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Data Structures for Weighted Matching and 
Nearest Common Ancestors with Linking 

Harold N. Gabow* 

Abstract. This paper shows that the weighted match- 
ing problem on general graphs can be solved in time 
O(n(m + n log n)), f or n and m the number of vertices 
and edges, respectively. This was previously known 
only for bipartite graphs. It also shows that a sequence 
of m nca and link operations on n nodes can be pro- 
cessed on-line in time O(ma(m, n)+n). This was previ- 
ously known only for a restricted type of link operation. 

1. Introduction. 
This paper solves two well-known problems in data 

structures and gives some related results. The starting 
point is the matching problem for graphs, which leads to 
the other problems. This section defines the problems 
and states the results. 

A maMing on a graph is a set of vertex-disjoint‘ 
edges. Suppose each edge e has a real-valued cosi c(e). 
The cost c(S) of a set of edges S is the sum of the 
individual edge costs. A minimum cost matching is a 
matching of smallest possible cost. There are a num- 
ber of variations: a minimum cost maximum cardinal- 
ity matching is a matching with the greatest number 
of edges possible, which subject to this constraint has 
the smallest possible cost; minimum cost cardinality- 
k matching (for a given integer k); maximum weight 
matching; etc. The weighted matching problem refers 
to all of the problems in this list. 

In stating resource bounds for graph algorithms we 
assume throughout this paper that the given graph has 
n vertices and m edges. For notational simplicity we as- 
sume m 2 n/2. In the weighted matching problem this 
can always be achieved by discarding isolated vertices. 

Weighted matching is a classic problem in network 

optimization; detailed discussions are in [L, LP, PS]. 
Edmonds gave the first polynomial-time algorithm for 
weighted matching [El. Several implementations of Ed- 
monds’ algorithm have been proposed, with increas- 
ingly fast running times: O(n3) [G73, L], O(mn log n) 
[BD, GMG], O(n(m log Tog log 2++,n + n log n)) 

‘[GGS]. Edmonds’ algorithm is a generalization of the’ 
Hungarian algorithm, due to Kuhn, for weighted match- 
ing on bipartite graphs [K55, K56]. Fredman and Tar- 
jan implement the Hungarian algorithm in O(n(m + 
n logn)) time using Fibonacci heaps [FT]. They ask if 
general matching can be done in this time. Our first 
result is an affirmative answer: We show that a search 
in Edmonds’ algorithm can be implemented in time 
O(m + nlogn). This implies that the weighted match- 
ing problem can be solved in time O(n(m + n log n)). 
In both cases the space is O(m). Our implementation 
of a search is in some sense optimal: As shown in [FT] 
for Dijkstra’s algorithm, one search of Edmonds’ algo- 
rithm can be used to sort n numbers. Thus a search 
requires time fI(m + n log n) in an appropriate model of 
computation. 

Another algorithm for weighted matching is based 
on cost scaling. This approach is applicable if all costs 
are integers. The best known time bound for such 
a scaling algorithm is O(dncr(m, n) log n m log (ni’V)) 
[GT89]; here N is the largest magnitude of an edge cost 
and a is an inverse of Ackermann’s function (see below). 
Under the similarity assumption [GSSa] N 5 nOcl), this 
bound is superior to Edmonds’ algorithm. However our 
result is still of interest for at least two reasons: First, 
Edmonds’ algorithm is theoretically attractive because 
it is strongly polynomial. Second, for a number of 
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matching and related problems, the best known solution 
amounts to performing one search of Edmonds’ algo- 
rithm. These problems include most forms of sensitivity 
analysis for weighted matching [SD, CM, G85b, W] and 
the single source shortest path problem on undirected 
graphs with no negative cycles [L, pp. 220-2221. Thus 
our implementation of a search in time O(m + tz log n) 
gives the best algorithm for these problems. 

An important step in solving the matching prob- 
lem is to solve a nearest common ancestor problem on 
trees. This is our second contribution. To define such 
problems recall that the neares2 common ancestor of 
two nodes z and y in a tree is the ancestor of x and 
y that has greatest depth. Consider a forest F that is 
subject to two operations. In both operations z and y 
are nodes of F: 

link(z, y) - make y a child of z, where y is the root 
of a tree not containing z; 

nca(z, y) - return the nearest common ancestor of 
t and y (if z and y are in different trees, return 0). 

In stating resource bounds for nca problems we assume 
throughout this paper that F has n nodes, and a total 
of m nca and link operations are done. Here m, n 2 1. 

A number of data structures have been proposed 
for these operations; see [HT] for a more complete sum- 
mary. If F is given initially (equivalently, all links pre- 
cede all ncas) Hare1 and Tarjan give an algorithm that 
answers each nca query in time O(l), after O(n) time 
to preprocess F [HT]. (More recently [SV] uses another 
approach to achieve the same result sequentially by an 
algorithm that can be parallelized.) [HT] also gives an 
algorithm for the case where link and nca operations are 
intermixed, but both arguments of every link are roots. 
The running time is O(mcr(m,n) + n). (As above (Y is 
an inverse of Ackermann’s function. We use a variant 
of the LY function of [HT] that simplifies notation; see 
Section 3.) Our second contribution is to remove the 
restriction: We show that an arbitrary sequence of links 
and intermixed nca queries can be processed on-line in 
time O(ma(m,n) + n) and space O(n). The previous 
best way to process such a sequence is using dynamic 
trees [SlT]. This data structure performs each operation 
in time 0( log n), achieving total time O(m log n + n). 
This is not as fast as our algorithm, but dynamic trees 
have the advantage that they can also process cut oper- 
ations. Again our result is in some sense optimal: Mike 
Fredman has pointed out that the results of [FS] can be 
extended to show that nearest common ancestors with 
linking requires time R(ma(m, n) + n) in the cell probe 
model of computation. 

Edmonds’ matching algorithm does not require 
fully general link operations. Consider the following two 
special cases of link. They operate on a single tree T; 

z denotes a node already in T, y is a new node not yet 
in T: 

add-leaf(z, y) - add a new leafy, with parent Z, to 

T; 
add-root(y) - make the current root of T a child of 

new root y. 

We show that m add-leaf, add-root and nca operations 
can be done in time O(m). This is the starting point 
of our algorithm for general links. Edmonds’ algorithm 
actually only uses add-leaf and nco operations. 

The model of computation throughout this paper 
is a random access machine with a word size of logn 
bits. [HT] gives a lower bound indicating it is unlikely 
that our results for nearest common ancestors can be 
achieved on a pointer machine. On the other hand it 
still might be possible to achieve our results for Ed- 
monds’ algorithm on a pointer machine. 

Section 2 gives our implementation of Edmonds’ 
algorithm. Section 3 gives our algorithm for the nearest 
common ancestor problem. Section 4 mentions other 
problems that are solved by the method of Section 3. 
This section concludes with some terminology. 

We use interval notation for sets of integers: for 
integers i and j, [i-.3] = (klk is an integer, i 5 L 5 i}, 
and similarly for [i,.$, etc, The function log n de- 
notes logarithm to the base two. The function log(‘)n 
denotes the iterated logarithm, defined by log(‘)n = 
log n, log(‘+‘)n = log( log(h). In contrast login de- 
notes logn raised to the ith power. 

For a graph G, V(G) denotes its vertices and E(G) 
its edges. We use the following terminology for trees 
throughout the paper. If T is a tree, r(T) denotes its 
-root. Let u be a node of T. The ancestors of v are the 
nodes on the path from II to r(T). The ancestors are 
ordered as in this path. This indicates how to interpret 
expressions like “the first ancestor of v such that”. The 
parent of u is denoted p(u). The depth of n, denoted 
d(v), is the length of the path from v to r(T) (equiv- 
alently, the number of proper ancestors of u). For any 
function f defined on nodes of a tree, we write f~ when 
the tree T is not obvious (e.g., IT, ncaT(z, y)). 

2. Weighted matching. 
This section sketches our implementation of Ed- 

monds’ weighted matching algorithm in time O(n(m + 
n log n)) . 

We start with an overview of Edmonds’ algorithm; 
complete descriptions can be found in [E, G73, L, PSI. 
The algorithm is a primal-dual algorithm based on Ed- 
monds’ formulation of weighted matching as a linear 
program. It works by repeatedly finding a maximum 
weight augmenting path and using it to enlarge the 
matching. The procedure to find an augmenting path 

435 



is called a sear& of Edmonds’ algorithm. The entire 
algorithm consists of O(n) searches. Our task is to im- 
plement a search in time O(m + n log n). 

A search constructs a subgraph S using three types 
of steps, called gmw, blossom and expand steps in 
[G85b]; in addition it changes the linear programming 
dual variables in dual adjustment steps. After a dual 
adjustment step, one or more of the other steps can 
be performed. Steps are repeated until S contains the 
desired augmenting path. 

It is known how to implement most details of a 
search within the desired time bound. For dual adjust- 
ment steps we use a Fibonacci heap F, similar to the 
implementation of Dijkstra’s algorithm in [FT]. This 
contributes O(n Iog n) time. The processing associated 
with grow and expand steps can be done in time 
O(ma(m,n)) using a data structure of [G85b]. This 
leaves only the blossom steps: implementing the blos- 
som steps of a search in time O(m + nlogn) gives the 
desired result. 

A blossom is a special type of subgraph, not defined 
here. We just remark that a single vertex can be a 
blossom, and at any time the vertices of the graph are 
partitioned into blossoms, A blossom step forms a new 
blossom, as illustrated in Fig. 1. Here edges are drawn 
wavey if they are matched and straight otherwise; the 
circles J3i represent blossoms; initially S contains the 
entire subgraph shown except edges e, f and g; when e 
gets added to S a blossom step is done for e; it forms a 
new blossom B containing the entire subgraph shown. 

In general S consists of blossoms arranged in a tree 
structure (Le., if each blossom is contracted to a vertex, 
S becomes a tree). A blossom of S that is an even (odd) 
distance from the root is outer (inner); a vertex of S is 
outer or inner, depending on its blossom. In Fig. 1 the 
outer blossoms are the Bi with i even and also B. 

A grow step enlarges S by adding an inner blossom 
and an outer blossom. In Fig. 1 if S contains only Bc, 
a grow step for edge u adds u, BI, b and Bz; similar 
grow steps add the other Bi. (If the new inner blossom 
in a grow step is not matched to another blossom an 
augmenting path has been found.) 

A blossom step is executed for an edge e joining 
two distinct outer blossoms. All blossoms along the 
fundamental cycle of e are combined to form a new 
outer blossom. (This destroys the old blossoms along 
the cycle.) In Fig. 1 the search might do a blossom step 
for g, then later on one for f, and still later one for e; 
other sequences are possible. 

An expand step replaces an inner blossom in S by 
some of its subblossoms. In Fig. 1 an expand step for 
blossom B1 replaces it by vertices u, V, w and edges UV, 
VW, thus preserving the structure of S; the two other 
vertices of B1 leave S. Note that because of expand 
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Figure 1. 
Blossoms in a search of Edmonds’ algorithm. 

steps a vertex can alternately be inner and not-in-S, 
arbitrarily many times in a search; however once a ver- 
tex becomes outer it remains outer for the rest of the 
search. 

All of the processing of a search concerning blos- 
som steps can be implemented in terms of the following 
operations. Define the set & to contain all edges that 
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join two outer vertices (this includes all the edges that 
can cause a blossom step). 

make-edge(xy,t) - add edge XY, with cost t, to S; 
merge(A, B) - combine blossoms A and B into a 

new blossom called B (this destroys the old blossoms A 
and B); 

find-min - return an edge xy of C that has min- 
imum cost subject to the constraint that x and y are 
(currently) in distinct outer blossoms. 

Grow, expand and blossom steps each create new 
outer blossoms; they each perform make-edge opera- 
tions for the new edges that join two outer vertices. In 
Fig. 1 if Bs, 8s and Bs are in S and a grow step is done 
for edge a, make-edge is done for edge f. (In make-edge, 
t is not the given cost c(xy). Rather t is c(xy) modi- 
fied by dual values; t is unknown until the time of the 
make-edge operation.) A blossom step performs merge 
operations to construct the new blossom. In Fig. 1, 
merge(Bi, Ba), i = 1,. . . , 6 constructs B. Note that in- 
formation giving the edge structure of blossoms is main- 
tained and used in the outer part of the algorithm - it 
does not concern us here. Instead we can identify a 
blossom B with its vertex set V(B); the merge opera- 
tion need only update the information about the vertex 
partition induced by blossoms. A find-min operation is 
done at the end of each of the three search steps. The 
returned edge is used in the heap 3 to select the next 
step of the search. In Fig. 1 if e is returned by find-min, 
it gets added to 3. 

Our task is to implement a sequence of these op- 
erations - at most m make-edges, n merges and n 
find-mins, in time O(m + nlogn). The difficulty is 
illustrated by Fig. 1. Before blossom B forms, edges 
e, f, g are candidates for f ind-min. After the blossom 
step for e edges f and g are irrelevant, since they no 
longer join distinct blossoms. If we put the edges of S 
in a priority queue, we end up with useless edges like f, g 
that must be deleted from the queue. This can make 
the algorithm spend too much time, @(m log n). (This 
also indicates why there is no need for a delete-min op- 
eration in our data structure: If edge e of Fig. 1 was 
returned by find-min then after the blossom step e is 
irrelevant .) 

root is the same in T as it is in S. (The sequence of 
blossoms in S is apparent from the tree structure of S.) 

We omit the details of how T is constructed except 
for one remark: Inner vertices can leave S in expand 
steps, but there are no corresponding operations on T. 
Such operations would make the nearest common an- 
cestor problem too difficult. Instead we take advantage 
of the fact that when a blossom B becomes inner in a 
grow step, the sequence of vertices of B that will re- 
main in S, after any number of expand steps, is known. 
Hence grow steps can build T using add-leaf operations 
only. For example in Fig. 1 a grow step for edge a adds 
u to T and then does add-leaf(u,u) and add-leaf(u,w); 
the two other vertices of B1 are not added to T. 

Here is our overall strategy: Use add-leaf opera- 
tions to build T (in grow steps). To implement oper- 
ation make-edge(xy,t), perform nca(t,y) to find the 
nearest common ancestor z in T. Property (iii) shows 
that a blossom step for edge xy has precisely the same 
effect as blossom steps for xt and yr - in both cases all 
blossoms along the fundamental cycle of xy (in S) get 
combined. (Note that vertex z is outer, also by (iii).) 
Hence we replace xy by back edges xz and yz. The 
rest of the data structure consists of implementations 
of make-edge, merge, and f ind-min for the special case 
where all edges of & are back edges. 

Section 3 implements add-leaf and nca. This sec- 
tion sketches a data structure for the three other oper- 
ations when C consists of back edges. We first achieve 
time O(m+nlog2n) and space O(m+nlogn). Then we 
sketch the modifications needed to achieve the desired 
bounds. 

We implement these operations with the help of 
some additional information from the algorithm. We 
represent the search graph S by an auxiliary tree T. T 
is manipulated using the operations add-leaf and nca 
(defined in Section 1). It is constructed (in grow steps) 
to have these properties: (i) The vertices of T are all the 
outer vertices plus a subset of the inner vertices. (ii) 
The vertices of an outer blossom form a subtree (i.e., 
connected subgraph) of T. (iii) For any outer vertex, 
the sequence of blossoms intersected by its path to the 
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The data structure has three main parts: a pri- 
ority queue 30, a data structure for edges and a data 
structure for blossoms. We describe each in turn. 

The priority queue 3’ keeps track of the best blos- 
som step edge for each blossom. More precisely it is a 
Fibonacci heap, with an entry for each outer blossom 
B. The entry for B is an edge xy with z in B, y in 

‘a different outer blossom, and xy having the smallest 
cost possible. Thus a find-min operation in our data 
structure amounts to a Fibonacci heap find-min in 30. 

The edge data structure is a partition of the back 
edges of S into sets called packets. Recall that d(v) 
denotes the depth of vertex v in T. The packet of 
mnk r for vertez v contains all edges VW E f with 
d(u) > d(w) and Llog(d(u) - d(w))1 = r. A packet 
is implemented as a linked list of edges; it also records 
the packet rank r and minimum cost edge in the packet. 
Each vertex has an array of log n pointers to its packets. 
Thus make-edge can add a back edge to the appropri- 
ate packet in time O(1). The extra space for the packet 
pointers is O(n logn) total. (This notion of packet is 

‘similar in spirit, but not detail, to the data structure of 



the same name in [GGS’GGST].) 
To open a packet P means to transfer the edges of 

P into the rest of the data structure. This destroys P, 
i.e., a packet is opened only once. 

The last part of the data structure is for blossoms. 
A blossom with s nodes has rank [IogsJ. A minimal 
QIossom of rank r is the result of a merge of two blos- 
soms of rank less than P. (Such a blossom in subsequent 
merges gets larger and larger, staying at rank r until its 
rank increases.) The algorithm initializes a new data 
structure for each minimal blossom B of rank r. Let b 
be the root in T of this minimal blossom B. (In subse 
quent merges the root of the blossom may change, but 
b stays the same.) Every vertex of B has all its packets 
of rank at most P opened. Associated with B is a Fi- 
bonacci heap F(B) with two types of entries: (i) Each 
of the first 3 . 2’ ancestors u of b has an entry. The 
heap key of v is the smallest cost of an edge zu, where 
z E B and x’s packet containing xv has been opened. 
(ii) Each unopened packet P of a vertex of B has an 
entry. The key of P is the smallest cost of an edge in 
P. 

The last detail of the blossom data structure is the 
representation of the partition of vertices. A simple 
representation suffices: Each vertex is labelled with the 
name of the blossom containing it, and each blossom 
has a list of its vertices. 

Let us indicate why this data structure is correct, 
i.e., it keeps track of all possible future blossom steps. 
Consider any blossom B with rank r. First observe that 
a blossom containing both ends of an edge in a packet 
of rank r has rank at least P (recall property (ii) of 
T). This justifies the fact that the data structure for 
B doesn’t open any packet of rank more than r - if a 
blossom step is done for an edge in such a packet, the 
rank of the blossom increases and a new blossom data 
structure is initialized. Next observe that if a packet 
containing an edge VW, d(u) > d(w), has been opened 
then w has an entry in F(B). This follows since, for ver- 
tex b defined as above, d(w) > d(u) - 2++i (the packet 
is opened) and d(v) > d(b) - 2? (B still has rank r) 
imply d( UJ) > d(b) - 3 -2’ as desired. We conclude that 
the data structure represents all possible future blos- 
som steps, i.e., Tc contains the correct information for 
find-min. 

The make-edge, merge and find-min operations 
are implemented in a straightforward way to maintain 
the defining properties of the data structure. Here is a 
brief description. 

Consider make-edge(xy,t), where d(x) > d(y). 
Let x be in blossom B; compute the rank of the packet 
containing xy; if the packet has been opened, update 
the key for y in T(B) by possibly doing a Fibonacci 
heap decrease-key operation; if the packet is unopened 

add xy to it, updating the packet minimum and cor- 
responding Fibonacci heap entry if necessary. Finally 
if the minimum of F(B) decreases do a hecrease-key 

operation for B’s entry in $0. 
Consider merge(A, B). Let B have rank r. Sup- 

pose A has rank less than r and the new blossom has 
rank r. (The other case, where the new blossom has 
rank larger than r, is simpler.) Entries for vertices in 
F(A) are used to update entries for vertices in F(B) 
(using decrease-key). Packets of A with rank less than 
r are opened and their edges are used to update entries 
for vertices in T(B). Each unopened packet of A is in- 
serted into F(B). The vertices of A are relabelled to 
indicate that they are now in B and are added to B’s 
list. The Fibonacci heap operation delete-min is done 
on F(B) as long as the minimum entry is a vertex in 
(the new) blossom B. The (old) entries for A and B in 
& are deleted and replaced by the new heap minimum 
in F(B). 

Lastly the f ind-min operation is trivial. Note that 
for correctness of the algorithm it is important that we 
use a find-min operation rather than delete-min: The 
current minimum edge e for a future blossom step may 
not be selected (in the dual adjustment step) as the 
next step for the algorithm. Instead the next step of 
the algorithm may create new blossom steps for edges 
smaller than e. In this case it would be premature to 
delete e from the data structure when it is found to be 
minimum. 

A bound of O(m + n log “n) for the total time is 
proved as follows. One execution off ind-min uses O(1) 
time and one execution of make-edge uses O(1) amor- 
tized time. This gives O(m) time total. The time for 
all merge operations is estimated as follows. There are 
O(n) vertex entries in all Fibonacci heaps for blossoms 
with a given rank. Each such entry can be deleted 
from its heap. This gives O(n logn) time for each 
rank, O(n log2n) time total. Each packet gets inserted 
in 0( log n) heaps F(B), using O(n log 2n) time total. 
Each edge uses time O(1) when it is removed from its 
packet. These contributions dominate the total time. 

It is not difficult to refine the algorithm to achieve 
the desired time and space bounds. Here is the idea. 
We must reduce the time spent moving packets and 
deleting vertices. Call a blossom big if it has at least 
logn vertices, else small. To reduce the time on pack- 
ets, call a vertex big if it has degree at least logc2)n, 
else small. Small vertices in small blossoms have each 
edge its own packet; big vertices in small blossoms have 
log c2)n packets instead of log n; each minimal big blos- 
som has logn packets, just like a vertex in the original 
algorithm. To reduce the time on vertices, small blos- 
soms are treated as in the original algorithm; for big 
blossoms, form the ancestors of b into groups of logn 
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consecutive vertices. 

,Theorem 2.1. A search in Edmonds’ algorithm can 
be implemented in O(m + n log n) time. The weighted 
matching problem can be solved in O(n(m + n logn)) 
time. In both cases the space is O(m). w 

3. Nearest common ancestors. 
This section sketches several algorithms for finding 

nearest common ancestors. First we first show how to 
process m nca, add-leafand add-root operations in time 
O(m). Then we extend this to process m nca and link 
operations in time O(ma(m, n) + n). 

All our algorithms reduce an ncu query to evalua- 
tions of a more general function on auxiliary trees. To 
define the function, fix a tree and consider nodes x,y. 
Let a = ncu(x, y). For u = 2, y, let a, be the ancestor 
of u immediately preceding a; if a = v then a, = a. 
Define ca(x, y), the characteristic ancestors of x, y, as 
the triplet (a, a,, ay). Our algorithms compute ca. For 
simplicity we sometimes discuss only nca; the extension 
to co is simple. 

The main auxiliary tree that we use is, like [HT], 
the compressed tree, We review the basic definitions 
[HT, T79]: Let T be a tree with root r(T). The sire 
s(v) of a node v is the number of its descendants. A 
child w of v is light if 28(w) 2 s(v), else heavy. Deleting 
every edge from a light child to its parent leaves a set of 
disjoint paths (each of length zero or more) called the 
heavy paths of T. A node is an apex if it is not a heavy 
child; equivalently, it is the start of a heavy path. 

The compressed tree C(T) (written C, when T is 
clear) has nodes V(T) and root r(T); the parent of a 
node u # r(T) is the first proper ancestor of v that is an 
apex. The height of C is at most logn. In fact letting 
s(-) denote size in C, any child w of any node v has 

2s(uJ) 5 s(v). (1) 

The first step is to compute ncac(z, y) in 0( 1) 
time. The method of [HT] embeds C in a complete bi- 
nary tree B; ncas in B are calculated using the binary 
expansion of the inorder numbers of the nodes. [SV] 
uses a similar approach. Our method is different. It 
appears that our algorithms can be adapted to work 
with binary inorder numbers like [HT] but the algo- 
rithms get more complicated. 

Let C be a tree that satisfies (1). (We will later 
take C a compressed tree.) In what follows all tree 
functions (e.g., s(a)) refer to C. Let N be the set of 
natural numbers. Choose positive integers c, e with 

2e-‘4’- 1 5 c 5 fJe + 2 

(e.g., e = 2,c = 4). A fat preorder numbering of C is 
a function f : V(C) -+ N such that there are functions 

9, f *, 9* : V(C) + N so that for any node 21, 

(i) the descendants of v are precisely the nodes w 
with f(w) E [f (u)..s(u)l; 

(ii) there are no numbers f(u) in [f*(~)..f(v)) U 

M+!7*wl~ 
(iii) g*(u) - f*(u) = es(z))’ and f(u) - f*(u), 

g’(v) - g(u) 2 s(v)“. 

Note that property (i) by itself is equivalent to f being 
a preorder numbering, with g giving the highest number 
of a descendant. 

Given such a numbering, ncaC(x, 9) is computed 
as follows. Let a be the first ancestor of z that has 
(c - 2)s(a)e 1 If(x) - f(y)J. Then ncac(x, y) is a if a 
is an ancestor of y; otherwise it is the parent p(a). 

To see this is true, observe that an ancestor b 
of x preceding a hti its interval [f(b)..g(b)] too small 
to contain f(y). On the other hand y descends from 
p(a): By (iii) a nondescendant of p(a) and a descen- 
dant of p(a) differ in number by more than s(p(a))e, 

but s(p(a))e 2 2”sW” 2 (c - Wale 1 If(g) - f (y)l 
(recall the right inequality of (2)). 

To implement this algorithm in O(I) time, each 
vertex x stores an ancestor table A,[i], 0 < i 5 e( 1 + 
logn), where A5[i] is the first ancestor b of z that has 
(~-2)s(b)~ 2 2’. Th e ancestor a of the above algorithm 
is either A, [ Llog (If(z) - p(y)])J] or its parent, and so 
can be found in O(1) time, 

A fat preorder numbering exists and can be con- 
structed in time O(n) as follows. Traverse C top-down. 
Initially assign the root the interval [O..&]. In general 
when visiting a node u, it will have been assigned an 
interval [f’(u)..g*(u)] with g*(u)- f*(u) = CS(U)~. As- 
sign f(u) - f*(u)+s(u)e, g(u) + g*(u)-s(u)‘. Assign 
intervals to the children of u, starting at f(u) + 1, as 
follows: For each child t) of u, assign an interval of size 
es(u)’ + 1 to u and then visit u. 

The correctness of this procedure hinges on the fact 
that the total length of intervals assigned by u is at most 
the length given to u. This follows from the relations 
s(u) = 1+ C(s(v)lv a child of u}, (1) and the left in- 
equality of (2). 

This is the basis of our algorithm for nca queries 
on a static tree. The following result was first proved in 
[HT]. Our algorithm is slightly simpler and is the basis 
for later algorithms. 

Lemma 3.1. A tree T with n nodes can be prepro- 
cessed using O(n) time and space so that nca queries 
can be answered in O(1) time. 

Proof. As shown in [HT], ncaT(x, y) can be computed 
from cac(z, y) in O(1) time. (This uses the fact that 



for a heavy path P, ncap(z, y) is the node closest to the 
apex of P.) Compute cat using a fat preorder number- 
ing of C. 

The only drawback of the above data structure for 
C is that it uses O(n log n) preprocessing time and space 
for the ancestor tables. We improve this to O(n) using 
an auxiliary data structure to reduce the number of 
nodes in C to n/ logn. [HT] uses two auxiliary data 
structures (called “plies”) to do this. We use one, based 
on the technique of microsets [GT85]. 

We partition the given tree T into microsets, each 
of which is a subtree of at most Iogn nodes. We repre- 
sent each such subtree S of b < logn nodes by a string 
p of 2b - 2 binary bits; /3 corresponds to a depth-first 
traversal of S (0 = “descend an edge”, 1 = “ascend”). 
Each node of S is represented by the shortest prefix of p 
that leads to it. It is easy to compute cas(z, y) in O(1) 
time from the bitstrings of z and y. (This assumes a 
set of tables that can be computed in time O(n).) This 
representation is similar to the Euler tour technique of 

P-VI * I 
We turn to trees that grow, starting with trees that 

grow by add-leafoperations only. Fix a constant Q > 1. 
For a node v in a tree T, let T, denote the subtree 
rooted at v. We maintain a variant of the compressed 
tree, C’ = C’(T). C’ has the same vertices as T. C’ is 
defined by the algorithm below, which is based on this 
operation: To recompress node v in C’ means to replace 
its current subtree in C’ by C(T,). Any node of T, gets 
reorganized in this operation. 

A node w gets reorganized in a recompression of 
any ancestor. Each reorganization classifies w as an 
apex or heavy child. Call w an A-child if it was a heavy 
child in its last reorganization. The algorithm main- 
tains h-children as leaves of C’, even when they get 
new children in T. 

The data structure maintains two sizes for each 
node w: s(w), its current size in C’, and SO(W), its size 
(in C’) when it was last reorganized. For example an 
h-child has both values one. C’ is maintained to always 
have s(w) < aso( 

To process add-Zeuf(z,y) do the following in C’: 
Assign the parent of y appropriately (i.e., PC!(Z) if z 
is an h-child, else z). Increase s(a) for each ancestor 
a of y. Find the last ancestor v of y that now has 
S(V) 2 osc(v) (this holds for v = y by convention). 
Recompress u. 

We maintain a fat preorder numbering of C’. The 
fat preorder satisfies the defining properties (i) - (iii) 
and two additional properties: Setting /3 = 1 + &, 
inequality (2) is replaced by 

2-l-c (a- we + (me < c < pe + 2 
1- (l/c+ - - (3) 

(e.g., cr = 5/4, e = 4, c = 6). Let a(v) be the largest 
value g*(z) for a descendant z of v (in C’). The add 
interval for v is [a(v)..g(v)]. When the algorithm re- 
compresses a node v with parent u = pcd (v), it assigns 
new fat preorder numbers to the nodes of T,, in the 
interval [a(u)..a(ti) + CS(V)~]. This decreases the size of 
u’s add interval; the old interval for V, [f*(v)..g*(v)], is 
in effect discarded. 

Using these fat preorder numbers, the algorithm 
for ncacl (t, y) is the same as the static case. 

Before proving this algorithm correct note two dif- 
ferences from the static case: First, C’ need not be C(T) 
- a chiId that is not an h-child may be heavy yet not a 
leaf in C’. Second, the algorithm for nca(z, y) uses old 
information - the ancestor table of z may have been 
constructed before y had its current preorder number. 

We show nca(z, y) works correctly. The main ob- 
servation is that at any time when v is a child of u in 
C’, s(u) >_ @S(V). This follows since when u was last re- 
organized, s(u) 5 s(u)/2, and after that v gets at most 
(CX - l)s(u) new descendants. The rest of the reasoning 
follows the static case, using the right inequality of (3). 

Next observe that add-leaf works correctly. This 
amounts to showing that until a node u gets reorga- 
nized, its add interval is large enough to accommodate 
all requests for new intervals. A child v of u currently 
has an interval of size at most es(v)‘; taking into ac- 
count the intervals it used in previous compressions, it 
uses intervals of total size at most cs(u)‘(l + (l/a)” + 
(l/o)2”+ * . .) = CS(V)~/[~ - (I/a)“]. (Note that s(o) in- 
creases monotonically, although it can decrease to one 
when u gets reorganized.) Simple calculus shows that 
the total length of all intervals ever used by all children 
of u is at most CS(U)~[(~ - wve + wvvP - (l/~)“l* 
The left inequality of (3) g uarantees u’s interval is large 
enough. 

We turn to the efficiency, showing that m nca 
queries and n add-leaf operations are processed in time 
O(m + n log “n) and space O(n log n). Note that recom- 
pressing a node v uses time O(s(v) log n). (Most of the 
time is spent constructing new ancestor tabIes; no entry 
in an ancestor table for a node outside of T’ changes.) 
Immediately before the recompression s(u) 1 crsc(u). 
Thus (QI - l)sc(v) descendants have been added since 
the last reorganization of u. Charge the time for recom- 
pression to these new nodes, at the rate of 0( log n) per 
node. The number of times a given node gets charged 
is at most its depth, i.e., at most logpn. This gives the 
time bound. 

We improve the efficiency using microsets. To han- 
dle add-leaf operations the microsets must be more flex- 
ible than those in the static case. We use microsets 
based on the parent table of a tree, as in [GT85]. A 
microset of b nodes has a name that is blogb bits (con- 
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trasted with 2b - 2 bits in the static case). 
The final data structure consists of three universes 

(contrasted with two in the static case). Call them uni- 
verse i, i = 1,2,3. Each universe is a forest - universe 
i consists of i-nodes partitioned into i-trees. A l-node 
is a node of T, the tree built by add-leafs. A I-tree is a 
subtree of T with at most (10g(~)n)~ l-nodes; a l-tree 
with exactly ( log (2)n)2 nodes corresponds to a 2-node. 
For i 2 2 an i-tree is a subtree of the tree T with all 
i-nodes contracted and vertices not in i-nodes deleted. 
A a-tree has at most log2n 2-nodes; a 2-tree with ex- 
actly log2n a-nodes corresponds to a 3-node. There is 
one 3-&e. If S is an i-tree, it is represented by the 

‘data structure for C’(S) if i 2 2; it is represented as a 
microset if i = 1. 

Further details of the algorithm are omitted (a 
similar universe structure is described in greater de 
.tail in the derivation of Theorem 3.2). Note that each 
of the three universes use linear time. For instance 
a 2-tree with k 2-nodes that processes p nca instruc- 
tions uses time O(p + k( log(2)n)2). Since there are 
O(n/( log(2)n)2) 2- no d es altogether, the total time in 
universe 2 is O(m + n). 

Theorem 3.1. A sequence of m nca operations and 
n add-leaf and add-root operations can be processed in 
time O(m + n) and space O(n). 

Proof. We have outlined the algorithm for add-leaf op- 
erations. The algorithm for add-root operations is sim- 
ilar. The main observation is that if T’ is the result of 
performing add-root(y) on tree T, then C(T’) is eas- 
ily constructed from C(T): Letting z be the root of T, 
C(T’) is C(T) with its root renamed y and a new child 
of the root named x. There are no difficulties in im- 
plementing this rule (for instance note that there is no 
need to store the root node as an entry in an ancestor 
table). n 

Call the data structure of Theorem 3.1 the incre- 
mental tree data structure. 

Now we discuss nca queries with general link op- 
erations. (Before starting note that the microset ap- 
proach does not work for link operations.) Define Ack- 
ermann’s function by 

A(i, 1) = 2, for i 2 1; 

A(l,j) = 2j, for j 1 1; 

A(i, j) = A(i - l,A(i, j - l)), for i,j 2 2. 

Define two inverse functions: 

a(i, n) = min{j ] A(i, j) 2 n); 

a(m, n) = min{i ] A(i, [m/nl) 1 n}, for m, n 1 1. 

.These definitions differ by one or two from those of 
[T83]. They are more convenient for our purposes. 

Our approach is to construct a family of algorithms 
Al, ! > 0 that process m nca and link operations on a 
set of n nodes in time O(mfJ + na(.& n)). [G85b] uses a 
similar approach to solve a list splitting problem. 

Construct Al inductively in terms of Al-1 as fol- 
lows. Use the terms verlez and link tree to refer to the 
objects manipulated by Al (i.e., the given instruction 
link(z, y) operates on vertices z, y to produce a new link 
tree). There are a(& n) universes i, i = 0,. . . , a(& n)- 1. 
A link tree T is in some universe i. If IV(T)1 < 4 then 
. 
a = 0; a trivial data structure is used on T. Otherwise, 
i is chosen so that IV(T)1 E [2A(& i)..2A(f?, i + 1)). An 
i-node is a tree with at least 2A(& i) vertices. It is rep- 
resented using the incremental tree data structu_re. The 
vertices of T are partitioned into i-nodzs. Let T be the 
tree T with all i-nodes contracted. T is represented 
using the data structure for algorithm AL- I. 

There are several data fields for bookkeeping: Let 
T be a link tree in universe i. If P is the root of T, the 
value u(r) contains i. If z is a vertex in T, 2 denotes 
the i-node containing z. 

The operation link(z, y) is done as follows. Let z 
be in a link tree with root z*. 

Case u(z*) > u(y): The u(z)-node Z is also an incre- 
mental tree. Do add,leafoperations to add each vertex 
of y’s link tree to 2. 
Case u(x*) < u(y): Do add-root and add-leaf opera- 
tions to add each vertex of z’s link tree to y^. 
Case ~(5.) = u(y): Let u = u(P). If ~(2’) + s(y) 2 
2A(1, u+l), make the new link tree into a (u+l)-node in 
a singleton (u + 1)-tree. Otherwise, do link(E, G) in the 
data structure for At-1 (use the trivial data structure 
ifu=O). I 

The operation ca(z, y) is done as follows. Let x 
and y be in link tree T in universe u (assume u > 0). 
Assign (a, a,, ay) c cap(Z, c) (compute the right-hand 
side using algorithm At-1 ). Let F be x if a, = a, else 

‘p~(r(a,)) (as usual r denotes root, p parent). Similarly 
define g. Return ca,(Z,p) (compute this using the in- 
cremental tree algorithm). 

Now we show that the time for a sequence of m 
ncas and links is O(me+ na(L, n)). A ca query is O(e), 
since there are e levels of recursion. A link is charged 
O(e) time, for recursion and also for finding x*. The 
rest of the time is associated with moving vertices into 
higher universes and processing universe 0. We show 
this is O(na(& n)) as follows. 

We prove by induction on e that the rest of the 
time is at most cna(& n) for some constant c. We first 
examine the time for At-l. Consider any universe i > 
0. By induction each i-node is charged at most c times 
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a(!? - 1,2A(!, i + 1)/2A(!,i)) 5 a@ - l,A(& i + 1)) = 
a(f - 1, A(fJ - 1, A(e, i))) = A(!, ;). There are at most 
n/2A(4 i) i-nodes. This implies that the total charge 
to i-nodes is at most cn/2. Summed over all i this is at 
most cna(e, n)/2. 

We next examine the time for incremental tree op- 
erations add-leaf and add-root, and for processing uni- 
verse 0. from Theorem 3.1 each universe i uses time at 
most, dn for some constant d. Choose c 2 2d so that this 
time, summed over all universes, is at most cna(& n)/2. 
Thus the total time is at most cna(.& n) as desired. 

Theorem 3.2. A sequence of m nca and link opera- 
tions on a universe of n vertices can be processed in 
time O(ma(m, n) + n) and space O(n). 

Proof. If m and n are given in advance take e = 
cr(m, n) in the above algorithm. If not, reorganize the 
data structure each time m + n doubles. 8 

4. More almost-linear algorithms. 
The method of Section 3 leads to several other 

algorithms with run time O(mcu(m, n) + n). These al- 
gorithms either achieve the best-known time and space 
bounds or make slight improvements. We offer the 

’ methodology for its simplicity and broad applicability. 
The algorithms discussed here are also based on the 
heavy path representation of a graph [GX]. 

Suppose we are given an n node tree with edge 
costs; we must process on-line m queries for the min- 
imum cost edge in a fundamental cycle. Chazelle [C] 
gives an algorithm using total time O(mtr(m, n) + n) 
and space O(m + n). We achieve the same result. If 
a sorted order of the edges in T is known, (e.g., costs 
have magnitude at most n O(l)) our algorithm achieves 
O(1) query time, given O(n) preprocessing. This result 
is achieved off-line in [HI. 

Consider the static cocycle problem. Given is a 
graph and a spanning tree. The problem is to process 
on-line a sequence of operations c(e), which returns all 
edges in the fundamental circuit of e that have not, been 
returned by any previous c operation. This problem is 
introduced in [GS] to solve the graphic matroid cardi- 
nality intersection problem. [GS] solves the static co- 
cycle problem in time O(m + n log n) and space O(m). 
We achieve time and space O(ma(m, n)); alternatively, 
time O(mJ + na(.& n)) and space O(d) for any e 1 1. 
(The first bound can also be obtained using transmuters 
[T82, T79].) 

This gives improved bounds for several applica- 
tions. [SuT] gives an algorithm to compute the short- 
est pair of disjoint paths to every vertex. [GS] imple- 
ments this algorithm in time O(m + n log n) and space 
O(m). If edge lengths satisfy the .similarity assumption 

( i.e., all lengths are at most no(l),) we can implement 

the algorithm of [SuT] in time O(m + n=) and 
space O(m) (use the implementation of Dijkstra’s al- 
gorithm of [AMOT] plus our static cocycle algorithm 
with fJ=2). 

Applications of the static cocycle problem based 
on matroid theory are given in [GW]. That paper in- 
troduces the notion of the top clump of a matroid sum. 
Consider a graph G, with corresponding graphic ma- 
troid G and k-fold matroid sum @ = Vi”=, 6. Suppose 
we are given a maximum cardinality set of edges parti- 
tioned into k forests. The algorithm of [GW] finds a top 
clump of G;’ in time O(knlogn) time and space O(kn). 
We improve this to time and space O(kncr(n,n)); al- 
ternatively, time O(kn(1 + a(C, n))) and space O(kne) 
for any e 1 1. [GW’j uses the top clump to analyze 
the Shannon switching game. For instance classifica- 
tion queries for switching games on a fixed graph are 
answered in O(1) time, using O(n2 logn) preprocess- 
ing time and O(m) space. Our algorithm improves 
the preprocessing time and space to O(n2a(n,n)) and 
O(m+ncr(n, n)), or alternatively, O(n2(!+a(e, n))) and 
O(m + nt) for any e 2 1. For instance a table giving 
the winner of each of the (g) possible switching games 
on a given graph can be generated in time and space 
O(n2). 
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