
Balanced Network Flows. III. Strongly Polynomial
Augmentation Algorithms

Christian Fremuth-Paeger, Dieter Jungnickel

Lehrstuhl für Diskrete Mathematik, Optimierung und Operations Research,
University of Augsburg, D-86135 Augsburg, Germany

Received 8 December 1997; accepted 29 April 1998

Abstract: We discuss efficient augmentation algorithms for the maximum balanced flow problem which
run in O (nm2) time. More explicitly, we discuss a balanced network search procedure which finds valid
augmenting paths of minimum length in linear time. The algorithms are based on the famous cardinality
matching algorithm given by Micali and Vazirani. A comprehensive description of the double depth first
search is included. ! 1999 John Wiley & Sons, Inc. Networks 33: 43–56, 1999

Keywords: capacitated matching problems; network flows; augmenting a matching; balanced flow
networks; skew-symmetric graphs; antisymmetrical digraphs; augmenting paths of minimum length; dou-
ble depth-first search

PRELIMINARIES pairs with residual capacity one. Furthermore, augmen-
tation is always done pairwise on complementary paths.
The most important part of the augmentation algorithmBalanced flow networks were studied extensively in [4] .

is the balanced network search procedure BNS whichSolving the maximum balanced flow problem means solv-
checks whether a valid augmenting path exists or not.ing the wide range of nonweighted matching problems.
The implementations in [5] are highly efficient if theIn [5] , we gave a large amount of pseudocode for solving
maximum flow value is small compared with the size ofthis problem. In particular, we proposed an augmentation
the original graph G , in particular, if G is simple. How-procedure and a disjoint set union mechanism which will
ever, this was not a polynomial time procedure in thebe reused here.
general setting.Balanced networks are defined on skew-symmetric
Here, we show how to derive augmenting paths ofgraphs. The inherent symmetry partitions the node set

minimum length. Our BNS procedure heavily dependsinto pairs of complementary nodes and the arc set into
on the double depth first search method, which waspairs of complementary arcs. The paths used for augmen-
discussed by Vazirani [10] before. The idea applies totation are valid, that is, they avoid complementary arc
other BNS procedures as well. For this reason, we de-
scribe the general setting.

Correspondence to: D. Jungnickel; e-mail: jungnickel@math.uni- An arc a of a balanced network N which can be ac-
augsburg.de cessed from the source by a valid path is called strictlyThe results of this paper form part of the first author’s doctoral thesis

accessable. If the complementary arc a" is also strictlywhich has been written under the supervision of the second author.
AMS subject classification: 05C70, 90B10, 90C35 accessable, then a is called bicursal and, otherwise, uni-

! 1999 John Wiley & Sons, Inc. CCC 0028-3045/99/010043-14

43

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

44 FREMUTH-PAEGER AND JUNGNICKEL

cursal. A blossom of N is a connected component of • Both u and £ are in a common proper (Ã)-blossom,
denoted by BÃ(u , £) .N[Bic] , where Bic consists of all bicursal arcs in N . This

is not an algorithmic definition, but coincides with the • Except for BÃ(u , £) , every (Ã)-blossom is an (A)-
definition of Edmonds [2] . The most important result blossom.
about blossoms is the following: • An (A)-blossom B is contained in BÃ(u , £) iff

baseA(B) is on some directed (b , baseA(u))-path or
Theorem 18.1 (base identity) . Let B is a blossom not (b , baseA(£))-path in Aux(N[A]) (Here we have put
containing the source s. Then, there is an arc a Å ub b :Å base(BÃ(u , £))) .
with rescap(a) Å 1 which is traversed by every valid
path p connecting s to a node £ in B. Let a be an arc of the layered auxiliary network Aux(N)

with auxcap(a) Å 1, and let £ be some blossom base of
N . If a is on every directed s£-path in Aux(N) , we callThe node b of this theorem is called the base, and the
a a bottleneck of £. Note that the bottlenecks of £ arearc a is called the prop of the blossom B . The blossom
ordered by the distance labels of their end nodes.containing a node £ is denoted by B(£) .
Actually, BNS algorithms do not compute the blossomIn [4], we showed that a node £ is in a blossom iff £

base b but rather the arc botA(u , £) of the layered auxiliaryand the complementary node £ ! are strictly reachable. If
network Aux(N[A]) which denotes the (A)-bottleneck of£ is strictly reachable, but £ ! is not, we call the set {£,
baseA(u) and baseA(£) with a maximum distance label.£ !} a bud with base £. The props of B(£) are the arcs
If x is the unique (A)-predecessor of b , then botA(u , £)by which £ is reached on a valid s£-path of minimum
connects baseA(x) and b in the layered auxiliary network.length. Buds are treated as blossoms. Where it is neces-

sary to exclude buds, we speak of proper blossoms.
The layered auxiliary network Aux(N) corresponds

to shrinking the blossoms of the original network N : 19. DOUBLE DEPTH FIRST SEARCH
The nodes of Aux(N) are the blossom bases, and the
arcs correspond to the props. More explicitly, two bases The algorithms presented in [5] are very efficient imple-u , £ are joined by an arc u£ for every prop w£ with u mentations of the balanced network search and just asÅ base(B(w)) . In that case, we assign auxcap(u£) simple as possible, since the occurring layered auxiliary:Å rescap(w£) . networks are trees. Unfortunately, no BNS algorithm isUsing explicit distance labels and the base identity, it known which finds minimum-length valid augmentingturns out that Aux(N) is indeed acyclic. Note that directed paths in general and that grows the network as a tree. Inpaths in Aux(N) correspond to minimum length valid this section, we will describe a procedure called doublepaths in N . depth first search (DDFS) which is shown in ProcedureOf course, the blossom structure with respect to the 1 and searches the layered auxiliary network Aux(N[A])layered auxiliary network is computed recursively by the in order to determine the bottleneck botA(u , £) .BNS algorithm from certain subnetworks N[A] . Here, A
⊆ A(N) shall denote the set of arcs which have been

Procedure 1. The Double Depth First Search Algo-investigated so far. In what follows, let A be chosen such
rithmthat

function DDFS(bridge) ;(a1) A is self-complementary,
var a , b , barrier , left , next , right , root;

(a2) A does not contain (A)-acursal arcs,
(a3) Every (A)-unicursal arc in A is an (A)-prop. procedure LeftBacktrack;

begin
Under these assumptions, Aux(N[A]) is obtained from if left x root and left x s
N[A] by shrinking the blossoms and deleting all nonac- then left :Å LeftProp[left]/
cessable arcs. else

if left Å s then b :Å s elseSuppose that a Å u£ ! √/ A is investigated next and u
and £ are strictly (A)-reachable, but in different (A)- RightProp[right] :Å NO_ARC ;

RightSupport.DELETE(right) ;blossoms. This is the only situation where (A)-blossoms
have to be merged and to which we refer in the next b :Å barrier

fi;section. The arc a is called an a-bridge.
Concerning the iterated network N[Ã] , with Ã :Å A FirstProp[bridge] :Å LeftProp[b] ;

FirstProp[bridge !] :Å RightProp[b] ;! {a , a !}, we showed in [4] that

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

BALANCED NETWORK FLOWS. III 45

exit[bridge] :Å b; then
if RightProp[next] Å NO_ARC thenexit[bridge !] :Å NONE

fi RightProp[next] :Å a;
RightSupport.INSERT(next) ;end;
Props[next] .ACCESSR;
right :Å next

procedure RightBacktrack; fi
begin fi
if right x barrier fi
then right :Å RightProp[right]/ fi
else od;
right :Å left; return b
barrier :Å LeftProp[left]/ ; end.
RightProp[right] :Å LeftProp[right] ;
RightSupport.INSERT(right) ; We assume that DDFS(a) is started with the following
LeftProp[left] :Å NO_ARC ; environment: The arcs of the layered auxiliary network
LeftSupport.DELETE(left) ; Aux(N[A]) with end node £ are encoded into the queue
left :Å barrier Props[£] which consists of the (A)-props. The label d[£]

fi is the distance dA(£) between s and £ on a valid path in
end; N[A] . In our later BNS algorithm, d[£] is the correct

distance for every node £ reached so far.
Initially, LeftSupport and RightSupport are empty

begin STACK objects, and we have LeftProp[u] , RightProp[u]
left, root :Å BASE(bridge0) ; Å NO_ARC for every (A)-base u . The base of the (A)-
right , barrier :Å BASE(bridge/) ; blossom containing a node £ can be computed by
LeftSupport.INSERT(left) ; BASE(£) , using the DSU pseudocode given in [5] .
RightSupport.INSERT(right) ; As the name suggests, DDFS(a) grows two arbores-
Props[left] .ACCESSL; cences in a depth-first manner, called the left and the right
Props[right] .ACCESSR; DFS tree. These trees have roots baseA(u) and baseA(£) ,
b :Å NONE; respectively, are represented in vectors LeftProp and
while b Å NONE do RightProp , respectively, and grow toward the source s .
if d[left] ¢ d[right] The nodes left and right which occur are called the active
then nodes of their respective DFS trees. Under some circum-
if Props[left] .EOSL stances, the queue Props[£] is read simultaneously by
then LeftBacktrack the left and the right DFS. To distinguish the respective
else operations, we added L/R indices to the pseudocode.
Props[left] .READL(a) ; If we have d[left] ¢ d[right] at some stage, an opera-
next :Å BASE(a0) ; tion of the left DFS follows. In that situation, we call the
if rescap(a) ú 1 or RightProp[next] x a left DFS active and the right DFS inactive. Otherwise,
then if we have d[left] õ d[right] , an operation of the right
if LeftProp[next] Å NO_ARC then DFS follows, and we call the right DFS active and the
LeftProp[next] :Å a; left DFS inactive.
LeftSupport.INSERT(next) ; Both trees may have some arcs in common, but share
Props[next] .ACCESSL; no (A)-arc ãwhich has auxcap(ã)Å 1. If both of the DFS
left :Å next are required to search such an arc ã , then a is searched by

fi the left DFS first, and the right DFS tries to circumvent
fi ã . If this fails, ã is included into the right tree and the

fi left DFS tries to circumvent ã . If this also fails, the arc
else ã is the desired bottleneck and DDFS(a) halts.
if Props[right] .EOSR The return value ofDDFS(a) is the base of the updated
then RightBacktrack blossom. However, a call of DDFS has various side ef-
else fects: At the end, the sets LeftSupport and RightSupport
Props[right] .READR(a) ; exactly consist of the blossom bases which are shrunk
next :Å BASE(a0) ; into BÃ(u , £) .

The information of LeftProp and RightProp will beif rescap(a) ú 1 or RightProp[next] x a

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

46 FREMUTH-PAEGER AND JUNGNICKEL

reused by our later augmentation algorithms for the x exists, but the right DFS did not include this arc, a has
been included into the left DFS tree before. By the aboveexpansion of (Ã)-valid paths through BÃ(u , £) . There

are, however, some restrictions: argument, we have a Å (y , x) and y Å left. But y is a leaf
and can be included into the right tree by RightProp[y]When the (A)-blossoms are merged into BÃ(u , £) by

UNION operations, the information of baseA is lost. At :Å LeftProp[y] and deleted from the left tree by Left-
Prop[y] :Å NO_ARC. The induction step is now obvious.some later point of time, also the information of baseÃ is

lost. Since we need baseÃ(u , £) for the path expansion, These calls of RightBacktrack are also interesting for
another reason: Actually, a backtracking of the left DFSwe assign the (Ã)-base exit[bridge] :Å b to the investi-

gated a-bridge. Note that exit[bridge!] remains unde- occurs, which proves, in turn, that any arc of the left search
tree is traversed once as a forward edge and once as afined, and we can decide later whether the left DFS tree

was rooted at baseA(bridge0) or baseA(bridge/) . backward edge. The assignment barrier :Å x prevents the
right DFS from backtracking on any arc more than once.The labels LeftProp[b] and RightProp[b] may be

overwritten by a later call of DDFS . To this end, addi- Thus, the call of DDFS(a) terminates, since every arc of
the layered network is considered at most four times.tional labels FirstProp[bridge] :Å LeftProp[b] and First-

Prop[bridge !] :Å RightProp[b] must be assigned. Finally, we consider the point before the last call
of LeftBacktrack: In the most simple case, we have left
Å right Å s and DDFS(a) Å s , but also baseÃ(u , £) Å s ,Theorem 19.1. The call of DDFS(a) returns the base
since, otherwise, botA(u , £) would occur in both searchof BÃ(u, £) . Furthermore, LeftSupport and RightSupport
trees, a contradiction.consist of all (A)-blossom bases which have to be merged
Next, assume that s x baseÃ(u , £) . Then, we haveinto BÃ(u, £) .

barrier Å RightProp[right]/ and barrier Å left immedi-
Proof. The call of DDFS(a) inspects nodes and arcs ately after the last call of RightBacktrack. Thus, the node

of the layered network Aux(N[A]) . Since layered auxil- barrier is contained in both search trees. Let p be any
iary networks are acyclic, LeftProp and RightProp define directed (s , barrier)-path in Aux(N[A]) , q the directed
forests. By induction on the iteration steps of the while- (barrier, BASE(u))-path induced by LeftProp, and r the
loop in DDFS(u , £) , we can show that directed (barrier, BASE(£))-path induced by RightProp.

Each of p!q and p!r traverses the bottleneck botA(u , £)
• LeftProp and RightProp define trees with node sets which even is on p , since, otherwise, the search trees
LeftSupport respectively RightSupport, would share an arc a with auxcap(a) Å 1.

Since RightBacktrack was executed the last time, the• No arc ã with auxcap(ã) Å 1 can be in both trees,
right DFS was inactive and therefore right and barrier• No arc can leave the right search tree,
did not change. It is now obvious that the left DFS has• An arc can only leave the left tree if it is included into backtracked from any node x √ LeftSupport and the rightthe right tree immediately, DFS has backtracked from any node x √ RightSup-

• At least one of the active nodes left and right is a leaf port" {right}. Therefore, all arcs of the layered auxiliary
of the corresponding tree, network with end node x have been investigated. To see

• min(d[left] , d[right]) cannot increase during one itera- that (right, barrier) is a bottleneck, we have to show that
tion step. it is the unique arc of the layered auxiliary network with

end node in and start node not in Support :Å LeftSupport
! (RightSupport" {right}).It is obvious that these conditions are satisfied initially.

The induction step is straightforward if the current itera- Let (y , x) be any arc of the layered auxiliary network
not equal (but possibly parallel) to (right, barrier) sotion step is an ordinary DFS operation, namely, an exten-

sion of one of the trees or an ordinary backtracking opera- that y is not in Support, but x is in Support. If y and right
would be different, then (y , x) would have been includedtion, that is, a backtracking with right x barrier respec-

tively left x root. into one of the search trees during the investigation of x ,
We first consider those iterations during which Right- contradicting the choice of y √/ Support. Thus, y Å right

Backtrack is called with right Å barrier, especially the holds.
beginning of such an iteration, and some leaf x of the By the previous discussion, we observe the inequality
right tree with d[x] Å min{d[z] : z √ RightSupport}. d[right] õ min{d[z] : z √ Support} and also that right
There is some node y √ LeftSupport with d[y] õ d[x] has been included into each of the trees. But, then, also
(Otherwise, the right DFS would have been inactive since a node z with d[z]õ d[right] would have been explored,
x was reached.) Note that the left DFS was inactive since contradicting the above inequality. As a consequence,
y was reached. Hence, y is the unique node in LeftSupport (right, barrier) is a bottleneck of u and £. Since the search
with d[y] õ d[x] and a leaf of the left DFS tree. trees do not contain bottleneck arcs by Corollary 10.9,

we have baseÃ(u , £) Å barrier Å DDFS(a) . "Since some arc a in the layered network with end node

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

BALANCED NETWORK FLOWS. III 47

Backtrack is called once more. Since we have reached
right Å barrier, we move the arc (5!, 6) which the right
DFS could not circumvent from the left to the right tree.
The effects are right :Å 5 !, barrier Å 6 (so that we do
not search the right tree twice) , RightProp[5 !] :Å (5 !,
6) , LeftProp[5 !] :Å NO_ARC, and left :Å 6.
Subsequently, we have d[left] ú d[right] , and Left-

Backtrack is called twice. The first call results in left
Å 1 ! so that the second call finds left Å root, and the
search ends. The arc (5!, 6) is the required bottleneck
and deleted from the right tree by the operation

Fig. 1. A 2-factor search. RightProp[5 !] :Å NO_ARC. The node 5! is deleted from
RightSupport again by the operations RightSupport.
DELETE(right) .

Up to this point, the discussion was rather general. We Before halting, the procedure puts exit[(1 !, 2)] :Å 6,
will now demonstrate the behavior of the DDFS by the exit[(2 !, 1)] :Å NONE, FirstProp[(1 !, 2)] :Å (6, 1 !)
sample graph given in Figure 1 and the search strategy and FirstProp[(2 !, 1)] :Å (6, 2 !) . Finally, we have
which has been introduced in [4] for finding minimum LeftSupport Å {1 !, 6}, RightSupport Å {2 !, 6}, and the
valid paths. In fact, this coincides with the search strategy call of DDFS(1 !, 2) returns the node 6 which is the base
of the Micali /Vazirani [8] cardinality matching algo- of a (5)-blossom.
rithm. In Table I, we list two further examples for the course
This graph has been taken in [4, 5] as a running exam- of the DDFS in case of our running example. We only

ple, and we will search for a 2-factor of this graph again. mention what is different compared to the example dis-
Let N denote the balanced flow network associated with cussed above: The investigation of the second (5)-bridge
this matching problem, and f , the balanced flow corre- (9 !, 12) is applied to the updated labels d , with A :Å A4sponding to the shown subgraph (see [4] for a formal ! {(1 !, 2) , (2 !, 1)}. Actually, the calls of DDFS(1 !,
description of the problem reduction mechanism). 2) and DDFS(9 !, 12) are independent, and each of themAssume that A to be the set of (4)-arcs of the residual traverses the nodes of a (5)-blossom.network N(f) that are the props (s , 10) , (10, 5 !) , (10, By the call of DDFS(9 !, 12) , LeftProp[7] :Å (7, 9 !) ,8 !) , (5 !, 4) , (5!, 6) , (8!, 7) , (6, 1 !) , (6, 2 !) , (6, 3 !) , RightProp[7] :Å (7, 12 !) , and left Å right Å 7 are set(7, 3 !) , (7, 9 !) , (7, 12 !) and their complementary arcs. first. In the next iteration, LeftProp[8!] :Å (8 !, 7) andNote that no proper (4)-blossoms and no (4)-bridges left :Å 8 !. Since we have rescap(8 !, 7) Å 2, this arc isexist. There is a figure giving the networks N4(f) , N5(f) , available to the right DFS also. Indeed, RightProp[8!]and N6(f) in [4] . :Å (8 !, 7) and right :Å 8 ! is set in the following step.There are four different (5)-bridges of N(f) , namely,

The remaining operations can be seen from Table I.(1 !, 2) , (9 !, 12) , and their complementary arcs. We show
The call DDFS(9!, 12 !) returns the node 8! which ishow to compute the (5)-blossoms and especially describe

the base of the (5)-blossom containing 7, 8, 9, 12, andthe call DDFS(1 !, 2) with the mentioned environment:
their complements. The searched nodes are collected intoIn the beginning, we have root Å left Å BASE(u)
LeftSupport Å {9 !, 7, 8 !} and RightSupport Å {12 !, 7,Å base4(u) Å 1 !, and barrier Å right Å BASE(£)
8 !}. As additional effects, we have exit[(9 !, 12)]Å base4(£) Å 2 !. Because of d[left] Å d[right] Å 4, a
:Å 8 !, exit[(12 !, 9)] :Å NONE and FirstProp[(9 !,left DFS operation is performed, namely, a prop of 1! is
12)] , FirstProp[(12 !, 9)] :Å (8 !, 7) .chosen and included into the left tree by LeftProp[6]
As a final example, we consider the (6)-bridge (3!, 6):Å (6, 1 !) . Then, left is updated to node 6.

and call DDFS(3!, 6) with A Å A5 , BASE å base5 , andIn the next iteration, we have 3 Å d[left] õ d[right]
d å d5 . This is interesting for two new operations whichÅ 4 so that a right DFS operation takes place. The only
occur. First, the arc (5!, 6) is searched which triggers offprop (6, 2 !) becomes an arc of the right DFS tree by
back-tracking operations of both DFS but is not the desiredRightProp[6] :Å (6, 2 !) and right is updated to node 6.
bottleneck. Circumventing this arc, the DDFS reaches leftNow, we have d[left] Å d[right] again so that a left
Å right Å s , and no further backtracking operations occur.DFS operation follows. Here, the arc (5!, 6) is read from
At the end, we have LeftSupport Å {3!, 6, 8!, 10, s} andProps[6] which becomes an arc of the left DFS tree. The
RightSupport Å {6, 5!, 10, s}.following is a right DFS operation again.
Note that DDFS(3 !, 6) finds an augmenting path en-Since there are no further members to read from

coded into the auxiliary network N5(f) . The expansionProps[6] , RightBacktrack is called which results in right
:Å 2 !. But we still have d[left] õ d[right] . So, Right- of this path is presented later.

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

48 FREMUTH-PAEGER AND JUNGNICKEL

TABLE I. Examples for the double depth first search array petal, exit, FirstProp, LeftProp, RightProp;
object LeftSupport, RightSupport: STACK;

Left Right Barrier

function DDFS;DDFS(1!, 2) 1! 2! 2!
6 — —

function BNS(s , t) ;— 6 —
array Anomalies , Bridges , Q of object: QUEUE;5! — — var i , £;

— 2! —
6 5! 6 procedure Min(i) ;
1! — — var a , £, w ;

beginDDFS(9!, 12) 9! 12! 12!
while not Q[i] .EMPTY do7 — —
Q[i] .DELETE(£) ;— 7 —
while not EOS(£) do8! — —
READ(£, a) ;— 8! — w :Å a/ ;

10 — — if d[w !] Å ! and d[w] ú i then
— 7 — if d[w] Å ! then
— 12! — (1) Props[w] .INIT ;
8! 10 8! Anomalies[w !] .MAKE(m) ;
7 — — d[w] :Å i / 1;
9! — — F .BUD(w) ;

base[F .FIND(w)] :Å w ;DDFS(3!, 6) 3! 6 6
Q[i / 1].INSERT[w]6 — — fi;

5! — — Props[w] .INSERT(a)
6 5! 6 else
3! — — (2) if d[£ !] x d[w!] / 1 or d[£ !] ú d[£] then
8! — — if d[w !] õ !
10 — — then Bridges[d[£] / d[w !] / 1].
— 10 — INSERT(a)

else Anomalies[w !] .INSERT(a)s — —
fi— s —

fi— — s
fi

od
od

20. FINDING MINIMUM VALID PATHS end;

In this section, we will study a complete BNS algorithm. procedure ShrinkBlossom(tenacity , CurrentPetal) ;
Like the simple algorithm discussed in [5] , it will com- var a , w ;
pute the blossoms of a given network. Even more, the begin
algorithm introduced now is able to determine the cor- b :Å DDFS(CurrentPetal) ;
rect distance label d (£) and a d (£) -path for every strictly while not LeftSupport .EMPTY do
reachable node £. These paths are encoded into some LeftSupport .DELETE(w) ;
data structures, and we will also give a corresponding F .UNION(b , w) ;
path expansion rule. The BNS algorithm is shown in if d[w !] Å ! then
Procedure 2. d[w !] :Å tenacity 0 d[w] ;

Q[d[w !]] .INSERT(w !) ;
Procedure 2. Determination of the Distance Labels while not Anomalies[w !] .EMPTY do

Anomalies[w !] .DELETE(a) ;
Bridges[d[a0] / d[w !] / 1].INSERT(a)class BALANCED_NW ;

private od;
petal[w!] :Å CurrentPetal!array Props of object: QUEUE;

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

BALANCED NETWORK FLOWS. III 49

fi disallocate Anomalies , Bridges , Q;
if d[t] õ ! then return TRUE else return FALSE fiod;

while not RightSupport .EMPTY do end
end.RightSupport .DELETE(w) ;

F.UNION(b , w) ;
if d[w !] Å ! then As suggested by the theory of Section 12 in [4] , we
d[w !] :Å tenacity 0 d[w] ; will compute the iterated labels di/1 from di , each of
Q[d[w !]] .INSERT(w !) ; which corresponds to a particular subgraph of the net-
while not Anomalies[w !] .EMPTY do work. Note that the BNS algorithm consists of two proce-
Anomalies[w !.DELETE(a) ; dures Min and Max and that Min(i) reaches the minlevel
Bridges[d[a0] / d[w !] / 1].INSERT(a) nodes £ with d(£) Å i / 1 while Max(i) reaches the

od; maxlevel nodes w with t(w) Å 2i / 1. To prove the
petal[w !] :Å CurrentPetal correctness of the algorithm, we use as an induction hy-

fi pothesis that right before the call of Min(i) the following
od; is true:
base[F .FIND(b)] :Å b;
LeftProp[b] , RightProp[b] :Å NO_ARC • We have d[£] Å di (£) and BASE(£) Å basei (£) forend; every node £.

• Q[i] consists of all nodes £ with distance label d(£)procedure Max(i) ;
Å i .var a , b;

begin
while not Bridges[2i / 1].EMPTY do It is obvious that both statements are true when Min(0)

is called. So, assume that the hypothesis is true whenBridges[2i / 1].DELETE(a) ;
if BASE(a0) x BASE(a/) or d[a0] Å ! Min(i) is called for some i .

Then, the call of Min(i) does the following: All nodesthen ShrinkBlossom(2i / 1, a)
fi £ with d[£] Å d(£) Å i are expanded so that all arcs a

with start node £ are considered. Let w :Å a/ as in theod
end; algorithm. We will show that a is investigated by case

(1) if it is a prop and that a is inspected (but not yet
investigated!) by case (2) if it is a bridge. We considerbegin

allocate Anomalies[0, 1, . . . , n] , Bridges[1, 3, . . . , 2n case (1) first.
If we have d[w !] , d[w] Å ! , then w actually is a/ 1], Q[0, 1, . . . , n] ;

F .INIT ; minlevel node with d(w) Å i / 1. The algorithm con-
structs the set Props[w] containing a , generates the budfor £ :Å 0 to n do

d[£] :Å ! ; {w , w!}, and assigns the correct distance label. If we
have d[w !] Å ! and i õ d[w] õ ! , then w has beenLeftProp[£] , RightProp[£] :Å NO_ARC

od; explored by Min(i) before, so that we have d[w] Å i
/ 1, and a must be appended to Props[w] .for i :Å 0 to n do

Q[i] .MAKE(n) ; Note that every prop xy is investigated by such an
operation if we have d(y) Å i / 1. [We have d(x) Å iBridges[2i / 1].MAKE(m)

od; by Lemma 8.2, and di (x) Å d(x) holds by Corollary 12.3
and the induction hypothesis.]d[s] :Å 0;

F .BUD(s) ; In all other cases, a is not a prop, and the case (2) of
procedure Min is reached. Note that a is either a bridgebase[F .FIND(s)] :Å s;

Q[0] .INSERT(s) ; or a co-prop, but co-props are excluded from inspection.
If d[w !] is finite, then we have d[w !] Å d(w !) by theINVESTIGATE;

for i :Å 0 to n 0 1 do induction hypothesis and Theorem 12.1, and a is ap-
pended to Bridges[t(a)] . Otherwise, a is appended to theMin(i) ;

Q[i] .FREE; set Anomalies[w !] . Resolving anomalies is the critical
part of the algorithm, and it is necessary to say somethingMax(i) ;

Bridges[2i / 1].FREE about that task.
Anomalies have been introduced in Section 11 whereod;

CLOSE; only tree growing BNS algorithms were studied. In the
general case, an anomaly is an a-bridge u£ which isfor £ :Å 0 to n do Anomalies[£] .FREE od;

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

50 FREMUTH-PAEGER AND JUNGNICKEL

TABLE II. The investigation ordersearched by some BNS algorithm, but the tenacity label
of the procedure Mint(u , £) is infinite at this point of time. In the concrete

algorithm, bridges and a-bridges are the same.
i Q[i]An anomaly must be resolved if £ becomes strictly

reachable later. For this goal, all anomalies with end node 0 s
w are collected into the set Anomalies[w !] . Note that w ! 1 10
always is a maxlevel node and that the correct tenacity 2 5!, 8!
labels of these arcs are available once the bud {w , w!} 3 4, 6, 7
is shrunk into a proper blossom. Then, the queue Anoma- 4 1!, 2!, 3!, 9!, 12!lies[w !] is flushed, and every member a is placed on the

5 11, 1, 2, 9, 12queue Bridges[t(a)] .
6 6!, 7!, 11!To perform Max(i) , we must know all bridges a
7 8, 3Å £w with t(a) Å 2i / 1. Note that we have d(£) ° i
8 4!or d(w !) ° i or both. Without loss of generality, we
9 5assume that d(£) ° d(w !) . Thus, a has been searched
10 10!by a previous call of Min , namely, Min(d(£)) . But if a

has been recognized as an anomaly, it must be resolved 11 t
in time. By Lemma 12.8, w! is also strictly (i)-reachable.
Hence, the anomaly a has been resolved by the call of
Max(j) where we have t(w !) Å 2 j 0 1 and j õ i .

DDFS(a) . To see this, note that the auxiliary arcs canAt the start ofMax(i) , the queue Bridges[2i / 1] does
be treated as props of the original network and that nonot contain every bridge a with t(a) Å 2i / 1, but
arc searched by DDFS(a) can be searched again, exceptat least one of a complementary pair. The members of
for the unique prop of b . But any arc can be traversed atBridges[2i / 1] are considered successively, and exactly
most four times by a DDFS operation. If we exclude theone arc a of a complementary pair is searched by the call
DSU process from consideration, we see that the BNSof b :Å DDFS(a) . By Theorem 19.1, LeftSupport and
runs in O(m) time.RightSupport consist of those (i)-bases, which must be
To get the time bound O(ma(m , n)) for the DSUmerged together by the investigation of a and a !. It is

process, one must show that the total number of BASEobvious that the blossoms are merged and that the
calls is O(m) . This is easy and left to the reader. !d-labels are assigned correctly. Since LeftProp[b] ,

RightProp[b] :Å NO_ARC is set at the end of the investi-
gation step, a further DDFS may run. We describe the effects of this BNS algorithm when

searching the residual network of our running example.The induction step is obvious now. Hence, we get the
following correctness result: Some parts have been discussed in the last section so that

we must only fill the gaps. Note that the distance labels
computed by the procedure can be seen from Table II inTheorem 20.1. A fter the call of BNS, we have d[£]
which the node sets Q[0] , Q[1] , . . . , Q[n] are shown.Å d(£) and base[£] Å base(£) for every node £. !
In this example, the procedure Max(i) is inactive for

i õ 4 since no bridges with tenacity õ 9 exist. TheTheorem 20.2. A call of BNS needs O(ma(m, n)) time.
procedure grows the auxiliary layered network treelike,
and every searched arc is recognized as a prop until theProof. Any node £ can be in only one of the Q[i]’s,

and any arc can be inspected by Min only once, namely, node 4 is searched. In that order, the nodes 10, 5!, 8 !, 4,
6, and 7 are reached and placed on Q[1] , Q[2] , and Q[3] ,during the expansion of its start node. In particular, the

calls of Min require O(m) time altogether. respectively, depending on their distance label d .
Then, the call of Min(3) does the following: First,So let us consider the performance of the procedure

Max . A bridge a can be contained in the set Bridges[2i node 4 and arc (4, 8 !) are searched. Because of d(8 !)
Å 2 õ d(4) / 1, we have found a bridge, but still d(8)/ 1] only if t(a) Å 2i / 1 holds and can be an anomaly

of at most one node. After the call of b :Å DDFS(a) , Å ! holds. So the arc (4, 8!) is added to the set Anoma-
lies[8] . Subsequently, the nodes 6 and 7 are searchedLeftSupport and RightSupport together consist of all

nodes searched by the DDFS operation but the predeces- which have the common successor 3!. Since 6 is searched
before 7, the bud 3! is generated during the investigationsor of b . The only node searched by DDFS(a) which can

be searched by a later DDFS operation again is the base of (6, 3!) , and (6, 3 !) is placed on Props[3!] before (7,
3 !) . We also reach 1!, 2 !, 9 !, and 12! during that stage.b . These two nodes do not affect the time complexity

since only O(m) calls of DDFS are needed. Then, Min(4) is called, and Q[4] is scanned. While
1 ! and 2 ! are expanded, the bridges (1!, 2) and (2 !, 1)A similar statement holds for the arcs searched by

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

BALANCED NETWORK FLOWS. III 51

TABLE III. The investigation order
of the procedure Max

t Bridges[t]

9 (1!, 2), (2!, 1), (9!, 12), (12!, 9)
11 (3!, 6), (4, 8!), (11, 11!), (9, 12!), (12, 9!)
13 (3!, 4)

are found, each of which is placed on Bridges[9] . By the
Fig. 2. A DSU tree of the running example.expansion of 3!, we find two bridges (3!, 4) and (3 !, 6)

with unknown tenacity which are appended to Anoma-
lies[4 !] and Anomalies[6 !] , respectively. Next, the nodes

calls of the DDFS nested into Max(5) . These are almost9 ! and 12! are expanded. During these operations, (9!,
trivial and may be left to the reader.12) and (12 !, 9) are placed on Bridges[9] and the arcs
By the investigation of (4, 8!) , the bud {4, 4!} is(9 !, 11) and (12 !, 11) are appended to Props[11].

merged into the former blossom and d[4!] Å 8 andNext, Max(4) is called which inspects the arcs on
petal[4 !] :Å (8, 4 !) are assigned. Moreover, Anoma-Bridges[9] . The first arc inspected is (1 !, 2) , and since
lies[4 !] is flushed, and (3 !, 4) is placed on Bridges[13].(1 !, 2) is not contained in a proper blossom yet,
By the investigation of (11, 11!) , the bud {11, 11!} isDDFS(1 !, 2) is called. This call has been discussed as
merged into the former blossom so that all nodes of thean example for the DDFS in the last section. As a result,
network are in a common blossom now. In particular,the (5)-blossom {6, 6 !, 1, 1 !, 2, 2 !} is constructed. To
there are no DDFS operations after the call of DDFS(11,the nodes 6 !, 1, and 2 which have become strictly reach-
11!) . The whole DSU tree for this BNS example is shownable by the investigation step, we assign petal[6 !]
in Figure 2.:Å (2 !, 1) , petal[1] :Å (2 !, 1) , and petal[2] :Å (1 !,

2) . Furthermore, we get d[6 !] Å 6; thus, Anomalies
[6 !] is flushed, and (3 !, 6) is placed on Bridges[11].

21. PATH EXPANSIONThen, Max(4) inspects the bridge (9!, 12) by the call
of DDFS(9 !, 12) which has been already discussed. This

As mentioned before, there is a valid st-path encoded intooperation determines the other (5)-blossom {8, 8!, 7, 7 !,
the information of petal, LeftProp, RightProp, FirstProp,9, 9 !, 12, 12 !} and assigns petal[8] :Å (12 !, 9) ,
Props, and Exit. A path expansion rule which is compati-petal[7 !] :Å (12 !, 9) , petal[9] :Å (12 !, 9) , and petal[12]
ble with the BNS algorithm of Procedure 2 is shown in:Å (9 !, 12) . We get d[9] Å d[12] Å 5, d[7 !] Å 6, and
Procedure 3. Unfortunately, the pseudocode presented isd[8] Å 7. Hence, the queue Anomalies[8] is flushed,
rather lengthy since we have to distinguish several cases.and (4, 8!) is appended to Bridges[11]. Note that Max

suppresses the investigation of the bridges (2!, 1) and
(12 !, 9) , since these arcs are already contained in a proper Procedure 3. Minimum Valid Path Expansion
blossom.
The following call of Min(5) finds the bridges class BALANCED_NW ;

(11, 11 !) , (9, 12 !) , and (12 !, 9) which are appended to private
Bridges[11] in that order. Then, the arcs of Bridges[11] procedure EXPAND(x , y) ;
are inspected by the call of Max(5) . The first arc drawn var a , b , w ;
is (3 !, 6) so that DDFS(3 !, 6) is triggered off. Again, begin
this was one of our examples for the DDFS in the last if x x y then
section. After that operation, we assign d[t] Å 11, d[10 !] if d[y] õ d[y !] then
Å 10, d[3] Å 7, d[5] Å 9, as well as petal[t] , petal[10!] , a :Å Props[y] .FIRST ;
petal[3] :Å (6 !, 3) , and petal[5] :Å (3 !, 6) and merge EXPAND(x , a0) ;
into the blossom p[y] :Å a

else
if exit[petal[y]] x NONE then{s , t , 10, 10 !, 5, 5 !, 6, 6 !, 1, 1 !, 2, 2 !,
b :Å exit[petal[y]] ;

3, 3 !, 7, 7 !, 9, 9 !, 12, 12 !, 8, 8 !}, EXPAND(x , b) ;
w :Å b;
a :Å FirstProp[petal[y]] ;which is not yet a (6)-blossom. There are two further

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

52 FREMUTH-PAEGER AND JUNGNICKEL

while a x NO_ARC do if exit[petal[x!]] x NONE then
b :Å exit[petal[x !]] ;EXPAND(w , a0) ;

p[a/] :Å a; w :Å x;
if xÅ b then a :Å FirstProp[petal[x !] !] elsew :Å a/ ;

a :Å LeftProp[w] a :Å RightProp[x] fi;
while a x NO_ARC dood;

EXPAND(w , petal[y]0) ; EXPAND(w , a0) ;
p[a/] :Å a;p[petal[y]/] :Å petal[y] ;

w :Å y ; w :Å a/ ;
a :Å RightProp[w]if y Å b ! then a :Å FirstProp[petal[y] !] ! else

a :Å RightProp[y !] ! fi; od;
EXPAND(w , (petal[x!] !)0) ;while a x NO_ARC do

CO_EXPAND(a/ , w) ; p[(petal[x!] !)/] :Å petal[x !] ! ;
w :Å b ! ;p[a/] :Å a;

w :Å a0; a :Å FirstProp[petal[x !]] ! ;
while a x NO_ARC doa :Å RightProp[w !] !

od CO_EXPAND(a/ , w) ;
p[a/] :Å a;CO_EXPAND(petal[y]/ , w) ;

else w :Å a0;
a :Å LeftProp[w !] !b :Å exit[petal[y] !] ;

EXPAND(x , b) ; od;
CO_EXPAND((petal[x !] !)/ , w)w :Å b;

a :Å FirstProp[petal[y]] ; CO_EXPAND(b !, y)
elsewhile a x NO_ARC do

EXPAND(w , a0) ; b :Å exit[petal[x !] !] ;
w :Å x;p[a/] :Å a;

w :Å a/ ; if x Å b then a :Å FirstProp[petal[x !] !] else
a :Å LeftProp[x] fi;a :Å RightProp[w]

od; while a x NO_ARC do
EXPAND(w , a0) ;EXPAND(w , petal[y]0) ;

p[petal[y]/] :Å petal[y] ; p[a/] :Å a;
w :Å a/ ;w :Å y ;

if y Å b ! then a :Å FirstProp[petal[y] !] ! a :Å LeftProp[w]
od;else a :Å LeftProp[y !] ! fi;

while a x NO_ARC do EXPAND(w , (petal[x!] !)0) ;
p[(petal[x !] !)/] :Å petal[x !] ! ;CO_EXPAND(a/ , w) ;

p[a/] :Å a; w :Å b ! ;
a :Å FirstProp[petal[x !]] ! ;w :Å a0;

a :Å LeftProp[w !] ! while a x NO_ARC do
CO_EXPAND(a/ , w) ;od;

CO_EXPAND(petal[y]/ , w) p[a/] :Å a;
w :Å a0;fi

fi a :Å RightProp[w !]!
od;fi

end; CO_EXPAND((petal[x !] !)/ , w)
CO_EXPAND(b !, y)

fiprocedure CO_EXPAND(x , y) ;
var a , b , w ; fi

fibegin
if x x y then end

end.if d[x !] õ d[x] then
a :Å Props[x !] .FIRST ! ;
p[a/] :Å a; There is a rule EXPAND which computes certain mini-

mum valid paths p . As in the simple path expansion pro-CO_EXPAND(a/ , y)
else cedure in [5] , we give an explicit rule CO_EXPAND for

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

BALANCED NETWORK FLOWS. III 53

computing the complementary path p!. The symmetry of Consider the call of EXPAND(s , t) in case of the
running example. In order of occurrence, the assignmentsthese procedures is obvious.

In addition to that, we must distinguish whether a max- to the p-labels and the recursive calls of EXPAND and
CO_EXPAND are the following:level node has been explored by a left DFS operation or

by a right DFS operation. Both cases are treated in a
similar way. Hence, checking the correctness of the given EXPAND(s , s)
path expansion rule is considerably simpler than its EXPAND(s , s) p[10] :Å (s , 10)
lengthiness suggests. EXPAND(10, 10) p[10] :Å (10, 5 !)

EXPAND(5 !, 5 !) p[10] :Å (5 !, 6)
Theorem 21.1. Let y be a strictly (i)-reachable node, x EXPAND(6, 6) p[3] :Å (6 !, 3)
be an (i)-base which is traversed by every d(y)-path q, CO_EXPAND(t , t) p[t] :Å (10 !, t)
and p å NO_ARC. Assume that we just have called BNS. CO_EXPAND(10 !, 10 !) p[10 !] :Å (8, 10 !)
Then, EXPAND(x, y) determines a valid xy-path of length CO_EXPAND(7 !, 8) p[t] :Å (3, 7 !)
Éq[x, y]É which is encoded into the p-labels, and CO_EXPAND(3, 3)
CO_EXPAND(y ! , x !) computes the complementary y!x !-
path. There are merely two nontrivial recursive operations,
Proof. The assertion follows by induction on i and is namely EXPAND(6, 6 !) and CO_EXPAND(7 !, 8) . The

obvious for i Å 0 since we have s Å x Å y in that case. former call will result in
Let the statement be true for every i õ j and assume that
i Å j , x x y . EXPAND(6, 6)
First, assume that y is a minlevel node. By the cor- EXPAND(6, 6) p[2!] :Å (6, 2 !)

rectness analysis of the procedure BNS, we see that EXPAND(2 !, 2 !) p[1] :Å (2 !, 1)
a :Å Props[y] .FIRST is a prop of y and that z :Å a0 is CO_EXPAND(6 !, 6 !) p[6 !] :Å (1, 6 !)
strictly (i 0 1)-reachable. Hence, x is on every d(z)- CO_EXPAND(1, 1)
path, and q[z] is a d(z)-path by Lemma 8.2. By the
induction hypothesis, EXPAND(x , z) is a valid xz-path The reader is asked to supply the details for the call of
of length Éq[x , z]É. The induction step is obvious. CO_EXPAND(7 !, 8) . The resulting d(t)-path is
From now on, let y be a maxlevel node and a

:Å petal[y] . Then, y has been explored by the DDFS (s , 10, 5 !, 6, 2 !, 1, 6 !, 3, 7 !, 8, 10 !, t) .as a consequence of Theorem 20.1. We consider the case
that y was explored by a left DFS operation, that is, b
:Å DDFS(a) has been called during the BNS. Let A be

22. PHASE-ORDERED ALGORITHMSthe set of arcs which have been investigated by the BNS
before a and a !, and let Ã :Å A ! {a , a !}.

Using the given BNS algorithm of the last section togetherNote that b is strictly (i 0 1)-reachable and that BÃ(y)
with the simple augmentation procedureMAX_BAL_FLOWis, in general, not an (i)-blossom. By the second shrinking
given in [5], one can determine maximum balanced flowsproperty 10.6, there is a d(y)-path which traverses b and
in time O(nm2a(m , n)) by Theorem 6.4. (The general ideaa . Let us assume that q is such a path. Then, q[b] is a
is that the length of the augmenting paths is monotonicallyd(b)-path, and x is on every d(b)-path by the base iden-
increasing.)tity 9.2 and Theorem 12.7.
However, this algorithm can still be improved since itHence, EXPAND(x , b) determines a valid xb-path of

suffices to run BNS once during a phase. Here, a phaselength q[x , b] by the induction hypothesis. Note that a
is a period of the augmentation algorithm during whichproper (i)-blossom which is nested into BÃ(y) must be
all augmenting paths have equal length.a leaf of at least one of the DFS trees. As a consequence
The necessary modifications are discussed throughoutof the second shrinking property and the induction hy-

this section. We will not present a complete pseudocodepothesis, EXPAND(b , y) is a d(b , y)-path. The induction
which can be found in the first authors doctoral thesisstep is obvious now.
[3] . The improved algorithm specializes to the state-of-If y was explored by a right DFS operation, DDFS(a !)
the-art cardinality matching algorithm given by Micaliwas called and exit[a] Å NONE was set. This case, as
and Vazirani in [8] .well as the induction step for the procedure CO_EXPAND
We can use the original BNS up to that moment whenare analogous to the cases which have been discussed

DDFS(a) Å s is reached first and finish the (i)-phase bybefore. !
completing Max(i) . Of course, we need some modifi-
cations of the former BNS procedure, especially of theCorollary 21.2. If £ is strictly reachable, then EX-

PAND(s, £) determines a d(£)-path in O(n) time. ! procedure Max . In comparison with the former BNS

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

54 FREMUTH-PAEGER AND JUNGNICKEL

algorithm, we have two new procedures Augment and auxiliary network and which have been expanded to the
augmenting path. These paths are encoded into LeftPropTopologicalErasure.
and RightProp, respectively. The arcs of p and q , which
have no longer residual capacity, are deleted from theProcedure 4. An Improved Augmentation Rule
layered auxiliary network one by one.
The deletion is done implicitly by using some addi-procedure Augment;

var a , e, £; tional data structures. If x is an (A)-base, a √ Props[x] ,
and rescap(a)Å 0 is reached by some augmentation step,begin

EXPAND(s , t) ; then a is not really deleted from Props[x] . Instead of
this, we update the label InDegree[x] .e :Å BAL_PATH_CAP;

BAL_AUGMENT(s ,t ,e) ; When InDegree[x] Å 0 is reached, then x is blocked
and no further DDFS operation should search x . We avoida :Å LeftProp[s] ;

while a x NO_ARC do this by performing the topological erasure of x . This re-
quires a reverse adjacency list Successors[x] which con-if rescap(a) Å 0 and InDegree[Exit[a]] ú 0

then TopologicalErasure(a) sists of all (A)-blossom bases with predecessor x in
the layered auxiliary network before the last augmenta-fi;

a :Å LeftProp[a/] tion step. The queue Successors[x] is flushed, and
InDegree[y] is decreased by one for every y on Succes-od;

a :Å RightProp[s] ; sors[x] . If we have InDegree[y] Å 0, then y is blocked
and treated in the same way as x .while a x NO_ARC do

if rescap(a) Å 0 and InDegree[Exit[a]] ú 0
and LeftProp[Exit[a]] x a Procedure 5. The Topological Erasure
then TopologicalErasure(a)
fi; procedure TopologicalErasure(a) ;
a :Å RightProp[a/] var x , y ;

od; object Blocked : QUEUE;
while not LeftSupport .EMPTY do begin
LeftSupport .DELETE(£) ; x :Å a/ ;
LeftProp[£] :Å NO_ARC InDegree[x] :Å InDegree[x] 0 1;

od; if InDegree[x] Å 0 then
while not RightSupport. .EMPTY do Blocked .INSERT(x) ;
RightSupport .DELETE(£) ; while not Blocked .EMPTY do
RightProp[£] :Å NO_ARC Blocked .DELETE(x) ;

od; while not Successors[x] .EMPTY do
end; Successors[x] .DELETE(y) ;

InDegree[y] :Å InDegree[y] 0 1;
Assume that Max(i) just has investigated the bridge if InDegree[y] Å 0 then Blocked .INSERT(y)

a , that A is the set of arcs which have been investigated fi
before a , and that f is the flow reached so far. If we reach od
b Å DDFS(a) Å s the first time, we can compute an od
augmenting path by the call of EXPAND(s , t) and aug- fi
ment f then. The obvious problem is to update the layered end;
auxiliary network so that further DDFS operations apply.
This might be done by another call of the balanced net- Note that Max(i) should initiate a DDFS only if the
work search, but can be accomplished more efficiently blossom bases involved are not blocked yet. Furthermore,
by the process of topological erasure. Min should compute the correct InDegree labels. The
We call an (A)-blossom B blocked iff none of the DDFS procedure must be modified so that no blocked

d(base(B))-paths of the begin of the (i)-phase is valid blossom bases or props are searched.
at some later point of the (i)-phase. If ã is a prop and
B(ã0) is blocked, then we say that ã is blocked.We also Lemma 22.1. The topological erasure process requirescall ã blocked if we have rescap(ã) Å 0. By the topologi- O(m) time altogether during a phase.cal erasure, every blocked blossom base x is labelled
InDegree[x] :Å 0. Proof. A blossom base b is a minlevel node. Note

that InDegree increases only when a prop is appended toLet p and q be the paths which connect s with
BASE(a0) and BASE(a/) , respectively, in the layered Props[b] during the call of Min(d(b) 0 1). Note also

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

BALANCED NETWORK FLOWS. III 55

that InDegree decreases only during the last call of Max. assume d(£) Å i / 1 and that the assertion is proven for
every prop ã with d(Exit[ã]) ° i .Thus, b can be placed on Blocked at most once, and

Successors[b] is flushed then. ! We first assume that a has been included into one of
the DFS trees, say the left one. If the left DFS has back-
tracked on a , all props of £ have been searched beforeWe are now in the situation where we can exclude
and are erased by the induction hypothesis. But then a ismost parts of the algorithm from the remainder of the
also erased. If the left DFS does not backtrack on a , thencomplexity analysis. The blossom shrinking process and
a is on the left active path at the end of the DDFS and alsoalso the topologic erasure process need (almost) O(m)
on the augmenting path generated by EXPAND. Since wetime per phase. If we neglect the arc investigation steps
have rescap(a) Å 0 after the augmentation step, a iswhich initiate a flow augmentation, the BNS part runs
blocked.also in O(m) time. These bounds are optimal even in the
Otherwise, a has not been included into one of thecase of 0–1 balanced flow networks.

DFS trees, but searched by one of the DFS trees, say theNext, consider the augmentation part of a phase. Obvi-
left one. Then, £ has been visited by the left DFS beforeously, the expansion of an augmenting path and an aug-
and has been included into the left DFS tree. If £ wouldmentation step need O(n) time. Hence, the total time
be an inner node, then {£, £ !} would be a bud by Corol-spent for the procedure Augment is O(nm) in the general
lary 9.15 and a/ would be the unique successor of £case. In the case of 0–1 networks, we know by Lemma
Å a0 . But, then, £ could have been visited only by search-6.5 that the augmenting paths of a single phase are dis-
ing a , a contradiction. Hence, £ is an outer node andjoint; hence, Augment needs O(m) time during a whole
the unique prop of £ has been searched by one of thephase.
DFS and is blocked by the induction hypothesis. Then,There are, however, some operations which we have
a is blocked likewise. !not counted yet. These are the calls of the DDFS which

yield an augmenting path. Since a single call of DDFS
runs in O(m) , we have the obvious time bound O(m2) Theorem 22.4. Let NG be the 0–1 balanced flow network
for a whole phase of the algorithm. But then the new associated with the graph G. Then, a maximum balanced
algorithm would be only a minor improvement. flow on NG can be found in O(

√
nma(m, n)) time.

Despite all the parallels to the Dinic algorithm dis-
cussed so far, this bound might be tight. Note that the Proof. By Theorem 6.6, we have O(

√
n) phases in the

Dinic algorithm for the maximum flow problem merely case of 0–1 networks. The procedure Min requires O(m)
traverses one single directed path of the layered auxiliary time during a whole phase. The time required by DDFS
network during a certain augmentation step. A call of operations during a phase is O(ma(m , n)) by Lemma
the DDFS, however, searches a considerable part of the 22.3 and the results of [10] for the disjoint set union
layered auxiliary network. process. Furthermore, the augmenting paths of a particular

phase are pairwise disjoint by Lemma 6.5. Hence, the
time required for Augment operations is O(m) . !Theorem 22.2. Maximum balanced flows can be com-

puted in O(nm2) time . !

We mention that there are other polynomial time algo-
rithms for the maximum balanced flow problem: Appar-Especially in the case of 0–1 balanced flow networks,

where a version of the Micali /Vazirani algorithm results, ently, an O(m2log U) algorithm is available which uses
the idea of capacity scaling (where U denotes the maxi-the bound of O(m2) is considerably worse than is the

bound of O(m) claimed by these authors. Note that this mum arc capacity) . Such an algorithm could include one
of the augmentation procedures given in [5] . However,bound has not been discussed in [8–10] explicitly. The

gap is closed as follows: the algorithm can be formulated in such a way that only
the last scaling phase needs a BNS procedure. We expect
that the bound can be improved to O(nm log U) .Lemma 22.3. Consider the 0–1 balanced flow network
Anstee [1] proposed an algorithm which computes anNG associated with the graph G and a DDFS operation

ordinary maximum flow for the balanced network first.which yields b Å s. Then, every prop searched by the
By a rather simple procedure, the maximum flow is trans-DDFS is blocked after that augmentation step.
formed into a balanced flow which is almost maximum
balanced. One can achieve a maximum balanced flowProof. Let a be a prop searched by the DDFS and £

:Å Exit[a] . The assertion follows by induction on d(£) . then inO(nm) time by using any linear balanced augmen-
tation procedure.In the case of d(£) Å 0, we have a Å LeftProp[s] or a

Å RightProp[s] which have no residual capacity after the It turns out that the max flow computation is the domi-
nating part in the complexity analysis and can be imple-augmentation step and, hence, are blocked. Thus, we can

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

56 FREMUTH-PAEGER AND JUNGNICKEL

[4] C. Fremuth-Paeger and D. Jungnickel, Balanced networkmented in O(n 3) time, O(nm log n) time, or O(n 2
√
m)

flows (I) : A unifying framework for design and analysistime. The Anstee algorithm is state of the art.
of matching algorithms, Networks, to appear.A paper which contains an analysis of each of these

[5] C. Fremuth-Paeger and D. Jungnickel, Balanced networkalgorithms is in preparation [6] . The concepts seem to
flows (II) : Simple augmentation algorithms, Networks,be similar but more simple than the algorithm presented
to appear.here.

[6] C. Fremuth-Paeger and D. Jungnickel, Balanced networkOn the other hand, augmenting along a shortest path
flows (IV): Duality and structure theory, Networks, sub-means changing a precomputed matching as little as pos- mitted.sible. Hence, there are explicit applications of the BNS

[7] S. Micali and V. V. Vazirani, An O(
√
V E) algorithmalgorithm discussed here.

for finding maximum matching in general graphs, Pro-
ceedings of the 21st Annual IEEE Symposium in Foun-
dation of Computer Science, 1980, pp. 17–27.

REFERENCES [8] P. A. Peterson and M. C. Loui, The general maximum
matching algorithm of Micali and Vazirani, Algorith-

[1] R. P. Anstee, An algorithmic proof of Tutte’s f-factor mica 3 (1988), 511–533.
theorem, J Algor 6 (1985), 112–131. [9] R. E. Tarjan, Data Structure and Network Algorithms,

[2] J. Edmonds, Paths, trees and flowers, Can J Math 17 SIAM, Philadelphia, PA 1983.
(1965), 449–467. [10] V. V. Vazirani, A theory of alternating paths and blos-

[3] C. Fremuth-Paeger, Degree Constrained Subgraph soms for proving correctness of the O(
√
VE) general

Problems and Network Flow Optimization, Wissner Ver- graph maximum matching algorithm, Combinatorica 14
lag, Augsburg, 1997. (1994), 71–109.

8u26 0841/ 8U26$$0841 11-12-98 11:49:55 netwa W: Networks

