
SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
O09

AN O(EV log V) ALGORITHM FOR FINDING A MAXIMAL
WEIGHTED MATCHING IN GENERAL GRAPHS*

ZVI GALILf, SILVIO MICALI, AND HAROLD GABOW

Abstract. We define two generalized types of a priority queue by allowing some forms of changing the
priorities of the elements in the queue. We show that they can be implemented efficiently. Consequently,
each operation takes O(log n) time. We use these generalized priority queues to construct an O(EV log V)
algorithm for finding a maximal weighted matching in general graphs.

Key words, matching, augmenting path, blossoms, generalized priority queues, primal dual algorithm,
time complexity

Introduction. We are given a graph G- (V, E) with vertex set V and edge set E.
Each edge (i,j) E has a weight wij associated with it. A matching is a subset of the
edges, no two of which have a common vertex. We want to find a matching with the
maximal total weight.

In this paper we deal with the general problem. There are three restricted versions
ofthe problem" we can restrict attention to bipartite graphs, or to maximizing cardinality
(unit weights) or both. For a survey on the status of the four versions of the problem
see [5]. In the time bounds mentioned below we use V and E for the size of the
corresponding sets. No confusion will arise.

Edmonds [3] gave the first polynomial time algorithm to the problem, whose time
bound is O(V4). Lawler [8] and independently Gabow [4] improved Edmonds’
algorithm by finding a way to implement it in O(V3).0

We develop an O(EV log V) algorithm, which is much better for sparse graphs.
We note that for the problem of finding a maximal flow in networks, a number of
efficient algorithms for sparse graphs have been developed in recent years ([6], [9]),
while an O(V3) algorithm has been known for some time [7]. Our algorithm is also
an implementation of Edmonds’ algorithm.

Our improvement is derived from some simple observations on data structures.
We design two .generalized types of a priority queue by allowing some forms ofchanging
the priorities of the elements in the queue. We show that each operation on these
priority queues can still be implemented in time O(log n), where n is the total number
of elements.

In 1 we define the two types of priority queues. In 2 we show how to implement
each operation on these priority queues in time O(log n). In 3 we review the notions
of augmenting paths and blossoms. In 4 we describe our version of Edmonds’
algorithm. We leave out some details of the implementation. In 5 we show how a
straightforward implementation yields an O(EV2) algorithm. (Edmonds’ bound was

* Received by the editors June 16, 1983, and in revised form May 15, 1984.

" Computer Science Department Tel-Aviv University, Ramat Aviv, TeloAviv, Israel, and Computer
Science Department, Columbia University, New York, New York 10027. The research of this author was
supported in part by the National Science Foundation under grant MCS78-25301 at the University of
California at Berkeley, by the Israel Commission of Basic Research, and by the National Science Foundation
under grant MCS-8303139 at Columbia University.

t Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
02138. The research of this author was supported in part by DARPA under grant N00039-82-C-0235 and
by the National Science Foundation under grant MCS82-04506 at the University of California at Berkeley.

Computer Science Department, University of Colorado, Boulder, Colorado 80309. The research of
this author was supported by the National Science Foundation under grant MCS-8302648.

120

MAXIMAL WEIGHTED MATCHING IN GENERAL GRAPHS 121

O(V4).) Then we show the changes needed to obtain an O(V3) bound, yielding (a
more complete version of) the algorithm by Lawler [8]. In 6 we show how to use
the generalized priority queues to obtain the O(EV log V) algorithm.

1. Generalized priority queues. A priority queue 1 or a p.q. in short is an abstract
data structure consisting of a collection of elements, each with an associated real valued
priority. Three operations are possible on a p.q."

(1) insert an element with priority Pi;
(2) delete an element; and
(3) find an element with the minimal priority.

An implementation of a p.q. is said to be efficient if each operation takes O(log n)
time where n is the number of elements. Many efficient implementations of p.q.’s are
known, e.g., 2-3 trees 1].

In p.q.’s elements have fixed priorities. We consider here the following question.
What happens if we allow the priority of the elements to change? Obviously, an
additional operation which changes the priority of one element can be easily imple-
mented in time O(log n). On the other hand, it is not natural to allow arbitrary changes
in an arbitrary subset of the elements in one operation simply because one has to
specify all these changes.

We introduce two generalized types of p.q.’s which we denote by P.q.1 and P.q.2.

The first simply allows a uniform change in the priorities of all the elements currently
in it. The second allows a uniform change in the priorities of an easily specified subset
of the elements.

More precisely, p.q.1 enables the following additional operation:
(4) subtract from the priorities of all the current elements some real number 3.

This type of p.q. is not new. A version of p.q. was used by Tarjan [10]. Note that in
(4) we can add instead of subtract. In our case we will mostly subtract > 0.

To define p.q._ we first need some assumptions. We assume that the elements are
partitioned into groups. Every group is either active or nonactive. An element is active
(or not) if its group is. We assume that the elements are totally ordered. By splitting
a group according to an element we mean. to create two groups from all the elements
in the group greater (not greater) than i. Note that unlike the usual split operation we
split a group according to an element and not according to its priority.

The operations possible for p.q. are:
(1)’ insert an element with priority pi to one of the groups;
(2)’ delete an element;
(3)’ find an active element with the minimal priority;
(4)’ decrease the priorities of all the active elements by some real number 3;
(5)’ generate a new empty group (active or not);
(6)’ delete a group (active or not);
(7)’ change the status of a group from active to nonactive or vice versa; and
(8)’ split a group according to an element in it.
In 6 we use p.q. and p.q. to obtain an improved algorithm for finding a maximal

weighted matching in general graphs.

2. An efficient implementation for P.q.l and P.q.2. It may look at first that one may
need up to n steps to update all the priorities as a result of one change. However, it
is possible to implement efficiently p.q. and p.q.. In particular, the change of priorities
will be achieved implicitly by one operation.

p.q. can be easily simulated by a conventional p.q. We maintain A 3, where
the sum is over all changes so far. In the p.q. we use modified priorities which are

122 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

computed when elements are inserted into the p.q. The modified priority of is Pi + A.
So when an element is inserted we add A to its priority. The nice property of the
modified priority is that, unlike the original priority, it does not change. Tarjan’s
implementation [10] is more complicated because he also allows merging of p.q.’s.
Instead of storing priorities he maintains differences of priorities.

The efficient implementation of p.q., is less straightforward. Each group g has a
p.q. Ag corresponding to it, and each element has its modified priority. However, the
modification is not the same for all the elements. If is inserted into group g, then its
modified priority is set to pi + Ag, where Ag y 6, and the sum is over the changes
made when g was a part of an active group (possibly g itself). As for P.q.1, these
modified priorities do not change. To update Ag we maintain Agast, which is the value
of A when g was last considered (in operations (1)’, (2)’, (7)’, or (8)’). Whenever we
consider an active group g, before resetting its A last

_g we update Ag as follows" Ag -Ag+ A-Agast. When we split a group g to groups gl and g2 we set Ag,, Aaist---Ag for
1, 2. We also maintain a p.q. B which contains one element with the minimal

priority from every active group.
Implementing the first seven operations is quite easy. Note that an insert to or a

delete from Ag may require an insert to or a delete from B (or both). Note also that
if is in group g and its modified priority which is stored in Ag is q p + Ag), then
if it is inserted to B, the modified priority in the p.q. that implements B should be
qi-Ag + A. To efficiently implement a split one needs to make a key observation on
2-3 trees. We need the observation because, unlike conventional p.q.’s, we split
according to an element and not its priority.

In [1] two kinds of priority queues are described. In the first kind the elements
are stored in the leaves and each internal node contains the smallest element of the
two (or three) subtrees rooted at his sons. In the second kind the elements are stored
in the leaves, and in addition the order is preserved; i.e. the smallest element is stored
in the leftmost leaf, etc. This kind supports the operations of concatenate and split.
Such priorities queues are called concatenable queues.

In our case we have two order relations: the priorities and the order ofthe elements.
Fortunatey, the same. 2-3 tree can support both. It contains the information of the first
kind for handling the priorities, and of the second kind to handle the order of the
elements. The ability to handle both simultaneously is the result of the following
observation" assume we treat our 2-3 trees as being of the second type; we split them
or concatenate them. If we visit and possibly make changes in a node, we also visit
all its ancestors in the tree up to the root. These are exactly all the nodes that may be
affected and have to be updated if the tree is of the first kind. For more details on the
various operations see [1].

3. Blossoms and their representation. We assume that we are given a graph referred
to as the original graph, and a matching M. The algorithm discovers certain sets of
vertices (of odd size) called blossoms and shrinks them. It is convenient to consider
also the vertices of the graph as (trivial) blossoms of size one. Consequently, at any
moment the blossoms constitute the vertices of the current graph.

An alternating path from a vertex Uo to a vertex u in the original graph is a
sequence of edges {e=(u_, ui)}= such that u,..., Ur are distinct and for i=
1,..., r-1, e M iff e+l M. An alternating path from a blossom Bo to a blossom
Br (possibly Bo=Br) is a sequence of edges {ei=(U_l, v)}7=1 such that for i=
0, 1,. , r u, v Bi where B1," ", Br are distinct blossoms and for 1,. ., r- 1,
e M iff e+l M. When the algorithm discovers an alternating path of odd length

MAXIMAL WEIGHTED MATCHING IN GENERAL GRA,PHS 123

{ei=(ui-1, vi)}=l (r odd) from a blossom Bo to itself (Bo=Br; el, er-M), a new
blossom B is formed. The blossoms B1,’’ ", Br stop being blossoms and are referred
to as the subblossoms of B. Consequently, at any time each vertex is in a unique blossom.

Each blossom has a base vertex. The base of a trivial blossom is the unique vertex
in it. The base of the blossom B defined above is the base of Br. Note that if b is the
base of B and c is a vertex in B then (b, c) M. Also if u is in B and is not the base
of B, then there is a v in B such that (u, v) M and for every w not in B (u, w) M.

A nontrivial blossom is represented by the doubly linked list {(Bi, ei)}=l and by
its base. Note that

Fact 1. For every 1 =<i=< r-1, (el, e2, , ei) and (er, er-1, ", ei/l) are alternat-
ing paths from Bo to Bi. One is of odd length and one of even length. The one of even
length is the one whose last edge is in M.

An easy induction on the structure of the blossom implies
Fact 2. In the original graph, there is an even length alternating path from the

base of the blossom to any vertex in it.
A vertex is matched if there is an edge (i, j) in M, and is exposed otherwise. A

blossom is matched (exposed) if its base is. Edges in M are said to be matched. An
augmenting path is an alternating path between two exposed vertices (blossoms). By
Fact 2, any augmenting path between two exposed blossoms can be expanded to an
augmenting path in the original graph between the two (exposed) bases of these
blossoms.

One can define a tree that represents the structure of a blossom. In this tree
B1," , Br are the sons of B, and the leaves are the vertices of the blossom. We call
it the structure tree. This tree is implicitly represented by the lists {(Bi, ei)} --1. The tree
implies a total order on the vertices of the blossom: u < v if u is to the left of v in the
tree. Note that the base of a blossom is its largest vertex.

Although we conceptually consider the blossoms shrunk, we do not actually shrink
them. Edges (u, v) retain their identity. So u and v may belong to blossoms but the
edge remains (u, v). If we use such an edge and reach a vertex v we will need to find
the blossom of v. So in addition we represent blossoms as ordered sets of vertices. The
operations that we need are find, concatenate and split [1].

4. The algorithm.
4.1. A sketch of the algorithm. The algorithm applies the primal-dual method [8].

At any moment we have a matching M and an assignment of values to the dual
variables: ui for every vertex i, and Zk for every odd subset Bk of vertices, [Bkl 2rk + 1,
rk > 0. As will be explained below, it is not important to know what is the meaning of
the dual variables.

For every edge (i, j) we define

"rro=ui+uj-wj+ Zk.
k:i,jBk

By duality theory (see [8]), the matching has maximum weight if (0)-(3) hold for every
vertex i, edge. (i,j), and odd subset Bk:

(0) Ui, 7"fij Zk 0"
(1) i, j e M=22 "ffij O’,
(2) exposed =:> ui 0; and
(3) Zk>OB is full (l{(i,j)li,jn, (i,j)M}l--rk).
In fact, we need duality theory for motivation only. The following short proof

implies that if (0)-(3) hold, then the matching M has maximal weight: let ui, zk and

124 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

7r0 be the values associated with M, and let N be any other matching. Then

Z wo<= Z (u,+u)+ y y z,,<-Zu,+y.,’,,z,,= Z wo.
(i,j)eN (i,j)eN (i,j)eN k:i, jeB k (i,j)eM

The first inequality follows from o 0; the second from ui, Zk 0 and the fact that N
is a matching; and the equality follows from (2), (3) and the fact that M is a matching.

The algorithm will have Zk > 0 only for blossoms Bk. Consequently the number
of positive Zk’S will be small (O(V)). Moreover, (3) will hold automatically.

We start with M= and ui (maxk,/Wk,l)/2 for all and no blossoms (and no
Zk’S). So except for (2) all other conditions for optimality hold. The algorithm makes
changes that preserve (0), (1), (3) and eventually reduce the number of violations of
(2) to zero. The resulting matching therefore has maximal weight.

4.2. The search. The main part of the algorithm consists of a search for an
augmenting path between two exposed blossoms. The search uses only edges (i,j) with
7r =0. During the search, blossoms are labeled by $ and T, where an $ (T) label
denotes an even (odd) length alternating path from an exposed blossom. (Other papers
use outer and inner for S and T.) A blossom labeled by S (T) is referred to as an
S-blossom (a T-blossom). A vertex in an S-blossom (a T-blossom) is an S-vertex (a
T-vertex). We also have free blossomsmthose without a label, and free vertices--those
in free blossoms. During the search new (S) blossoms can be generated. The search
may lead to the discovery of an augmenting path. In this case the matching is augmented
and we have two less exposed vertices and consequently two less violations of (2).
After an augmentation all the labels are erased. So, all blossoms become free. Each
augmentation terminates a stage.

Initially all exposed blossoms are labeled S. Then the search uses useful edges to
label more blossoms. A useful edge is an unmatched edge (i, j) with r=0, an
S-vertex and j is either a free vertex (Case 1) or an S-vertex in a blossom different
from the blossom of (Case 2).

Case 1. j is in a free blossom B with base b. In this case B is labeled with T, (i, j)].
There must be an edge in M of the form (b, c) (otherwise B would be labeled by S).
Assume c is in a blossom C. C must be free because we always use immediately the
edge in the matching. (It cannot be labeled S because an $ label arrives always through
a matched edge, so it could arrive only through (b, c). It cannot be labeled by T
because if C were labeled by T, we would have immediately labeled B by S.) We label
C by IS, (b, c)]. The second part of the label records the edge through which it has
arrived. In the case of an $ label, this part is redundant because c is the base of C
and (b, c) is the unique edge in M that is incident with c.

Case 2. j is in an S-blossom B, is in an S-blossom C B.
Using the second part of the labels, we backtrack along the two paths from exposed

blossoms to B and to C. If the exposed blossoms are different, an augmenting path
has been found. If they are the same, a new blossom is discovered.

If we discover an augmenting path between two exposed blossoms, we first change
the status of the edges on the path (from matched to unmatched and vice versa).
Consider a blossom B on this path and the two edges e M and e’ M incident with
it. The first enters b, the base of B, and the second leaves through some vertex c that
is in some subblossom B of B. (See Fig. 1.) We recursively find the even length
alternating path in B from b to c (guaranteed by Fact 2) and change the status of its
edges: Using the list of subblossoms of B and Fact 1, we find the alternating path
through the subblossoms of B (el," ", e or ei+l, ek) of even length. We change
the status of the edges on this even length path. We also change the base of B to c

MAXIMAL WEIGHTED MATCHING IN GENERAL GRAPHS 125

(a) (b)

FIG. 1. Recursivelyfinding the augmentingpath. Matched edges are drawn wiggly. (a) Before the augmenta-
tion in a blossom B. The base is b and the list ofsubblossoms {(B1, el)," , (B7, e7)}. (b) After the augmentation
in B. The base is c and the subblossom list is {(B3, e4) (B2, e3) (B1, e2)(B7, el), (B6, e7) (B5, e6), (B4, es)}.

and cyclically permute the list of subblossoms of B (so Bi is now last). We continue
recursively with the subblossoms along this even length path. The parts ofthe alternating
paths inside the two exposed blossoms are found similarly.

In case the backtracking leads to the same exposed blossom, we find the first
common blossom D on the two paths. We use the parts of the paths from D to B and
to C to generate the list {(Bi, ei)}__l for the new blossom. Br D and ei are taken
from the two paths. We initialize the dual variable associated with the new blossom
to 0, and label the new blossom by $.

During the search we choose any useful edge and act according to the case we
are in. As a result, some useful edges may stop being useful and some edges may
become useful. The search may succeed (if we find an alternating path) or fail (if there
are no more useful edges).

4.3. A change in the dual variables. If the search fails, we make the following
changes in the dual variables. We choose 8 > 0 and execute"

(a) u u-8 for every S-vertex i;
(b) u u + 8 for every T-vertex i;
(c) Zk Zk + 28 for every S-blossom Bk; and
(d) Zk Zk--28 for every T-blossom Bk.
Such a choice of 8 preserves (1) and (3). To preserve (0) we choose 8=

min (81, 82, 83, 84), where

81 min u
i: S-vertex

82 min r0
(i,j)E
i: S-vertex
j: free vertex

83 min rij/ 2)
(i,j)E
i,j: S-vertices not in the same blossom

84 min (Zk/2)
Bk a T-blossom

Note that 81 u (maxk, Wk,)/2- A, where io is any exposed vertex and A is the
sum of the changes 8 so far. This is because initially u=(maxk, Wk,)/2 for every
S-vertex i, and the fact that the exposed vertices were always S-vertices and their u’s
were always decreased by & Consequently, if 8 81, then after the change (2) is
satisfied and we have a matching with maximal weight.

126 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

If 3 34, we expand all T-blossoms Bk on which the minimum was attained.
(Their Zk becomes 0.) Expanding a blossom B is described in Fig. 2. B stops being a
blossom and its subblossoms become blossoms. The label of B is IT, (p, q)] where
(p, q) is the edge through which B received its T label. Assume q Bi, where B1, , Br
are the subblossoms of B. The subblossoms on the odd length path from Bo Br to

Bi (see Fact 1) except for Bo and Bi become free. The ones on the even length path
get alternating labels starting and ending with T. It is here where we need the split
operation. For i= 1,. ., r-1, we split each Bi from B according to its base which is
its largest element. As a result of expanding a T-blossom some edges may become
useful. If that is the case we resume the search. Otherwise we make another change
of the dual variables.

(a)
FIG. 2. Expanding a T-blossom: (a) before, and (b) after the expansion.

(b)

If 3 32 (3 33), all edges (i,j) with an S-vertex andj a free vertex (an S-vertex
not in the same blossom) on which the minimum was attained become useful (their
7rj becomes 0) and we resume the search. The two cases correspond to the two cases
in 4.2.

At the end of each stage we also expand all S-blossoms Bk with zk 0. Note that
finding the alternating path within a blossom can be deferred to the time we expand
it. This way we save the repeated changes within the same blossom.

Keeping the blossoms with positive dual variables to the next stage is important.
This makes sure that (3) always holds. This explains why T-blossoms can be generated.
The latter are expanded whenever their dual variables become 0.

5. The known algorithms. Let us call a substage each change in the dual variables.
Obviously, there are O(V) stages. There are O(V) different blossoms per stage: each
S-blossom corresponds to a unique node in one of the structure trees at the end of a

stage. Each T-blossom (free blossom) corresponds to a unique node in one of the
structure trees at the beginning of the stage. But, whenever 3 32 (3 "--33) a new
T-blossom (S-blossom) is generated, and whenever 3 34 a T-blossom isexpanded.
Hence, 3 3, i= 2, 3, 4, at most O(V) times per stage. Finally, 3 31 at most once.
Consequently, there are O(V) substages per stage.

The most costly part in a substage is finding useful edges and computing 3. The
obvious way to do it takes O(E) steps (in each substage we consider all the edges)
and yields an O(EV2) algorithm. To maintain the sets one uses ordered lists for
concatenate and split and an array for the find. The naive implementation costs O(V3).
(There are O(V) concatenates and splits per stage, each costs O(V).) The cost of
maintaining the dual variables is also O(V3) (O(V) per substage). The resulting

MAXIMAL WEIGHTED MATCHING IN GENERAL GRAPHS 127

algorithm is essentially Edmonds’ algorithm. The time bound that was given for it was
O(V4) because E was bounded above by V2.

The only parts which require more than O(V3) are maintaining 62 and 63 and
finding useful edges. The latter is handled automatically because 62-0 (63 --0) if
there are useful edges of Case 1 (Case 2) and these are the edges on which the minimum
(0) is attained. We show first how to take care of 62. For every free vertex (T-vertex)
j let

Then

rj= min ro.
(i,j)F

i: S-vertex

62 min
j: free vertex

Together with rj we record an edge (i, j), an S-vertex, such that r r0. For each
change of 6, we only change r. for free vertices j. Consequently, the changes of {
and computing 62 cost O(V3). Recall that free vertices may become T-vertices (when
a blossom is labeled by T) and T-vertices may become free (when we expand a
T-blossom). That is why we need 5’s for T-vertices as well.

To take care of 8, we define for every pair of S-blossoms Bk, B,

ok, min (i/2).
(i,j)E
i Bk,j B

We record the edge ek, on which the minimum is attained and maintain pg min p,.
We do not maintain Pk,, but any time we need it we compute it by using ek,. Obviously
83 mink Pk. The changes in the dual variables and computing 83 cost O(V3) as for
82. We have to update {Pk} and {ek,} any time an S-blossom Bk is constructed from
Bi,..., B; Recall that (r+ 1)/2 of them are S-blossoms and (r-l)/2 of them are
T-blossoms. We first "make" each T-blossom B, an S-blossom by scanning all its
edges and computing for it {p,,,} and {e,,,}. Then we use the p,,’s of B,,. ., B to
compute Ck, { ek,} for the new blossom Bk, and to update {#j} for j # k.

The total cost (per stage) to make T-blossoms S-blossoms is O(E). We now
compute T(n), the rest of the cost of maintaining 83, where n is the number of
S-blossoms plus the number of non S-vertices in the graph. As above, assume that a
new S-blossom is constructed from r subblossoms. It follows that T(n) <-

crn + T(n r + l) because rn is a bound on the number of Pk,’S considered after making
the T-blossoms S-blossoms. T(n) O(n2) (by induction on n), and the cost of comput-
ing 83 is O(V3). The resulting O(V3) algorithm is essentially a (more complete version
of) Lawler’s algorithm [8].

6. The O(EV log V) algorithm. The most costly part of Edmonds’ algorithm is
the frequent updates of the dual variables, which cause changes in {zr,j}. Note that
all the elements that determine each 8 are decreased by 8 for each change in the dual
variables.

The new algorithm is also an implementation of Edmonds’ algorithm. The high
level description of 4 (including the search, augmenting the matching, the change of
dual variables and the resulting changes in the blossoms) is identical. The main
difference is in maintaining the 8’s by generalized priority queues that we describe next.

We maintain 8 by a p.q.. In this p.q. the elements are the S-vertices and their
priorities u. We do not need this p.q. for computing 8, since
(maxg, Wk,)/2--A where io is any exposed vertex and A is the sum of the 8’s so far.
We use a p.q. because we need to maintain the u’s for computing zr) when the edge

128 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

(i,j) is considered. For the same reason we maintain another P.q.1 for the ui’s of the
T-vertices.

We maintain 83 by a P.q.1. The p.q. contains all good edges (i, j) with and j in
different S-blossoms as well as some superfluous edges (i, j) with and j in the same
S-blossom. The reason for having superfluous edges is that we do not have time to
locate them and delete them any time a new S-blossom is constructed. The priority of
a good edge (i, j) is 7rij/2.

We maintain 84 by a P.q.1. The elements in the p.q. are the T-blossoms Bk and
their priority Zk/2. We have a similar p.q.1 for the S-blossoms, because we need to
maintain their Zk. (At the end of a stage they become free and in the next stage they
may become T-blossoms.)

If we try to maintain 82 by a P.q.1, we have a difficulty. Consider Fig. 3. Initially
there may be a large free blossom B. At that time all edges in Fig. 3 should be
considered for finding the value of 82. B may become a T-blossom. Then these edges
are not among those edges that determine 82. Later on B1 may be expanded and one
of its subblossoms, B2, may become free. The latter may later become a T-blossom
and so on. A simple implementation requires the consideration of each such edge an
unbounded number of times (up to k in Fig. 3).

$

FIG. 3. Edges from an exposed vertex to the innermost blossom that we may have to consider again and

again if the blossoms B, , Bk are eventually expanded.

To maintain 82 we have a P.q.2. For every free blossom (T-blossom) Bk we have
an active (a nonactive) group of all the edges from S-vertices to vertices in Bk. The
priority of an edge (i, j) is 7rij. Note that if (i, j) is in a nonactive group (i is an S-vertex
and j is a T-vertex), then 7rj does not change when we make a change in the dual
variables. It is now easy to verify that the eight operations of P.q.2 suffice for our
purposes.

Consider a group g which corresponds to a blossom B. The elements of the group
are the edges {(i,j)[i an S-vertex, jB}. The order on the elements is derived from
the order on the vertices of B. The order between two edges (i, j) and i2, j) is arbitrary.
The order enables us to split the group corresponding to B to the groups corresponding
to B,. ., Br when we expand B to its subblossoms.

The search is similar to the one described in 4.2. The labeling process is identical.
During the search, whenever we have a new S-vertex we consider in turn all the

MAXIMAL WEIGHTED MATCHING IN GENERAL GRAPHS 129

edges (i, j). This requires a queue Q for new S-vertices, since we sometimes have many
new S-vertices at once. When considering an edge (i, j) we distinguish between 3 cases
depending on the type of B the blossom of j.

Case I (II). B is a free blossom (T-blossom). We insert (i, j) with priority ri to
the active (nonactive) group corresponding to B.

Case III. B is an S-blossom. If the blossom of is not B we insert (i, j) with
priority ri/2 to the P.q.l that maintains 83.

During the search we compute 8 min (81, 82, 83, 84). If 8 > 0, we make a change
of 8 in the dual variables. This is accomplished by increasing A by 8, and results in a
new value of 8 0.

If 8 0, we consider all 8 0. If 81 0, then we are done. If 82 0, this means
that the minimum (0) is achieved on an edge (i, j) j in a free blossom B; i.e. (i, j) is
useful. We delete (i, j) from the corresponding p.q. and label as in Case 1 of 4.2. In
addition the group corresponding to B becomes nonactive (B is labeled by T) and
the group corresponding to C is deleted and the vertices in C (that become S-vertices)
are inserted into Q. We repeat the above as long as 82 0.

If 83 0 we delete one by one the elements (i, j) in this p.q. with priority r 0.
If and j are in the same blossom we do not do anything. Otherwise ((i,j) is useful)
we act as in Case 2 of 4.2. If a new S-blossom is generated, then for all the subblossoms
B that were T-blossoms up till now we delete the group corresponding to B (from
the P.q.2 of 82) and insert all the vertices of B to Q.

If 84 -’-0, we delete one by one the elements Bk in this p.q. with priority Zk O.
For each such Bk, we expand it and label the-new blossoms (the previous subblossoms
of Bk) as in 4.3 and Fig. 2. We split the corresponding group in the P.q.2 of 82. The
groups corresponding to the new free blossoms (T-blossoms) are inserted as active
(nonactive) groups to the P.q.2. The vertices of the new S-blossoms are inserted to Q.

To derive an O(EV log V) time bound we need to implement carefully two parts
of the algorithm:

1. We maintain the sets of vertices in each blossom (for finding the blossom of
a given vertex) by concatenable queues 1]. Note that the number of finds, concatenates
and splits is O(E) per stage.

2. Assume we consider an edge (i,j) where both and j are S-vertices not in the
same blossom. If we execute the backtracking as described above, we may need up to
O(V3) time. Instead, we make a careful backtrack by backtracking one blossom on
both paths each time, marking the blossoms on the way. If there are r subblossoms
in the new blossom, then we will visit at most 2r blossoms before discovering the first
common blossom on both paths (D). So the total number of blossoms that we traverse
in one stage is O(V). (Charge 2 each one of the corresponding nodes in the correspond-
ing structure tree.)

The time bound is easily derived as follows. There are at most V augmentations.
Between two augmentations we consider each edge at most twice and have O(E)
operations on (generalized) p.q.’s. (This includes 1 and 2 above.)

Note added in proof. The Q(EV log V) algorithm for finding weighted matching
in general graphs has been recently improved (slightly) to O(EV log log logd V+
V210g V), where d=max.(E/V, 2) [11]. This time bound equals O(EV) if E=
f(Vl+a), for any a > 0 and consequently is o(EV log V) unless E I’(V2) and is
o(V2) unless E O(V). The new algorithm is similar to the O(EV log V) algorithm.
The main difference is the use of new data structures instead of regular p.q.’s in the
p.q.l’s and P.q.2.

130 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] J. EDMONDS, Path, trees and flowers, Canad. J. Math., 17 (1965), pp. 449-467.
[3], Maximum matching and a polyhedron with O, vertices, J. Res. NBS 69B (April-June 1965),

pp. 125-130.
[4] H. N. GABOW, Implementation ofalgorithmsfor maximum matching on nonbipartite graphs, Ph.D. thesis,

Stanford Univ., Stanford, CA, 1974.
[5] Z. GALIL, Efficient algorithms for finding maximal matching in graphs, Tech. Rep., Dept. Computer

Science, Columbia Univ., New York, 1983.
[6] Z. GALIL AND A. NAAMAD, An O(EV log V) algorithm for the maximal flow problem, J. Comput.

System Sci., 21 (1980), pp. 203-217.
[7] A. V. KARZANOV, Determining the maximal flow in a network by the method ofpreflows, Soviet Math.

Dokl., 15 (1974), pp. 434:-437.
[8] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New

York, 1976.
[9] D. D. SLEATOR, An 0 (mn log m) algorithm for maximum network flow, Ph.D. thesis, Stanford Univ.,

Stanford, CA, December 1980.
[10] R. E. TARJAN, Finding optimum branchings, Networks, 7 (1977), pp. 25-35.
[11] H. N. GABOW, Z. GALIL AND T. H. SPENCER, Efficient implementation of graph algorithms using

contractions, Proc. 25th IEEE Symposium on Foundations of Computer Science, 1984, pp. 347-357.

