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Printed in U.S.A. 

AN OUT-OF-KILTER METHOD FOR MINIMAL-COST 
FLOW PROBLEMS* 

D. R. FULKERSONt 

1. Introduction. In this paper a method of solving minimal-cost net- 
work flow problems is described and shown to have a certain desirable 
monotone behavior. The method begins with an arbitrary flow, feasible or 
not, together with an arbitrary pricing vector, and then uses a labeling 
procedure to adjust an arc of the network that fails to satisfy the appropri- 
ate optimality properties. 

To present the basic notions underlying the method, let us consider, for 
a moment, a general linear program of the form 

(1.1)~~~~~~~~~j,- Eaijxj = bi (i=M***Xi) 

(1.2) j ! Xj(j =, *, n) 

(1.3) minimize n cjx3. 

Here the aij b, i , uj, cj are given. Now suppose that x = (x1, * **, xn) 

is a vector satisfying (1.1) and (1.2), that is, x is feasible, and that there 
is a dual (or pricing) vector ir = (era, . , ir) such that the implications 

(1.4) ej + ,D==l 7riaij > 0 - xi = 1 

(1,5) c? + Em riaij < 0 xj = uj 

hold for all j. Then it follows that x is a minimizing solution, and thus (1.4), 
(1.5) might be termed optimality properties. 

For a given x satisfying (1.1) and for any ir, the following case classifica- 
tion for the jth component of the program is exclusive and exhaustive: 

(a) C3 + Ei riaij > 0, xi = 1, 

(f3) Ci + ,i riaij = 0, 13 < Xi < Ui 

(y/) Cj + Z7iir-aij < 0, Xi = Uj 

(al) cj+ ? i7riaij > 0, Xi < ij 

(f1) cj + i 7riaij = 0, xi < 1j 

(Y1) Cj + Zi riaij < 0, xi <u 

(a2) cj + Ei -iaij > 0, x3 > 1j 

(02) Cj + Zi riaij == O. Xj > Uj 

(72) ci + Ei iaij <0, >Xi > Uj 

* Received by the editors February 15, 1960. 
This research was supported in part by the Pacific Lighting System. 
t The IIAND Corporation, Santa Monica, California. 
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MINIMAL-COST FLOW PROBLEMS 19 

If all components are in one of the states a, A, a, then x is feasible and 
optimal. We call these the "in-kilter" states, the others "out-of-kilter" 
states. The algorithm to be presented for network flow problems concen- 
trates on a particular out-of-kilter component, and gradually puts it in 
kilter. It does this in such a way that all in-kilter components stay in kilter, 
whereas any other out-of-kilter component either improves or stays the 
same, in a sense made precise in ?2. 

Section 2 provides a description of the special class of linear programs to 
which the method applies, together with some preliminary discussion. We 
assume that the given data for the program are integers (or, equivalently, 
rationals). Then the algorithm, presented in ?3, works with integers 
throughout. A proof that the algorithm terminates in a finite number of 
steps, and that in so doing it, possesses the monotone property roughly 
described above, is sketched in ?4. Some comparisons with other methods 
for solving minimal-cost flow problems are made in ?5. 

For the particular class of programs being considered, the assumption 
that the initial x satisfies (1.1) is unimportant, since such an x is immedi- 
ately available, e.g., x = 0. But starting with a good guess for x and ir will 
decrease computation time. One situation for which the present 'algorithm 
is particularly appropriate would be in solving a sequence of flow problems, 
where each problem of the sequence differs only slightly from its prede- 
cessor. Then the old optimal x and yr could be used to initiate the compu- 
tation for the new problem. 

We should like to express our appreciation to G. B. Dantzig, whose criti- 
cism of an earlier version of this paper in which the initial x was assumed 
feasible, led us to reconsider the problem from the standpoint of infeasible x. 

2. Notation, definitions, and problem description. We suppose given a 
network consisting of nodes 1, 2, * , n together with directed arcs ij (from 
node i to node j). Each arc ij has associated with it three integers: lij (the 
arc lower bound), uij (the arc upper bound or capacity), and cij (the arc cost), 
with 0 < lij < uij . 

It is convenient to describe the problem in terms of circulations [12], 
rather than flows from sources to sinks [7, 8, 9]. By a circulation we shall 
mean a nonnegative integral vector x = (xj), one component for each 
arc ij, that satisfies the conservation equat-ions 

(2.1) Ej (xij- xji) =-0 (-1* ,n). 
If the circulation x also satisfies 

(2.2) li < X -j $ Uij (all arcs ij), 

we call x a feasible circulation. We shall refer to a particular component xi 
of a circulation as the arc flow xij or the flow in arc ij. 
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A feasible circulation x that minimizes the cost form 

(2.3) Eij Cijxij 
over all feasible circulations is optimal. The problem we are considering is 
that of constructing an optimal circulation. Of course feasible circulations 
may not exist, in which case we want to discover this fact. It is known [121 
that a necessary and sufficient condition for the existence of a feasible circu- 
lation is that the inequalities 

uij . B (2.4) ieL ACL 
jeL jeL 

hold for all subsets L of nodes. Here L denotes the complement of L. The 
conditions (2.4) are easily shown to be necessary; their sufficiency can be 
proved in various ways, for example, by using the maximum flow-minimum 
cut theorem t7, 8] or the supply-demand theorem [11]. 

Let 7r = (,i) be a vector of integers, one component for each node i. 
We call 7r a pricing vector, and refer to its components as node prices. Opti- 
mality properties for the problem are that the implications 

(2.5) cij +vri - era > O-xij = lij 

(2.6) cij + era- lrj < O-xij =usi 

hold for all arcs ij. That is, if x is a feasible circulation, and if there is a 
pricing vector r such that (2.5), (2.6) hold, then x is optimal. We shall 
shorten the notation by setting 

(2.7) jij = cj + vi - fi. 

For a given circulation x and pricing vector ir, an arc ij is in just one 
of the following states: 

(a) 5ij > 0, xij= lij 

(a3) cj = 0, lij _ xij < uij 

(y ) cij < 0, xij = Uij 

(a,) 05ij > 0. Xij < lij 

(01) Cij = 0, Xij < lij 

('Y1) jij < O. Xij < Uij 

(a2) 5ji > 0, Xij > lij 

(02) Cj = 0, Xij > Uij 

('Y2) - iii< Oy Xii > Uii. 
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We say that an arc ij is in kilter if it, is in onl(e of the states a, (, fy; other- 
wvise the arc is out of kXi1tr. 1Thus to 0sol V( eIhe )())leril, wve 1iced to get, all 
a"re s ill kilter. 

With each state that art arc ij calln e ill, We shill associtate, a iotirtigative( 
integer, called the kilter number of the are in the given state. An in-kilter 
arc has kilter number 0; the arc kilter numbers corresponding to out-of-kilter 
states are listed below: 

(ai) lij - Xij 

(91) lij -xij 

(,Y1) jij(Xij - Uij) 

(at2) jij(Xij - lij) 

((2) xij -uij 

(Y2) Xii - Uij 

Thus out-of-kilter arcs have positive kilter numbers. The kilter numbers 
for states al, A1, 02, 72 measure infeasibility for the arc flow xij, while the 
kilter numbers for states 1, , a2 are a measure of the degree to which the 
optimality properties (2.5), (2.6) fail to be satisfied. 

The algorithm stated in the following section has the property that all 
arc kilter numbers are monotone nonincreasing throughout the computa- 
tion. However, steps can occur that 'change no kilter number, and this 
complicates the proof of termination somewhat. 

We need a few other notions before stating the algorithm, the main one 
being that of a path from some node to another in a network. Let il. 
i2 * im be a sequence of distinct nodes of a network such that either 
ikik+j or i+1kik is an arc, k= 1, , m- 1. Picking out, for each k, one 
of these two possibilities, we call the resulting sequence of nodes and arcs 
a path from i, to im . Arcs iki,+, that belong to the path are forward arcs of 
the path; arcs ik+lik that belong to the path are reverse arcs of the path. 
If we alter the definition of a path by stipulating that i, = i,,,, we call the 
resulting sequence of nodes and arcs a cycle. 

3. An out-of-kilter algorithm. The algorithm 1 of this section uses a modi- 
fied labeling procedure [8, 9] as its basic routine. In general, the labeling 
procedure is a search for a path (having certain desired properties) from 
some node to another. We start labeling from a given node, called the 
origin, attempting to reach some other given node, called the terminal. To 
initiate the modified procedure, we assign the label [0, oo] to the origin; 
the following labeling rules are then applied: 
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)A;.1) If 1lo(de i. is bI'aeled [,- ],i iode j is unllabele(l, anid if ij is aii arel 
811('11 }tl ht, (ithe 1' 

(a) jij > 0, Xij < lij 

(b) cj < O xij < uij, 

then node j receives the label [i+, ej], Where ej min (Ei, lij -xij) 

in case (a), EJ = ruin (Ei , Uij - Xij) in case (b). 

(3.2) If node i is labeled [kl, E;], node j is unlabeled, and if ji is an arc 
such that either 

(a) Cjj 0 O. xji > I ji, 

(b) jji < O. xji > uji 

then node j receives the label [i, Ej], where ej -min (ei, xj - iji) 

in case (a), EJ = min (Ei , xi - uji) in case (b). 

Here x is a circulation and r a pricing vector. 
The labeling procedure terminates in one of two ways, called breakthrough 

and nonbreakthrough, respectively: either the terminal receives a label, or 
no more labels can be assigned and the terminal has not been labeled. 

If breakthrough occurs, a path from origin to terminal can be located by 
backtracking from the terminal, using the first members of the label pairs. 
If, in this backtracking, a node j is reached that carries the label [i+, Ej] 
then ij is a forward arc of the path from origin to terminal; if j is labeled 
[F, Ej], then ji is a reverse arc of the path. Thus forward arcs of the path 
satisfy either (3.1a) or (3.1b), whereas reverse arcs of the path satisfy 
(3,2a) or (3.2b). 

If nonbreakthrough results, we let L and L denote the sets of labeled 
and unlabeled nodes respectively, and define two subsets of arcs: 

(3.3) ct {iji C L, C .L > ij> ,xi < 

(3.4) - {j'I i C Lj C L, cj < 0, xj, 1 lp}. 

We then defiluce 

(3.5) m} minijal (ij) 

(3.6) :j = ) (-Cj) 

(3.7) 8 = min (61, 82). 

Here 8i (i 1, 2) is a positive integer or co according as (i. is nonempty 
or empty. 

The complete algorithm now runs as follows. Start the computation with 
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ally circulation x and any pricing vector r. Next locate ail out-of-kilter 
arc st and go on to the appropriate case below: 

(a,): 0.t > 0, X8t < 1st . The origin for labeling is t, the terminal s. If 
breakthrough results, add e = min (Es, 1st - X8) to the flow in 
all forward arcs of the path from t to s, subtract E from the flow 
in all reverse arcs, and add E to xUs . If nonbreakthrough results, 
add 6 defined in (3.7) to all 7ri for i in L. 

or (y): =~t = 0, Xst < 1st , or jt < 0, xest < uK t . Same as (a,), 
except E = min (E , ust- Xst). 

(a2) or (f2): jt > 0, xrt > Ist , or j.t = 0, xft > ust . The origin for 
labeling is s, the terminal t. If breakthrough results, add E = 
min (Et, X t - ist) to the flow in all forward arcs of the path 
from s to t, subtract E from the flow in all reverse arcs, and sub- 
tract E from x3s. If nonbreakthrough results, add 6 defined iii 
(3.7) to all 7ri for i in L. 

(72): Ut < 0, x8t > ust. Same as (a2) or (f2), except 
E = min (Et , xt - ut). 

The labeling process is repeated for the arc st until either st is ill kilter, 
or until a nonbreakthrough occurs for which the node price change 6 = m. 
In the latter case, stop. (There is no feasible circulation). In the former 
case, locate another out-of-kilter arc and continue. 

4. Termination and the monotone property. Suppose that arc st is out of 
kilter, say in state a1 . The origin for labeling is t, the terminal s. The arc 8t 
cannot be used to label s directly, since neither (3.2a) nor (3.21)) is appli- 
cable. Consequently, if breakthrough occurs, the resulting path from t to s, 
together with the arc st, is a cycle. Then the flow changes that are made on 
arcs of this cycle again yield a circulation. Moreover, the labeling rules 
have been selected in such a way that kilter numbers for arcs of this cycle 
do not increase, and at least one, namely, for arc st, decreases. Kilter num- 
bers for arcs not in the cycle of course don't change, 

Similar remarks apply if st is in one of the other out-of-kilter states. 
We summarize the possible effects of a breakthrough on an arc ij in 

Fig. 1, which shows the state transitions that may occur following break- 
through. If a transition is possible, the number recorded beside the corre- 
sponding arrow represents the change in kilter number. (The subscripts ij 
are omitted in the diagram.) 

Verification of the breakthrough diagram is straightforward. For exam- 
plc, suppose arc ij is ill state a,-, wvith cjj > 0, XiH > aIt , alil kilter nluinber 

,- i) > 0. If ij is iot all <r1e of the yelle of flowv (iiallges, thell i, 
relnailis ill state Y2 with Zelo chiatige iii kilter numbhler. It tlie fl()\\w ill are, ij 
has changed as a result of the breakthrough, then either ij is the( are st or, 
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by the lIabeling rules (3.1), (3.2), ij is a reverse arc of the path from origin 
to termnin'al. Specifically, i was labeled from j using (3.2a). In either case, 
xij decreases by the positive integer E < xij - lij, the new state for ij is 
a2 or a, and hence the kilter -number for ij has decreased by cjj > 0. The 
rest of the diagram may be verified similarly. 

The state transitions and changes in kilter number that may occur fol- 
lowing a nonbreakthrough with a < co are indicated in Fig. 2. (Again the 
subscripts ij are omitted.) 

Again we omit a detailed verification, but consider, for example, an arc 
ij in state -y , so that jij < O x2ij < utij , having kilter number jij(xij - ui,) 
> 0 before the node price change is made. If both i and j are in L or both 
in L, then jij remains the same after the node price change, and conse- 
(uently ij stays in state ym with no change in kilter number. We cannot 
have i E L, J G h (labeling rule (3.1b)), and hence the remaining possi- 
bility is i E L, j C L. Then jij is increased by a > 0. Consequently the arc 
ij either remains in state ym ,(if a < - ij), goes into state d (if el -cij 
and xij _ lij), into state f1 (if a- - ji and xij < lij), or into state a, 
(if a >- ij and xij < lij), and the corresponding changes in kilter number 
are respectively 3(xij - uij) < 0, 6(xij - uij) < 0, lij - xij + 3(Xij - Uij) 
< 0, lij -, xi- jij(xij - uji) ? 0. (The remaining logical possibility 
a > -Cj, xij _ lij cannot occur, since if xij > lij, then ij is in a2 defined 
by (3.4), and hence 3 < -cij. 

It follows from the breakthrough and nonbreakthrough diagrams that 
kilter numbers are monotone nonincreasing throughout the computation. 
Moreover, if breakthrough occurs, at least one arc kilter number decreases. 
Thus to prove that the algorithm terminates, it suffices to show that an 

0 or-cE 0 0 or-e 

(X?2 (a Q 
Q or-E 0 Oor-E 

O or -E Q Oor ce 
(7 - E (4k Cf O 

r2 
Do Y l 

Breakthrough diagram 

FTG. 1 
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Oor-8(x--t) 0 0 

a~~6 

K-u IX Qi~~ I0 c 
(Xo c (0) 

0 0 or (x-u) 

Non-breakthrough diagram 

FIG. 2 

infinite sequence of successive nonbreakthroughs, each with 6 < ais im- 
possible. To show this, let us suppose that a labeling resulting in nonbreak- 
through with 6 < 0o has occurred, and let L, L denote the labeled and un- 
labeled sets of nodes. After changing node prices, the new c vector, which 
we denote by c', has components given in, terms of the old by 

(cijjj (i E L,j E L) 
(4.1) . cj- ij + a (i E LE L) 

(otherwise). 

If the arc st is still out of kilter, then the origin is the same for the next 
labeling, and it follows from (4.1) and the labeling rules that every node 
of L may again be labeled. Thus if the new labeling again results in non- 
breakthrough with labeled set L', we have L C L'. Let a,1', a2' -denote the 
new sets defined in terms of L', c' (and x) by (3,3), (3.4), and suppose 
L = L'. Then, from (4.1) we have 0,1' C ht, a2 C: a2, and at least one 
of these inclusions is proper by (3.5), (3.6), (3.7). Hence the new labeling 
either assigns a label to at least one more node, or failing this, an arc is 
removed from one of the sets a1 or 2 . It follows that, after finitely many 
nonbreakthroughs with 6 < oo, we either get the arc st in kilter, obtain a 
breakthrough, or obtain a nonbreakthrough with 8 = oo. 

If a nonbreakthrough with 6 = co occurs, then there is no feasible circu- 
lation. For if 6 = con it follows from (3.3), (3.4) and the labeling rules 
(3.1), (:3.2) that xjj > Uj for i C L, j C L, and xjj $ 1j for i F L, j C L. 
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Moreover, for the arc st, either t C L, s E L with X~t < 1st , or s C L, t C L 
with xst > Uat . (This is immediate for cases a, , 12, 72 of the algorithm, 
and follows from (3.3) gand the assumption 6 = o for case a2, from (3.4) 
and the assumption a = co for case dy .) Hence, summing the equations 
(2.1) over i C L and noting cancellations, we obtain in all cases 

0 = E (Xij - X1i) > >E (Uij-- 
ieL i8L 
j8e LcT, 

But this violates the feasibility condition (2.4). Thus a = co implies there 
is no feasible circulation. 

To suml up, the algorithm terminates after finitely many applications of 
the labeling procedure, either with all arcs in kilter (in which case the 
feasible circulation is optimal), or with the conclusion that there is no 
feasible circulation. Moreover, all arc kilter numbers are monotone non- 
increasing throughout the computation. 

It is worthwhile to note the simplification that occurs if the method of 
the preceding section is initiated with a feasible circulation. The states ae, 
#1, f2, Y2 are then empty to begin with, and consequently remain empty 
throughout the computation. Hence at each nonbreakthrough (as well as 
each breakthrough), the kilter number for at least one arc, namely st, de- 
creases by a positive integer. In many minimal cost flow problems, a start- 
ing feasible circulation is readily at hand. For example, in the Hitchcock 
problem [1, 2, 3, 4] or the assignment problem [5, 6, 10], such is the case. 

5. Companrson with other methods. The method of ?3 is a generalization 
of the method of [9] for solving minimal-cost flow problems, which in itself 
generalizes the methods of [5, 6, 8, 10] for solving Hitchcock and assignment 
problems. In [9] the fundamental problem was that of finding a maximal 
feasible flow from source node 1 to sink node n that minimizes cost over all 
such flows. (Also the lower bounds were assumed zero on all arcs. This is 
not really a restriction, since a change of variables will accomplish this, if 
desired.) If we add to the network the special arc ni with 1ln = 0, Unl =U 

CIl= C (U and C large), and consider feasible circulations in the en- 
larged network, then the method of ?3 is applicable to such problems. Or 
if it is desired to find an optimal flow from 1 to n of given value 
v = j (x'j - xj) in the original network, we can add the arc ni with 
l v, = )C1 = 0, in order to cast the problem in circulation form. 

The method of [9] begins with the zero flow from source 1 to sink n 
(which satisfies the bounds on arc flows because lower bounds are zero), 
and all node prices zero. It was also assumed that the given arc costs are 
nonnegative. Equivalently, if we take 1n1 = 0, un1 = U, cni = -C and 
begin the algorithm of ?3 with the zero circulation and all node prices zero, 
then the special are nl is the only out-of-kilter arc (it is in state y'), and 
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hence it remains the only out-of-kilter arc throughout the computation. 
Then the method of ?3 reduces to that of [9]. 

It is also informative to note some of the major contrasts between this 
method and the simplex method [4] for solving such problems. First of all, 
the simplex method would be done in two phases, the first phase being a 
search for a feasible circulation, the second for an optimal circulation. 
(Throughout both of these phases, the simplex method would work with 
basic solutions, a concept that plays no role in this method.) Here we have 
combined the two phases. Ignoring this difference, however, and assuming 
that both methods start with a feasible circulation, the main contrast, apart 
from mechanics of operation, appears to lie in the fact that, for the simplex 
method, the kilter numbers are not monotone. For example, arcs that were 
in kilter at some stage of the simplex computation can go out of kilter at 
later stages. 

REFERENCES 

1. F. L. HITCHCOCK, The distribution of a product from several sources to numerous 
localities, J. Math. Phys., 2 (1941), pp. 224-230. 

2. L. KANTOROVITCH, On the translocation of masses, Dokl. Akad. Nauk SSSR, 37 
(1942), pp. 199-201. 

3. T. C, KOOPMANS AND S. REITER, A model of transportation, Cowles Commission 
Monograph 13, John Wiley & Sons, New York, 1951. 

4. G. B. DANTZIG, Application of the simplex method to a transportation' problem, 
Cowles Commission Monograph 13, John Wiley & Sons, New York, 1951. 

5. H. W. KUHN, The Hungarian method for solving the assignment problem, Naval 
Res. Logist. Quart., 2 (1955), pp. 83-97. 

6. , Variants of the Hungarian method for assignment problems, Ibid., 3 (1956), 
pp. 253-258. 

7. L. R. FORD, JR., AND D. R. FULKERSON, Maximal flow through a network, Canad. 
J. Math., 8 (1956), pp. 399-404. 

8. --, A simple algorithm for finding maximal network flow and an application 
to the Hitchcock problem, Canad. J. Math., 9 (1957), pp. 210-218. 

9. -, Constructing maximal dynamic flows from static flows, Operations Res., 6 
(1958), pp. 419-433. 

10. J. MUNKRES, Algorithms for the assignment and transportation problems, This 
Journal, 5 (1957), pp. 32-38. 

11. D. GALE, A theorem on flows in networks, Pacific J. Math., 7 (1957), pp. 1073-- 
1082. 

12. A. J. HOFFMAN, Some recent applications of the theory of linear inequalities to 
extremal combinatorial analysis, to apper ' the Amer. Math. Soc. publi- 
cation of the Symposium on Combinatorial Designs and Analysis. 


	Article Contents
	p. 18
	p. 19
	p. 20
	p. 21
	p. 22
	p. 23
	p. 24
	p. 25
	p. 26
	p. 27

	Issue Table of Contents
	Journal of the Society for Industrial and Applied Mathematics, Vol. 9, No. 1 (Mar., 1961), pp. 1-164
	Front Matter [pp. ]
	The Constrained Gradient Method of Linear Programming [pp. 1-17]
	An Out-of-Kilter Method for Minimal-Cost Flow Problems [pp. 18-27]
	The Deflation of Eigenvalue Problems with Second-Order Ordinary Differential Operators [pp. 28-30]
	Integration Procedures which Minimize Propagated Errors [pp. 31-47]
	Numerical Representation of Utility [pp. 48-50]
	Self-Dual Quadratic Programs [pp. 51-54]
	Ordering Systems of Equations [pp. 55-71]
	An Algorithm for Finding All Vertices of Convex Polyhedral Sets [pp. 72-88]
	On Deflating Matrices [pp. 89-93]
	Some Applications of Quadrature by Differentiation [pp. 94-108]
	Note on Fitting of Functions of Several Independent Variables [pp. 109-115]
	Two Theorems in Multi-Weighted Sums [pp. 116-126]
	A Method for the Numerical Calculation of Hydrodynamic Flow and Radiation Diffusion by Implicit Differencing [pp. 127-135]
	Stability Criteria and the Real Roots of a Transcendental Equation [pp. 136-148]
	Finite-Difference Techniques for a Boundary Problem with an Eigenvalue in a Boundary Condition [pp. 149-164]
	Back Matter [pp. ]



