
Chapter 46

Data Structures for Weighted Matching and
Nearest Common Ancestors with Linking

Harold N. Gabow*

Abstract. This paper shows that the weighted match-
ing problem on general graphs can be solved in time
O(n(m + n log n)), f or n and m the number of vertices
and edges, respectively. This was previously known
only for bipartite graphs. It also shows that a sequence
of m nca and link operations on n nodes can be pro-
cessed on-line in time O(ma(m, n)+n). This was previ-
ously known only for a restricted type of link operation.

1. Introduction.
This paper solves two well-known problems in data

structures and gives some related results. The starting
point is the matching problem for graphs, which leads to
the other problems. This section defines the problems
and states the results.

A maMing on a graph is a set of vertex-disjoint‘
edges. Suppose each edge e has a real-valued cosi c(e).
The cost c(S) of a set of edges S is the sum of the
individual edge costs. A minimum cost matching is a
matching of smallest possible cost. There are a num-
ber of variations: a minimum cost maximum cardinal-
ity matching is a matching with the greatest number
of edges possible, which subject to this constraint has
the smallest possible cost; minimum cost cardinality-
k matching (for a given integer k); maximum weight
matching; etc. The weighted matching problem refers
to all of the problems in this list.

In stating resource bounds for graph algorithms we
assume throughout this paper that the given graph has
n vertices and m edges. For notational simplicity we as-
sume m 2 n/2. In the weighted matching problem this
can always be achieved by discarding isolated vertices.

Weighted matching is a classic problem in network

optimization; detailed discussions are in [L, LP, PS].
Edmonds gave the first polynomial-time algorithm for
weighted matching [El. Several implementations of Ed-
monds’ algorithm have been proposed, with increas-
ingly fast running times: O(n3) [G73, L], O(mn log n)
[BD, GMG], O(n(m log Tog log 2++,n + n log n))

‘[GGS]. Edmonds’ algorithm is a generalization of the’
Hungarian algorithm, due to Kuhn, for weighted match-
ing on bipartite graphs [K55, K56]. Fredman and Tar-
jan implement the Hungarian algorithm in O(n(m +
n logn)) time using Fibonacci heaps [FT]. They ask if
general matching can be done in this time. Our first
result is an affirmative answer: We show that a search
in Edmonds’ algorithm can be implemented in time
O(m + nlogn). This implies that the weighted match-
ing problem can be solved in time O(n(m + n log n)).
In both cases the space is O(m). Our implementation
of a search is in some sense optimal: As shown in [FT]
for Dijkstra’s algorithm, one search of Edmonds’ algo-
rithm can be used to sort n numbers. Thus a search
requires time fI(m + n log n) in an appropriate model of
computation.

Another algorithm for weighted matching is based
on cost scaling. This approach is applicable if all costs
are integers. The best known time bound for such
a scaling algorithm is O(dncr(m, n) log n m log (ni’V))
[GT89]; here N is the largest magnitude of an edge cost
and a is an inverse of Ackermann’s function (see below).
Under the similarity assumption [GSSa] N 5 nOcl), this
bound is superior to Edmonds’ algorithm. However our
result is still of interest for at least two reasons: First,
Edmonds’ algorithm is theoretically attractive because
it is strongly polynomial. Second, for a number of

* Department of Computer Science, University of Colorado at Boulder, Boulder,
CO 80309. Research supported in part by NSF Grant No. CCR-8815636.

434

matching and related problems, the best known solution
amounts to performing one search of Edmonds’ algo-
rithm. These problems include most forms of sensitivity
analysis for weighted matching [SD, CM, G85b, W] and
the single source shortest path problem on undirected
graphs with no negative cycles [L, pp. 220-2221. Thus
our implementation of a search in time O(m + tz log n)
gives the best algorithm for these problems.

An important step in solving the matching prob-
lem is to solve a nearest common ancestor problem on
trees. This is our second contribution. To define such
problems recall that the neares2 common ancestor of
two nodes z and y in a tree is the ancestor of x and
y that has greatest depth. Consider a forest F that is
subject to two operations. In both operations z and y
are nodes of F:

link(z, y) - make y a child of z, where y is the root
of a tree not containing z;

nca(z, y) - return the nearest common ancestor of
t and y (if z and y are in different trees, return 0).

In stating resource bounds for nca problems we assume
throughout this paper that F has n nodes, and a total
of m nca and link operations are done. Here m, n 2 1.

A number of data structures have been proposed
for these operations; see [HT] for a more complete sum-
mary. If F is given initially (equivalently, all links pre-
cede all ncas) Hare1 and Tarjan give an algorithm that
answers each nca query in time O(l), after O(n) time
to preprocess F [HT]. (More recently [SV] uses another
approach to achieve the same result sequentially by an
algorithm that can be parallelized.) [HT] also gives an
algorithm for the case where link and nca operations are
intermixed, but both arguments of every link are roots.
The running time is O(mcr(m,n) + n). (As above (Y is
an inverse of Ackermann’s function. We use a variant
of the LY function of [HT] that simplifies notation; see
Section 3.) Our second contribution is to remove the
restriction: We show that an arbitrary sequence of links
and intermixed nca queries can be processed on-line in
time O(ma(m,n) + n) and space O(n). The previous
best way to process such a sequence is using dynamic
trees [SlT]. This data structure performs each operation
in time 0(log n), achieving total time O(m log n + n).
This is not as fast as our algorithm, but dynamic trees
have the advantage that they can also process cut oper-
ations. Again our result is in some sense optimal: Mike
Fredman has pointed out that the results of [FS] can be
extended to show that nearest common ancestors with
linking requires time R(ma(m, n) + n) in the cell probe
model of computation.

Edmonds’ matching algorithm does not require
fully general link operations. Consider the following two
special cases of link. They operate on a single tree T;

z denotes a node already in T, y is a new node not yet
in T:

add-leaf(z, y) - add a new leafy, with parent Z, to

T;
add-root(y) - make the current root of T a child of

new root y.

We show that m add-leaf, add-root and nca operations
can be done in time O(m). This is the starting point
of our algorithm for general links. Edmonds’ algorithm
actually only uses add-leaf and nco operations.

The model of computation throughout this paper
is a random access machine with a word size of logn
bits. [HT] gives a lower bound indicating it is unlikely
that our results for nearest common ancestors can be
achieved on a pointer machine. On the other hand it
still might be possible to achieve our results for Ed-
monds’ algorithm on a pointer machine.

Section 2 gives our implementation of Edmonds’
algorithm. Section 3 gives our algorithm for the nearest
common ancestor problem. Section 4 mentions other
problems that are solved by the method of Section 3.
This section concludes with some terminology.

We use interval notation for sets of integers: for
integers i and j, [i-.3] = (klk is an integer, i 5 L 5 i},
and similarly for [i,.$, etc, The function log n de-
notes logarithm to the base two. The function log(‘)n
denotes the iterated logarithm, defined by log(‘)n =
log n, log(‘+‘)n = log(log(h). In contrast login de-
notes logn raised to the ith power.

For a graph G, V(G) denotes its vertices and E(G)
its edges. We use the following terminology for trees
throughout the paper. If T is a tree, r(T) denotes its
-root. Let u be a node of T. The ancestors of v are the
nodes on the path from II to r(T). The ancestors are
ordered as in this path. This indicates how to interpret
expressions like “the first ancestor of v such that”. The
parent of u is denoted p(u). The depth of n, denoted
d(v), is the length of the path from v to r(T) (equiv-
alently, the number of proper ancestors of u). For any
function f defined on nodes of a tree, we write f~ when
the tree T is not obvious (e.g., IT, ncaT(z, y)).

2. Weighted matching.
This section sketches our implementation of Ed-

monds’ weighted matching algorithm in time O(n(m +
n log n)) .

We start with an overview of Edmonds’ algorithm;
complete descriptions can be found in [E, G73, L, PSI.
The algorithm is a primal-dual algorithm based on Ed-
monds’ formulation of weighted matching as a linear
program. It works by repeatedly finding a maximum
weight augmenting path and using it to enlarge the
matching. The procedure to find an augmenting path

435

is called a sear& of Edmonds’ algorithm. The entire
algorithm consists of O(n) searches. Our task is to im-
plement a search in time O(m + n log n).

A search constructs a subgraph S using three types
of steps, called gmw, blossom and expand steps in
[G85b]; in addition it changes the linear programming
dual variables in dual adjustment steps. After a dual
adjustment step, one or more of the other steps can
be performed. Steps are repeated until S contains the
desired augmenting path.

It is known how to implement most details of a
search within the desired time bound. For dual adjust-
ment steps we use a Fibonacci heap F, similar to the
implementation of Dijkstra’s algorithm in [FT]. This
contributes O(n Iog n) time. The processing associated
with grow and expand steps can be done in time
O(ma(m,n)) using a data structure of [G85b]. This
leaves only the blossom steps: implementing the blos-
som steps of a search in time O(m + nlogn) gives the
desired result.

A blossom is a special type of subgraph, not defined
here. We just remark that a single vertex can be a
blossom, and at any time the vertices of the graph are
partitioned into blossoms, A blossom step forms a new
blossom, as illustrated in Fig. 1. Here edges are drawn
wavey if they are matched and straight otherwise; the
circles J3i represent blossoms; initially S contains the
entire subgraph shown except edges e, f and g; when e
gets added to S a blossom step is done for e; it forms a
new blossom B containing the entire subgraph shown.

In general S consists of blossoms arranged in a tree
structure (Le., if each blossom is contracted to a vertex,
S becomes a tree). A blossom of S that is an even (odd)
distance from the root is outer (inner); a vertex of S is
outer or inner, depending on its blossom. In Fig. 1 the
outer blossoms are the Bi with i even and also B.

A grow step enlarges S by adding an inner blossom
and an outer blossom. In Fig. 1 if S contains only Bc,
a grow step for edge u adds u, BI, b and Bz; similar
grow steps add the other Bi. (If the new inner blossom
in a grow step is not matched to another blossom an
augmenting path has been found.)

A blossom step is executed for an edge e joining
two distinct outer blossoms. All blossoms along the
fundamental cycle of e are combined to form a new
outer blossom. (This destroys the old blossoms along
the cycle.) In Fig. 1 the search might do a blossom step
for g, then later on one for f, and still later one for e;
other sequences are possible.

An expand step replaces an inner blossom in S by
some of its subblossoms. In Fig. 1 an expand step for
blossom B1 replaces it by vertices u, V, w and edges UV,
VW, thus preserving the structure of S; the two other
vertices of B1 leave S. Note that because of expand

-7

I

I

B5
I

I

I
I
I

B6 I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I

Figure 1.
Blossoms in a search of Edmonds’ algorithm.

steps a vertex can alternately be inner and not-in-S,
arbitrarily many times in a search; however once a ver-
tex becomes outer it remains outer for the rest of the
search.

All of the processing of a search concerning blos-
som steps can be implemented in terms of the following
operations. Define the set & to contain all edges that

436

join two outer vertices (this includes all the edges that
can cause a blossom step).

make-edge(xy,t) - add edge XY, with cost t, to S;
merge(A, B) - combine blossoms A and B into a

new blossom called B (this destroys the old blossoms A
and B);

find-min - return an edge xy of C that has min-
imum cost subject to the constraint that x and y are
(currently) in distinct outer blossoms.

Grow, expand and blossom steps each create new
outer blossoms; they each perform make-edge opera-
tions for the new edges that join two outer vertices. In
Fig. 1 if Bs, 8s and Bs are in S and a grow step is done
for edge a, make-edge is done for edge f. (In make-edge,
t is not the given cost c(xy). Rather t is c(xy) modi-
fied by dual values; t is unknown until the time of the
make-edge operation.) A blossom step performs merge
operations to construct the new blossom. In Fig. 1,
merge(Bi, Ba), i = 1,. . . , 6 constructs B. Note that in-
formation giving the edge structure of blossoms is main-
tained and used in the outer part of the algorithm - it
does not concern us here. Instead we can identify a
blossom B with its vertex set V(B); the merge opera-
tion need only update the information about the vertex
partition induced by blossoms. A find-min operation is
done at the end of each of the three search steps. The
returned edge is used in the heap 3 to select the next
step of the search. In Fig. 1 if e is returned by find-min,
it gets added to 3.

Our task is to implement a sequence of these op-
erations - at most m make-edges, n merges and n
find-mins, in time O(m + nlogn). The difficulty is
illustrated by Fig. 1. Before blossom B forms, edges
e, f, g are candidates for f ind-min. After the blossom
step for e edges f and g are irrelevant, since they no
longer join distinct blossoms. If we put the edges of S
in a priority queue, we end up with useless edges like f, g
that must be deleted from the queue. This can make
the algorithm spend too much time, @(m log n). (This
also indicates why there is no need for a delete-min op-
eration in our data structure: If edge e of Fig. 1 was
returned by find-min then after the blossom step e is
irrelevant .)

root is the same in T as it is in S. (The sequence of
blossoms in S is apparent from the tree structure of S.)

We omit the details of how T is constructed except
for one remark: Inner vertices can leave S in expand
steps, but there are no corresponding operations on T.
Such operations would make the nearest common an-
cestor problem too difficult. Instead we take advantage
of the fact that when a blossom B becomes inner in a
grow step, the sequence of vertices of B that will re-
main in S, after any number of expand steps, is known.
Hence grow steps can build T using add-leaf operations
only. For example in Fig. 1 a grow step for edge a adds
u to T and then does add-leaf(u,u) and add-leaf(u,w);
the two other vertices of B1 are not added to T.

Here is our overall strategy: Use add-leaf opera-
tions to build T (in grow steps). To implement oper-
ation make-edge(xy,t), perform nca(t,y) to find the
nearest common ancestor z in T. Property (iii) shows
that a blossom step for edge xy has precisely the same
effect as blossom steps for xt and yr - in both cases all
blossoms along the fundamental cycle of xy (in S) get
combined. (Note that vertex z is outer, also by (iii).)
Hence we replace xy by back edges xz and yz. The
rest of the data structure consists of implementations
of make-edge, merge, and f ind-min for the special case
where all edges of & are back edges.

Section 3 implements add-leaf and nca. This sec-
tion sketches a data structure for the three other oper-
ations when C consists of back edges. We first achieve
time O(m+nlog2n) and space O(m+nlogn). Then we
sketch the modifications needed to achieve the desired
bounds.

We implement these operations with the help of
some additional information from the algorithm. We
represent the search graph S by an auxiliary tree T. T
is manipulated using the operations add-leaf and nca
(defined in Section 1). It is constructed (in grow steps)
to have these properties: (i) The vertices of T are all the
outer vertices plus a subset of the inner vertices. (ii)
The vertices of an outer blossom form a subtree (i.e.,
connected subgraph) of T. (iii) For any outer vertex,
the sequence of blossoms intersected by its path to the

437

The data structure has three main parts: a pri-
ority queue 30, a data structure for edges and a data
structure for blossoms. We describe each in turn.

The priority queue 3’ keeps track of the best blos-
som step edge for each blossom. More precisely it is a
Fibonacci heap, with an entry for each outer blossom
B. The entry for B is an edge xy with z in B, y in

‘a different outer blossom, and xy having the smallest
cost possible. Thus a find-min operation in our data
structure amounts to a Fibonacci heap find-min in 30.

The edge data structure is a partition of the back
edges of S into sets called packets. Recall that d(v)
denotes the depth of vertex v in T. The packet of
mnk r for vertez v contains all edges VW E f with
d(u) > d(w) and Llog(d(u) - d(w))1 = r. A packet
is implemented as a linked list of edges; it also records
the packet rank r and minimum cost edge in the packet.
Each vertex has an array of log n pointers to its packets.
Thus make-edge can add a back edge to the appropri-
ate packet in time O(1). The extra space for the packet
pointers is O(n logn) total. (This notion of packet is

‘similar in spirit, but not detail, to the data structure of

the same name in [GGS’GGST].)
To open a packet P means to transfer the edges of

P into the rest of the data structure. This destroys P,
i.e., a packet is opened only once.

The last part of the data structure is for blossoms.
A blossom with s nodes has rank [IogsJ. A minimal
QIossom of rank r is the result of a merge of two blos-
soms of rank less than P. (Such a blossom in subsequent
merges gets larger and larger, staying at rank r until its
rank increases.) The algorithm initializes a new data
structure for each minimal blossom B of rank r. Let b
be the root in T of this minimal blossom B. (In subse
quent merges the root of the blossom may change, but
b stays the same.) Every vertex of B has all its packets
of rank at most P opened. Associated with B is a Fi-
bonacci heap F(B) with two types of entries: (i) Each
of the first 3 . 2’ ancestors u of b has an entry. The
heap key of v is the smallest cost of an edge zu, where
z E B and x’s packet containing xv has been opened.
(ii) Each unopened packet P of a vertex of B has an
entry. The key of P is the smallest cost of an edge in
P.

The last detail of the blossom data structure is the
representation of the partition of vertices. A simple
representation suffices: Each vertex is labelled with the
name of the blossom containing it, and each blossom
has a list of its vertices.

Let us indicate why this data structure is correct,
i.e., it keeps track of all possible future blossom steps.
Consider any blossom B with rank r. First observe that
a blossom containing both ends of an edge in a packet
of rank r has rank at least P (recall property (ii) of
T). This justifies the fact that the data structure for
B doesn’t open any packet of rank more than r - if a
blossom step is done for an edge in such a packet, the
rank of the blossom increases and a new blossom data
structure is initialized. Next observe that if a packet
containing an edge VW, d(u) > d(w), has been opened
then w has an entry in F(B). This follows since, for ver-
tex b defined as above, d(w) > d(u) - 2++i (the packet
is opened) and d(v) > d(b) - 2? (B still has rank r)
imply d(UJ) > d(b) - 3 -2’ as desired. We conclude that
the data structure represents all possible future blos-
som steps, i.e., Tc contains the correct information for
find-min.

The make-edge, merge and find-min operations
are implemented in a straightforward way to maintain
the defining properties of the data structure. Here is a
brief description.

Consider make-edge(xy,t), where d(x) > d(y).
Let x be in blossom B; compute the rank of the packet
containing xy; if the packet has been opened, update
the key for y in T(B) by possibly doing a Fibonacci
heap decrease-key operation; if the packet is unopened

add xy to it, updating the packet minimum and cor-
responding Fibonacci heap entry if necessary. Finally
if the minimum of F(B) decreases do a hecrease-key

operation for B’s entry in $0.
Consider merge(A, B). Let B have rank r. Sup-

pose A has rank less than r and the new blossom has
rank r. (The other case, where the new blossom has
rank larger than r, is simpler.) Entries for vertices in
F(A) are used to update entries for vertices in F(B)
(using decrease-key). Packets of A with rank less than
r are opened and their edges are used to update entries
for vertices in T(B). Each unopened packet of A is in-
serted into F(B). The vertices of A are relabelled to
indicate that they are now in B and are added to B’s
list. The Fibonacci heap operation delete-min is done
on F(B) as long as the minimum entry is a vertex in
(the new) blossom B. The (old) entries for A and B in
& are deleted and replaced by the new heap minimum
in F(B).

Lastly the f ind-min operation is trivial. Note that
for correctness of the algorithm it is important that we
use a find-min operation rather than delete-min: The
current minimum edge e for a future blossom step may
not be selected (in the dual adjustment step) as the
next step for the algorithm. Instead the next step of
the algorithm may create new blossom steps for edges
smaller than e. In this case it would be premature to
delete e from the data structure when it is found to be
minimum.

A bound of O(m + n log “n) for the total time is
proved as follows. One execution off ind-min uses O(1)
time and one execution of make-edge uses O(1) amor-
tized time. This gives O(m) time total. The time for
all merge operations is estimated as follows. There are
O(n) vertex entries in all Fibonacci heaps for blossoms
with a given rank. Each such entry can be deleted
from its heap. This gives O(n logn) time for each
rank, O(n log2n) time total. Each packet gets inserted
in 0(log n) heaps F(B), using O(n log 2n) time total.
Each edge uses time O(1) when it is removed from its
packet. These contributions dominate the total time.

It is not difficult to refine the algorithm to achieve
the desired time and space bounds. Here is the idea.
We must reduce the time spent moving packets and
deleting vertices. Call a blossom big if it has at least
logn vertices, else small. To reduce the time on pack-
ets, call a vertex big if it has degree at least logc2)n,
else small. Small vertices in small blossoms have each
edge its own packet; big vertices in small blossoms have
log c2)n packets instead of log n; each minimal big blos-
som has logn packets, just like a vertex in the original
algorithm. To reduce the time on vertices, small blos-
soms are treated as in the original algorithm; for big
blossoms, form the ancestors of b into groups of logn

438

consecutive vertices.

,Theorem 2.1. A search in Edmonds’ algorithm can
be implemented in O(m + n log n) time. The weighted
matching problem can be solved in O(n(m + n logn))
time. In both cases the space is O(m). w

3. Nearest common ancestors.
This section sketches several algorithms for finding

nearest common ancestors. First we first show how to
process m nca, add-leafand add-root operations in time
O(m). Then we extend this to process m nca and link
operations in time O(ma(m, n) + n).

All our algorithms reduce an ncu query to evalua-
tions of a more general function on auxiliary trees. To
define the function, fix a tree and consider nodes x,y.
Let a = ncu(x, y). For u = 2, y, let a, be the ancestor
of u immediately preceding a; if a = v then a, = a.
Define ca(x, y), the characteristic ancestors of x, y, as
the triplet (a, a,, ay). Our algorithms compute ca. For
simplicity we sometimes discuss only nca; the extension
to co is simple.

The main auxiliary tree that we use is, like [HT],
the compressed tree, We review the basic definitions
[HT, T79]: Let T be a tree with root r(T). The sire
s(v) of a node v is the number of its descendants. A
child w of v is light if 28(w) 2 s(v), else heavy. Deleting
every edge from a light child to its parent leaves a set of
disjoint paths (each of length zero or more) called the
heavy paths of T. A node is an apex if it is not a heavy
child; equivalently, it is the start of a heavy path.

The compressed tree C(T) (written C, when T is
clear) has nodes V(T) and root r(T); the parent of a
node u # r(T) is the first proper ancestor of v that is an
apex. The height of C is at most logn. In fact letting
s(-) denote size in C, any child w of any node v has

2s(uJ) 5 s(v). (1)

The first step is to compute ncac(z, y) in 0(1)
time. The method of [HT] embeds C in a complete bi-
nary tree B; ncas in B are calculated using the binary
expansion of the inorder numbers of the nodes. [SV]
uses a similar approach. Our method is different. It
appears that our algorithms can be adapted to work
with binary inorder numbers like [HT] but the algo-
rithms get more complicated.

Let C be a tree that satisfies (1). (We will later
take C a compressed tree.) In what follows all tree
functions (e.g., s(a)) refer to C. Let N be the set of
natural numbers. Choose positive integers c, e with

2e-‘4’- 1 5 c 5 fJe + 2

(e.g., e = 2,c = 4). A fat preorder numbering of C is
a function f : V(C) -+ N such that there are functions

9, f *, 9* : V(C) + N so that for any node 21,

(i) the descendants of v are precisely the nodes w
with f(w) E [f (u)..s(u)l;

(ii) there are no numbers f(u) in [f*(~)..f(v)) U

M+!7*wl~
(iii) g*(u) - f*(u) = es(z))’ and f(u) - f*(u),

g’(v) - g(u) 2 s(v)“.

Note that property (i) by itself is equivalent to f being
a preorder numbering, with g giving the highest number
of a descendant.

Given such a numbering, ncaC(x, 9) is computed
as follows. Let a be the first ancestor of z that has
(c - 2)s(a)e 1 If(x) - f(y)J. Then ncac(x, y) is a if a
is an ancestor of y; otherwise it is the parent p(a).

To see this is true, observe that an ancestor b
of x preceding a hti its interval [f(b)..g(b)] too small
to contain f(y). On the other hand y descends from
p(a): By (iii) a nondescendant of p(a) and a descen-
dant of p(a) differ in number by more than s(p(a))e,

but s(p(a))e 2 2”sW” 2 (c - Wale 1 If(g) - f (y)l
(recall the right inequality of (2)).

To implement this algorithm in O(I) time, each
vertex x stores an ancestor table A,[i], 0 < i 5 e(1 +
logn), where A5[i] is the first ancestor b of z that has
(~-2)s(b)~ 2 2’. Th e ancestor a of the above algorithm
is either A, [Llog (If(z) - p(y)])J] or its parent, and so
can be found in O(1) time,

A fat preorder numbering exists and can be con-
structed in time O(n) as follows. Traverse C top-down.
Initially assign the root the interval [O..&]. In general
when visiting a node u, it will have been assigned an
interval [f’(u)..g*(u)] with g*(u)- f*(u) = CS(U)~. As-
sign f(u) - f*(u)+s(u)e, g(u) + g*(u)-s(u)‘. Assign
intervals to the children of u, starting at f(u) + 1, as
follows: For each child t) of u, assign an interval of size
es(u)’ + 1 to u and then visit u.

The correctness of this procedure hinges on the fact
that the total length of intervals assigned by u is at most
the length given to u. This follows from the relations
s(u) = 1+ C(s(v)lv a child of u}, (1) and the left in-
equality of (2).

This is the basis of our algorithm for nca queries
on a static tree. The following result was first proved in
[HT]. Our algorithm is slightly simpler and is the basis
for later algorithms.

Lemma 3.1. A tree T with n nodes can be prepro-
cessed using O(n) time and space so that nca queries
can be answered in O(1) time.

Proof. As shown in [HT], ncaT(x, y) can be computed
from cac(z, y) in O(1) time. (This uses the fact that

for a heavy path P, ncap(z, y) is the node closest to the
apex of P.) Compute cat using a fat preorder number-
ing of C.

The only drawback of the above data structure for
C is that it uses O(n log n) preprocessing time and space
for the ancestor tables. We improve this to O(n) using
an auxiliary data structure to reduce the number of
nodes in C to n/ logn. [HT] uses two auxiliary data
structures (called “plies”) to do this. We use one, based
on the technique of microsets [GT85].

We partition the given tree T into microsets, each
of which is a subtree of at most Iogn nodes. We repre-
sent each such subtree S of b < logn nodes by a string
p of 2b - 2 binary bits; /3 corresponds to a depth-first
traversal of S (0 = “descend an edge”, 1 = “ascend”).
Each node of S is represented by the shortest prefix of p
that leads to it. It is easy to compute cas(z, y) in O(1)
time from the bitstrings of z and y. (This assumes a
set of tables that can be computed in time O(n).) This
representation is similar to the Euler tour technique of

P-VI * I
We turn to trees that grow, starting with trees that

grow by add-leafoperations only. Fix a constant Q > 1.
For a node v in a tree T, let T, denote the subtree
rooted at v. We maintain a variant of the compressed
tree, C’ = C’(T). C’ has the same vertices as T. C’ is
defined by the algorithm below, which is based on this
operation: To recompress node v in C’ means to replace
its current subtree in C’ by C(T,). Any node of T, gets
reorganized in this operation.

A node w gets reorganized in a recompression of
any ancestor. Each reorganization classifies w as an
apex or heavy child. Call w an A-child if it was a heavy
child in its last reorganization. The algorithm main-
tains h-children as leaves of C’, even when they get
new children in T.

The data structure maintains two sizes for each
node w: s(w), its current size in C’, and SO(W), its size
(in C’) when it was last reorganized. For example an
h-child has both values one. C’ is maintained to always
have s(w) < aso(

To process add-Zeuf(z,y) do the following in C’:
Assign the parent of y appropriately (i.e., PC!(Z) if z
is an h-child, else z). Increase s(a) for each ancestor
a of y. Find the last ancestor v of y that now has
S(V) 2 osc(v) (this holds for v = y by convention).
Recompress u.

We maintain a fat preorder numbering of C’. The
fat preorder satisfies the defining properties (i) - (iii)
and two additional properties: Setting /3 = 1 + &,
inequality (2) is replaced by

2-l-c (a- we + (me < c < pe + 2
1- (l/c+ - - (3)

(e.g., cr = 5/4, e = 4, c = 6). Let a(v) be the largest
value g*(z) for a descendant z of v (in C’). The add
interval for v is [a(v)..g(v)]. When the algorithm re-
compresses a node v with parent u = pcd (v), it assigns
new fat preorder numbers to the nodes of T,, in the
interval [a(u)..a(ti) + CS(V)~]. This decreases the size of
u’s add interval; the old interval for V, [f*(v)..g*(v)], is
in effect discarded.

Using these fat preorder numbers, the algorithm
for ncacl (t, y) is the same as the static case.

Before proving this algorithm correct note two dif-
ferences from the static case: First, C’ need not be C(T)
- a chiId that is not an h-child may be heavy yet not a
leaf in C’. Second, the algorithm for nca(z, y) uses old
information - the ancestor table of z may have been
constructed before y had its current preorder number.

We show nca(z, y) works correctly. The main ob-
servation is that at any time when v is a child of u in
C’, s(u) >_ @S(V). This follows since when u was last re-
organized, s(u) 5 s(u)/2, and after that v gets at most
(CX - l)s(u) new descendants. The rest of the reasoning
follows the static case, using the right inequality of (3).

Next observe that add-leaf works correctly. This
amounts to showing that until a node u gets reorga-
nized, its add interval is large enough to accommodate
all requests for new intervals. A child v of u currently
has an interval of size at most es(v)‘; taking into ac-
count the intervals it used in previous compressions, it
uses intervals of total size at most cs(u)‘(l + (l/a)” +
(l/o)2”+ * . .) = CS(V)~/[~ - (I/a)“]. (Note that s(o) in-
creases monotonically, although it can decrease to one
when u gets reorganized.) Simple calculus shows that
the total length of all intervals ever used by all children
of u is at most CS(U)~[(~ - wve + wvvP - (l/~)“l*
The left inequality of (3) g uarantees u’s interval is large
enough.

We turn to the efficiency, showing that m nca
queries and n add-leaf operations are processed in time
O(m + n log “n) and space O(n log n). Note that recom-
pressing a node v uses time O(s(v) log n). (Most of the
time is spent constructing new ancestor tabIes; no entry
in an ancestor table for a node outside of T’ changes.)
Immediately before the recompression s(u) 1 crsc(u).
Thus (QI - l)sc(v) descendants have been added since
the last reorganization of u. Charge the time for recom-
pression to these new nodes, at the rate of 0(log n) per
node. The number of times a given node gets charged
is at most its depth, i.e., at most logpn. This gives the
time bound.

We improve the efficiency using microsets. To han-
dle add-leaf operations the microsets must be more flex-
ible than those in the static case. We use microsets
based on the parent table of a tree, as in [GT85]. A
microset of b nodes has a name that is blogb bits (con-

440

trasted with 2b - 2 bits in the static case).
The final data structure consists of three universes

(contrasted with two in the static case). Call them uni-
verse i, i = 1,2,3. Each universe is a forest - universe
i consists of i-nodes partitioned into i-trees. A l-node
is a node of T, the tree built by add-leafs. A I-tree is a
subtree of T with at most (10g(~)n)~ l-nodes; a l-tree
with exactly (log (2)n)2 nodes corresponds to a 2-node.
For i 2 2 an i-tree is a subtree of the tree T with all
i-nodes contracted and vertices not in i-nodes deleted.
A a-tree has at most log2n 2-nodes; a 2-tree with ex-
actly log2n a-nodes corresponds to a 3-node. There is
one 3-&e. If S is an i-tree, it is represented by the

‘data structure for C’(S) if i 2 2; it is represented as a
microset if i = 1.

Further details of the algorithm are omitted (a
similar universe structure is described in greater de
.tail in the derivation of Theorem 3.2). Note that each
of the three universes use linear time. For instance
a 2-tree with k 2-nodes that processes p nca instruc-
tions uses time O(p + k(log(2)n)2). Since there are
O(n/(log(2)n)2) 2- no d es altogether, the total time in
universe 2 is O(m + n).

Theorem 3.1. A sequence of m nca operations and
n add-leaf and add-root operations can be processed in
time O(m + n) and space O(n).

Proof. We have outlined the algorithm for add-leaf op-
erations. The algorithm for add-root operations is sim-
ilar. The main observation is that if T’ is the result of
performing add-root(y) on tree T, then C(T’) is eas-
ily constructed from C(T): Letting z be the root of T,
C(T’) is C(T) with its root renamed y and a new child
of the root named x. There are no difficulties in im-
plementing this rule (for instance note that there is no
need to store the root node as an entry in an ancestor
table). n

Call the data structure of Theorem 3.1 the incre-
mental tree data structure.

Now we discuss nca queries with general link op-
erations. (Before starting note that the microset ap-
proach does not work for link operations.) Define Ack-
ermann’s function by

A(i, 1) = 2, for i 2 1;

A(l,j) = 2j, for j 1 1;

A(i, j) = A(i - l,A(i, j - l)), for i,j 2 2.

Define two inverse functions:

a(i, n) = min{j] A(i, j) 2 n);

a(m, n) = min{i] A(i, [m/nl) 1 n}, for m, n 1 1.

.These definitions differ by one or two from those of
[T83]. They are more convenient for our purposes.

Our approach is to construct a family of algorithms
Al, ! > 0 that process m nca and link operations on a
set of n nodes in time O(mfJ + na(.& n)). [G85b] uses a
similar approach to solve a list splitting problem.

Construct Al inductively in terms of Al-1 as fol-
lows. Use the terms verlez and link tree to refer to the
objects manipulated by Al (i.e., the given instruction
link(z, y) operates on vertices z, y to produce a new link
tree). There are a(& n) universes i, i = 0,. . . , a(& n)- 1.
A link tree T is in some universe i. If IV(T)1 < 4 then
.
a = 0; a trivial data structure is used on T. Otherwise,
i is chosen so that IV(T)1 E [2A(& i)..2A(f?, i + 1)). An
i-node is a tree with at least 2A(& i) vertices. It is rep-
resented using the incremental tree data structu_re. The
vertices of T are partitioned into i-nodzs. Let T be the
tree T with all i-nodes contracted. T is represented
using the data structure for algorithm AL- I.

There are several data fields for bookkeeping: Let
T be a link tree in universe i. If P is the root of T, the
value u(r) contains i. If z is a vertex in T, 2 denotes
the i-node containing z.

The operation link(z, y) is done as follows. Let z
be in a link tree with root z*.

Case u(z*) > u(y): The u(z)-node Z is also an incre-
mental tree. Do add,leafoperations to add each vertex
of y’s link tree to 2.
Case u(x*) < u(y): Do add-root and add-leaf opera-
tions to add each vertex of z’s link tree to y^.
Case ~(5.) = u(y): Let u = u(P). If ~(2’) + s(y) 2
2A(1, u+l), make the new link tree into a (u+l)-node in
a singleton (u + 1)-tree. Otherwise, do link(E, G) in the
data structure for At-1 (use the trivial data structure
ifu=O). I

The operation ca(z, y) is done as follows. Let x
and y be in link tree T in universe u (assume u > 0).
Assign (a, a,, ay) c cap(Z, c) (compute the right-hand
side using algorithm At-1). Let F be x if a, = a, else

‘p~(r(a,)) (as usual r denotes root, p parent). Similarly
define g. Return ca,(Z,p) (compute this using the in-
cremental tree algorithm).

Now we show that the time for a sequence of m
ncas and links is O(me+ na(L, n)). A ca query is O(e),
since there are e levels of recursion. A link is charged
O(e) time, for recursion and also for finding x*. The
rest of the time is associated with moving vertices into
higher universes and processing universe 0. We show
this is O(na(& n)) as follows.

We prove by induction on e that the rest of the
time is at most cna(& n) for some constant c. We first
examine the time for At-l. Consider any universe i >
0. By induction each i-node is charged at most c times

441

a(!? - 1,2A(!, i + 1)/2A(!,i)) 5 a@ - l,A(& i + 1)) =
a(f - 1, A(fJ - 1, A(e, i))) = A(!, ;). There are at most
n/2A(4 i) i-nodes. This implies that the total charge
to i-nodes is at most cn/2. Summed over all i this is at
most cna(e, n)/2.

We next examine the time for incremental tree op-
erations add-leaf and add-root, and for processing uni-
verse 0. from Theorem 3.1 each universe i uses time at
most, dn for some constant d. Choose c 2 2d so that this
time, summed over all universes, is at most cna(& n)/2.
Thus the total time is at most cna(.& n) as desired.

Theorem 3.2. A sequence of m nca and link opera-
tions on a universe of n vertices can be processed in
time O(ma(m, n) + n) and space O(n).

Proof. If m and n are given in advance take e =
cr(m, n) in the above algorithm. If not, reorganize the
data structure each time m + n doubles. 8

4. More almost-linear algorithms.
The method of Section 3 leads to several other

algorithms with run time O(mcu(m, n) + n). These al-
gorithms either achieve the best-known time and space
bounds or make slight improvements. We offer the

’ methodology for its simplicity and broad applicability.
The algorithms discussed here are also based on the
heavy path representation of a graph [GX].

Suppose we are given an n node tree with edge
costs; we must process on-line m queries for the min-
imum cost edge in a fundamental cycle. Chazelle [C]
gives an algorithm using total time O(mtr(m, n) + n)
and space O(m + n). We achieve the same result. If
a sorted order of the edges in T is known, (e.g., costs
have magnitude at most n O(l)) our algorithm achieves
O(1) query time, given O(n) preprocessing. This result
is achieved off-line in [HI.

Consider the static cocycle problem. Given is a
graph and a spanning tree. The problem is to process
on-line a sequence of operations c(e), which returns all
edges in the fundamental circuit of e that have not, been
returned by any previous c operation. This problem is
introduced in [GS] to solve the graphic matroid cardi-
nality intersection problem. [GS] solves the static co-
cycle problem in time O(m + n log n) and space O(m).
We achieve time and space O(ma(m, n)); alternatively,
time O(mJ + na(.& n)) and space O(d) for any e 1 1.
(The first bound can also be obtained using transmuters
[T82, T79].)

This gives improved bounds for several applica-
tions. [SuT] gives an algorithm to compute the short-
est pair of disjoint paths to every vertex. [GS] imple-
ments this algorithm in time O(m + n log n) and space
O(m). If edge lengths satisfy the .similarity assumption

(i.e., all lengths are at most no(l),) we can implement

the algorithm of [SuT] in time O(m + n=) and
space O(m) (use the implementation of Dijkstra’s al-
gorithm of [AMOT] plus our static cocycle algorithm
with fJ=2).

Applications of the static cocycle problem based
on matroid theory are given in [GW]. That paper in-
troduces the notion of the top clump of a matroid sum.
Consider a graph G, with corresponding graphic ma-
troid G and k-fold matroid sum @ = Vi”=, 6. Suppose
we are given a maximum cardinality set of edges parti-
tioned into k forests. The algorithm of [GW] finds a top
clump of G;’ in time O(knlogn) time and space O(kn).
We improve this to time and space O(kncr(n,n)); al-
ternatively, time O(kn(1 + a(C, n))) and space O(kne)
for any e 1 1. [GW’j uses the top clump to analyze
the Shannon switching game. For instance classifica-
tion queries for switching games on a fixed graph are
answered in O(1) time, using O(n2 logn) preprocess-
ing time and O(m) space. Our algorithm improves
the preprocessing time and space to O(n2a(n,n)) and
O(m+ncr(n, n)), or alternatively, O(n2(!+a(e, n))) and
O(m + nt) for any e 2 1. For instance a table giving
the winner of each of the (g) possible switching games
on a given graph can be generated in time and space
O(n2).

Acknowledgments.
Thanks to Bob Tarjan for some very fruitful early

conversations, and also to Jim Driscoll.

References.

[AMOT] R.K. Ahuja, K. Melhorn, J.B. Orlin and R.E.
Tarjan, “Faster algorithms for the shortest
path problem”, Technical Rept. No. 193, Op-
erations Research Center, MIT, Cambridge,
Mass., 1988.

PDI

[Cl

[CM1

[El

PSI

M.O. Ball and U. Derigs, “An analysis of al-
ternative strategies for implementing match-
ing algorithms”, Networks 13, 4, 1983, pp.
517-549.

B. Chazelle, “Computing on a free tree via
complexity-preserving mappings”,
Algorithmica, 2, 1987, pp. 337-361.

W.H. Cunningham and A.B. Marsh, III, “A
primal algorithm for optimum matching”,
Math. Programming Study 8, 1978, pp. 50-72.

J. Edmonds, “Maximum matching and a
polyhedron with O,l-vertices”, J. Res. Nat.
Bur. Standards 69B, 1965, pp. 125-130.

M.L. Fredman and M.E. Saks, “The cell
probe complexity of dynamic data struc-
tures”, Proc. dlst Annual ACM Symp. on
Theory of Comp., 1989, pp. 345-354.

442

WI

[G73]

[GSSa]

[G85b]

[GGSI

[GGST]

[GMGI

PSI

[GT85]

[GT89]

K-W

WI

M.L. Fredman and R.E. Tarjan, “Fibonacci
heaps and their uses in improved network op-
timization algorithms”, J. ACM, 94, 3, 1987,
pp. 596-615.

H.N. Gabow, “Implementations of algorithms
for maximum matching on nonbipartite
graphs”, Ph. D. Dissertation, Comp. Sci.
Dept., Stanford Univ., Stanford, Calif., 1973.

H.N. Gabow, “Scaling algorithms for network
problems”, J. Comp. and System Sci., 31, 2,
1985, pp. 148-168.

H.N. Gabow, “A scaling algorithm for
weighted matching on general graphs”, Proc.
26th Annual Symp. on Found. of Comp. Sci.,
1985, pp. 90-100.

H.N. Gabow, Z. Galil and T.H. Spencer, “Ef-
ficient implementation of graph algorithms
using contraction”, J. ACM, 66, 3, 1989, pp.
540-572.

H.N. Gabow, Z. Galil, T.H. Spencer and R.E.
Tarjan, “Efficient algorithms for finding min-
imum spanning trees in undirected and di-
rected graphs”, Combinatorics 6, 2, 1986, pp.
109-122.

Z. Galil, S. Micali and H.N. Gabow, “An
O(EV log V) algorithm for finding a maximal
weighted matching in general graphs”, SIAM
J. Comput., 15, 1, 1986, pp. 120-130.

H.N. Gabow and M. Stallmann, “Efficient al-
gorithms for graphic matroid intersection and
parity”, Automata, Languages and Program-
ming: 12th Colloquium, Lecture Notes in
Computer Science 194, W. Brauer, ed.,
Springer-Verlag, 1985, pp. 210-220.

H.N. Gabow and R.E. Tarjan, “A linear-time
algorithm for a special case of disjoint set
union”, J. Comp. and System Sci., $0, 2,
1985, pp. 209-221.

H.N. Gabow and R.E. Tarjan, “Faster scaling
algorithms for general graph matching prob-
lems”, submitted.

H.N. Gabow and H.H. Westermann, “Forests,
frames and games: algorithms for matroid
sums and applications”, Proc. 20th Annual
ACM Symp. on Theory of Comp., 1988, pp.
407-421; submitted.

H.N. Gabow and Y. Xu, “Efficient algorithms
for independent assignment on graphic and
linear matroids”, Prwc. 30th Annual Symp. on
Found. of Comp. Sci., 1989, to appear.

PI

[HTI

]K551

]K561

[Ll

[JJPI

PSI

WI

PUTI

WI

P-1

P=l

[T83]

[TV

WI

D. Hare& “A linear time algorithm for finding
dominators in flow graphs and related prob-
lems”, Proc. 17th Annual ACM Symp. on
Theory of Comp., 1985, pp. 185-194.

D. Hare1 and R.E. Tarjan, “Fast algorithms
for finding nearest common ancestors”, SIAM
J. Comput., 13, 2, 1984, pp. 338-355.

H.W. Kuhn, “The Hungarian method for the
assignment problem”, Naval Res. Logist.
Quart., 2, 1955, pp. 83-97.

H.W. Kuhn, “Variants of the Hungarian
method for assignment problems”, Naval Res.
Logist. Quart., 3, 1956, pp. 253-258.

E.L. Lawler, Combinaforial Optimization:
Networks and Matroids, Holt, Rinehart and
Winston, New York, 1976.

L. I,ov&zz and M.D. Plummer, Matching The-
ory, North-Holland Mathematic Studies 121,
North-Holland, New York, 1986.

C.H. Papadimitriou and K. Steiglitz, Combi-
natorial Optimization: Algorithms and Com-
ptetity, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1982.

D.D. Sleator and R.E. Tarjan, “A data struc-
ture for dynamic trees”, J. Comp. and System
Sci., 26, 1983, pp. 362-391.

J.W. Suurballe and R.E. Tarjan, “A quick
method for finding shortest pairs of disjoint
paths”, Networks 14, 1984, pp. 325-336.

B. Schieber and U. Vishkin, “On finding low-
est common ancestors: simplification and
parallelization”, SIAM J. Comput., 17, 6,
1988, pp. 1253-1262.

R.E. Tarjan, “Applications of path compres-
sion on balanced trees”, J. ACM, 26, 4, 1979,
pp. 690-715.

R.E. Tarjan, “Sensitivity analysis of
minimum spanning trees and shortest path
trees”, Inf. Proc. Letters, 14, 1, 1982, pp. 30-
32.

R.E. Tarjan, Data Structures and Network
Algorithms, SIAM, Philadelphia, PA., 1983.

R.E. Tarjan and U. Vishkin, “An efficient
parallel biconnectivity algorithm”, SIAM J.
Comput., 14, 4, 1985, pp. 862-874.

G.M. Weber, “Sensitivity analysis of optimal
matchings”, Networks II, 1981, pp. 41-56.

443

