C/α, where C is the largest cost of an edge in
the given assignment instance. So for any arc a other than the (v, s) arcs introduced
by the reduction, c(a) ≤ αε in the first scaling iteration.

Lemma A.1. At any point during the first execution of refine, Et × Γmax ≤
n(2 + α).

Proof. Let f ′, p′ be the current pseudoflow and price function, and as in the proof
of Lemma 9.4, let f , p be the pseudoflow and price function at the most recent point
when Γ(f, p) = Γmax. As before, it is enough to prove the lemma for f , p; this will
imply the claim holds for f ′, p′.

Let f∗ be a minimum cost circulation in G, and let f ′ = f∗ − f . Recall that the
costs on the (s, v) arcs are negative enough that f∗ must correspond to a matching of
maximum cardinality. Therefore, f ′ moves Et(f) units of f ’s excess to s through t and
returns the remainder to s without its passing through t. Now −f ′ is a pseudoflow
in Gf∗ and can be decomposed into cycles and paths according to Lemma 9.3; as in
the proof of Lemma 4.4, let P denote the induced decomposition of f ′. Let Q ⊆ P be
the set of paths that pass through t, and note that Et(f) = |Q|. Let etf (v) denote the

number of paths of Q beginning at node v. The only deficit in f is at s, so etf (v) is
precisely the amount of v’s excess that reaches s by passing through t if we imagine
augmenting f along the paths of P. Of particular importance is that no path in Q
uses an arc of the form (s, v) or (v, s) for v 6= t.

Observe that

Et(f)× Γmax ≤
∑

etf (v)>0

etf (v)δ(v),

so by the definition of δ,

ε× Et(f)× Γmax ≤ −
∑

etf (v)>0

etf (v)p(v).

Now note that for any path P from v to s, we have p(v) = cp(P )− c(P ) because
p(s) = 0. Every arc used in the decomposition P appears in Gf . By ε-optimality of
f , each of the n or fewer arcs a in Gf with negative reduced cost has cp(a) ≥ −2ε, so
we have

∑
P∈Q cp(P ) ≥ −2nε. Next we use the upper bound on the initial costs to

note that
∑

P∈Q c(P ) ≤ αnε, so

ε× Et(f)× Γmax ≤ −
∑

etf (v)>0

etf (v)p(v) ≤ 2nε+ αnε = n(2 + α)ε,
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and the lemma follows.

Lemma A.2. At any point during the first execution of refine, E × (Γmax−αn) ≤
n(2 + α).

Proof. The proof is essentially the same as the proof of Lemma A.1, except that
if Γmax > αn, each path from an excess to the deficit at s will include one arc of the
form (v, s), and each such arc has original cost −nC = −αnε.

Lemmas A.1 and A.2 allow us to split the analysis of the first scaling iteration
into four stages, much as we did with the minimum distance discharge algorithm for
matching. Specifically, the analysis of section 9 holds up until the point where Γmax ≥
αn, with Lemma A.1 taking the place of Lemma 9.4. Straightforward extensions of
the relevant lemmas show that the algorithm does O(km + n2/k) work when Γmax ∈
[αn, αn + k], and when Γmax > αn + k, Lemma A.2 bounds the algorithm’s work by
O(nm/k). The balancing works as before: choosing k = Θ(

√
n ) gives a bound of

O(
√
nm) time for the first scaling iteration.

Acknowledgment. The authors would like to thank an anonymous referee
whose careful reading led us to several corrections and improvements.

REFERENCES

[1] R. J. Anderson and J. C. Setubal, Goldberg’s algorithm for the maximum flow in perspective:
A computational study, in Network Flows and Matching: First DIMACS Implementation
Challenge, D. S. Johnson and C. C. McGeoch, eds., AMS, Providence, RI, 1993, pp. 1–18.

[2] U. Derigs and W. Meier, Implementing Goldberg’s max-flow algorithm — A computational
investigation, ZOR—Math. Methods Oper. Res., 33 (1989), pp. 383–403.

[3] R. B. Dial, Algorithm 360: Shortest path forest with topological ordering, Comm. ACM, 12
(1969), pp. 632–633.

[4] E. A. Dinic, Algorithm for solution of a problem of maximum flow in networks with power
estimation, Soviet Math. Dokl., 11 (1970), pp. 1277–1280.

[5] S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput.,
4 (1975), pp. 507–518.

[6] T. Feder and R. Motwani, Clique partitions, graph compression and speeding-up algorithms,
in Proc. 23rd Annual ACM Symposium on Theory of Computing, New Orleans, LA, ACM,
New York, 1991, pp. 123–133.

[7] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press, Prince-
ton, NJ, 1962.

[8] H. N. Gabow and R. E. Tarjan, Almost-optimal speed-ups of algorithms for matching and re-
lated problems, in Proc. 20th Annual ACM Symposium on Theory of Computing, Chicago,
IL, ACM, New York, 1988, pp. 514–527.

[9] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM J.
Comput., 18 (1989), pp. 1013–1036.

[10] A. V. Goldberg, Efficient Graph Algorithms for Sequential and Parallel Computers, Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1987. (Also available as
Technical Report TR-374, Lab. for Computer Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 1987.)

[11] A. V. Goldberg, An efficient implementation of a scaling minimum-cost flow algorithm, in
Proc. 3rd Integer Prog. and Combinatorial Opt. Conf., Erice, Italy, 1993, pp. 251–266.

[12] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya, Sublinear-time parallel algorithms for
matching and related problems, J. Algorithms, 14 (1993), pp. 180–213.

[13] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem, J. Assoc.
Comput. Mach., 35 (1988), pp. 921–940.

[14] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by successive approx-
imation, Math. Oper. Res., 15 (1990), pp. 430–466.

[15] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matching in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225–231.

[16] A. V. Karzanov, On finding maximum flows in networks with special structure and some ap-
plications, in Matematicheskie Voprosy Upravleniya Proizvodstvom, vol. 5, Moscow State
University Press, Moscow, 1973 (in Russian).



572 ANDREW V. GOLDBERG AND ROBERT KENNEDY

[17] A. V. Karzanov, The exact time bound for a maximum flow algorithm applied to the set
representatives problem, in Problems in Cybernetics, vol. 5, Nauka, Moscow, 1973, pp. 66–
70 (in Russian).

[18] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quart.,
2 (1955), pp. 83–97.

[19] Q. C. Nguyen and V. Venkateswaran, Implementations of Goldberg-Tarjan maximum flow
algorithm, in Network Flows and Matching: First DIMACS Implementation Challenge,
D. S. Johnson and C. C. McGeoch, eds., AMS, Providence, RI, 1993, pp. 19–42.

[20] J. B. Orlin and R. K. Ahuja, New scaling algorithms for the assignment and minimum cycle
mean problems, Math. Programming, 54 (1992), pp. 41–56.


