
Faster Scaling Algorithms for General Graph-

Matching Problems

HAROLD N. GABOW

University of Colorado, Boulder, Colorado

AND

ROBERT E. TARJAN

Princeton University, Princeton, NJ, and NEC Research Institute, Princeton, NJ

Abstract. An algorithm for minimum-cost matching on a general graph with integral edge costs is

presented. The algorithm runs in time close to the fastest known bound for maximum-cardinality

matching. Specifically, let n, m, and N denote the number of vertices, number of edges, and largest

magnitude of a cost, respectively. The best known time bound for maximum-cardinal ity matching M

0(Am). The new algorithm for minimum-cost matching has time bound 0(in a (m, n)Iog n m

log (nN)). A slight modification of the new algorithm finds a maximum-cardinality matching in

0(fire) time. Other applications of the new algorlthm are given, mchrding an efficient implementa-

tion of Christofides’ traveling salesman approximation algorithm and efficient solutions to update

problems that require the linear programming duals for matching.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Non-numericalAlgorithms and Problems—Computations on discrete structures; G,2.2 [Discrete
Mathematics]: GraphTheory—graph algorithms, net work problems.

General Terms: Algorithms, Design, Theory 8GAugmentmg path, blossom, matching, network opti-

mization, scaling.

1. Introduction

Finding a minimum-cost matching on a general graph is a classic problem in
network optimization. It has many practical applications and very efficient
algorithms. We present an algorithm for this problem that is almost as fast as

HaroldGabow’sresearchwas supported in part by NSF Grant Nos. DCR-85 1191, CCR-88 15636, and

AT&T Bell Laboratories.

Robert Tarjan’s research at Princeton University was supported in part by NSF Grant No. DCR-8605962

and ONR Contract No. NOO014-87-K-0467. His research was also supported m part by AT&T Bell

Laboratories.

Authors’ addresses: Harold N. Gabow, Department of Computer Science, University of Colorado,

Boulder, CO 80309; Robert E. Tarjan, Computer Science Department, Princeton University, Princ-

eton, NJ 08544/NEC Research Institute, Princeton, NJ 08540.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association for

ComputingMachinery.To copy otherwise,or to republish,requiresa feeand/or specificpermission.
@ 1991ACM 0004-5411/91/1000-0815$01.50

Journal of the Association for Computmg Machinery, Vol. 3S. No 4. October 1991, pp S15-S53

816 H. GABOW AND R. TARJAN

the best known algorithm for the problem without costs, that is, maximum-
cardinality matching.

In stating resource bounds, we use n and m throughout this paper to denote
the number of vertices and the number of edges in the given graph, respec-
tively. When the graph has integral-valued edge costs, N denotes the largest
magnitude of a cost.

The fastest known algorithm for maximum-cardinality matching is due to

Micali and Vazirani [23] and runs in time 0(firn) (see also [14]). Edmonds
gave the first polynomial algorithm for weighted matching [7]. At the time
of the initial writing of this paper, the best known implementation of this algor-
ithm was that of [13]; it runs in time O(n(m log log logdn + n log n)),
where d = max{ m /n, 2} is the density of the graph. Recently an imple-
mentation achieving time 0(n(m + n log n)) has been given [12]. These
bounds for weighted matching can be substantially improved under the
assumption of integral costs that are not huge: The scaling algorithm of
[10] runs in time O(n’1’m log N). We improve this last bound to

0(in a(m, n)log n m 10.sJnN)). We also show that for maximum-cardinality
matching our algorithm runs in the same time as the algorithm of Micali and
Vazirani cited above. We present two other applications: We show how to
speed up Christofides’ traveling salesman approximation algorithm [4] to time
0(n25(log n) 15,; this bound is independent of the size of the input numbers.
We also show how to find the linear programming dual variables for matching,
which are the basis of Edmonds’ algorithm. This gives efficient solutions to
various matching update problems. Some more recent applications of our
algorithm are mentioned in the last section.

Our algorithm is based on the approach to scaling introduced by Goldberg
and Tarjan for the minimum-cost flow problem [18, 19] and applied in [16] to
the assignment problem. Historically, the first approaches to scaling computed
an optimum solution at each of log N scales (e. g., [7a], [20], [9, 10]). The new
method computes an approximate optimum solution at each of log(nN) scales;
using log n extra scales ensures that the last approximate optimum is exact. The
notion of c-optimality [3, 25] turns out to be the appropriate definition of
“approximate optimum” for this scaling technique.

Applying this scaling technique to general graphs is difficult because of
“blossoms. ” In all of the scaling algorithms mentioned above for bipartite and
directed graphs, the solution to one scale gives an obvious starting point for the
solution to the next. Blossoms invalidate the obvious starting point. The
techniques of [10], including the notion of “shells,” are used to overcome this
difficulty. Nonetheless, blossoms slow our algorithm down: The algorithm
of [16] finds a minimum-cost matching on a bipartite graph in time 0(v~ m

log(nN)). The extra factor of ~~ in our bound for general matching
comes from errors introduced in finding the starting point; the extra factor of

- comes from data structures for blossom manipulation.
The paper is organized as follows. Section 1.1 reviews Edmonds’ weighted

matching algorithm [7]; many of the ideas and routines of this algorithm are
incorporated into ours. The rest of the paper presents our algorithm in a
top-down fashion. Section 2 gives the main routine, Sections 3–4 give lower
level subroutines. These sections also show that the algorithm is correct and
give parts of the efficiency analysis. Sections 5-6 essentially complete the

Faster Scaling Algorithms for General Graph Matching Problems 817

efficiency analysis. Sections 7 – 8 give the remaining lower-level details of the
algorithm. Section 9 concludes the analysis of the algorithm. Section 10 applies
the algorithm to other matching problems such as minimum perfect matching.
Section 11 mentions a few further applications of the algorithm.

The present section closes with notation and definitions. We use several
standard mathematical conventions to simplify the efficiency analysis. Back-
ground concerning matching can be found in greater detail in [21], [22],
and [27].

If S is a set and e an element, S + e denotes S U {e} and S – e denotes
S – { e}. For integers i and j, [i. . j]={klk isaninteger, i=k=j}. The
function log n denotes logarithm to the base two.

We use a hat, for example, f, to emphasize that an object is a function, when
necessary. We use a dot, ., to denote the argument of a function. For example,
if f is a function of two variables, f (x, “) denotes the function of one variable

mapping y to f (x, y). If f and g are real-valued functions then f + g and fg
denote their sum and product, respectively, that is, (~+ g)(X) = f’(X) + g(X),

fg(x) = f(x) x g(X). We Use the following conventions to sum the values of
a function: If f k a real-valued function whose domain includes the set S, then

f(s) = X{ f(s) I s c S}. Similarly if f has two arguments then j(S. T) =
Z{ f(s, t) I s G S, t G T}, for S X T a subset of the domain of f.

For any graph G, V(G), and E(G) denote the vertex set and edge set of G,
respectively. All graphs in this paper are undirected. We regard an edge as
being a set of two vertices; hence, a statement like e G S, for e an edge and S
a set of vertices, means that both vertices of e are in S. We usually denote the
edge joining vertices v and w by VW. Thus if e = vw and y: E(G) ~ R then

-Y(e) = Y(v) + Y(w) by our convention for functions. We often identify a
subgraph H, such as a path or tree, with its set of vertices V(H) or edges
E(H). For example H G S is short for V(H) G S or E(H) G S, depending
on whether S is a set of vertices or edges; the choice will be clear from the
context.

A matching on a graph is a set of vertex-disjoint edges. Thus a vertex v is
in at most one matched edge vv’: a free vertex is in no such edge. A perfect
matching has no free vertices. An alternating path (cycle) for a matching is a
simple path (cycle) whose edges are alternately matched and unmatched. An
augmenting path P is an alternating path joining two distinct free vertices. To
augment the matching along P means to enlarge the matching &l to &l e P,
thus giving a matching with one more edge (&f Q P denotes the symmetric
difference of A4 and P).

Suppose c: E ~ R is a function that assigns a numeric cost to each edge; in
this paper costs are integers in [—N “ . IV] unless stated otherwise. By our
convention the cost C(S) of a set of edges S is the sum of the individual edge
costs. A minimum- (maximum-) cost matching is a matching of smallest
(largest) possible cost. A minimum (maximum) perfect matching is a
perfect matching of smallest (largest) possible cost.

1,1 EDMONDS’ MINIMUM CRITICAL MATCHING ALGORITHM. It is convenient to
work with a variant of the matching problem defined as follows. Let G be a
graph and v a fixed vertex. A v-matching is a perfect matching on G – v.
Figure 1 shows an x-matching; in all figures of this paper matched edges are
drawn wavy and free vertices are drawn square. A minimum (maximum)

818

FIG. 1. Blossom with base vertex x

H. GABOWAND R. TARJAN

v-matching is a v-matching with minimum (maximum) possible cost. G is
critical if every vertex v has a v-matching. The minimum critical matching
problem is, given a critical graph, to find a minimum v-matching for each
vertex v [11]. It follows from [6] that all the desired matchings can be
represented by the blossom tree defined below; we take this blossom tree as a
solution to the critical matching problem.

Note that if G is a graph with a perfect matching, a critical graph is obtained
by adding a vertex adjacent to every vertex of P’(G). Hence, an algorithm for
minimum critical matching can be used to find a minimum perfect matching.

Edmonds’ algorithm is based on the notion of blossom, which is explained in
the next four paragraphs. Let G be a graph with a matching. A blossom forest
F is a forest with the following properties. (Figure 2 shows a blossom forest,
with just one tree, for Figure 1.) The number of children of any nonleaf node of
F is at least three and odd. Each node of F is identified with a subgraph of G,
as follows: The leaves of I’ are precisely the vertices of G. If B is a nonleaf
node, its children can be ordered as B,, i = 1, . . ., k so that

V(B) = ~ V(B,), I?(B) = ~ (E(l?i) + e,),
i=l i=]

where e, is an edge that joins a vertex of V(Bi) to a vertex of V(Bi+ ~)
(interpret B~+, as B,); furthermore ei is matched precisely when i is even.
(Thus, each child of B is incident to two edges ei; for B1 both edges are
unmatched, and for all other children one edge is matched and the other
unmatched; there are precisely two possible orderings for the children.) In this

Faster Scaling Algorithms for General Graph Matching Problems 819

G*

x a

z

FIG. 2. Blossom tree

paper, node always refers to an element of V(F) and vertex always refers to
an element of V(G).

Each node B of F is a blossom. (Thus, a blossom can also be regarded as a
subgraph.) The blossom edges of B are the above edges ei, i = 1, k.
Any root, that is, maximal blossom, is a root blossom; all other blossoms are
nonroot blossoms. Every vertex is a blossom; a blossom that is not a vertex is
a nonleaf blossom.

The subgraph induced by V(B) is denoted G(B). Define functions

fi(B) = \ V(B)I, fi(l?) = I E(G(B)) I .

We emphasize that a blossom is not defined as an induced subgraph, e.g.,
ti(B) is in general larger than I E(B) 1. A simple induction shows that fi(B) is
odd. The base vertex of B is the unique vertex of B not in a matched edge of
E(G(B)). The base of a vertex v is v; a simple induction shows that the base
of a nonleaf blossom B exists and is in the first child blossom B1 of B.

Any v-matching of a critical graph has a blossom forest that consists of one
tree T* called a blossom iree. (This can be proved by examining the algorithm
of [6].) The root of T* is a blossom having vertex set V(G) and is denoted G*.
Given T*, for any vertex w a w-matching of G can be found in time 0(n).
We now describe a recursive procedure to do this. The procedure is
blossom_ match(B, w); here, B is a nonleaf node of T*, w is a vertex of B,
and the procedure constructs a w-matching of B. To do this, let B have
children Bi and blossom edges e,, i = 1, . . . , k; as above, e, joins B, to
Bi+l. Let w ~ BJ. Match alternate edges of the list ei, keeping ej _ ~ and ej
unmatched. For i # j let Wi denote the vertex of Bi on a newly matched edge,
and let Wj = w. Complete the procedure by recursively executing blossom_
match(Bi, Wi) for each nonleaf child Bit It is easy to see that blossom_
matclz(T*, w) constructs the desired w-matching in time 0(n).

Now we review Edmonds’ algorithm for minimum critical matching; further
details can be found in [7]. Two functions y, z form (a pair of) dual functions
if y: V(G) ~ R, Z:2V(G) ~ R and z(B) > 0 unless B = V(G). Such a pair

820 H. GABOW AND R. TARJAN

determines a dual edge function YZ: E ~ R, which for an edge e is defined as

w(e) =y(e) –z({Ble GB}).

(Recall that by convention if e = vw then Y(e) = Y(v) + Y(w). Similarly, the
last term denotes X{ Z(B) I e ~ B}.) The duals are dominated on edge e if

yz(e) s c(e);

they are tight if equality holds.
Edmonds’ algorithm maintains a structured matching. This is a matching

plus corresponding blossom forest F plus dual functions that collectively satisfy
two conditions: (i) z is nonzero only on nonleaf blossoms of F. (ii) The duals
are dominated on every edge. and tight on every edge that is matched or a
blossom edge. A structured v-matching is a minimum v-matching. (This can be
proved by an argument similar to Lemma 2.1(a) below.) Regarding (i), define a
weighted blossom as a blossom with a nonzero dual.

An optimum structured matching is a structured v-matching for some
vertex v, whose blossom forest is a blossom tree T*. Given T*, for any vertex
w a minimum w-matching is found in 0(n) time by the blossom_ match
procedure. The output of Edmonds’ algorithm is an optimum structured match-
ing. Thus, Edmonds’ algorithm solves the minimum critical matching problem.

The input to Edmonds’ algorithm is a critical graph plus a structured
matching. (The structured matching can be the empty matching, a blossom
forest of isolated vertices, and dual functions z = O and Y small enough to be
dominated on every edge.) The algorithm repeatedly does a “search” followed
by an “augment step” until some search halts with a v-matching (v arbitrary)
and a blossom tree (not forest). (This is a slight difference from the way the
algorithm of [7] halts; see below.)

More precisely a search builds a search graph 9, defined as follows and
illustrated in Figure 3. V(Y) is partitioned into root blossoms l?. E(Y)
consists of the blossom edges E(B) plus other tight edges. The rest of the
description of Y’ depends on whether or not an augmenting path has been
found. First consider Y before an augmenting path has been found. If each
root blossom of Y’ is contracted to a vertex, .Y becomes a forest Y– (Y–
should not be confused with the blossom forest). The roots of Y– are precisely
the root blossoms of G that contain a free vertex. The path P(B) from a root
blossom B to the root of its tree in .Y– is alternating. Blossom B is outer
(inner) if P(1?) has even (odd) length. Any descendant, in the blossom forest,
of an outer (inner) root blossom is also called outer (inner). (In particular,

every free vertex of G is outer.) Any outer vertex v is joined to a free vertex
by an even-length alternating path P(v) G E(Y’); if v is in root blossom B
then P(v) contains P(B). For instance Figure 3 shows path P(a) for vertex a
of Figure 1.

Now consider Y when an augmenting path has been found. In this case, Y
contains one or more tight edges v w joining outer vertices in distinct trees of
%. Each such edge gives an augmenting path composed of vw plus the above
paths P(v), P(w).

The search builds Y using three types of steps. A grow step enlarges Y by
adding a tight edge e that was incident to Y; the root blossom B at the end of
e is also added to Y. Grow steps always occur in pairs in Edmonds’ algorithm:

Faster Scaling A Igorithrns for Generul Graph Matching Problems 821

/%

Inner

P(a)

outer

FIG, 3 Search graph m Edmcmds’ algorithm.

first an unmatched edge e is added, along with the above blossom B; then. the
matched edge incident to B is added. Figure 4 shows a grow step for the
unmatched edge ab followed by a grow step for the matched edge cd.

A blossom step enlarges Y by adding a tight edge that joins distinct outer
root blossoms of Y‘. This step either constructs a new blossom in :/ , or it
discovers that Y’ contains an augmenting path. In Figure 3 an edge ae would
give a blossom step that constructs a new blossom, possibly the one in Figure 1.

An expand step deletes an unweighed root blossom B from the blossom
forest, thus making its children into roots; B is also deleted from .7’ and
replaced by some of these children (not necessarily all of them) so that 1
remains a forest. Figure 5 shows an expand step: blossoms B,, . . . , B~ become
root blossoms, and BJ and B~ leave Y .

These three steps are repeated as many times as possible, giving a maximal
search graph Y. If the maximal .7’ does not contain an augmenting path and G
is not a blossom, a dual adjustment is done. It starts by computing a quantity
8, as described below. Then, it makes the following changes:

y(v) +y(v) +6, for each outer vertex v;

y(v) +y(v) – d, for each inner vertex v;

z(B) -z(B) + 28, for each nonleaf root outer blossom B;

z(B) ~Z(B) – 28, for each nonleaf root inner blossom B.

These assignments do not change the value of yz(e) for e GE(.’/’), so these
edges remain tight. The assignments increase yz(e) only if e joins an outer

vertex to a vertex not in 7’, or if e joins two distinct root outer blossoms. Thus
the adjustment maintains condition (ii) above and also allows a new grow,

H. GABOWAND R. TARJAN

FTG. 4. Grow steps in Edmonds’ algorithm

B

c)

>

B3

B2

B1

B4

?

not in
J

B5
b

FIG. 5. Expand step.

Faster Scaling Algorithms for General Graph Matching Problems 823

blossom or expand step to be executed, if 8 is chosen as rein{ ~g, b~, 6,}, where

8. = min{(c - y)(vw) I vwe17(G), v anouter vertex, w$! V(q)};

6b = min

[

(c- y)(e)

2 1

e an edge joining two distinct root outer blossoms ;

6, = min
I

z(B)

1

— B a nonleaf root inner blossom .
2

FJote that 6>0 by the maximality of Y. If 8 = 6g, a grow step can be
executed after the dual adjustment; similarly, 6 = d~ gives a blossom step and
8 = 6, gives an expand step.

After the dual adjustment the search continues to do grow, blossom and
expand steps. Eventually the search halts, in one of two ways. Every search but
the last finds a weighted augmenting path. This is an augmenting path P
whose edges are tight. The augment step enlarges the matching 114 by one
edge to A4 o P. The blossom forest and duals remain valid. Then the algorithm
continues with the next search. In the last search the matching is a v-matching.
The last search eventually absorbs the entire graph G into one blossom. At this
time, the algorithm halts with the desired optimum structured matching.

We note two more properties of Edmonds’ algorithm for use below. First,
any dual adjustment increases the y value of any free vertex by 6. Second, note
that a dual adjustment step does divisions by two to calculate d~, 8,. If all given

costs are even integers, and all y values are initialized to have the same parity,
then all quantities computed by the algorithm are integers [24, p. 267, ex. 3].
This integrality property motivates various details of the scaling algorithm. For
instance, the scaling algorithm keeps all edge costs even.

lt will be helpful to sketch a proof of the above integrality property. Suppose
that all given costs are even integers and all y values are initialized to integers
of the same parity. The algorithm maintains the invariant that all y values are
integral, all y values of free vertices have the same parity, and all z values are
even integers. The main step of the proof is to observe that all y values of
vertices in Y“ have the same parity. This follows since Y consists of tight
edges and each connected component contains a free vertex. Using this observa-
tion it is easy to see that the invariant is preserved.

2. The Matching Algorithm: The Scaling Routine

This section gives the overall structure of our matching algorithm. This algo-

rithm solves the minimum critical matching problem in 0(ncv(m, n)log n
m log(nfV)) time. This section describes the main routine of the scaling
algorithm for minimum critical matching. The input is a critical graph. (This
entails no loss of generality—the algorithm can detect input graphs that are not
critical, as indicated below.)

The algorithm works by scaling the costs. Each scale finds a v-matching, for
some v, whose cost is almost minimum in the following sense. A 2-optimum
matching is a v-matching &l,, for some vertex v, plus a blossom tree T, plus
dual fanctions y, z such that z is nonzero only on nonleaves of T and the

824 H. GABOWAND R. TAR.JAN

following constraints hold:

yz(e) s c(e), for e~~; (la)

yz(e)z c(e) –2, for eeMUu{E(B)]Be V(T)}. (lb)

Note that if this definition is satisfied for some vertex v, it is satisfied by
every vertex x (matching ~, is constructed in 0(n) time by the
blossom _ match procedure). Hence, when My denotes a 2-optimum matching,
we understand that x can be chosen arbitrarily.

To motivate this definition, first observe that dropping the – 2 term from (lb)
gives the dominated and tight conditions used in Edmonds’ algorithm. The – 2
term is included so that the algorithm augments along paths of short length.
This makes the algorithm efficient. Further motivation is given in [16].
(Actually the bipartite matching algorithm of [16] uses a term of magnitude 1
rather than 2, and also maintains equality in the constraint for matched edges.
Here, we use magnitude 2 because of the aforementioned considerations of
integrality. Also equality cannot be maintained on the matched edges, because
of details of blossom manipulation.) The following result is the analog of
Edmonds’ optimality condition.

LEMMA 2.1. Let My be a 2-optimum matching.

(a) For any vertex x, any x-matching X has C(X) > C(MY) – n.
(b] If each cost C(e] is a multiple of some integer k, k > n, then M, is a

minimum x-matching.

PROOF

(a) Consider any vertex x and let T be the blossom tree. Function z is
nonzero only on nonleaves of T. For any blossom B, M., contains
precisely L A(11)/2] edges of G(11), and no matching contains more.
Combining these facts with (la) and (lb) gives

C(MY) s 2\n/2j + yz(MX)

< (n– l)+y(~(G) –x) – ~fi/2jz(v(T)) Sc(X)+n– 1.

(Recall that by the conventions of Section 1, ~R /2] Z(V(T)) denotes

X{~@/2jZ(B)l Be V(T)}.)
(b) This follows from (a) and the fact that any matching has cost a

multiple of k. ❑

Now we describe the scaling routine, the main routine of the algorithm. It
scales the costs in the following manner. The algorithm always works with even
edge costs to preserve integrality. Initially it computes a new cost function c
equal to n + 1 times the given cost function. (Clearly the two cost functions
have the same minimum x-matchings. Also each 2(e) is even.) It maintains a
cost function c equal to Z in the current scale. More precisely define k
= ~log(n + l)~j +1, the greatest number of bits in the binary expansion of

a Z cost. For any se [1 “ “ k] define a function b.: [–(n + l)N . .(n +
1) ~] ~ { – 1,0, 1} by taking b~(i) as the sth signed bit in the expansion of i
as a k-bit binary number. Thus, any new cost value i = Z(e) equals
x~~~ b,(i)2 ~- t (since b~(i) = O). In the sth scale, the cost c(e) is taken to be

X~=lb,(i)QS+’-t, so in the (k – l)st scale c(e) = i.

Faster Scaling Algorithms for General Graph Matching Problems 825

The scaling routine computes ~, then initializes c, y and z to the zero
function, the matching MY to a, and the blossom tree T to a root G with
children P’(G). Then, it executes the following loop for index s going from 1
tok–1:

Double Step. ~ompute new functions c - 2(c + b,), y -2 y – 1, z ~ 2 z.

Match Step. Call the match routine to find a 2-optimum matching MY, with
new duals y, z and new blossom tree T.

Lemma 2.1 (b) implies that if match works as described in the Match Step,
the scaling routine solves the minimum critical matching problem, that is, each
final matching IMX is a minimum x-matching. Each iteration of the loop is

called a scale. We give a match routine that runs in 0(nfx(m, n)log nm)
time, thereby achieving the desired time bound.

Note that in the first scale the tree T computed in the initialization is not
necessarily a blossom tree, since it need not correspond to a blossom structure.
We shall see that the algorithm still works correctly, because z = O (see the last
paragraph of Section 4).

3. The Match Routine

This section describes the overall structure of the routine that finds a 2-optimum
matching in a scale.

On entry to match, y, z are duals computed in the Double Step, and T is the
blossom tree of the previous scale (or the initialization, in the first scale). The
match routine saves T as the tree TO; for the analysis it is convenient to let

YO, ZO refer to the duals on entry to match.
The scaling routine is similar to the main routine of the bipartite matching

algorithm of [16]. In the bipartite algorithm, each scale is similar to the first in
that the dual function can be initially taken as zero, and there is no structure on
the graph inherited from previous scales. This is not true for general graphs:
The function Z. can have positive values that cannot be eliminated (see [10]).
The match routine is forced to work with blossoms from both the previous
scale, in blossom tree TO, and the current scale. It is convenient to denote the
current blossom forest as T (eventually this forest becomes a blossom tree). An
old blossom is a node of V(TO); a current blossom is a node of V(T). An
old blossom B dissolves either when it becomes a current blossom or, if
B # G*, when Z(B) becomes zero. Note that current blossoms do not dissolve
(in the current scale); hence, we use the term undissolved blossom to refer to
an old blossom that has not yet dissolved. A vertex is a current blossom, so
only nonleaf blossoms are undissolved. Finally, note that the old matching is
implicitly discarded in the Double Step, so “the matching” refers to the current
matching.

The match routine maintains inequalities (1), with z nonzero only on
nonleaves of V(T) U V(TO). In (lb) T is the current blossom forest. Observe
that both current and old blossoms contribute to the z term in the definition of
YZ(e). When all old blossoms are dissolved, the matching is 2-optimum and the
routine can halt. The reason is that by definition the old blossom G* can
dissolve only by becoming a current blossom. When this occurs we have a
v-matching, a blossom tree, and a function z that is nonzero only on nonleaves
of T.

826 H. GABOW AND R. TARJAN

Note that after the Double Step, (la) holds for all edges and (lb) is vacuous.
Hence, the Double Step maintains (1) as desired. To help preserve (la) the
match routine also maintains

(2)

In a blossom tree, define the major child C of a node B as a child with
largest size i?(Q; a tie for the major child is broken arbitrarily. Hence, any
nonleaf has exactly one major child, and any nonmajor child D of B has
fi(~) < i?(B) /2. A major path is a maximal path in which each node is
followed by its major child. The major paths partition the nodes of a blossom
tree. (These are essentially the “heavy paths” of [26].) A major path starting at
node R is denoted by P(R) and has major path root R. Define the rank of
any node B as [log il (B)]. A nonmajor child of a node B has rank less than
B; a nonmajor child of a node in P(R) has rank less than R. In Figure 2 the
path from the root to leaf z is the major path P(G*); the root has rank
[log21] = 4.

procedure match.
Initialize the matching to Ql and T to the forest having every vertex of G a root. Traverse the

major path roots R of TOin postorder. At each root R call a routine path(R) to dissolve the old

blossomson P(R), while maintaining (1)-(2).

This routine is correct since after match processes root R = G*, all old
blossoms are dissolved. Thus, the matching is 2-optimum as observed above,
Note that for any major root R, on entry to path(R) all descendants of R have
dissolved except those on P(R). Figure 6 illustrates this situation: Suppose the
graph of Figure 1 has old blossom tree given by Figure 2. Then, on entry to
path(G*), all blossoms are dissolved except those shown on P(G*).

LEMMA 3.1. If the time for path(R) is 0(<ii(R)a(m, n)log n A(R)),

then the time for match is 0(~ na(m, n)log rim).

PROOF. For any integer O < r < log n, consider the major path roots
of rank r. For any vertex v e V(G), at most one of these roots R has v c
V(R). Hence any edge (of 17(G)) is in at most one of the subgraphs G(R).
Thus for some constant c the time spent on these roots is at most

c ~2’+ la (m, n)log n m. Summing over all ranks r gives the desired bound.
nu

4. Shells and the Path Routine

This section presents the path routine and its main subroutine shell_ search.
These routines are based on the concept of a shell [10].

If C and D are blossoms with V(D) q V(C’), the shell G(C, D) is the
subgraph induced by V(C) – V(~). C is the outer boundary, D the inner
boundary. As a special case, we allow ~ = @. Extend the function n to
shells: A(C, ~) is the number of vertices in a shell G(C, D). A shell is even if
fi(C, D) is even, or equivalently D # a; otherwise, it is odd. Figure 6
indicates the even shell G(G*, ~).

We use a number of functions of shells, such as the above h. We define such
functions by using the shell boundaries as arguments, as in the above il(C, ~).
Alternatively, if X denotes a shell, we use X as the argument, e.g., fi(X). If

Faster Scaling Algorithms for General Graph Matching Problems 827

G’

shell

FIG. 6. Major path with dissolved blossoms.

X denotes an old blossom, it corresponds to an odd shell, and we write A(X)
as a shorthand for fi(X, @). Which of the two interpretations of fi(X) is
appropriate will always be clear from context.

This paper only refers to shells of P(R), which are shells G(C, D) with
C, D on P(1?) for the major path root R (D may be empty). At any time in
path(R), if c and D are currently consecutive undissolved blossoms in P(R),
then G(C, D) is an undissolved shell (of P(R)). (An undissolved odd shell
has c the currently innermost undissolved blossom of P(R).) The path(R)
routine works with undissolved shells. Obviously these shells change as blos-
soms dissolve.

The path(R) routine works like the bipartite matching algorithm of [16] in
the sense that it finds most augmenting paths quickly and finds the remaining
paths at a slower and slower rate. The bipartite algorithm accomplishes this
automatically, that is, the algorithm is unchanging, only its performance
changes. For general graphs, it seems that some lower-level details of the
algorithm must change as the execution progresses. For this reason, we
organize the path routine in “phases. ” More precisely, the phase is defined
in terms of a parameter p whose value is chosen below (Section 5). Also define
R’ to be the largest undissolved blossom of P(R). (Initially R’ = R if R is a
weighted blossom; R‘ shrinks as the algorithm progresses.) The path routine is
a loop. Routine path is in phase 1 during the first p iterations of the loop.
After that, it is in phase 2 if R’ has more than one free vertex, and phase 3
otherwise. (Hence, in phase 3, R‘ has exactly one free vertex.) It will be
apparent that path can go through any sequence of phases that starts with phase
1 and never decreases, that is, 1; 1,2; 1,2,3: or 1,3. We shall also see that an
individual iteration consumes more time in a higher phase than in a lower.

The path(R) routine augments the matching along paths of’ ‘eligible” edges;
it finds these paths by constructing a search graph of eligible edges. Edge e is
defined to be eligible if its vertices are in the same undissolved shell of P(R);

828 H. GABOWAND R. TAR.JAN

furthermore a condition that depends on the phase is satisfied. In phase 1 the
condition is that one of these alternatives holds:

(i) e is unmatched and YZ(e) = C(e);
(ii) e is matched and YZ(e) = C(e) – 2;

(iii) e is a current blossom edge.

In phase 2 or 3 the condition is y~(e) = C(e) or C(e) – 2. Note that this is
always the case if any of (i) – (iii) hold.

Observe a simple consequence of the definition of eligibility: Throughout
path(1?), any matched edge or current blossom edge has both ends in the same
undissolved shell (recall that the matched or current blossom edges are precisely
the edges referred to in inequality (lb)). This observation follows because an
edge must be eligible in order to be on an augmenting path and become matched
or to enter a search graph and become a blossom edge; an eligible edge has both
ends in the same undissolved shell of P(R): the latter property continues to
hold even as blossoms subsequently dissolve.

Here is the path routine. It uses a routine shelJ_search(S) whose argument
is a shell S. As above, R‘ denotes the largest undissolved blossom in P(R).

procedure path(R).

Repeat the following steps until all old blossoms of F’(R) are dissolved:

Augment Step. Construct an auxlhary graph H from G(R‘) by contracting every current root
blossom in R’ and keeping only the eligible edges of C(R?. Find a maximal set P of

vertex-disjoint augmenting paths in H. For each path of Y’, augment along the corresponding

path in G

Sort Step. Order the undissolvedshellsof P(R) that contain a free vertex as S,, i = 1. k
so that 2(, S1) is nonincreasing.

SearchStep. For i = 1 to k, if both boundariesof S, arestill undissolvedcall shell_ search(S1)
to adjust duals and possibly find an augmenting path of ehglble edges (more details of
shell_ search are given below).

The path routine is implemented as follows: It exits immediately if R is a
leaf blossom (any vertex is dissolved). Otherwise, the Augment Step finds
augmenting paths by doing a depth-first search on H. The details of this search
are unimportant for the analysis and so are postponed until Section 8. It suffices
to note that the Augment Step uses time 0(fi(R)).

In the Search Step, the she/l_ search routine is a search of Edmonds’
algorithm modified in three ways: (i) to use eligibility rather than tightness: (ii)
to take old blossoms into account: (iii) to change the halting procedure. We
discuss each of these in turn.

For (i), note that eligibility plays the role of tightness in Edmonds’ algorithm:
shell_ search adds an edge to the search graph Y only when it is eligible.
However, a matched edge need not be eligible. (This occurs only in phase 1.)
Thus, a grow step may not be done for a matched edge incident to .Y; also a
blossom step may be done when a matched edge is scanned. (For example, in
Figure 4, the matched edge cd may be added to Y’ in a grow step that does not
immediately follow the one for ab.) This contrasts with Edmonds’ algorithm,
where a matched edge is always tight, a grow step is always done for a matched

Faster Scaling Algorithms for General Graph Matching Problems 829

edge incident to Y’, and a blossom step is done only when an unmatched edge
is scanned. These changes to search are straightforward.

We turn to (ii). Consider an undissolved blossom B. To translate B by b
means to perform the following assignments:

Y(V) +Y(V) – a, for each v = V(B);

z(B) +z(B) – 26.

(For example, a dual adjustment in Edmonds’ algorithm translates inner root
blossoms.) Observe that translating an undissolved blossom B cannot increase a
quantity yz(e), and it maintains inequalities (1) ((lb) holds since as observed
above, no matched or current blossom edge has exactly one vertex in the
undissolved blossom B).

Consider an undissolved shell G(C, ~) containing a free vertex. The routine
shell_ searc/z(C, D) executes a search of Edmonds’ algorithm on G(C, D),
modified to translate C and 11. More precisely, when search does a dual
adjustment, it calculates 8 = rein{ 8g, ti~, 8,, ~d}, where the first three quanti-

ties correspond to the calculation in Edmonds’ algorithm (Section 1.1) and

6d = rein{ z(C) /2, Z(D) /2 I D # 0}. In the dual adjustment, shell_ search
translates C by 6 and also translates D by 8 (if ~ # a). Shell_ search does a
dissolve step if 6 = dd, that is, the translation dissolves C or D (or both).
Dissolve enlarges the shell to G(C’, n’), where C’ is the smallest undissolved
blossom containing C and ~’ is the largest undissolved blossom contained in
D. (Possibly C’ = C or 11’ = 11, but not both. If C’ does not exist, the search
halts, as discussed with (iii) below.) Any free vertex that gets added to the shell
is immediately added to V’ as an outer vertex. After the dissolve step, the
search continues, now working on the enlarged shell G(C’, ~’).

We now verify that translating C and 11 ensures that inequalities (2) and (1)
are preserved. Translating C ensures (2) is preserved, since search increases a
y-value by at most 6. Consider (1), for any edge e of G. If e is in the shell,
then (1) follows easily from Edmonds’ algorithm and the fact that the transla-
tion does not change yz(e). For other edges e, only (la) applies, so it suffices
to show that yz(e) does not increase. If neither end of e is in C or both ends of
e are in 11, then obviously yz(e) does not change. If precisely one end of e is
in C, then (2) implies that yz (e) does not increase. The remaining case is one
end v in V(~) and the other end w in V(C) – V(D). The translations
decrease Y(v) by 26 and z(C) by 26; Y(w) increases by at most 6 in
Edmonds’ search and decreases by 6 in the translations; thus, Yz(e) does not

increase.
Finally, we discuss (iii). Recall that a search of Edmonds’ algorithm halts

either when it finds an augmenting path or (in the last search) when the entire
graph is a blossom. Shell_ search also halts in these circumstances. (Note that
if it finds an augmenting path P, then P consists of eligible edges. Shell_ search
can halt because the current shell is a blossom only for an odd shell.) In
addition, shell_ search can halt in several other circumstances. We discuss
these for the three phases in turn.

In phase 1, each execution of shell_ search does at most one dual adjust-
ment, and this adjustment uses 6 = 1. (In fact, Lemma 5.1 below shows that
each phase 1 execution of shell _search does precisely one dual adjustment.)
After this adjustment, the search halts. This contrasts with Edmonds’ algorithm,

830 H. GABOW AND R. TARJAN

where search chooses 6 large enough so that .9 can change. An adjustment of
ti = 1 may not allow any changes (or any augments in the following Augment
Step).

In phase 1, after the dual adjustment there may be unweighed current root
blossoms. Specifically, an inner root blossom can become unweighed in the
dual adjustment. Shell_ search repeatedly removes any unweighed root of the
current blossom forest and replaces it by its children, until every nonleaf root is
weighted. (This accomplishes what an expand step would have done in
Edmonds’ algorithm. It is done for the same reason— an unweighed blossom
may be hiding an augmenting path.) Because of this rule, in any phase 1
Augment Step after the first, any current root blossom is weighted.

In phase 2 shell_ search(S) halts on entry if S is an odd shell that does not
contain all the free vertices of R‘. Also it halts when a dissolve step enlarges
the shell so that other halting criteria apply. This can happen in three ways.
First, dissolve may add to S a new shell S’ that has already been searched (in
the current Search Step) and found to contain an augmenting path. Second,
dissolve may enlarge S to an odd shell not containing all free vertices of R’.
The third possibility is implied by the fact that only undissolved shells of P(R)
are searched. Consider the undissolved shell G(R‘, D), where D is the largest
undissolved blossom in R‘. If shell _search dissolves R‘, G(R‘, D) is no
longer contained in an undissolved shell of P(R). So the search halts. (Note
that any augmenting paths that have been created in shell _search will be
processed with the major path containing the parent of R; this case never
occurs when R = G*.)

There are no extra halting rules for phase 3. In phase 3 by definition no
augmenting path can be found entirely in R. Thus shell_ search halts when all
blossoms on P(R) are dissolved.

This concludes the statement of path. We now summarize some facts about
shell_ search that further motivate and justify the phase structure; the details of
shell_ search are in Section 7.

As already mentioned, the Search Step consumes more time in later phases.
The usual implementation of searcfi in Edmonds’ algorithm (e. g., [13]) uses a
priority queue to find the next dual adjustment quantity 8. In phase 1 search
can be implemented without a priority queue, since only one dual adjustment is
made. The proper data structures make the time for one Search Step 0(ti(R)).
In phase 2 the priority queue can be implemented as an array. The phase 2
Search Steps collectively use total time 0(ii(R)log fi(R)) to scan the array; in
addition, each Search Step uses 0(fi(R) a(m, n)) time. In phase 3 a standard
priority queue is used; the time for phase 3 is (less than) 0(fi(R)log fi(R)).

Next we indicate why the criteria for eligibility change for phases 2-3. Recall
that in search, if a dual adjustment makes an inner blossom B unweighed an
expand step is done. As illustrated in Figure 5, expand replaces B in 7 by
an alternating path of edges of E(l?). Expand steps do not occur in phase 1,
since a phase 1 search stops right after its dual adjustment. Expands do occur
in phases 2– 3. Now observe that an edge e E E(B) that expand places in ,9
may not satisfy alternatives (i) – (iii) of eligibility. This occurs in the following
scenario: A blossom step makes e a blossom edge of B with (ii) holding. Next
an augmenting path passes through B, changing e from matched to unmatched.
A subsequent search makes B an inner blossom. Then an expand step is done
for B, adding e to 7 (as in Figure 5). Now e is an unmatched edges in Y,

Faster Scaling Algorithms for General Graph Matching Problems 831

not in a current blossom, with yz(e) = C(e) – 2. Thus e does not satisfy any
of alternatives (i) – (iii).

To remedy this, phases 2-3 use the weaker criteria for eligibility. This makes
the above edge e eligible. The weaker criteria suffice for these phases. (They
would not be adequate for phase 1, however; see Lemma 5.1.)

This concludes the description of path. Showing that path is correct
amounts to checking that it accomplishes the goal stated in the match routine: It
dissolves all old blossoms on P(R) while maintaining (1)-(2). The discussion
above shows that (1) –(2) are preserved. (Note that any edge e in Y’ has

yz(e) > c(e) – 2; hence, e satisfies (lb) if it gets matched or enters a
blossom.) The blossoms on P(R) may all dissolve in phase 1 or 2. Otherwise
they dissolve in phase 3 because of the halting condition. When R = G*, since
G is critical the entire graph eventually becomes a blossom. This dissolves the
old blossom G*, and path halts correctly.

This argument applies to the first scale, even though TO need not be a
blossom tree. In the first scale path(R) is trivial except when R = G*. In this
case path alternates between Augment Steps and shel/_search(G*), and
works as desired. Note also that the first scale can detect noncritical
input graphs if desired: G is critical if and only if the first scale halts with a
blossom G*.

5. Efficiency: High-Level Analysis

This section analyzes the running time of path. R assumes an inequality that is
derived in Section 6, thus completing the high-level analysis.

The efficiency of the algorithm depends on the fact that all quantities are
integral. Let us verify this fact. First, observe that an execution of shell_ search
keeps all values integral if two conditions are met: (i) all costs are even; (ii) the
search starts with all y values of free vertices having the same parity. The
proof that these two conditions suffice is essentially the same as the proof of the
integrality property of Edmonds’ algorithm, sketched in Section 1.1. It is
modified to account for the fact that the search graph ~ consists of eligible
edges rather than tight edges. This amounts to the observation that C(e) – 2 is
even if C(e) is.

Thus to prove integrality it suffices to show that the scaling algorithm
maintains conditions (i) – (ii). Condition (i) holds because the Double Step
makes all costs even. For (ii), we show that throughout the scaling algorithm,
any free vertex v has Y(v) odd. A Double Step makes Y(v) odd. Suppose a
call shell_ search(C, D) does a dual adjustment by 6. If v e G(C, 11), then
Y(v) does not change—the dual adjustment increases it by 8 (since v is free)
and the corresponding translation of C decreases it by 6. If v c D, then the
translations decrease Y(v) by 26, so it remains odd. These are the only changes
to y(v).

In summary, we have shown that all quantities in the scaling algorithm are
integral. For instance, each dual adjustment quantity 6 is integral.

Now we present the properties that limit the number of iterations in the three
phases. Clearly there is at most one phase 3 iteration. Phases 1 and 2 make
progress by either adjusting the duals or augmenting the matching.

A phase 2 iteration need not adjust duals. This is because of the definition
of eligibility. However, any phase 2 iteration after the first augments the

832 H. GABOW AND R. TARJAN

matching. To see this, observe that in phase 2 shell_ search halts with an even
shell only if an augmenting path has been found. The same is true if it halts with
an odd shell that contains all free vertices of R‘, when there is more than one
free vertex. So if a phase 2 Search Step halts without finding an augmenting
path, either all blossoms are dissolved or there is precisely one shell, an odd
shell with one free vertex. In the first case path terminates and in the second it
starts phase 3.

A phase 1 iteration may not augment the matching, as remarked above. We
now show that any phase 1 iteration does a dual adjustment. Note that in
bipartite matching the analogous statement is true because there are no augment-
ing paths of eligible edges when a search starts [16]. This is not true for general
graphs —an augmenting path of eligible edges may exist when shell_ search is
called. We show that the duals get adjusted nonetheless.

LEMMA 5.1. In phase 1 after the first Search Step, any execution of
shell_ search(S) adjusts duals by 8 = 1.

PROOF. By integrality it suffices to show that shell_ search adjusts duals
by some positive amount. Suppose for the sake of contradiction that
shell _search(S) halts before doing a dual adjustment, because it finds an
augmenting path of eligible edges P. Let ..d” denote the preceding Augment
Step and let H denote the auxiliary graph in ~.

First observe that P corresponds to a path P in H. This follows if we show
that the edges of P were eligible at the start of w’ (for then each edge of P is
either in H or in a blossom contracted in H). An Augment Step does not
create an eligible edge. Also shell _search(S) can do grow and blossom
steps, but no expand steps (as observed above, at the start of shell _search(S)
every current root blossom is weighted). It follows that shell_ search(S) does
not create an eligible edge. This gives the desired conclusion.

Next observe that ~ is a simple path in H. This follows because if B is a
blossom contracted in H, shell_ search(S) did not expand B, so E(P) (l
E(G(B)) is a subpath_(possibly empty) of P.

We conclude that P is an augmenting path in H at the end of .ci?”.Now the
maximality criterion in the Augment Step implies that in H, ~ contains a
vertex v of some path Q c Y. Thus ~ contains the matched edge e incident to
v. But e became ineligible in the augment of Q. (This depends on the definition
of eligibility in phase 1.) This is the desired contradiction. ❑

We can now do the high-level timing analysis for path(R), where R is any
major path root. For convenience, write n = ii(R) and h = fiz(R). Recall that
p is the number of iterations of the loop of path in phase 1, Let R, be the
largest undissolved blossom in P(R) at the end of phase 1. Let F, denote the
set of free vertices of R,. The number of phase 2 iterations is at most
1 + (I I’l I /2) since every phase 2 iteration after the first augments the match-
ing. Assume for the moment that this product inequality holds:

(P-mfi)(l F,l-l)<5filogi.

Thus, if p > 210g ii, then the number of phase 2 iterations is at most
(5ii log fi)/p + 3/2.

Recall the time bounds for the various phases, as already mentioned and
presented in detail in Section 7: 0(fi) for one iteration in phase 1,

Faster Scaling Algorithms for General Graph Matching Problems 833

0(m U(m, n)) for one iteration in phase 2 plus 0(ii log i?) total extra time, and
0(h log A) total time for phase 3. Then the total time for path(R) is

O(Pfi + ((fi log ii)/p)fia(m, n) + filog fi). If v@= 210g ii, then take

p= ficl(m. r?)log ii .

This gives time 0(~ i?a(m, rz)log i h) for path(R). If v%< 210g A then
the time is 0(1) so the previous bound holds again. Now Lemma 3.1 gives the
desired time bound for the entire algorithm.

To complete the timing analysis, we need only prove the above product
inequality. We now show this inequality follows from the “witness inequality”
defined below. To state the witness inequality, we first introduce two quantities
that are fundamental in the next section. For a vertex v and an old blossom B,
at any time in path define

$(B) = the total of all translations of 1?;

~(v, B) = the total of all translations of B

made when v is in an undissolved shell with outer boundary B.

Since translating B by one decreases Z(B) by two, $(B) < ZO(B) /2; qquality
holds if B dissolves before becoming a current blossom. The quantity 6(v, B)
counts all translations of B “witnessed by” v. It is positive only it v e B.
There can be more than one inngr boundary of shells contributing to 8(v, B).
We often write expressions like 6(F, P), where F is a set of vertices and P a
set of blossoms (for instance the blossoms in a path of ~he blossom tree); recall
that by our conventions for functions this denotes z{ 6(v, B) I v ~ F, B c P}.

Now choose any time in path(1?). Let u be a free vertex in the innermost
possible blossom of P(R). Let F denote the set of free vertices of P(R). The
witness inequality is

$(F– ~, P(R)) s 5filog ii.

(This inequality is one reason why Section 6 analyzes the algorithm in terms of

~ rather than the quantities y, z directly involved in the algorithm. Intuitively,
8(v, o) is directly related to progress made by the algorithm, since the
translations witnessed by a free vertex v correspond to searches for an
augmenting path involving v. On the other hand y(v) does not change when
progress is being made by searching for an augmenting path from v – recall
Section 4, modification (ii) of shell_ search.)

To derive the product inequality, consider any vertex v c F,. In the Sort Step
of any iteration of path, let S(v) denote the undissolved shell of P(R) that
contains v. We show that the Search Step adjusts the duals in S(v) in all but at
most log ii phase 1 iterations of path. All but possibly one phase 1 execution
of shell _search(S(v)) adjusts duals by 6 = 1 (Lemma 5.1). The Search Step
does not execute shell_ search(S(v)) only if a boundary of S(v) dissolves
before S(v) is examined. In this case the ordering of the Sort Step implies that
the quantity fi(S(v)) doubles. This can happen only log(A /2) times, since a
shell has at least two vertices. Thus, the Search Step adjusts duals in S(v) in all
but at most 1 + log(R /2) = log ii iterations, as desired.

We conclude that in the p ,$erations of phase 1, v w~nesses at least
P – log A translations, that is, 8(v, P(R)) > p – log ii, and 6(F – o, P(R))

834 H . GABOW AND R. TARJAN

> (p – log fi)(I F, I – 1). This together with the witness inequality obviously
implies the product inequality.

6. The Witness Inequality

This section derives the witness inequality, thereby completing the high-level
efficiency analysis for path. The section ends by proving a related inequality
needed for the implementation of shell_ search.

We start with terminology. The derivation centers around the old blossom
tree TO. We use an interval notation for paths in TO: If node C is an ancestor of
~, [C, 11] denotes the path from C to ~ with both endpoints included; [C, ~)
is the same path with ~ excluded, etc. For an odd shell G(C, ~) of P(l?),
any interval ending with ~, e.g., [C, ~), is interpreted as if D were the last
node of P(1?) (notice that D = D for an odd shell). Recall that G* is the root
of the old blossom tree TO, so [G*, C] is the path from the root to C.

If B is a node of a tree, . /‘(B) denotes the set of its nonmajor children and
9(B) denotes the set of its descendants (including B). These functions can also
be applied to sets of nodes, e.g., if P is a path in a tree, !?. i”(P) denotes the
set of all descendants of nonmajor children of nodes of P. If P is an interval,
we omit the enclosing parentheses in these notations, so .1’ [C, ~], ..f’ [C, D),
etc. have the obvious meanings.

Edge e crosses a set of vertices B if precisely one of its ends is in B, that is,
I e fl B I = 1. (In this notation B is usually a blossom.) The crossing func-
tion ~: 2 ‘(G) ~ Z of a matching AZ is defined by Y(B) = \ { e I e e M crosses
B} 1. For example if B is a blossom of M then -y(B) < 1. A blossom B is
uncrossed if T(B) = O; otherwise it is crossed. A shell G(C, ~) (even or
odd) is uncrossed if all its boundaries are uncrossed; otherwise it is crossed.
During the algorithm an old blossom is uncrossed if it is undissolved; it is
crossed if all its vertices have become matched; from when it dissolves until all
its vertices become matched, it can alternate arbitrarily between crossed and
uncrossed.

The first step in the derivation is to summarize the changes in duals y, z

caused by scaling and shel/_searches. This leads to an inequality similar to the
witness inequality, Lemma 6.1. To state it, flx a time in the execution of
path(l?). Let &f be the current matching. Let -y be the crossing function for
&l. Choose a free vertex u in the innermost possible blossom of P(1?). Let
&f. be the co-matching on R given by the 2-optimum matching of the previous
scale. Let -yO be the crossing function for iWO. Thus an old blossom B has
yO(B) = if u c B then O else 1. (In the first scale R = G*, u can be any
vertex and lfO any u-matching.)

Let G(C, ~) be an uncrossed shell of P(R). (Bear in mind that C or D may
be currently dissolved or undissolved, and D can be a for an odd shell.) Let
F. be the set of free vertices of G(C, D) – u. (Possibly FU = a.) Recall that
the set of old blossoms is V(TO) and the set of curre~t blossoms is V(T). In the
following lemma all time-dependent quantities (-y, 6, Fu) are evaluated at the
chosen time in the execution of path(R).

LEMMA 6.1. At any time in path(R) an uncrossed shell G(C, D) of
P(R) satisfies

(I’ - ‘YC))$((c, D) u @~”[C, D)) + $(Fu, V(TO)) s 5ii(c, D).

Faster Scaling Algorithms for General Graph Matching Problems 835

PROOF. We start with some terminology. We frequently use our convention
of identifying a subgraph with its vertices or edges, e.g., Al fl G(C, D)
abbreviates Al fl E(G(C, ~)). Define

M’ =Mn G(c, D), M: = ALTOn G(C, ~),
d = c(~:) – C(w), ~(13)=1 Mgn G(B)l-l M’n G(B) [.

In the last definition B is a blossom, old or current. Say that an old blossom
and a shell “intersect” if they have a common vertex. Thus, the old blossoms
that intersect G(C, D) are those in [G*, D) U ~tif [C, D). The argument is
based on estimating d in two ways.

Observe that neither Al nor AZ. crosses C or D. For &f, this holds by
hypothesis. Since AZ does not cross C and fi(C) is odd, w ~ C. (This depends
on the fact that G(C, D) is a shell of P(l?).) Hence, &f. does not cross C.
Similarly, JMOdoes not cross 11 if D # a.

First estimate d using the initial duals YO, ZO. Conditions (1) of the previous
scale and the Double Step of the scaling routine imply

yozo(e) s c(e), for e~lkf;

yOzO(e) > c(e) – 8, for ee&fO.

(This holds for the first scale s = 1, since -y Ozo(e) = -2 and I c(e) I s 2.)
Adding the A4 inequalities and subtracting the iWO inequalities for the edges of
M’ U A4~ gives

–YO(FO)+ /-LZo(~(~o)) s –d + 81 ~:1 .

This inequality depends on the fact that neither matching crosses C or
Il. Recall that by the conventions of Section 1, p ZO(V(TO)) denotes

X{ W(B) ZO(B) I ~~ V(~O)}-
Next estimate din a similar way using the current duals y, z. Since (1) holds

for the current duals, adding (la) for MA and subtracting (lb) for M’ gives

y(Fm) – /LZ(~(To) U V(T)) s d+ 21 M’I.

This also depends on the fact that neither matching crosses C or D.
Next we bound the terms involving V(T) and V(To) in the two d estimates.

A current blossom B c V(T) has W(B) s 0. This follows since I M (l G(B) I
is as large as possible; this in turn follows since &l induces a u-matching on B
for some u e B, and no edge of &f crosses C or D. (Note however that an edge
of B can cross C or D.) Since p is nonpositive on V(7’), the V(T’) term in the
second d estimate can be dropped.

We turn to the V(To) terms. First note that an argument similar to the above
shows that p is nonnegative on old blossoms. This fact will be used below.

Clearly, p vanishes on blossoms not intersecting G(C, D), so we can restrict
attention to old blossoms B intersecting G(C, D). Define

f(B) = IFW (l V(B)I;

in addition. define y‘ and y; as the crowing functions of M’ and M;,
respectively. We show the following inequality in order to bound the V(TO)
terms:

836 H. GABOW AND R. TARJAN

To prove this, we first prove the equation 2P(B) = (~+ -y’ – y~)(l?): By
definition 2 W(1?) is how many more vertices of V(B) (l G(C, D) that AfO
matches on edges of G(l?) n G(C, D) compared to iW. A vertex of V(B) Cl
G(C, D) is not matched on an edge of G(B) n G(C, D) if it is free or it is
matched on an edge crossing V(1?) n G(C, D). There are ~(B) vertices of the
first type (note that co is free in both matchings). There are (-y’ – ‘Y~)(B)

vertices of the second type, since no edge of either matching crosses C or D.
This gives the desired equation.

Now we show that an old blossom B has (ZO – z)(B) > 2$(B) or P(B) = O.
Note that this relation, together with the above equation and the nonnegativity
of P(B), implies the desired inequality for the P’(T“) terms. The relation
follows by considering three cases. If B has never become a current blossom

then (ZO – z)(B) = 2&B). If B has become a curreqt blossom, but is not now
a current blossom, then (ZO – z)(B) = ZO(B) > 26(11). If B is a current
blossom, then W(B) = O. The desired relation follows, as does the inequality
for V(TO) terms.

Next we deduce

(.Y -Y,)(ft) + (f+ T’ - -Y:)$([G*. D) U ~.1 [C, D)) s 5fi(c, D).

This follows by adding the two d estimates and replacing the P(Z. – Z) terms
using the above observations. In addition, note that I ibf’ I < I ikf~ I <
ii(c, D)/2.

A free vertex v has y(v) = yO(v) – ($ – 6(v, “))[G*, v). (To show this,
observe that if v is in a blossom that gets translated by 8, then Y(v) decreases
by 8; if v is in a shell that gets duals adjusted by 8. then y(v) increases by 8;
these are the only times that Y(v) changes.) Summing these equations for all
v 6 Fti implies

(Y -Y,)(%) +f$([G*.@ u ~.~ [G~)) - 8(FU,V(TO))=0.

Finally, subtract the last equation from the preceding inequality. This gives
the lemma if we use two observations to simplify the expression (~’ –

yi)~([G*, ~) U Q.f’ [c. ~)): The terms (T’ – Ti)N[G*. cl) vanish, since a
blossom B e [G*, C] has 7’(B) = y~(B) = O. The remaining terms are for
blossoms B contained in G(C, D). Hence the function y’ – -y& simplifies to
~–’yo. ❑

Rewrite the lemma as

(7 - TO)$((CD)) + qFti.P(R))
s 5fi(c, D) + ((’y. – 7)8 – i(Fu, “))!2.(’ [c, D) (3)

Let us interpret this inequality and survey the rest of the derivation. Each scale
after the first starts off with an “error” of 0(n), in the sense that the
2-optimum matching of the previous scale can cost 0(n) more than that of the
current scale. If the graph is bipartite, this is the only source of error [16]. For
general graphs there is a second type of error when path(R) begins. It comes
from changes in the duals made by previous calls to path for descendants of
R. Specifically, the error from scaling corresponds to the first term on the
right-hand side of (3) and the error from descendants corresponds to the second

Faster Scaling Algorithms for General Graph Matching Problems 837

term. Loosely speaking the second term is bounded by the total amount of all
dual adjustments in phases 1-2. We will show this in a precise sense, in the
process of ~roving that the second term is 0(ii(C, ll)log ii(R)). Then (3) will
imply that d(~ti, P(R)) is 0(fi(R)log il(l?)), the desired witness inequality.

We begin with a convenient notation that corresponds to “total dual adjust-
merit. ” First let us clarify a phrase used throughout this section, a search of
shell G(A, B). This refers to the operation of shell_ search when it is working
on shell G(A, B). Notice that it is possible for this search to occur during an
execution of shell _search(S) where S # G(A, 1?): If S is a proper subshell
of G(A, B) then after one or more dissolve steps the search can be working
on G(A, B).

For an even shell G(C, D) of P(R) define

A(C, D) = the total of all translations in searches of shells

G(A, B) for A, Be[C, D].

Equivalently, A(C, ~) is twice the total of all dual adjustments made in
searches of shells G(A, B), for A, B e [C, D]; A is evaluated after the last
translation of a shell in G(C, D). (Note that A(C, D) differs slightly from
“the total of all translations in executions shell_ search(A, B) for A, B c
[C, D]. ” If an execution shell_ search(C, D) dissolves C or D and proceeds
to adjust duals by some positive amount, A(C, D) does not count the corre-
sponding translations whereas the alternative definition would.)

The main step in the derivation discussed above is to show that any even shell
G(C, D) of P(R) has

A(C, D) < 5ti(C, ~)~log ii(l?)j. (4)

We prove (4) by induction on ii(R). The base case, R a leaf blossom, is
vacuous. The inductive step is done in Lemmas 6.2 –6.3 and the following
paragraph. The lemmas inductively assume (4) for shells in major paths of
descendants of R.

We start by bounding the error from descendants. (This essentially gives the
witness inequality.) In the following lemma, all notation is as in Lemma 6.1.

LEMMA 6.2. At any time in path(R) an uncrossed shell G(C, D) of
P(R) satisfies

(7 - 7,)$((C D)) + $(F., P(R)) s 5ii(C, ~)~log fi(R)J.

PROOF. By (3) we need only show

The left-hand side of (5) is made up of contributions coming from translations
made prior to the call path(R). More precisely consider a shell G(A, B) of
P(S), where S is a major path root descending from .4’ [C, D). Let f = I F’ti
(l G(A, B) I . Suppose that a search of G(A, B) does a dual adjustment of 8.
The corresponding translations contribute ((yO – Y)({ A, B}) – f) 8 to the
lellhand side. The first step is to show that this contribution is positive only for
uncrossed even shells containing no free vertices.

The number of vertices of G(A, B) – o not matched on edges of G(A, B)
has the same parity in the old matching Al. as in the current matching M.

838 H. GABOW AND R. TARJAN

(Recall that o is free in both matchings; also note that G(A, -B) can be odd or
even.) This number is YO({ A, B}) for iWO, and Y({ A. B}) + f for Jf. Thus

(70 – 7)({ A, ~}) – f is even. Since -yO({ A, 1?}) s 2, the contribution is
positive only if yO({ A, B}) = 2 and T(A) = T(B) = f = O, that is, G(A, B)
is an uncrossed even shell with no free vertices, as claimed.

Let G(A, l?) be an uncrossed even shell with no free vertices. Any blossom
descending from .4 [A, B) is crossed (since it has no free vertices). Thus, any
uncrossed even shell with no free vertices that intersects G(A, B) is a shell of
P(S). Among these shells is a maximal one. Let G(A, 1?) denote such a
maximal shell.

The maximal shells G(A, 1?) are vertex disjoint. Ignoring the negative terms
on the left-hand side of (5) shows that G(A, B) contributes at most A(A, 1?).
The inductive assumption (4) implies A(A, B) s 5il(A, B) [log n(S) ~, where
S is a descendant of a nonmajor child of P(R), that is, A(S) < ii(R)/2. Thus

c!
A(A, B) s 5i?(xl, B)(log fi(l?)~ – 1). Summing over all the disjoint shells
G(A, l?) gives (5).

Now we estimate A for even shells. Call G(C, ~) active if during the
course of the algorithm there is a search of shell G(C, ~) that adjusts duals by
some positive amount. For an active shell G(C, D) consider the last dual
adjustment. Let A4 be the matching at the time of this last dual adjustment and
let ~ be the crossing function of &l. Note there is a natural correspondence
between intervals [A. B) in the blossom tree and shells G(A, 1?). Call an
interval even, uncrossed, active, etc. if the corresponding shell is.

LEMMA 6.3. An active interval [C, D) of P(R) can be partitioned into
uncrossed intervals [C, C?, [C’, D’) and [D’, D) such that if F is the set of
free vertices of M in [C’, D’),

A(C, D) < ~$((C’, D’)) + $(F, [C. D)) + A(C, C’) + A(D’, D).

PROOF. Choose any free vertex v in G(C, D) and let G(C’, Do be the
minimal uncrossed shell containing v. (Thus C’ is the innermost blossom of
P(R) containing v with -y(C? = O and D’ is the outermost blossom of P(R)
not containing v with Y(D’) = O.) Clearly [C’, D’) z [C, D) since neither C
nor D is crossed at the time of the last dual adjustment. Possibly C = C’ or
D = D’.

Consider any shell G(A, B) that gets searched, with A, B e [C, D]. If
A, B e [C, C’1 then the translations for this shell are counted by the term
A(C, C? on the right-hand side; similarly if A, B e [D’, D]. The remaining
possibility is that G(A. B) intersects G(C’, D’). Let G(A’, B’) denote the
intersection, that is, A’ = if A e (C’, D~ then A else C’, B’ = if B e
(C’, D’) then B else D’. Let f denote the number of free vertices in
G(A’, B’). Since G(A’, B’) is an even shell, T({ A’, B’}) + f is even. This
quantity is positive, since if 7(A’) = Y(B’) = O then the minimality of
G(C’, n’) implies that A’ = C’ and B’ = D’; thus f >0. We conclude that

7({ A’. B’}) +.f> 2,
In a search of G(A, B), a dual adjustment of 6 contributes 26 to the

left-hand side of the inequality of the lemma. To show that it contributes at least
this much to the right, observe that Y({ A’, B’}) 8 is counted by the first term on
the right, f 6 by the second. Furthermore T(A’) >0 only if xl’ = A, by the

Faster Scaling Algorithms for General Graph Matching Problems 839
A

above formula for A‘. Hence the term ~ 8(A’) on the right on] y counts
translations of A. The same holds for B’, so our method of counting is valid.
nu

Now we complete the proof of the inductive assertion (4). First observe that
the active intervals are nested, that is, if two active intervals intersect then one
contains the other. Thus any even interval [A, B) of P(R) has a unique set of
maximal active subintervals [C, D) such that A(A, B) equals the sum of all
values A(C, D). We prove (4) for any even interval [C, D) by induction on
fi(C, D). If [C, D) is not active, apply the inductive assertion to each maximal
active subinterval to get (4) for [C, D). Suppose [C, D) is active. Apply

Lemma 6.3. The first two terms on the right, ~ j((C’, n’)) + $(F, [C, D)), are

bounded above by 5A(C’, D’) [log i (R)] , by Lemma 6.2 applied to the un-
crossed shell [C’, ~’). (Since D is uncrossed, u e D and -yO vanishes on

(C, D).) Thus A(C, D) s 5ii(C’, D9~logfi(R)] + A(C, C’) + A(D’, D).
The desired conclusion follows from the inductive hypothesis for [C, C’) and
[n’, D). Thus we have proved (4), and in the process shown that Lemmas
6.2- 6,3 hold with no assumptions.

Now we derive the witness inequality. Let R be a major path root. At any
time in the execution of path(l?) let F be the set of free vertices of R, and let
@ be a free vertex in the innermost possible blossom of R. The choice of time
in path(1?) implies that 7(R) = O and o exists. Note that a blossom B e P(R)

has -Y(B) > 70(B) (since TO(B) = if u ~ B then 0 else 1, and Q @B implies
7(B) > O). Thus Lemma 6.2 applied to the uncrossed shell R gives the witness
inequality,

~(F– u, P(R)) s 5ii(R)log 2(R).

We conclude with a related inequality used to implement the priority queue
for shell_ search (in Section 7).

COROLLARY 6.1. For a major path root R, the total duaI adjustment in
all phase 2 shell_ searches of path(R) is at most 5A(R) log ii(R).

PROOF. Write the total dual adjustment in phase 2 as dl + dz, where d, is
the total adjustment when there are free vertices in R’ that are not in the
(undissolved) odd shell, and dz is the remainder, that is, the total adjustment
when all free vertices in 1?’ are in the odd shell. We show that each
di s (5/2) il(R)log fi(R).

The dual adjustments counted in dl all occur in a search of an even shell.
If D is the smallest blossom in P(R), (4) shows that A(R, D) ~
5fi(R, D) [log A(R)] . Thus the definition of A implies that d, <
(5/2) i?(R) log fi(R).

For dz, consider the odd shell G(R‘, @) immediately after the last dual
adjustment counted in dz. The definition of phase 2 implies that at this time the
odd shell has at least three free vertices v. Each such ver~ex has witnessed
every dual adjustment of an odd shell in phase 2, that is, 6(v, P(R)) > dz.
Thus the witness inequality implies that dz s (5/2) fi(R)log i?(R). ❑

7. The Search Step

This section gives the data structures and details of the Sort and Search Steps.
We begin with a data structure needed for the Search Step. At the start of the

match routine, the old blossom tree TO is ordered so that every major child is a

840 H. GABOW AND R. TARJAN

rightmost child. The vertices of G, which are the leaves of TO, are numbered
from 1 to n in left-to-right order. In the following discussion we identify each
vertex with its number. Each node B of TO stores 1o(B). its lowest-numbered
leaf descendant. The given graph G is represented by adjacency lists, two lists
for each vertex v. One list for v contains the edges { vw I w < v} ordered by
decreasing w. The other list contains the edges { vw I w > v} ordered by
increasing w.

This data structure is constructed (once in each scale) in time 0(m) using a
bucket sort. The main property of the vertex order is that in any execution of
path(R), the vertices of an undissolved shell G(C, D) (even or odd) constitute
the interval [Io(C) . . 1o(D)). Hence for any vertex v in an undissolved shell
G(C, D), the edges incident to v in G(C, D) can be found by scanning the
appropriate part of v‘s two adjacency lists (assuming the values 1o(C), 1o(D)
are known). The time for this scan is 0(1) plus time proportional to the number
of edges found in G(C, D).

Now consider an execution of path(1?). As in Section 5 let ii = fi(1?) and
m = fi(R). The undissolved blossoms of P(1?) are stored in a doubly-linked

list ‘//; the order of blossoms in ‘Z is the same as in P(1?).
The Sort Step can be done in 0(i?) time using a bucket sort.
We turn to the Search Step. During the course of a Search Step a vertex goes

through three states: it starts out asleep; while it is in the shell being searched it
is active; when its shell has been searched it is dead. (Vertices outside of the
largest undissolved shell R‘ are always dead.) In greater detail, when a
boundary of a shell G(C, D) dissolves, the new larger shell is composed of the
vertices of G(C, D), currently active, and new vertices, which were either
asleep or dead. If they were asleep all vertices of the new shell are active; if
they were dead all vertices of the new shell are dead. (If C and D dissolve
simultaneously, with one boundary introducing asleep vertices and the other
dead vertices, the new shell is dead.) Thus a vertex is active in the search for
only one augmenting path— once dead, it remains dead for the rest of the
Search Step. All this follows from the statement of the Search Step and the
halting criterion.

Consider the time in the Search Step for dissolving shell boundaries. (This is
important in phases 2 and 3.) Suppose shell G(C, D) is being searched and C
dissolves (D dissolving is similar). Let B be the blossom preceding C in list
w, that is, the smallest undissolved blossom containing C. C is deleted from

‘Z. Suppose the new vertices (those in B – C) become active. The edges in the
new shell G(B, D) are found by scanning the adjacency lists of the new
vertices (the interval for the new shell is [1o(B) . . 1o(D))). Since a vertex

becomes active only once, the total time for scannin~ edges in dissolve steps in
one Search Step is 0(A). (Some additional processing that is done when a
blossom dissolves is discussed below; it concerns dual values.)

Next consider the time spent in the Search Step manipulating the priority
queue and doing related processing to find the next dual adjustment quantity 6
(as described in Section 1. 1). We consider phases 1, 3, and 2 in that order.

In phase 1 the priority queue is not needed, since only one dual adjustment
with 8 = 1 is made. Blossom steps are implemented in linear time using the
incremental tree set-merging algorithm of [15]. This makes the time for one
Search Step in phase 1 0(h).

The total time for phase 3 is 0(m log h). This can be achieved by imple-

Faster Scaling Algorithms for General Graph Matching Problems 841

menting the priority queue as a balanced tree [17]. Gabow, et al. [13] give an
even better bound but this is not needed here.

For phase 2, Corollary 6.1 shows that the total dual adjustment is at most
5fi log h. The priority queue is implemented using two arrays, PIO. . i? – 1]
and QIO. .5 log i?]. Each array entry points to a list of priority queue entries.
At any time, an edge e that will become eligible after the shell_ search has
done a total dual adjustment of d units is placed in the list for Q(I d/2j).
When the total dual adjustment is in the range [iil . . (i + 1) i?), the edges in list
Q(i) are stored in the lists for P, the above edge e being placed in the list for
P(d mod i). The edges in the list for P(j) are eligible when the total dual
adjustment reaches iii + j. After a shell is searched, any entries remaining in
this priority queue are removed, in linear time. This makes the total overhead
for the queue in all phase 2 searches 0(ii log fi). (See [16] for a more detailed
discussion of the implementation of such a queue.)

To implement expand steps the list-splitting algorithm of [10] is used. This
makes the time for one Search Step in phase 2 0(h CY(m, n)) (since a vertex is
active in only one search).

The last aspect of the Search Step discussed here is maintaining the duals
y, z. Most details are the same as in an efficient implementation of Edmonds’
algorithm (see [13] and [17]; although the main concern of these papers is
implementing the priority queue discussed above, the details needed here are
also given). The main technique is using offsets to facilitate the adjustment of
dual values. In addition we use offsets in connection with old blossoms and
their translations. We show how the algorithm translates a blossom in 0(1)
time, and also how it calculates yz(e) in 0(1) time. This plus the details in [13]
and [17] give the desired time bound for our algorithm.

We start by describing the data structure. The algorithm stores two values for
each old blossom B, Zl(B) and t(B), plus a value Y’(v) for each vertex v.
Intuitively ZI keeps track of old z values, y’ keeps track of y values and t

keeps track of translations. More precisely the algorithm maintains these
invariants:

Y(V) =~’(V) - t([G*, v]);

z([G*, B]) = z,(B) – 2t([G*, B]), for B undissolved;

t(B) = O, for B dissolved.

Initially each old blossom B has z,(B) = ZO([G*, B]) and t(B) = O, and each
vertex v has Y’(v) = Y(v), so the invariant holds.

Consider a search of shell G(C, D). To calculate yz(e), write Yz(e) = Y(e)

z([G*, C]) – z({ B I B is a current blossom containing e}). The last term is
c~lculated as in Edmonds’ algorithm, so we concentrate on Y(e) – z([G*, Cl).
This equals y’(e) – Zl(C), since C is the smallest undissolved blossom
containing either end of e. Hence yz(e) can be calculated in 0(1) time as
claimed.

Next suppose the shell_ search does a dual adjustment of 6. This necessitates
translating blossoms C and D by 6. The algorithm does this by increasing t(C)
and t(D) by 8. This has the same effect as a translation, maintaining the above
two invariants. Hence the dual adjustment is done correctly in 0(1) time.

It remains only to discuss how dual values are processed when a boundary C
or D dissolves in the shell_ search. In general consider consecutive undis-
solved blossoms Z G Y G X of P(1?) and suppose blossom Y has dissolved.

842 H. GABOW AND R. TARJAN

The invariants can be preserved by working on G(X, Y) using time
O(fi(X, Y)) or working on G(Y, Z) using time O(i?(Y, Z)). For the first,
assign y’(v) - y’(v) + t(Y) for each vertex v 6X – Y, then t(X) - t(X)
+ t(Y), Z1(X) ~ z,(X) + 2t(Y) and finally t(Y) ‘= O. For the second,
assign y’(v) - y’(v) – t(Y) for each vertex v = Y – Z, then 1(Z) ~ t(Z) +
t(Y) and I(Y) ~ O.

The algorithm adjusts duals by working on the vertices whose state changes.
This implies that the time for all dissolves in a Search Step is 0(A).

Note that this discussion applies to both even shells and the odd shell.
Observe how an odd shell G(C, a) is processed: C dissolves by becoming
either an unweighed or current blossom. If C = R‘ the new odd shell is dead.
In this case t(R~ becomes zero and, after the invariant has been restored, each
vertex v c R has y’(v) = Y(v). In particular each scale halts with y’ = y.

8. The A ugment Step

This section shows that the Augment Step can be done in linear time. This
amounts to solving the following problem in linear time: Given an arbitrary
graph with a matching &f, find a maximal set <7 of vertex-disjoint augmenting
paths. We present an algorithm based on depth-first search and the properties of
blossoms [6]. This section uses the following notation: F denotes the set of free
vertices of M. For a vertex v ~ F, v’ denotes the vertex matched to v.

The algorithm grows a search graph similar to the search graph Y’ in
Edmonds’ weighted matching algorithm (Section 1.1) with three changes: First,
the requirement that an edge of Y be tight is dropped (tightness is irrelevant
since there are no edge costs). Second, an inner blossom is always a vertex,
never a nonleaf blossom. (This comes about because the search starts with a
graph that has no blossoms. As a consequence the algorithm has no expand
steps — onl y grow and blossom steps.) Third, the free vertices are added to the
search graph one at a time rather than simultaneously. A free vertex f is either
outer (if some search starts from f) or inner (if a search ends by finding an
augmenting path to f). The contracted subgraph Y– (of Section 1.1) is always a
forest: an augmenting path corresponds to a path in ~ joining a free outer
vertex to a free inner vertex.

The final and most important difference from Edmonds’ weighted matching
algorithm is that the search is done depth-first. Figure 7 gives the recursive
depth-first search procedure find_ ap. Figure 8 shows a search graph con-
structed by find_ ap. Here the input to find_ ap is vertex 1, and vertices are
labelled in the order they become outer. We explain the search algorithm by
first presenting a simplified version and then discussing find_ ap.

It is convenient to use the terminology of ordered trees. Thus the children of
a vertex are ordered from left to right. Given two vertices in an ordered tree,
one vertex is either an ancestor of or to the left of the other.

The goal of the simplified depth-first search is to find one augmenting path.
The search maintains a search tree Y– (an ordered tree) in a graph G that is a

contraction of the given graph G. It will be seen that ~ is the result of
contracting blossom_s in G. In discussing the simplified depth-first search we
write G-vertex or G-vertex to specify to which graph a vertex belongs. A path
from a G-vertex v in Y to the root is alternating; v is outer (inner) if the
length of the path is even (odd). The search maintains an active vertex, an
outer vertex on the rightmost path of %, from which edges are scanned.

Faster Scaling Algorithms for General Graph Matching Problems 843

procedure find_ ap(x) { x is an outer vertex}

for each edge xy # M do {examine an edge}

if y # P’(Y’) then

if y M free then begin {an augmenting path has been found}

add xy to .7. and add path yP(x) to @

terminate all actwe recursive calls to find_ap

end
elsebegin {two grow steps}

add xy. Yy’ to Y, by setting 1(Y*) + x

find_ ap(y’)

end
elseif b(y) became outer strictly after b(x) then begin {blossom step}

let u,, i = 1. ... , k be the inner vertices in P(y, b(x)), ordered so that u, precedes a_,

for i + 1 to k do begin {update Y }

/(ul) + (y, x)
for each vertex v with b(v) ● {u,, u;} do b(v) + b(x)
end

for i + 1 to k do find_ ap(u,)

end

FIG. 7. Depth-first search

1

h

N-----
3

10

4 -D
5

7

6

Initially G = G and .Y–consists of a root
also the active vertex.

procedure find_ap,

FIG. 8. Example graph for find_ ap

which is a free vertex f of G; f is

The search works by repeatedly scanning an edge incident to the active
vertex. The active vertex changes as the search progresses. At any point if all
edges incident to the current active vertex x have been scanned from x then
the search backs up—the grandparent of x becomes the new active vertex
(recall the parent of x is inner, the grandparent is outer). If the search attempts
to back up from the root of Y- then it halts —it will be seen that in this case
there is no augmenting path from the initially chosen free vertex f.

The procedure to scan an edge incident to the active vertex x is as follows.
An edge xy that has not been scanned from x is chosen arbitrarily. First
suppose y ~ ..7. (It will be seen that only vertices in Y- get contracted; hence y
is a G-vertex.) If y is free then the search halts (an augmenting path from f to

844 H. GABOW AND R. TARIAN

y has been found). Otherwise two grow steps are done: Recall that y’ denotes
the vertex matched to y. .7 is extended by adding edges Xy and yy’, and the
active vertex becomes y’ (y is made the rightmost child of x, so the new active
vertex is on the rightmost path of Y–). The search continues by scanning an
edge incident to the new active vertex.

Now suppose y e Y-. If y is an outer descendant of x then a blossom step
is done: The path from y to x, plus edge xy, fgrms a blossom. It is shrunk to a
new vertex B giving a new contracted graph G. The active vertex becomes B
(clearly B is on the rightmost path). The search continues by scanning an edge
incident to the new active vertex. (Note that when y e J9 nothing is done if y is
not an outer descendant of x, even though in some cases a new blossom could
be shrunk.)

This completes the description of the simplified algorithm. It finds an
augmenting path leading to the free vertex f if one exists. We shall not prove
this completely (it follows from arguments similar to Lemma 8.1 below).
Instead we prove two properties, designated (i) and (ii), needed to analyze
find_ap. Property (i) is that if v and w are adjacent outer vertices and edge
vw has been scanned from both vertices then v and w are in the same blossom.
(Although it is not logically necessary for our development, we remark that
property (i) essentially proves that the simplified algorithm works correctly
when it halts without finding an augmenting path: The property implies no more
blossom steps are possible, which in turn implies that no augmenting path
exists.)

We first show that the algorithm maintains the invariant that no edge goes
from an outer vertex to the right. It is easy to see that at any time any outer
vertex not on the rightmost path has been completely scanned. Thus, in a grow
step, no outer vertex to the left of the rightmost path is adjacent to y or y’.
Thus grow steps preserve the invariant. A blossom step preserves the invariant,
since in general contracting an edge in a tree does not move a vertex to the left
or right of another. We conclude that the invariant always holds.

We make a second observation. Consider edges xy, yy’ added to Y in two
grow steps that make y inner and y’ outer. Suppose that after y’ is made active
the search eventually backs up from y’. Then if y’ is ever contained in the
active vertex again, edges xy and yy’ are contracted. To prove this consider
the first time y’ or one of its descendants again enters the active vertex. This
occurs in a blossom step that contracts a path from the current active vertex, a
nondescendant of y‘, to a descendant of y’. Clearly edges Xy and yy’ are on
this path and get contracted.

Now we prove property (i). Suppose that at any time an edge vw joins two

distinct outer vertices of ~. The invariant implies that one vertex, say v, is an
ancestor of the other, w. We show that if edge vw gets scanned from vertex v
(or from some G-vertex containing v) then v and w are vertices in the same
blossom. (Clearly this implies (i).) Consider the time when vw is scanned from
v, and assume w is not in the same blossom as v. Vertex w is in Y– when vw
is scanned (otherwise a grow step would make w a child of v; but then v w
never joins two distinct outer blossoms). Hence w is inner or outer at this time.

Suppose w is inner. Let a be the first ancestor of w on the path from the
active vertex v to the root. Observe that the search has backed up from every
outer vertex on the path P from w‘ to a, except a. By the time w becomes
outer, all vertices on P are in the same blossom as a (this follows from the
second observation above). But since a is an ancestor of v, v is never a proper

Faster Scaling Algorithms for General Graph Matching Problems 845

ancestor of the outer vertex w. This contradiction shows that w cannot be
inner.

We conclude that w is outer when v w is scanned from v. Furthermore w is a
descendant of v (since edge contractions cannot change a proper ancestor into a
proper descendant). Hence a blossom step is done. placing v and w in the same
blossom, as claimed. This proves (i).

Now we extend the simplified algorithm to regord information about G. Call
a G-vertex outer if it is contained in an outer G-vertex. The search implicitly
constructs an even-length alternating path from each outer G-vertex x to the
free vertex f; let P(x) denote this path. We extend the algorithm to make the
paths P(x) explicit, using the following data structure ([8]).

In this discussion interpret a path P as an ordered list of vertices. For
example the first vertex of P(x) is x. Let P r denote the reverse path of P; if
Q is also a path let PQ denote the concatenation of the two paths. (For this to
be a path the last vertex of P must be adjacent to the first vertex of Q.) For
vertex y c P(x), let P(x, y) denote the subpath of P(x) from x to y.

Each outer vertex x has a label 1(x) that defines path P(x) as follows. A
label is either a singleton label 1(x) = y, where y is an outer vertex, or a
pair label 1(x) = (y, z), where y and z are outer vertices and the pair is
ordered. If x has a singleton label 1(x) = y then P(x) = xx’ P(y). (As a
degenerate case a free vertex x has singleton label 1(x) = @ and we define
P(x) = x.) If x has a pair label 1(x) = (y, z) then necessarily x e P(y), and

P(x) = P(y, X) ’P(Z).
The algorithm assigns labels as follows. In the grow steps, y’ gets the

singleton label x. In the blossom step, each inner vertex u in the path from y
to x gets the pair label (y, x).

Property (ii) is that the labels define P(x) as an even-length alternating path
from x to f. Recall that by definition an alternating path is simple. This is
important for correctness of the algorithm, since it is well-known that augment-
ing a matching along a nonsimple augmenting path can produce a set that is not
a matching. Property (ii) is easy to prove by induction. ~he inductive assertion
also includes the fact that if x is in blossom B of G, then P(x) (1 Y- is
precisely the tree path from B to the root of Y.

This completes the discussion of the simplified depth-first search, which finds
one augmenting path. The final version of the algorithm finds a maximal set of
augmenting paths. To do this we must be more precise about selecting the
active vertex. In the final algorithm the active vertex is a G-vertex. The final
algorithm maintains the following property: For the active vertex x, P(x)
contains any outer G-vertex that has not been completely scanned. (This is
analogous to ordinary depth-first search of a directed or undirected graph,
where the search path leading to the vertex currently being scanned contains all
vertices that are not completely scanned [1].) In order to maintain this property
the blossom step works as follows: First it makes the inner vertices on the path
P from y to x outer; then it makes these vertices active in the reverse order of
their occurrence in P.

The final algorithm uses one other data structure, to represent the blossom
structure: For each vertex x, b(x) denotes the base of the root blossom
containing x.

Incorporating these changes into the simplified algorithm gives the algorithm
find_ap stated in Figure 7. Observe that for any free vertex f, firzd_ap(f) is
a correct implementation of the simplified algorithm searching from f. Here we

846 H. GABOW AND R. TARJAN

assume that jlnd_ ap(f) begins with @ empty, each b(v) initialized to v and
the search graph Y’ initialized to root f. (Note that Y’ in find_ up corre-
sponds to T in the simplified algorithm; in its final usage below, Y will
contain more than one connected component, and will be analogous to the
search graph .!7 of Section 1. 1.) Correctness depends on two observations.
First, the recursion correctly implements the notion of the active vertex in ~.
(The recursive calls in a blossom step are consistent with the simplified
algorithm.) Second, the test preceding a blossom step, that b(y) became outer
strictly after b(x), is equivalent to the simplified algorithm’s test that y is in an
outer descendant of x (since if b(y) is outer then so is y, and edge xy implies
x and y are related in the search tree of G).

Since fincI_ ap implements the simplified algorithm it satisfies properties
(i) - (ii). In particular property (i) states that if v and w are adjacent outer
vertices and edge vw has been scanned from both vertices then b(v) = b(w).

We further observe the following property (iii): When find_ up halts, every
outer vertex not in ?1 has been completely scanned. To prove this it suffices to
show that every time find_ ap(x) examines an edge every unscanned outer
vertex is in P(x) U @. (Say that find_ ap “examines an edge” each time
control passes to the line so labelled in Figure 7. This includes the last time,
when no unscanned edges xy exist.) This invariant follows easily because of
the order of activating vertices u, in a blossom step.

The final depth-first algorithm uses a main routine find_ up _set. This
routine initializes the search graph Y to empty and each b(v) to v. Then it
examines each vertex f e F in turn. If f is not in a path of Y when it is
examined, the routine adds f to S (by assigning 1(f) - QI) and calls the
recursive procedure find_ ap(f). Note that when find_ ap discovers an
augmenting path, it immediately terminates itself and all currently active
recursive calls. Also note that vertices are never removed from Y-when
find_ ap_set calls find_ ap, Y’ is the same as when the last call terminated.
Thus it is possible that a scanned edge xy has y in a previous search tree.
Examining find_ap shows that in this case y is ignored. It is easy to see that
properties (i) -(iii) hold for find_ ap_set as well as find_ up.

Now we can show that find_ ap_set performs as desired.

LEMMA 8.1. When find_ ap_set halts, P is a maximal set of vertex-dis-
joint augmenting paths.

PROOF. By property (ii), Y consists of vertex-disjoint augmenting paths.
We need only show that when find_ up _set halts, & is maximal, that is, any
augmenting path contains a vertex of #.

When find_ up _set halts, consider an alternating path with vertices x,,
;=O ,. ... k that starts at a free vertex XO and is vertex-disjoint from W. We
show by induction that every XZJ is outer and b(xzy) = Xh for some h < 2j.
(The argument will also show that the path is not augmenting.)

The base case j = O holds because find_ ap(XO) was called. For the
inductive step assume that XZJ is outer. Since XZJ + Y it has been completely

scanned, by property (iii). Thus since Xzj+ ~@Y, XZJ+, is not free. that is,
x2j+ ~ is matched and either inner or outer, If Xzj+ ~ is inner then Xzj+ ~ is
outer; obviously b(x ,j+~) = XZJ+Z so the inductive assertion holds. (Note that
the vertices Xzy and X2J+ ~ need not be in the same search tree of find_ up.) If
x, j+ ~ is outer then it has been completely scanned. Thus b(Xzj +,) = b(XZJ),

Faster Scaling Algorithms for General Graph Matching Problems 847

from property (i). Since b(XZJ) # XZJ+ ~ by the inductive hypothesis, b(Xz j+ ~)

x2j+1. Hence Xzj+z is outer and b(Xzj+z) = b(Xzj). This completes the
induction.

The inductive argument has also shown that no vertex Xzj+ ~ is free. This
shows there is no augmenting path disjoint from Y. ❑

The time for find_ up _set is 0(m). To see this, first note that the values of
b can be updated and accessed in total time 0(m) using the incremental tree
set-merging algorithm of [15]. Next note that in a blossom step the vertices u i
are found using the following observation: The vertices u{ are the predecessors
of b(X) in the sequence (bl)~b(y), j = (), . . . (this follows since if v is a

blossom base then in the simplified algorithm its grandparent is b(1(v))). This
implies that in all blossom steps the total time to find all vertices U, is 0(n). It
is obvious that the rest of the time for find_ up _set is 0(m).

After find_ up _set the Augment Step augments along each path of 9. This
takes total time 0(n). To see this, note that it is easy to give a recursive routine
that finds the edges in a path P(x) in time proportional to their number; after
finding an augmenting path it can be augmented. Alternatively, Gabow [8]
gives a one-pass procedure.

9. Analysis Completed: Size of Numbers

This section completes the efficiency analysis. We have implicitly assumed
that all arithmetic operations use 0(1) time. To justify this assumption, we
show that all numerical values calculated by the algorithm have magnitude
0(n2N log(nN)). Since the input values require a word size of at least
max{ log N, log n} bits this implies that at worst quadruple-word integers are
needed. Thus an aritmetic operation uses 0(1) time.

LEMMA 9.1. At any time in the scaling routine a y or z value has
magnitude 0(n2N log (nN)).

PROOF. The result is proved in three steps. First we prove it for y values.
Define N, as the largest magnitude of a cost in scale s: it is easy to see that

N, s 2‘+ 1 – 2. Let Y. denote the largest magnitude of a y value in scale

s 2 1, and set YO = O. It suffices to verify the recurrence

y~<2y,_1 + 1 + 10nlogn+2nN,.

This implies Y. s (2S – 1)(1 + 10n log n) + ns2S+z. Hence in the last scale
Y, = 0(n2N log(nN)). This implies the desired bound for y.

To obtain the recurrence begin by observing that the match routine never
increases a y value: y values change only in dual adjustments or translations
and, if a dual adjustment increases y(v) by 8, the accompanying translation
decreases y(v) by 8. Hence it suffices to examine the y values at the end of the
scale.

Let u be the vertex that is free at the end of the scale. We show that at the
end of the scale

y(u) a yO(U) – 10n log n.

In path(R), suppose some shell_ search(C, D) adjusts duals by 6. Then y(co)
does not change if a e V(C) – V(D) and it decreases by 28 if u e V(D).

848 H. GABOW AND R. TARJAN

Thus the total decrease in Y(u) is at most the total translation of all even shells,
which is at most 5 fi(R)log A($?) by (4). Summing over all major path roots R
containing u gives a geometric progression with ratio 1/2. Thus the total
decrease is at most 10 n log n as desired.

Now consider any vertex x, with matching A4Y at the end of the scale. As in
Lemma 2.1, C(A4Y) s 2~rz/2j + y(V(G)) – y(x) –~fi/2]z(V(T)), and
C(MY) = Y(V(G)) – y(x) – ~fi/2jz(V(T)). Thus any vertex x has y(x) 2
y(u) – 2~rz/2J + c(itl~) – c(&fX). Since c(lfX)e[-nN. /2 . . nN. /2], we
deduce

y(x) =y(co) – 2nN,.

Combining this with the above inequality for Y(u) shows that any vertex x has

Y(X) ~ YO(CO)– lon log n – 2 nN,. The Double Step shows that in scale ~,
Yo(~) has magnitude at most 2 Y~_, + 1. Together these imply the desired
recurrence for Y~.

It remains to analyze the magnitude of z values. Consider first the value
Z(G*). This value is nonpositive—it can decrease in Double Steps and transla-
tions of she/l_ searches, but it never increases. In some scale s, let e be a
matched edge involved in the last blossom step (this step forms the blossom G*
and ends the scale). Since G* is the only blossom containing e, (1a) implies
that z(G*) > Y(e) – N.. Thus z(G*) satisfies the lemma.

Finally consider any z for nonroot blossoms. These values are nonnegative.
Consider a nonroot blossom B. Without loss of generality B is a current
blossom, so it contains a matched edge e. (lb) for e implies that in scale S,

y(e) +JY. + 2 – z(G*) ~ z({CI e~ c}) – z(G*) ~ z(B). Thus z(B) sat-
isfies the lemma. ❑

All other quantities computed in the algorithm are easily related to y and z.
This includes the quantities of Section 7, ZI, t and y’. (Note that a t value is
bounded by a value z([G*, B]) – z(G*); the last paragraph of the proof shows
that this satisfies the bound of the lemma.)

This completes the analysis of the scaling routine.

THEOREM 9.1. The minimum critical matching problem can be solved in

0({na(m, n) log n m log(nN)) time and 0(m) space.

It is interesting that the proofs of the above lemma and Lemma 2.1 use the
dual objective function Y(P’(G)) – ~fi /2j Z(V(T)). (This is the objective func-
tion of the linear programming dual of the matching problem [7].) It is tempting
to analyze the matching algorithm using this dual objective function (as done in
[10]). Here are some easily-proved facts: The dual objective does not decrease
in path, In the entire execution of path the dual objective increases by 0(n)
(from the Double Step). A durd adjustment of 8 in the search of a shell
containing f free vertices increases the dual objective by at least (f – 2)6.
These facts give a good bound on the time spent in shell_ searches of shells
with at least three free vertices. Unfortunately it is possible for an even shell to
contain only two free vertices. Such shells do not seem amenable to an easy
analysis. Hence the attractiveness of this approach remains unclear.

10. Other Matching Problems

This section gives applications of the minimum critical matching algorithm.

THEOREM 10.1. A minimum perfect matching can be found in

0(~na(m, n) log n m log(nN)) time and 0(m) space. The same bounds

Faster Scaling A lgorithrns for General Graph Matching Problems 849

apply to minimum-cost matching and minimum-cost maximum-cardinality
matching.

PROOF. The application to minimum perfect matching has been noted in

Section 1.1. For minimum-cost matching, observe that a minimum-cost match-

ing on G corresponds to a minimum perfect matching on the graph formed by

taking two copies of G and joining each pair of copies of the same vertex by a

zero-cost edge. Minimum-cost maximum-cardinality matching uses the same

construction except that each added edge costs nN. ❑

As observed in [10], cost-scaling algorithms can be used as approximation
algorithms when input numbers are real, rational or very large integers. We
illustrate this with the problem of finding an approximately-minimum perfect
matching.

Consider a given cost function c with nonnegative real values. Fix an integer
a. We define a new cost function c’ with values in [0 . . r?+ a] such that if A4

(AZ’) is a minimum perfect matching for c (c’), then c(A4’) s (1 + n-a) c(M).
To define c’ let B be the bottleneck cost of a minimum bottleneck matching;
that is, let B be the minimum value such that there is a perfect matching A on
the edges costing at most B. Assume B > O; otherwise the problem is trivial.
Delete all edges costing more than C(A); clearly these edges are not in a

minimum-cost matching. Define cost function c’ = ~n’+ac/Bj. Note that if e
is an edge that is not deleted then C(e) s nB/2. Hence c’(e) < r?+ a as

desired. Furthermore c’(M’) < c’(AZ) implies nl ‘“c(M’) /B < n’ ‘“c(M) /B
+ n/2. Since c(A4) ? B, c(M) < c(M) + B/na s (1 + n-”)c(M) as
desired.

THEOREM 10.2. Given arbitrary nonnegative edge costs and a positive
integer a, a perfect matching costing at most (1 + n –”) times minimum can

be found in O(a ~na(m, n) log n m log n) time and 0(m) space.

PROOF. First a bottleneck matching is found in time 0(~=m) [14].
Then c’ is computed in time 0(m). Finally the scaling algorithm is executed
with costs c’. This algorithm runs in the time of the theorem. ❑

This leads to an efficient implementation of Christofides’ approximation
algorithm for a traveling salesman tour [4]. Recall that this approximation
algorithm works as follows. Given are n cities and the distance between each
pair of cities. We assume that the distances satisfy the triangle inequality. The
algorithm constructs a tour by finding a minimum spanning tree T, finding a
minimum perfect matching Al on the odd-degree vertices of T, and reducing
the Eulerian graph T U M to a tour.

Recall the accuracy analysis of this algorithm: Let H denote a minimum-
length tour of the given cities. Let C(e) denote the length of an edge e joining
two cities. The approximation algorithm gives a tour of length at most C(T) +
c(M). It is easy to see that c(T) s (1 – l/n)c(H) and2c(iM) < c(H). This
implies that C(T) + C(k!) s (3/2) C(H). Hence the algorithm gives a tour at
most 3/2 times optimum.

The running time of this algorithm is 0(n3), the time to find the matching.
We improve this by making one change: Instead of &l use a perfect matching
that is at most (1 + 1/n) times minimum. It is easy to see that the resulting tour
is at most 3/2 – 1/(2 n) < 3/2 times optimum. We find the approximately-
minimum matching using the algorithm of Theorem 10.2.

850 H. GABOW AND R. TARJAN

THEOREM 10.3. Christofides’ approximation algorithm for a traveling
salesman tour on n cities, where distances obey the triangle inequality, can
be implemented to take 0(n25(log n)l 5, time and O(n2) space. •l

A number of applications of matching require not just an optimum matching
but the output of Edmonds’ algorithm, an optimum structured matching (recall
the definition from Section 1. 1). One example is updating a weighted matching:
Suppose we have an optimum structured matching and the graph changes at one
vertex v (that is, edges incident to v are added or deleted, and costs of edges
incident to v change). A new optimum structured matching can be found in the
time for one search of Edmonds’ algorithm [2, 5, 10, 29]. Another example is
the single-source shortest path problem on undirected graphs with no negative
cycles [21, pp. 220–222]. We now give an algorithm to find an optimum
structured matching.

The algorithm starts by executing the scaling routine with one change: The
new cost function F is (2 n + 2) c (in Section 2, 2 = (n + 1) c). Change the
number of scales correspondingly to k = ~log(n + 1) ~] + 2. Suppose the
scaling routine halts with matching MY, blossom tree T and dual functions

YO, Z.. Our structured matching has the same matching and blossom tree. The
dual function y is defined by

Y= yo(V(G)) - \fi/2] ZO(~(T));

11

ye–Y
y=

2n +2”

To define Z, for each blossom B choose (arbitrarily) a blossom edge e~ of B.
For a blossom B with parent A,

z(B) = (y– c)(eB) – (y– c)(eA);

z(G*) = (y – c)(eG,).

To prove that the algorithm is correct, define dual functions ~ = (2 n + 2) y,

Z = (2 n + 2) z. It suffices to show that changing the duals to J, Z gives an
optimum structured matching for the cost function used by the scaling routine,
6. This amounts to showing the following: (i) the duals are tight on every
blossom edge; (ii) the duals are dominated on every edge; (iii) 2(B) >0 unless
B = G*. The following proof depends on the fact that all values of j, 2 and 2
are multiples of 2 n + 2.

We start by showing that for any vertex v,

Ye(v) ‘Y(v) – ye[O. .n). (6)

First observe that the quantity yo(v) – Y + E(My) G [0. . n), by (la) –(lb)
applied to the edges of MU. Furthermore 2(M,) is a multiple of 2 n + 2. Since
by definition ~(v) = (2n + 2)l[yo(v) – Y)/(2n + 2)1, (6) follows.

To prove (i) – (ii) we first show that any edge e satisfies the relation

(Eyo)e- (Z-zo)([G*, B])e[-2rz+2..2n].

To derive this, first observe the tightness equation for any edge e~, ~~(e~) =
5(e~) (this follows from the definition of Z). From (1a) – (lb), y. Zo(eB) –
Z(eB) e [– 2.. O]. Subtract the previous tightness equation and use (6) on the

Faster Scaling Algorithms for General Graph Matching Problems 851

ends of eB to get (Z – ZO)([G*, l?]) + 2 Ye [–2n . . O]. The desired relation
for e follows by using this last relation plus (6) on the ends of e.

To prove (i), consider any blossom edge e of B. Since yO zO(e) – F(e) e
[– 2.. O], the above relation for e implies that jl~(e) – ~(e) e [– 2 n ..2 n].
Since the left-hand expression is divisible by 2 n + 2, it equals zero, that is, the
duals are tight on e. For (ii), similarly consider an edge e such that B is the
smallest blossom containing it. Since yO ZO(e) s 2(e) it is easy to see that

Y2(e) – E(e) s 2 n. Since the left-hand expression is divisible by 2 n +
2, Y2(e) s E(e), that is, the duals are dominated on e.

Lastly consider (iii). From (la) -(lb), (yO – Z) e~ – (yO – ~)e~ – Z,O(B) e
[-2. . 2]. Combining this with the definition of Z shows that (2 - z,)(B) +

(yo– Y)e~–(yo –Y)eA~[–2. . 2]. Applying (6) to the ends of e~ and e~
implies that (Z – ZO)(B) c [–2n . . 2 n]. This implies that 2(B) > – 2 n, since
ZO(B) = O. This gives the desired relation 2(B) a O, since 2(B) is divisible
by2n + 2.

THEOREM 10.4. An optimum structured matching can be found in the
time and space bounds of Theorem 9.1.

The minimum critical matching algorithm can be modified to find a maxi-
mum-cardinality matching on an arbitrary graph G. The cardinality matching
algorithm works as follows. Define all edge costs to be zero. Execute the
scaling routine by simply omitting the Double Step and doing the Match Step
once, that is, call the match routine once to find the desired matching. Define

p, the number of phase 1 iterations of path, to be ~A 1. The remaining details
of phase 1 are unchanged. (The algorithm works with one shell, G*, which is
even or odd depending on the number of vertices of G.) After phase 1 the
algorithm is simpler than before. Instead of phases 2 – 3 it abandons all edge
costs and dual variables and does the following: Repeatedly call find_ up_ set
to find a maximal set of disjoint augmenting paths Y, and augment along these
paths. find_ ap_set operates on the graph G, unmodified. The algorithm halts
when find_ up_ set does not find an augmenting path.

The analysis of this algorithm is a special case of critical matching. We
sketch it for completeness. First recall that the old blossom tree T has root G*
with children V(G). The following version of Lemma 6.1 holds: At any time in
the execution of path(G*) let A4 be the current matching. Let A40 be a
maximum-cardinality matching whose free vertices are all free in Al. Let F@ be
the set of vertices that are free in Al but not AZ..

LEMMA 10.1. At a~y time in path(G*) during phase 1 of the cardinality
matching algorithm, 6(F0, G*) s n.

PROOF. The proof is a special case of Lemma 6.1. As in Lemma 6.1, define
P(B) = I MO (1 G(B) \ – I M n G(B) 1. For the current duals y, z, adding
(la) for A40 and subtracting (lb) for M, and recalling that all edge costs are
zero, gives

Y(F.) – PZ({G*} u V(T)) s 2 I Ml .

Note that y is zero for any free vertex and A is nonpositive for a current
blossom (as ip Lemma 6. 1). Hence – pz(G*) s 2 I ikf 1. Now the relations
z(G*) = –28(G*), I-L(G*) = I F. \ /2, and I AZ I s n/2 imply the lemma.

n.

852 H. GABOW AND R. TARJAN

At the end of phase 1 any free vertex v has 8(v, G*) = p. Thus I Fu \ p s n.

This implies that phase 1 ends with 0(v~) more free vertices than a maxi-

mum-cardinality matching. Thus find_ up _set is executed 0(\&) times.
As in the weighted algorithm, the time for a phase 1 iteration and the time for

one execution of find_ up _set are both 0(m). Thus the total time is 0(Am).

THEOREM 10.5. A maximum cardinality matching can be found in

0(v~m) time and 0(m) space.

This bound is the same as the algorithm of Micali and Vazirani [23]. Note
that our algorithm is not the same as theirs. For instance it operates with inner
blossoms effectively “shrunk” during phase 1. Also our depth-first search
seems to involve less overhead than the “double depth-first search” of [23].

In practice a different organization after phase 1 is probably faster: The
algorithm initializes the search graph Y’ to empty. Then it calls find_ ap(f)
for each free vertex f. If find_ ap(f) finds an augmenting path then the
matching is augmented; also the vertices that it added to ,7’ are removed from
Y. If find_ ap(f) does not find an augmenting path then nothing is done—the
vertices it added to Y‘ remain in Y’. These vertices will be effectively ignored
in subsequent searches. This is correct because these vertices cannot be in
augmenting paths (arguing as in Lemma 8.1; alternatively see [6] and [8].

11. Concluding Remarks

The matching algorithm generalizes to degree-constrained subgraph problems.
Consider a graph with two functions 1, u: V - Z. A degree-constrained
subgraph (DCS) is a subgraph in which each vertex v has degree in the range
[1(v) . . U(v)]. In a perfect DCS each degree is exactly U(v). The size of a
perfect DCS is denoted U = U(V). The weighted degree-constrained sub-
graph problem is to find a minimum-cost maximum-cardinality DCS or a
minimum-cost DCS. A degree-constrained subgraph problem on a graph of n
vertices and m edges can be reduced in linear time to a matching problem on a
graph of 0(m) vertices and edges [11]. Thus our algorithm immediately

implies a bound of 0(m a (m, m)log m m log(mN)) to solve the weighted
DCS problem. The same bound applies to the problem of finding a minimum
cost flow on a O– 1 bidirected network [21]. A more careful implementation of

our ideas gives a bound of 0(iUCY (m. n)log U m log(nfV)) for the weighted
DCS problem; this bound holds for multigraphs as well. Details will be given in
a forthcoming paper.

Pravin Vaidya has recently investigated the matching problem for points in
the plane. If distance is measured by the L ~, Lz or L~ norm, a minimum
perfect matching on a set of 2 n points can be found in time n’s log 0(1 ‘n and

space 0(n log n) [28]. Furthermore it appears that applying our algorithm
reduces the time by a factor of about W [28].

REFERENCES

1. AHO. A. V., HOPCROFT,J. E., AND ULLMAN, J, D. The Design and Analysis of Computer
.4 lgorithms, Addison-Wesley, Reading, Mass., 1974,

?-. BALL, M. O., AND DERIGS, U. An analysis of alternative strategies for Implementing matching

algorithms. Nerworks 13, 4 (1983), 517-549.
3. BERTSEKAS, D. P. Distributed asynchronous relaxation methods for linear network flow prob-

lems, LIDS Report P-1606, M. I. T., Cambridge, Mass., 1986; preliminary version, In Proceed-
ing of the 2Sth Conference on Decision and Control. IEEE, New York, December 1986.

Faster Scaling A Igorithms for General Graph Matching Problems 853

4. CHRISTOFIDES, N. Worst-case analysis of a new heuristic for the traveling salesman problem,

Technical Report, Graduate School of Industrial Administration, Carnegie-Mellon Univ,. Pitts-

burgh. Pa.. 1976.

5. CUNNINGHAM, W. H., AND MARSH, A. B. III. A primal algorithm for optimum matching.

Math. Prog. Stud. 8 (1978), 50-72.

6. EDMONDS, J. Paths, trees and flowers. Canad. J. Math. 17 (1965), 449-467
7. EDhlONDS, J. Maximum matching and a polyhedron whh O, 1-vertices. ~. Res. Nat. Bur.

Standards 69B (1965). 125-130.

7a. EDMONDS, J., AND KARP, R, M. Theoretical improvements m algorithmic efficiency for

network flow problems, J. ,4 CM 19, 0 (1972), 248–264,
8. GABOW. H. N. An efficient implementation of Edmonds’ algorithm for m~xlmum matchmg on

graphs. J. ,4(X423, 2 (1976), 221-234,

9. GABOW, H. N. Scaling algorithms for network problems. 1 Comp. and SYsten7SCL, 31, 2
(1985), 148-168.

10. GABOW, H. N. A scaling algorithm for weighted matching on general graphs. In Proceedings

of the 26th A nrrual S.vmposium on Foundations of Computer Science. IEEE, New York,

1985, pp. 90-100.

11. GABOW, H. N. Duality and parallel algorithms for graph matching. manuscript.
1z, G,4Bow, H, N, Data structures for weighted match]ngand nearestcommon ancestors with

linking. In Proceedings of the Ist Annual A CM-SIAM Symposium on Discrete Algorithms.

ACM, New York, 1990. pp. 434-443.

13. GABOW, H. N., GALIL, Z., AND SPENCER,T. H. Efficient Implementation of graph algorithms

using contraction. J. ACM 36, 3 (1989), 540-572.

14. GABOW, H. N., AND TARJAN. R. E. A linear-time algorlthm for a special case of disjoint set

union. J. Comp. and System Sci.. 30, 2 (1985), 209–221.

15. GABOW,H. N., .4ND T~RJAN, R, E. Algorithms for two bottleneck optimization problems. J.
Algorithms, 9, 3 (1988), 411-417.

16. GABOW. H. N., AND T4RJAN, R. E, Faster scaling algorithms for network problems. SIAM J.

Compur., 18, 5 (1989), 1013-1036.

17. GALIL, Z., MICALI, S., 4ND GABOW, H. N. An 0(EV log V) algorithm for finding a maxmxd

weighted matching in general graphs. SL4A4 J. cOWDL/r., 15, 1 (1986), 120-130.

18. GOLDBEKG, A. V. Efticlent graph algorithms for sequential and p~rallcl computers. Ph. D.

Dissertation. Dept. of Electrical Eng, and Comp. SCI., MIT, Techmcal Rep. MIT/LCS/TR-374,

Cambridge, Mass.. 1987.

19. GOLDWZRG, A. V., AND TARJAN, R E. Fmdmg minimum-cost cwculatlons by successive

approximation. ~afh. of Oper. Res., 15. 3 (1990~.430-466.
20. HopcRolT. J., ~NEIKARP, R. An nf’2 algorithm for maximum matchings m bipartite graphs,

SIAM J. Cornput. , 2, 4 (1973), 225-231.

21. LAWL~R, E. L. Combmatorial Optmrlzation: Networks ancl Matroids. HoIt, Rinehart and

Winston, New York, 1976.
Z2, Lov~sz. L,, ~N~ p~U~~~~ER, M, D, &fatc)ling Theory North-Holland Mathematical Stuches

121, Annals of Discrete Mathematics 29, North-Holland, New York, 1986.

23. MICAL1. S., AND V4ZIRANI, V V. An 0(~ I b’ I I E I) algorithm for finding maximum

matchmg m general graphs. In Proceedings of the 21st A nnuul Symposium on the Founda-

tions of Computer Science. IEEE. New York. 1980, pp. 17-27.

24. PA.PADIMITRRIU, C. H., .AND STEIGLITZ, K. Combinatorial Optimization: A[gorltbms and
Complextfv. Prentice-Hall. Inc , Englcwood Cliffs, N. J., 1982.

25, T~RrJOS. E. A strongly polynomial minimum cost circulation algorlthm. C’orrzbinatorLca 5. 3
(1985), 247-255.

26. TARJAN, R. E. Applications of path compression on balanced trees. Y ACM 26. 4 (1979),
690-715.

27. TARJAN, R. E. Data Structures und Network A lgoriti?ms, SIAM Monograph, Philadelphia,

Pa,, 1983.

28. VAIDYA. P. M. Geometry helps in matching In Proceeding of the 20th Ar7?LLLLL/ ACM
Symposium on Theory of Computing. ACM, New York, 1988, pp 422-425.

29. WEBER, G. M. Sensitlwty analysis of optimal matchmgs, Networks 11 (1981), 41-56.

R~C~IV131JAPRIL 1989: REVISP.ONIAY1990; ACCEPTED MAY 1990

Journal of the Awx,.ttmn to, Comp.t, ng M.ch]ner>, Vol 38, No J, Octohc,- I W 1

