
Balanced Network Flows. V. Cycle-Canceling Algorithms

Christian Fremuth-Paeger, Dieter Jungnickel
Lehrstuhl für Diskrete Mathematik, Optimierung und Operations Research, University of Augsburg,
D-86135 Augsburg, Germany

We discuss Anstee’s approach for solving gener-
alized matching problems by solving an ordinary
flow problem on a balanced network first. We give
a description of the algorithm which applies not
only to matching problems, but also to the general
setting. © 2001 John Wiley & Sons, Inc.

Keywords: capacitated matching problems; network flows;
balanced-flow networks; skew-symmetric graphs; antisymmet-
rical digraphs

27. FRACTIONAL BALANCED CIRCULATIONS

The present paper continues our study of balanced net-
work flows and general matching problems [6–9]. Beside
the techniques presented in these papers, there is a fur-
ther strategy to obtain maximum balanced flows. This
approach is due to Anstee [2] and results in state-of-the-
art algorithms for capacitated matching problems.

In contrast to the balanced augmentation algorithm
and the scaling methods, it does not maintain balanced
flows for each augmentation. The idea is to compute an
optimum fractional solution first and to turn it into an
integral flow afterward.

We neither repeat any definition nor the pseudocode
formalism. The reader is asked to consult parts (I) and
(II) in case of confusion. At least, Sections 2–4 are nec-
essary for understanding the terminology used.

Before we outline the algorithm, we consider the poly-
tope F(N) of fractional balanced circulations on the
balanced-flow network N. We will consider the polytopes
associated with general matching problems and balanced
network-flow problems in a forthcoming paper [10]. The

Received May 1998; accepted December 2000
Correspondence to: C. Fremuth-Paeger; e-mail: christian.fremuth@math.
uni-augsburg.de
The results of this paper form part of the first author’s doctoral thesis
which was written under the supervision of the second author.

c© 2001 John Wiley & Sons, Inc.

polytope F(N) is described by the constraints

(1a) lower(a) ≤ f(a) for all arcs a ∈ A(N),
(1b) f(a) ≤ cap(a) for all arcs a ∈ A(N),
(2) f(a) = f(a′) for all arcs a ∈ A(N),
(3) e(v) = 0 for all nodes v ∈ V(N).

Let f be a fractional balanced flow on a balanced-flow
network N. In what follows, we will search modified
residual networks of N, namely, the fractional part
residual network Nfrac(f) and the integral part resid-
ual network Nint(f). These networks are defined by

fraccap(a) :=
{

rescap(a) mod 2, if a is a loop
rescap(a) mod 1, if a is not a loop

}

and intcap(a) := rescap(a) − fraccap(a). Note that
both networks are balanced again. An arc a with
fraccap(a) > 0 is called fractional. As it turns out,
in all interesting cases, we have that 2f is integral. We
then speak of a half-integral flow. In extension of our
previous definition, we call a path valid in N(f) iff it is
valid in Nint(f).

An arc a ∈ A(N) is called free iff rescap(a) and also
rescap(ā) are strictly positive. In particular, any frac-
tional arc is free. A free path is a path that entirely
consists of free arcs. To decide whether a fractional bal-
anced circulation corresponds to a vertex of F(N), the
investigation of free cycles turns out to be crucial.

We call a cycle in N odd iff it is simple and contains
arcs a and ā′ always pairwise [cycles Q = a ◦ ā′, where
a ∈ A(N) is a loop are included]. Note that an odd-cycle
Q can be written as Q = q◦q̄′, where q is a strictly simple
vv′-path and v ∈ Q is arbitrary. Note that q has an odd
length since N is bipartite. Hence, if we have N = NM
for some subgraph network M, then q corresponds to an
odd-length cycle of G(M).

In [6], we introduced the notion of an elementary flow
fp associated with some path p. For reasons of brevity,
we will write χ(p) := fp + fp′ . Note that χ(p) = χ(p′)
and that χ(p) ≡ 0 if p is an odd cycle.

Theorem 27.1. Let f be a fractional balanced flow on
a balanced-flow network N. Then, f is a vertex of the
polytope F(N) iff every free cycle in N(f) is odd.

NETWORKS, Vol. 37(4), 202–209 2001



Proof. (→) Let f be a fractional balanced circulation
on N. Assume the existence of a free cycle r in N(f)
which contains at least one arc a such that ā′ is not on
r. Without loss of generality, let r be simple.

Put ε := 1
2 min{rescap(r), rescap(r̄)}. Then, f+ :≡

f + εχ(r) and f− :≡ f − εχ(r)) are different fractional
balanced circulations and f is a proper convex combina-
tion of f+ and f−, that is, f is not a vertex of F(N).

(←) Suppose that f is not a vertex of F(N). Then,
we have f = λf1 + (1 − λ)f2, where 0 < λ < 1, for
different fractional balanced circulations f1 and f2 on
N. Denote by ∆ the set of arcs a ∈ A(N) with f1(a) ≠
f2(a) which are free in N(f). By the flow-conservation
condition, a node cannot be incident with exactly one arc
of ∆. Hence, each a ∈ ∆ is on a free cycle Q.

Since each free cycle is assumed to be odd, ∆ splits
into strictly disjoint odd cycles. Since a occurs on Q
in a forward, but a′ occurs in a backward direction, we
would get f(a) = f2(a) + λ(f1(a) − f2(a)) and f(a′) =
f2(a) − λ(f1(a) − f2(a)). But f is fractional-balanced, a
contradiction.

Corollary 27.2. Let f be a vertex of the polytope F(N).
Then f is half-integral.

Proof. In Nfrac(f), no node can have degree one.
Hence, every fractional arc is on a cycle Q that entirely
consists of fractional arcs. Since Q is free, it is odd by
the last theorem. It follows that the fractional arcs form
strictly disjoint odd cycles.

Let v be a node on Q; u′, the predecessor; and w′, the
successor of v on Q. If x′ is another node adjacent with
v, we have fraccap(v, x′) = 0. By the flow-conservation
condition, fraccap(v, w′) + fraccap(v, u′) = 1 holds.
Thus, all arcs on Q have equal fractional capacity.
Since v′w is also on Q, we obtain fraccap(w, v′) =
fraccap(v, w′) = fraccap(v′, w) = 1

2 . Since cap is inte-
gral, f is half-integral.

Now, let N = NM for some subgraph network M with
degree sequences a = b, f be a vertex of F(N), and x,
the corresponding factor of M. Note that the return arc
ts is free unless we have val(f) = 0. Up to the cycle
(s, t, s) which may occur, the free cycles correspond to
cycles in G(M).

Let F(M) denote the set of all fractional factors of
M. Since the mapping between the fractional factors of
M and the fractional balanced circulations on N is linear
and bijective, F(M) is a polytope. Moreover, vertices
of F(M) correspond to vertices of F(N) and vice versa.
Hence, if x is a vertex of F(M), it satisfies the conditions

(v1) The factor x is half-integral.
(v2) The fractional edges of x form pairwise disjoint, sim-

ple odd-length cycles.

If we restrict attention to the cardinality matching prob-
lem, the conditions (v1) and (v2) are also sufficient for x
to be a vertex. Here, in NG, free and fractional arcs are
the same. This statement is due to Balinski [4] and can
be extended to the f-factor problem.

Corollary 27.3. Let M be a subgraph network with a ≡
b, c ≡ 1, and x, a fractional factor. Then x is a vertex of
the polytope F(M) iff (v1) and (v2) are satisfied.

We call a fractional balanced flow f basic iff f corre-
sponds to a vertex of the polytope F(M) and call f pseu-
dobasic iff f is half-integral, and the fractional arcs form
pairwise disjoint odd cycles. These cycles Q1, Q2, . . . , Qr

are referred to as the odd-cycle system associated with f.
Note that the notions of basic and pseudobasic flows co-
incide only if we are concerned with the problems men-
tioned in Corollary 27.3.

Lemma 27.4. Let N be a balanced-flow network, and
f, a pseudobasic maximum st-flow on N. Then, at most
one node of a complementary pair is s-reachable in N(f)
and a node can be reached from s by strictly simple paths
only.

Proof. If a pair of complementary nodes v and v′

would be s-reachable in N(f) by paths p and q, then
p ◦ q′ would be augmenting in N(f), a contradiction.

Corollary 27.5. Under the assumption of Lemma 27.4,
no odd cycle is s-reachable.

There is another intuitive observation:

Lemma 27.6. Let N be a balanced-flow network, and f,
a pseudobasic balanced circulation on N with an odd-
cycle system Q1, Q2, . . . , Qr. Let U ⊆ V(N), U = U′ so
that no odd cycle meets the cut [U, Ū]. Write odd(U) :=
|{i : Qi ⊆ N[U]}|. Then,

odd(U) ≡ f(U, Ū) mod 2.

Proof. Let U = W ) W′. Then,

0 =
∑

v∈W

e(v) = f(Ū, W)−f(W, Ū)+f(W′, W)−f(W, W′).

Each of the cuts [W, W′] and [W′, W] splits into pairs
of complementary arcs. Let a ∈ [W, W′] ∪ [W′, W].
Note that f(a) + f(a′) contributes an even amount to
f(W′, W) − f(W, W′) if a is integral and contributes an
odd amount if a is on some odd cycle. Thus, one has

odd(U) ≡ f(W′, W) − f(W, W′) mod 2

and, hence,

odd(U) ≡ f(Ū, W) − f(W, Ū) ≡ f(Ū, W) + f(W, Ū)
≡ f(Ū, W) + f(Ū, W′) ≡ f(Ū, U)
≡ f(U, Ū) mod 2.

NETWORKS–2001 203



Corollary 27.7. The number of odd cycles in a pseu-
dobasic circulation is even.

Proof. Observe that odd(U) ≡ f(U, Ū) ≡ f(Ū, U) ≡
odd(Ū) mod 2.

28. CANCELING EVEN CYCLES

In this section, we present a technique to turn an inte-
gral nonbalanced flow into a pseudobasic or even basic
fractional balanced flow. The idea has been described
Anstee [2] before and can be applied to weighted match-
ing problems also. Hence, we speak of optimum st-flows
rather than maximum st-flows. Depending on the type
of the matching problem considered, we use the term
optimum for maximum flows, admissible flows, or even
minimum-weighted flows.

It is well known (and easy to see) that every flow
network with integral capacities admits an integral max-
imum flow. But even more, there is an integral optimum
flow in the general setting! This results from the total
unimodularity of adjacency matrices of digraphs, which
we shall not discuss (see, e.g., [15]).

Note that all the known network-flow algorithms ac-
tually yield integral solutions (at least, the preflow-push
method [13, 14] and all network simplex-based algo-
rithms [1, 5]).

Thus, we can determine an integral optimum flow f∗,
say of value v∗, instead of a balanced optimum flow. This
flow does not satisfy conditions (b1) and (b3) in general,
but can be turned into the flow f0 defined by

f0(a) :=
1
2

(f∗(a) + f∗(a′)), (1)

which satisfies condition (b1), still has flow value
val(f0) = v∗, but is no longer integral. Obviously, f0
is half-integral.

Note that f0 is not basic in general, even if f∗ was
a basic solution to the ordinary network-flow problem.
For instance, the graph of our running example in Figure
2 of [6] has the integral maximum flow shown in Figure
1. In this representation, the nodes s and t are omitted
and only the boldface arcs carry flow (namely, 1 unit
iff there is one arrowhead and 2 units iff there are two
arrowheads). Of course, the arcs incident with s and t are
likewise omitted, but the reader may easily reconstruct
the flow values on these arcs from the figure.

This flow turns into the half-integral flow f0 of Fig-
ure 3 which is discussed later. The reader who is familiar
with the network simplex algorithm will recognize that
the tree shown there becomes a strongly feasible span-
ning tree if 7 is chosen as the root and the arcs (t, s)
and (1′, t) are added. We will not refer to the network
simplex algorithm any more.

We can turn the optimum flow f0 iteratively into op-
timum flows f1, f2, . . . , fk where in every iteration the

FIG. 1. A maximum integral flow and a feasible spanning tree.

number of nonintegral arc flow values is reduced. All the
intermediate flows fi are half-integral and have value v∗

again.
In each iteration, a strictly simple cycle r is deter-

mined which entirely consists of nonintegral arcs and
which corresponds to an even-length cycle of the under-
lying graph. Then, the present flow fi is updated accord-
ing to

fi+1 :≡ fi +
1
2

χ(r), (2)

which makes all flow values of arcs on r and r′ integral.
Note that f̃ :≡ fi − 1

2 (fr + fr′ ) is also admissible. Since
fi = 1

2 (fi+1 + f̃) is optimum, f̃ and fi+1 are optimum
again.

Procedure 1. Cycle-canceling algorithm.

class BAL_FLOW_NW;
private
array q;

public
procedure BAL_PUSH(a, δ):
begin
PUSH(a, δ);
PUSH(a′, δ);
end

procedure MAKE_INTEGRAL(p, u, v);
var a, w;
begin
w := v;

204 NETWORKS–2001



repeat
a := p[w];
BAL_PUSH(ā, 1

2 );
p[w], p[w′] := ∗;
w := a−

until w = u
end

procedure CANCEL_EVEN;
var a, root, u, v, w, x;

begin
for v := 0 to n do p[v], q[v] := ∗ od;
INVESTIGATE;
for root := 0 to n do
v := root;
while not (v = root and EOS(v)) do
READ(v, a);
u := a+;
if fraccap(a) > 0 and p[v] ≠ ā and
q[v] ≠ ā and q[u] ≠ a then
if p[u] ≠ ∗ or u = root then

(1) BAL_PUSH(ā, 1
2 );

MAKE_INTEGRAL(p, u, v);
v := u

else
if p[u′] = ∗ and u′ ≠ root then

(2) p[u] := a;
v := u

else
p[u] := a;
w := u;
while w ≠ u′ and q[w] = ∗ do w := p[w]−

od
if q[w] = ∗ then

(3) v := u;
while v ≠ u′ do
a := p[v];
q[v] := a;
q[v′] := ā′;
p[v] := ∗;
v := a−

od
else

(4) MAKE_INTEGRAL(q, w′, w);
x := u
while x ≠ w do
a := p[x];
BAL_PUSH(ā, 1

2 );
p[x] := ∗;
x := a−

od
while x ≠ u′ do
a := p[x];
BAL_PUSH(a, 1

2 );
p[x] := ∗;

if x ≠ u then p[x′] := ∗;
x := a−

od
v := u′

fi
fi

fi
fi

od
od;
CLOSE
end

end.

Let us describe how Procedure 1 manages this pro-
cess: At every node root ∈ V(N), a DFS is started which
maintains a strictly simple path p as the active-path, con-
necting root to the current active node v. In the proce-
dure, this path is represented by the arc set

P := {p[v] : v ∈ V(N), p[v] ≠ ∗},

where p[v] denotes the arc on p with end node v. If
the DFS investigates some nonintegral arc vu, four cases
arise which cause the relative lengthiness of the proce-
dure. If neither u nor u′ appears on p, the active path
is extended by vu [case (2)]. If u is already on p, the
strictly simple cycle r := p[u, v] ◦ vu is found, all flow
values are made integral, and the DFS backtracks up to
node u [case (1)].

If u′ is on the active path, the DFS backtracks up to
u′ and the odd cycle r := p[u′, v] ◦ vu ◦ p[u′, v]′ ◦ v′u′ is
considered. As an invariant of the algorithm,

Q := {q[v] : v ∈ V(N), q[v] ≠ ∗}

splits into odd, mutually strictly disjoint cycles. If r is
disjoint to Q, its arcs are added to Q [case (3)]. Otherwise,
r and some adjacent cycle q of Q are reassembled to
a complementary pair of cycles. In that case, all flow
values of q and r are made integral and the arcs of q are
deleted from Q [case (4)].

Note that there are no ordinary backtracking oper-
ations: If the current node v and root differ, there is
always a nonintegral arc vu which has not been investi-
gated before since the number of half-integral successors
in N(f0) is even. Hence, all nonintegral arcs are in P at
some stage and are integral or part of Q in the end.

Finally, an edge can be investigated at most three
times during the course of CANCEL_EVEN, namely,
while entering P, while moving from P to Q, and while
leaving Q. We obtain that CANCEL_EVEN runs in O(m)
steps. By the preceding discussion, we obtain the follow-
ing result:

Theorem 28.1. Let f be a half-integral optimum flow
on the balanced-flow network N. Then, CANCEL_EVEN
updates f to a pseudobasic optimum flow on N. The as-
sociated odd-cycle system is represented by the q-labels.

NETWORKS–2001 205



Consider the half-integral matching x of our running
example M of Figure 2 in [6] which is shown in Figure
3. In this figure, a broken line e denotes x(e) = 1

2 . If f
is the half-integral balanced flow corresponding to x, the
execution of NM.CANCEL_EVEN behaves as follows:

The first DFS is rooted at 1 and yields p[2′] :=
(1, 2′) and p[6] := (2′, 6). In the next investigation
step, (6, 1′) is found, which leads to an odd-length cy-
cle of G(M). Hence, we put p[6], p[2′] := ∗ and
q[1] := (6′, 1), q[6′] := (2, 6′), q[2] := (1′, 2), q[1′] :=
(6, 1′), q[6] := (2′, 6), and q[2′] := (1, 2′). The DFS back-
tracks up to node 1 and then halts.

The next DFS affecting at least one arc is rooted
at 3 and yields p[6′] := (3, 6′), p[5] := (6′, 5), p[4′] :=
(5, 4′), p[8] := (4′, 8), and p[7′] := (8, 7′). Then, (7′, 3) is
investigated, resulting in an even-length cycle of G(M).
Then all flow values on (3, 6′, 5, 4′, 8, 7′, 3) and its com-
plementary cycle are made integral. The DFS backtracks
up to node 3 and then halts.

There is one further nontrivial DFS, rooted at 7.
We obtain p[9′] := (7, 9′) and p[11] := (9′, 11).
Next, the loop (11, 11′) is investigated and q[11] :=
(11′, 11), q[11′] := (11, 11′) are set. The DFS contin-
ues at 11 obtaining p[12′] := (11, 12′) and the cycle
(7, 9′, 11, 12′, 7) which gets integral flow values. Since
there are no unconsidered fractional arcs remaining, the
algorithm terminates. The final flow is not integral yet,
but corresponds to the half-integral matching of Figure 4.
The flow shown in Figure 4 is indeed basic. Note that
a half-integral balanced flow obtained by Procedure 1
is not basic in general but merely pseudobasic. This is
sufficient for our algorithmic purposes.

By a similar technique, one can determine a pseu-
dobasic solution from an arbitrary fractional balanced
flow. To this purpose, one must search any free arc, add
an explicit backtracking rule, and determine the residual
capacities of the cycles computed in case (1) of the algo-
rithm. When such a cycle p is found, one can augment
along p and the complementary cycle p′, so that at least
one arc on p is not free any longer.

However, the other arcs on p may still be free. Hence,
one cannot continue the search by the strategy of Pro-
cedure 1. If one starts a new search from scratch, the
resulting time bound is O(m2). Derigs [5] reported the

FIG. 2. Case (4) of Procedure 1.

FIG. 3. A half-integral factor of the graph of Figure 2 in [6].

same complexity bound. We do not know if an improve-
ment is possible.

For the moment, let f0 be a pseudobasic solution and
Q1, Q2, . . . , Qr be the odd-cycle system associated with
f0 and assume that Qi = qi ◦ q̄′

i . Then, f0 can be turned
into an integral flow f∗ := fr by successive application
of the rule

fi :≡ fi−1 +
1
2

(fqi − fq′
i
), (3)

which is not balanced any longer. This is the inversion
of Rule (1). Note that f∗ can be considered as a solution
of a bipartite matching problem where all nodes and arcs
appear twice.

29. CANCELING ODD CYCLES

We now return to the description of Anstee’s original
algorithm which determines a maximum balanced flow
from any maximum flow and consists of two stages. The
first stage is just a call of Procedure 1 which has al-
ready been discussed. After that call, the current odd-
cycle system Q1, Q2, . . . , Qr is encoded into the q-labels.
We assume that Qi = qi ◦ q̄′

i for i = 1, 2, . . . , r.
During the second stage (k ≤ i < k+l), we determine

valid paths p in the integral part residual network Nint(fi)

FIG. 4. A half-integral factor obtained by Anstee’s algorithm.

206 NETWORKS–2001



which connect two different odd sets of N(fi), say Q1 and
Q2. Let u ∈ Q1 and v ∈ Q2 be the start node and the
end node of p, respectively. Without loss of generality,
we can assume that q1 starts at node u′ and ends at node
u and that q2 starts at v and ends at v′. The flow fi is
changed into the flow

fi+1 :≡ fi +
1
2

(χ(q1) + χ(q2)) + χ(p), (4)

which turns all flow values of arcs on q1 and q2 inte-
gral. Since no further fractional arcs are affected, the
odd-cycle system is updated by deleting Q1 and Q2. The
iterated flow fi+1 is maximum again.

In our running example, one such iteration step is
available, according to the path p := (6, 3′, 7, 9′, 11)
which is valid in Nint

M (f), where f is the half-integral
balanced flow resulting from the first stage. The corre-
sponding odd-cycle system is given by q1 = (1, 2′, 6, 1′)
and q2 = (11, 11′). If f is updated as described, one ob-
tains the balanced flow corresponding to the factor of
Figure 4 in [6].

Before we study the general situation, let us consider
a network NM which corresponds to some subgraph net-
work. Then, at the end of the cycle-canceling process,
the remaining odd cycles are the nuclei of NM. Further-
more, from fk+l, a maximum balanced flow f∗

bal can be
obtained by a simple operation:

Let f be pseudobasic, Q1, Q2, . . . , Qr be the odd cycles
of NM(f), Qi := qi ◦ q̄′

i , and qi start at some outer node
vi. Furthermore, let q̃i := svi ◦ qi ◦ v′

i t. Then, an integral
projection of f is defined by

int(f) :≡ f − 1
2

r
∑

i=1
χ(q̃i). (5)

Note that this definition depends on the choice of
v1, v2, . . . , vr unless we choose a certain node ordering.
Actually, the operation can be applied to every pseudoba-
sic flow on NM, but does not yield a maximum balanced
flow in the general situation.

Theorem 29.1. Let f be a pseudobasic maximum st-
flow on NM. Then, the integral projection int(f) is max-
imum balanced iff none of the odd cycles of NM(f) are
joined by a valid path.

Proof. Both directions follow by contraposition: If
two odd cycles are joined by a valid path, f can be trans-
formed into another pseudobasic flow f̃ using Eq. (4).
Obviously, val(int(f̃)) = val(int(f)) + 2 holds.

In the converse direction, assume that int(f) is not
maximum balanced and let p be a valid augmenting path
in NM(int(f)). Let [S, T] be the st-cut corresponding to
the maximum flow f. Since fractional arcs are free, none
of the Qi’s cross the cut [S, T]. So, the arcs (s, vi) are the
only unsaturated arcs from S to T in NM(int(f)). Hence,

p crosses the cut [S, T] exactly once and meets the Qi’s
at least once.

We now consider the complementary path p′ whose
last arc is v′

i t. To cross the cut, p′ must meet another odd
cycle Qj since we have rescap(s, vi) = 1. But then there
is a part of p which starts at some odd cycle Qi and ends
at another odd cycle Qj, i ≠ j. Even if p meets some
further odd cycle intermediately, we can find a portion
which contradicts the choice of f.

Corollary 29.2. The balanced flow f∗
bal obtained by

Anstee’s algorithm is maximum balanced.

Theorem 29.3. Let f be a pseudobasic maximum flow
on NM with int(f) maximum balanced. Then, the core of
NM splits into the odd cycles Q1, Q2, . . . , Qr.

Proof. By the corresponding iteration of Eq. (5), all
nodes on Qi become strictly reachable in NM(int(f)), that
is, Q1, Q2, . . . , Qr ⊆ C.

Suppose the existence of a node v ∈ C such that
v /∈ Q1, Q2, . . . , Qr. We can assume that v is not s-
reachable in N(f). If q is a directed sv′-path in N(f),
it must be strictly simple by the above argument. Even
more, q cannot traverse one of the Qi’s and, hence, is
valid in NM(int(f)).

Every valid sv-path in NM(int(f)) must start with an
arc svi and cannot traverse Qj, j ≠ i. It follows that
p[vi, v] is a directed path in N(f) so that p and q must be
disjoint. But at least the node base(v) = base(v′) would
be on each of p and q. Hence, base(v) = s would result,
contradicting the maximality of int(f).

We have mentioned Anstee’s algorithm at this point
for the following reason: The search for valid paths in
Nint

M (fi) is a process very similar to the process of aug-
menting a balanced flow on NM. Without loss of effi-
ciency, one can exchange the second stage of Anstee’s
algorithm by a balanced augmentation procedure which
is applied to NM and the balanced flow int(fk). More
explicitly, we compute the integral projection of fk by
Procedure 2. This algorithm uses the path labels q which
have been computed by Procedure 1 before.

Procedure 2: Odd cycle canceling.

class BFN_BY_MATCHING(BAL_FLOW_NW);
public
procedure CANCEL_ODD;
var a, u, v;
begin
for v := 0 to n do
if q[v] ≠ ∗ and OUTER(v) then
MAKE_INTEGRAL(q, v, v′);
BAL_PUSH(vs, 1);

fi;
od
end;

end.

NETWORKS–2001 207



Observation 29.4. If the flow f encoded into the ob-
ject NM is pseudobasic and the odd cycles are encoded
into the labels q, then NM.CANCEL_ODD determines
an integral projection of f.

It is evident that CANCEL_ODD runs in time O(n).
Since the number of odd cycles is bounded by n, and the
value of a maximum balanced flow is bounded by the
value of a maximum fractional balanced flow, fbal can
be augmented at most n times. We already know how
to perform an augmentation step in approximately O(m)
steps. So, we can derive a maximum balanced flow from
a maximum integral flow with complexity O(nm).

So far, we have studied matching problems, as pro-
posed by Anstee [2]. If we consider arbitrary balanced-
flow networks, the concept of an integral projection does
not apply. We add the return arc to the flow network
which may form an additional odd cycle. We can apply
the Decomposition Theorem 4.1 of [6] to pseudobasic
circulations as follows:

Theorem 29.5. Let N be a balanced-flow network
which admits a balanced circulation. Let f be a pseu-
dobasic circulation on the balanced-flow network N, and
Q, an odd cycle in N(f). Then, Q is reached from another
odd cycle by a valid path. In other words, f can be up-
dated according to Eq. (4).

Proof. Because of the special structure of the odd
cycles Qi = qi ◦ q̄′

i , we can find nodes vi ∈ Q which
are reached by a backward arc and left by a forward arc
on Qi. Put f :≡ f − 1

2

∑k
i=1 χ(qi) so that e(vi) = 1 and

e(v′
i ) = −1 hold for i = 1, 2, . . . , k. The remaining nodes

satisfy the flow-conservation condition.
Since the number k of odd cycles is even, we

may increase f(v2i−1, v′
2i) and f(v2i, v

′
2i−1) for each i =

1, 2, . . . , k/2 by a single unit. We obtain a balanced cir-
culation ḟ on a (possibly) modified network Ṅ. If g is a
balanced circulation on the original network N, it may
be extended to a circulation on Ṅ in the obvious way.
Now, we can decompose

ġ − ḟ ≡
l

∑

i=1
χ(pi),

where the pi’s are valid cycles with respect to Ṅ(ḟ).
Without loss of generality, we may assume that the arc
(v′

2i−1, v2i) is traversed by the cycle pi.
Since pi must eventually return from Q2i to Q2i−1, we

can find a portion of pi which connects Q2i to some other
odd set, so that there are no intermediate odd sets. It
turns out that this portion is valid in the original setting
of N(f) also. In the same way, one can find a portion
of p′

i which connects Q2i−1 to some other odd cycle in
N(f).

The general odd-cycle canceling procedure is more
expensive than is computing the integral projection and

may require O(nm) steps all together. An explicit algo-
rithm may be easily derived from our previous pseu-
docode. An update of the flow f according to Eq. (4)
may decrease the flow value by at most 2. As before,
we need O(n) balanced augmentation steps to obtain a
maximum balanced flow.

It turns out that the final balanced augmentation steps
can be avoided if we circumvent the return arc in the
odd-cycle canceling process as long as possible. If one
chooses g maximum balanced in the proof of Theorem
29.5, the following results:

Corollary 29.6. Let ν be the maximum value of a bal-
anced st-flow, and f, a nonintegral pseudobasic bal-
anced st-flow with val(f) = ν. Then, f can be updated
according to Eq. (4) without affecting the flow value.

If we apply odd-cycle canceling to a pseudobasic
minimum-cost circulation, we would like to obtain an
optimum balanced flow finally or at least a (ν)-optimum
balanced st-flow which applies to the SAP algorithm pro-
posed by Goldberg and Karzanov [12].

Anstee [3] showed that the cycle-canceling algorithm
can be used as a starting heuristic for the (dual feasi-
ble) primal-dual algorithm which was devised by Pul-
leyblank [16] for the b-matching problem. Part VII [11]
of this series will establish a primal-dual algorithm for
min-cost balanced st-flows and a polynomial refinement
which finds min-cost balanced circulations.

In fact, this polynomial algorithm is started with a
min-cost pseudobasic circulation. We will show that this
pseudobasic solution can be considered a (ν)-optimum
balanced st-flow in a modified network to which the PD
algorithm but also the SAP algorithm applies. In this
procedure, the canceling of odd cycles is just as simple
as in the case of matching problems and does not require
a flow decomposition.

REFERENCES

[1] R. Ahuja, T. Magnanti, and J. Orlin, Network flows,
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] R. Anstee, An algorithmic proof of Tutte’s f-factor theo-
rem, J Alg 6 (1985), 112–131.

[3] R. Anstee, A polynomial algorithm for b-matchings: An
alternative approach, Info Process Lett 24 (1987), 153–157.

[4] M. Balinski, Establishing the matching polytope, J Combin
Theory (B) 13 (1972), 1–13.

[5] U. Derigs, Programming in networks and graphs, Springer,
Heidelberg, 1988.

[6] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (I): A unifying framework for design and analysis of
matching algorithms, Networks 33 (1999), 1–28.

[7] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (II): Simple augmentation algorithms, Networks 33
(1999), 29–41.

208 NETWORKS–2001



[8] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (III): Strongly polynomial augmentation algorithms,
Networks 33 (1999), 43–56.

[9] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (IV): Duality and structure theory, Networks 37
(2001), 194–201.

[10] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (VI): Polyhedral descriptions, Networks 37 (2001),
210-218.

[11] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (VII): Primal-dual algorithms, in preparation.

[12] A. Goldberg and A. Karzanov, Path problems in skew-
symmetric graphs, Combinatorica 16 (1996), 353–382.

[13] A. Goldberg and R. Tarjan, A new approach to the maxi-
mum flow problem, J ACM 35 (1988), 921–940.

[14] D. Jungnickel, Graphs, networks and algorithms, Springer,
Heidelberg, Germany, 1999.

[15] C. Papadimitriou and K. Steiglitz, Combinatorial optimiza-
tion, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[16] W. Pulleyblank, Faces of matching polyhedra, PhD Thesis,
University of Waterloo, 1973.

NETWORKS–2001 209


