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The solution of the Chinese postman problem using matching theory is given. The convex 
hull of integer solutions is described as a linear programming polyhedron. This polyhedron is 
used to show that a good algorithm gives an optimum solution. The algorithm is a specializa- 
tion of the more general b-matching blossom algorithm. Algorithms for finding Euler tours and 
related problems are also discussed. 

1. Introduction 

One of  the oldest problems in graph theory is that o f  finding an Euler 
tour in a connected graph [9]. The problem is to find a way of  travers- 
ing every edge exactly once in a tour  of  the graph. Necessary and suf- 
ficient conditions for the existence of  such a tour, an Euler tour, are 
simple: each node must be incident to an even number of  edges. 

We shall give a related optimization problem, the Chinese postman 
problem, and its solution using matching theory. Matching theory pro- 
vides not  only a good algorithm for the Chinese postman problem but  
also a description of  the polyhedron of  solutions. In Section 4, a variant 
of  the matching algorithm is given for the Chinese postman problem. 
This algorithm does not  actually give us a postman tour but  instead a 
graph in which an Euler tour exists. We discuss in Section 5 the problem 
of  finding an Euler tour. Finally, Sections 6 and 7 discuss similar prob- 
lems except that some edges are directed. 
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2. The Chinese postman problem 

The Chinese postman problem [6, 14] is to find the shortest tour 
such that each edge is traversed at least once. Thus, it is the problem 
faced by a postman who must deliver mail along each edge of a graph 
and return to his starting point. 

To be more precise, define a g r a p h  G to be a finite set N of  n o d e s  and 
a finite set E of  e d g e s  such that each edge m e e t s  two nodes. We allow 
more than one edge to meet the same pair of nodes. A t o u r  in G is a se- 
quence 

(n 1 ,e  l , n  2 , e  2, . . . , n  1 , e l , n l+  1 = n  1) 

of nodes n i and edges e i such that e i meets the distinct nodes n i and 
hi+ t . A s i m p l e  t o u r  of G is a circuit which contains each edge e ~ E at 
most once. A p o s t m a n  t o u r  of  G is a circuit which contains every edge e 
at least once. An E u l e r  t o u r  of  G is a tour which contains every edge ex- 
actly once. A p a t h  is a sequence of nodes and edges, like a circuit, ex- 
cept that nt÷ 1 is not required to be equal to n 1 . An e d g e - s i m p l e  p a t h  is a 
path which contains each edge at most once. A c o n n e c t e d  graph G has a 
path between every pair of  nodes. The length c e of  an edge e is assumed 
to be a non-negative number, and the length of a tour (n l ,  e l ,  n ; ,  ... 
..., n l, el ,  n 1) is N~=lCei. The Chinese postman problem is to find the 
minimum length postman tour of  a connected graph G. 

If there is an Euler tour in the graph, then it solves the Chinese post- 
man problem. Thus, whenever every node of a connected graph is inci- 
dent to an even number of  edges, the Chinese postman problem reduces 
to simply finding an Euler tour, which is known to exist in such a graph. 

On the other hand, given any postman tour of  G, every edge e is in 
the tour at least once, but perhaps more than once. Let 1 + x e be the 
number of times edge e is in the tour. Let G' be formed from G by 
putting x e additional copies of  edge e in G'. That is, where G had one 
copy of  edge e, G' has 1 + x e copies of  edge e. Then the postman tour 
of  G becomes an Euler tour of  G'. In the graph G', every node is inci- 
dent to an even number of edges. 

Finding the numbers x e of an opt imum postman tour is equivalent to 
the problem of  finding an integer x e >_ 0 for every edge e of  G such that  
~CeX e is minimized subject to 1~e(1 + Xe)  = 0 (mod 2), where the sum 
is over the edges e meeting node i, for each node i of  G. When such x e 

are found, then the graph G' having 1 + x e copies of  edge e has an Euler 
tour which is the opt imum postman tour in the original graph G. 
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The Chinese postman problem can, thus, be separated onto two parts: 
finding optimum x e to the above problem, and then finding an Euler 
tour, which is known to exist, in the resulting graph G'. The more diffi- 
cult part, finding opt imum x e, can be solved by the matching algorithm. 

3. Matching and parity constraints 

In order to describe the Chinese postman problem as a matching 
problem, let the n o d e - e d g e  i n c i d e n c e  m a t r i x  (ane) , n ~ N and e ~ E, be 
defined by 

10 if edge e meets node n ,  
ane = otherwise.  

The problem just described is to find integers x e >__ O, e ~ E ,  such that 

ane (1 "t'Xe)~ 0 (mod 2) 
e ~ E  

and minimizing Z c e x e. The above congruence can be written as 

~_l a n e X  e =- ~ ane ( m o d 2 ) .  
e ~ E  eEE 

The s u m  )2eane is the degree  of  node n; that is, the number  of  edges 
meeting node n. Let b n be zero or one given by 

b n -  ~ ane ( r o o d 2 ) .  
e ~ E  

Thus, b n is zero when the degree of  n is even and is one when the degree 
of  n is odd. Call node n an o d d  n o d e  when b n = 1 and an even  n o d e  

when b n = O. 

The Chinese postman problem can be solved if we can find Xe,  e ~ E ,  

such that: 

X e is integer, e ~ E; (3.1) 
w n is integer, n E N; (3.1') 
x e>_O,  e ~ E ;  (3.2) 
w n > - O ,  n ~ N ;  (3.2') 
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N e ~ E  a n e X e  --  2 W  n = b n ,  n E N ;  

z = ~ c e x e is minimized. 

(3.3) 
(3.4) 

The integer x e represents the number  of  extra times the edge e is 
traversed. In terms of the postman, x e is the number of  times he must 
traverse an edge without  delivering mail. The lengths c e are assumed to 
be non-negative so that x e = 0 for all e ~ E and w n = 0 for all n ~ N is 
an opt imum solution whenever all b n = 0. This observation reflects the 
fact that when every node has even degree, there is an Euler tour. 

The problem (3 .1) - (3 .4 )  is a special case of  the general matching 
problem [7] .  Each variable w n appears in only one equation (3.3), so 
the extension of  the coefficient matrix to include the coefficients of  w n 

does have ~n l aneL<-  2 as required [7, p. 89] .  The variables w n can be 
thought of  as adjoining loops to the graph at each node, where a l o o p  

is an edge with two ends meeting the same node. The edges e ~ E are 
assumed to meet  two different nodes, although allowing loops in E 
does not  change the problem since their use would not  effect the con- 
gruence ~ a n e  x e =- b n (mod 2). The matching polyhedron theorem and 
the matching algorithm thus apply to this problem. 

The matching polyhedron description says that the convex hull of  in- 
teger solutions X e ,  e ~ E ,  w n ,  n ~ N ,  is the same as the polyhedron of  
linear restrictions (3.2), (3.2'), (3.3), and some additional inequalities, 
called blossom inequalities. In order to describe the blossom inequalities 
for this special case, let us say that an edge e m e e t s  a set S of  nodes 
whenever e meets one node in S and one node not  in S. Define an o d d  

s e t  S of  nodes to be a set o f  nodes containing an odd number  of  odd 
nodes (and any number of  even nodes). Then the blossom inequalities 
become 

{x e" e m e e t s S } > _  1 for S an odd set . (3.5) 

The Chinese postman polyhedron is the set of  solutions to (3.2), (3.2'), 
(3.3) and (3.5). This polyhedron is equal to the convex hull of  integer 
points satisfying (3.1), (3.1'), (3.2), (3.2'), (3.3). 

Matching theory also provides us with a good algorithm for solving 
this problem. In fact, the polyhedral description is proven by  showing 
that the matching algorithm will terminate at a solution to (3.1), (3.1'), 
(3.2), (3.2'), (3.3) which is opt imum to the linear program of  minimiz- 
ing (3.4) subject to (3.2), (3.2'), (3.3), (3.5). 

Another  way to use matching algorithms for this parity problem is to 
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reduce the problem to an equivalent 1-matching problem [4, 5].  Begin 
by  finding a shortest path between every pair of  odd nodes. There are 
algorithms available to find all such shortest paths and which require o f  
the order of  [NJ 3 operations [12],  where [NI is the number o f  nodes in 
the graph G. Now form another graph Gp whose nodes are the odd 
nodes of  G and with one edge of  Gp between every pair o f  nodes of  Gp. 
Let the length of  an edge in Gp be the length of  the shortest path be- 
tween the two odd nodes which the edge meets. Let a particular 
shortest path between two odd nodes be associated with the edge in Gp. 
Find an opt imum 1-matching of Gp ; that is, a set M of  edges of  Gp such 
that every node is met  by  exactly one edge of  M and the sum of  the 
lengths in M is minimum. To find the solution x e to (3.1), (3.2) and 
(3.3), for every edge m of Gp in M let x e = 1 for every edge e of  G in 
the shortest path corresponding to that edge m of M. 

To show that the above procedure does solve (3.1), (3.2) and (3.3), 
we first show that no edge e of  G will be in two shortest paths corres- 
ponding to matching edges of  Gp. Suppose the contrary: let edge e o f  
G be in the shortest path from i 1 to i 2 and in the shortest path from Jl 
to 12 and let both paths correspond to matching edges of  Gp. Both paths 
can be assumed to be edge-simple because they are shortest paths in a 
graph having non-negative lengths on every edge. Removing e from both  
paths leaves edges of  G forming a path from i t to /1  (or /2 )  and a path 
from i 2 to ]2 (or ] l)-  The sum of  the lengths of  these two paths is less 
than or equal to the sum of  the lengths of  the two pa ths ; f rom i 1 to i 2 
and from/'1 to/ '2,  corresponding to matching edges. Hence, the sum of  
the lengths of  edges (i 1 ,J1 ), (i2 ,/.2 ) in Gp is less than or equal to the sum 
of  the lengths of  edges (i l ,  i2 ), (/'1, ]'2 )" Therefore, edges (il ,  ]'1 ), (i2 ,]'2 ) 
can replace edges (i 1, i 2), (]1, ]'2) in the matching M of  Gp to give at 
least as good a matching M' and such that the shortest paths in G corres- 
ponding to matching edges of  Gp contain edge e two fewer times than 
previously while containing every other  edge of  G the same number  of  
times. In this way, we can change the matching so that no edge e of  G is 
in more than one shortest path corresponding to matching edges. We 
can, then, assign x e = 1 to every edge e of  G in a shortest path corre- 
sponding to a matching edge. 

The resulting Xe, e ~ E, obviously satisfies (3.1) and (3.2). The re- 
maining question is whether  non-negative integer w n can be found so 
that (3.3) is satisfied. Such w n can be found provided the sum of  the x e 
over e meeting node n is even for even nodes n and odd for odd nodes n. 
This sum over x e in a shortest path corresponding to any one matching 
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edge is even for all nodes except for the two odd nodes at the ends of  
the path. Since every odd node is an end point o f  exactly one shortest 
path corresponding to a matching edge, the result follows. 

We have shown that from an opt imum matching M in G p ,  a solution 
x e to (3.1), (3.2) and (3.3) can be found. That solution must be shown 
to be opt imum to the problem of  minimizing z subject to (3.1), (3.2) 
and (3.3). Consider an opt imum solution. It can be assumed to have x e 

either zero or one, because otherwise x e could be reduced by  two, and, 
by c e >- O, the cost would decrease or remain the same. It is easy to show 
that the edges for which x e = 1 can be part i t ioned into edge-simple 
paths connecting pairs of  odd nodes. The reason is that  an odd number  
of  edges e having x e = 1 meet odd nodes, and an even number meet even 
nodes. We can, thus, begin at any odd node and begin following edges, 
arbitrarily, until another odd node is met. Removing those edges tra- 
versed results in edges e with x e --- 1 for which an even number  meet 
even nodes and an odd number meet odd nodes except for the two just 
connected by a path. Begin again at any remaining odd node and follow 
a path to another odd node. Repeating eventually provides paths be- 
tween pairs of  odd nodes. The only remaining edges e having x e = 1, 

after every odd node is connected by  some path to some other odd 
node, have even degree at each node so can be decomposed into tours, 
if any such edges remain. These x e = 1 can all be reduced to zero with- 
out  violating (3.1), (3.2) and (3.3) and without  increasing z by c e >_ O. 

Therefore, an opt imum solution to (3.1), (3.2) and (3.3) can be repre- 
sented as paths connecting pairs of  odd nodes. Since our opt imum 
matching provided the minimum z for such a collection o f  paths, the 
matching gives an opt imum solution to (3.1), (3.2) and (3.3). 

Returning to the Chinese postman polyhedron (3.2), (3.2'), (3.3) 
and (3.5), we will sharpen that result by giving the polyhedron in terms 
of  x e ,  e ~ E ,  only without  the w n . Consider the set of  x e ,  e ~ E ,  satis- 
fying (3.1), (3.2) and 

a n e  x e =- b n (rood 2),  n ~ N.  (3 .6 )  
e ~ E  

We wish to describe the convex hull o f  (3.1), (3.2) and (3.6) as a poly- 
hedron. In fact, that convex hull is equal to the polyhedron of  solutions 
to (3.2) and (3.5). To prove this result, notice that in (3.3) non-nega- 
tivity of  w n is automatically satisfied whenever all the rest o f  (3.1), 
(3.1'), (3.2) and (3.3) are satisfied. The reason is that 
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2 W  n = ~ ane Xe -- b n , 
e ~ E  

where b n is 0 or 1, so 2 w  n takes on values {0, 1, ...), or { -1 ,  0, I,...). 
If  w n is integer, then 2w n cannot be - I ,  so w n must be non-negative. 
Therefore, (3.1), (3.1'), (3.2) and (3.3) describe the same set of  integer 
points as (3.1), (3.1'), (3.2), (3.2') and (3.3). In other words, we can 
drop the restrictions w n >__ O, n ~ N ,  in the inequalities (3.2), (3.3) and 
(3.5) without changing the polyhedra. 

Considering (3.3), (3.5) and x e >_ O, e ~ E ,  as a system of linear res- 
trictions (3.3), the variables w n can be dropped to give an equivalent, 
reduced system, since any x e >- 0 satisfying (3.5), (3.3) can be used to 
determine Wn,  and the resulting Xe,  w n satisfy (3.3), (3.5), and x e >_ O. 

Therefore, the convex hull of  solutions to (3.1), (3.2) and (3.6) is the 
polyhedron given by x e _>- O, e ~ E ,  

(Xe:  e meets S} _> 1, S an odd set. 

The problem of minimizing z = ~ c  e X e over all x e satisfying (3.1), (3.2) 
and (3.6) is the same as minimizing z over the above polyhedron, that 
is, (3.2) and (3.5). This latter minimization problem is a linear program 
and has a linear programming d u a l  p r o b l e m  involving variables Ys  for 
each odd set S. The dual constraints are 

Ys  >- O, S an odd set, 

{Ys" S: e meets S} <_ Ce, ~ e ~ E ,  

and the objective function is to maximize 

(3.7) 

(3.8) 

" ~ { Y s :  odd s e t s S }  v. (3.9) 

The weak form of the linear programming duality theorem says that v 
given by (3.9) is less than or equal to z = X c  e x e subject to (3.2) and 
(3.5). This result is easily proven by multiplying each inequality (3.5) 
by Ys >- 0 and subtracting from z = Y_,c e x e to give 

(Ce - ~ (Ys" S : e  meet sS}]  X e ~ 2 - -  ~ Ys" ( 3 . 1 0 )  
e ~ E  \ I S 

By (3.8), each coefficient o f x  e in (3.10) is non-negative, so z >_ Z s y  s = v 

by x e >- O. 
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In addition to showing z >_ v, the above argument can be used to de- 
rive sufficient conditions for z = v. Any pair (x  e, e ~ E ) ,  (Ys, odd sets S) 
for which z = u will be opt imum to their respective linear programs. In 
order for z = v, from (3.10) it is clear that 

x e > 0 implies ~ {Ys" S: e meets S} = c e (3.11) 

is needed. However,  z = v still may not  hold if the inequality in (3.10) is 
not equality. That inequality came from multiplying ( 3 . 5 ) b y  Ys and 
Subtracting from "Zc e x e = z.  The inequality will hold with equality pro- 
vided 

Ys > 0 implies ~ { x  e "e  meets S}= 1. (3.12) 

If  both (3.11) and (3.12) hold, then (Xc,  e ~ E )  is an opt imum solution 
to the linear program having constraints (3.2) and (3.5), and (Ys,  odd 
sets S) is an opt imum solution to the dual problem (3.7), (3.8), (3.9). 

The algorithm in Section 4, which is a variant of  Edmonds '  blossom 
algorithm for the matching problem, produces such a pair (Xe,  e ~ E )  

and (Ys, odd sets S) for which x e is integer-valued and satisfies the parity 
constraint (3.6). In the same way, the blossom algorithm finds a 
matching for the general matching problem and a dual solution which 
are opt imum pairs to the linear program over the matching polyhedron 
and its dual linear program. Thus, the algorithm proves the polyhedron 
result, which in turn proves optimality of  the solution generated by the 
algorithm. For this special case, we will recreate that argument. 

Solutions (x  e, e ~ E )  to (3.1), (3.2) and (3.6) can be shown to satisfy 
(3.5), for a given odd set S, by adding (mod 2) the congruences (3.6) 
over n ~ S to give 

{ x  c" e meets S} - 1 (mod 2). (3.13) 

The right-hand side above is 1 because S is an odd set. We use the fact 
(3.1) that x e is an integer in adding these congruences. By (3.2), non- 
negativity of  Xe,  the sum of  x e over e meeting S must be 1, 3, 5 . . . .  , and 
hence (3.5) follows. 

Therefore, the convex polyhedron of  solutions to (3.2) and (3.5) 
contains all of  the (Xe,  e e E )  satisfying (3.1), (3.2) and (3.6). Hence, it 
contains the convex hull of  the (Xe,  e ~ E )  satisfying (3.1), (3.2) and 
(3.6). We show that these two closed, convex sets are equal by  showing 



96 Z Edmonds, E.L. Johnson 

that the minimum of  any linear objective function z = ~'Ce Xe  over the 
polyhedron (3.2) and (3.5) is achieved by a point ( x  e ,  e ~ E )  which also 
satisfies (3.1) and (3.6). Since our two convex sets are unbounded,  we 
must also consider objective functions which can be made arbitrarily 
small. We must show that any linear objective function which can be 
made arbitrarily small using points (Xe, e ~ E )  in (3.2) and (3.5) can also 
be made arbitrarily small using points ( X e ,  e ~ E )  in the convex hull of  
(3.1), (3.2) and (3.6). 

The algorithm will produce an optimum ( X e ,  e ~ E )  over (3.2) and 
(3.5) for any objective function z = Z c  e x e for which c e >_ 0 .  If any 
c e < 0, then z can be made arbitrarily small by increasing that x e ,  be- 
ginning from any point in (3.2) and (3.5). For any point satisfying (3.2) 
and (3.5), increasing any component  x e will not  cause (3.2) or (3.5) to 
be violated. However, this objective function can also be made arbitra- 
rily small using solutions to (3.1), (3.2) and (3.6). For any solution to 
(3.1), (3.2) and (3.6), any component  x e can be increased by a positive 
even integer without violating (3.1), (3.2) or (3.6). So if any c e < 0 ,  

then that x e can be made arbitrarily large by even integer increases in 
x e . Thereby, z can be made arbitrarily small. 

The optimum ( X e ,  e ~ E )  to the linear program of  minimizing z = 
Z c  e x e over (3.2) and (3.5), where c e >_ 0 ,  will satisfy (3.1) and (3.6) 
as well. The polyhedron of  solutions to (3.2) and (3.5) is therefore 
equal to the convex hull of  solutions to (3.1), (3.2) and (3.6) becuase 
they have the same set of  supporting hyperplanes 

~" C e X e ~ Z * ,  C e ~ O  , (3.19) 

where z* is the common minimum value o f z  = ~,c e X e subject to (3.2) 
and (3.5) or (3.1), (3.2) and (3.6). 

4. The blossom algorithm 

The algorithm for solving the parity constraint part of  the Chinese 
postman problem described in Section 3 is first stated. Then we show 
that the steps can be executed, and the resulting solutions x e and Y s  sa- 
tisfy (3.11) and (3.12). The algorithm given here is a variant of  the 
matching algorithm [4, 8] applied directly to the graph G without in- 
troducing loops corresponding to W n . 

The values for x e will be zero or one. If x e = 1, the edge e will be re- 
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ferred to as a matching  edge. An edge e which is not  a matching edge, 
that is x e = 0, is called a non-match ing  edge. We will have nodes which 
are either pseudonodes  or original nodes.  A pseudonode p corresponds 
to an odd set S and will have a dual variable yp (or Ys) associated with 
it. The edges meeting p are the same as the edges meeting S. A single 
odd node of G can be made into a pseudonode.  The original nodes are 
nodes of  G. 

At any given iteration of  the algorithm, we will have a surface graph 

G s made up of  original nodes and pseudonodes such that the odd sets 
corresponding to pseudonodes of  G s are pair-wise disjoint and do not  
include any of  the original nodes of  G s. Every original node of  G will 
either be in G s or will be in exactly one odd set corresponding to a 
pseudonode of  G s. The edges of  G s are the edges of  G which do not  
meet two nodes in the same odd set corresponding to some pseudonode 
of  G s. In Gs, every matching edge will meet at least one pseudonode,  
and every pseudonode will be incident to at most  one matching edge. 
Any pseudonode incident to no matching edge is called a def ic ient  
pseudonode .  

In Gs, a p lan ted  fores t  F will be grown. Initially, G s = G except  that 
odd nodes should be changed to deficient pseudonodes with the same 
incident edges. That is, odd (original) nodes are not  in Gs, but  for each 
one put  a deficient pseudonode,  with the same incident edges, in G s. 
The initial planted forest will be those pseudonodes.  In general, F 
(which need not  be spanning) will consist of  disjoint trees each contain- 
ing one deficient pseudonode. The other nodes of  F will be pseudo- 
nodes, and they will be alternately outer  and inner nodes of  F. The de- 
ficient pseudonodes will be outer nodes, and the other pseudonodes 
will be alternately outer  and inner as illustrated in Fig. 4.1. Pseudonodes 
will be drawn as squares, and matching edges are indicated as wiggly 
lines. Outer nodes are indicated by  a + and inner nodes by  a - .  Each 

- + 

4- - 4- 

- 4 -  - 4 -  

F i g .  4 . 1 .  
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inner node is incident to exactly two edges, one of  which is a matching 
edge. The outer nodes are incident to any number of  non-matching 
edges and to one matching edge, except for the deficient pseudonode, 
which meets no matching edge. The deficient node is called the r o o t  of 
the planted tree. 

Having designated odd nodes as deficient pseudonodes, the algorithm 
will now be stated. Each edge has associated with it a cost c e. Let the 
r ev i s ed  c o s t  c' e initially be equal to c e. Each node n of  G s will have three 
associated numbers: d +, d n ,  Yn" Initially, let d~ = + oo and Yn = 0 except 
that dn + = 0 if n is a deficient pseudonode. Begin with a planted forest 
consisting of  the isolated deficient pseudonodes which are outer nodes 
of the planted forest. For every n in Gs, let 

d n = min{c' e" e meets an outer node (=~ n) and e meets n}. 

Let k n be e giving the minimum above. If  there is no such e, then 
dn = + oo and k n = O. 

S t e p  1. Find the minimum over all n e G s of: 
(a) d n for n not in any planted tree; 

( /3)  1 + ~ ( d  n + d n ) for n an outer node of  a planted tree; 
(3') Yn + d n  for n an inner node of a planted tree. 

Let d* represent the minimum value given by node i of  G s. Go to (A), 
(B) or (C) depending on whether i giving the minimum was case (a), (/3) 
or (3'), respectively. 

(A)(1) I f i  is a pseudonode, then it becomes an inner pseudonode and 
is adjoined to a planted tree along with the edge k i .  The matching edge 
m meeting i is also adjoined to the planted tree. Le t ]  be the other node 
incident to edge m. 

( la)  If  / is a pseudonode, then let ] be an outer node, set d ;  to d*, 
scan node /, and return to the beginning of  Step 1. To scan node / 
means to look at every non-matching edge e of  G s and compare d n to 
d 7 + c' e, where n is the other node of G s incident to edge e. If d 7 + c' e < 

dn ,  then let k n = e and d n = d]  + c'  e .  

( lb)  If  j is an original node, then form a b l o s s o m  B of  node j and all 
matching edges, together with incident nodes, meeting node/ .  We s h r i n k  

P the blossom to form a new pseudonode p, and replace G s by G s, where 
the edges of G' s are the edges of G s which do not meet two nodes of B 
and the nodes of  G' s are p and the nodes of G s except for nodes orB.  
Edges of  G s which meet exactly one node of  B meet p in G' s. 
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+ 

Fig. 4.2. 

Pseudonode p becomes an outer node, dp is set equal to d*, dp is set 
to + ~o, and yp  = 0. Now scan (as in ( la) )  the pseudonode p. Return to 
the beginning of  Step 1. 

(2) If  i is an original node, let k = ki,  and let node n be the other  node 
incident to k. Form a blossom B of  node n, edge k, node i, and all 
matching edges meeting node i, together with incident nodes to such 
matching edges. As in ( lb )  replace G s by Gs/B by shrinking B to form a 
new pseudonode p. 

+ 
Pseudonode p is an outer node, dp is d*, and yp = 0. If  pseudonode n 

was deficient, then so is pseudonode p. For  each edge e of  G (whether 
in G s or not) meeting node n, subtract d* - d~ from the reduced cost 

t 
C e. Change Yn to Yn + d* - d ~ .  The number d* - d n  + is equal to c k, 
where k = k i. Now scan the pseudonode p and return to the beginning 
of  Step 1. 

(B) Let ] be the other node incident to edge k i. If i and ] are in dif- 
ferent planted trees, go to Step 2. Otherwise, i and ] are in the same 
planted tree, and edge k i forms a circuit in that planted tree. 

Nodes i and ] are both  outer nodes, so they both  have alternating 

Fig. 4.3. 

: ig. 4.4, 
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paths to the root  of  the planted trees. These paths meet at some outer 
node m as illustrated in Fig. 4.4. The circuit formed must have an odd 
number of  edges. 

Form a blossom B of the nodes and edges in the odd circuit and 
shrink the blossom to form a new pseudonode p. As in (A)( lb) ,  replace 

G s by Gs/B. 
Pseudonode p is an outer  node, dp is d*, and yp = 0. If  pseudonode 

m is a deficient pseudonode,  then so is pseudonode p. For  each node n 
o f  B, that is, of  the odd circuit, y n will be changed and all incident edges 
e will have c' e changed. A numerical example is given in Fig. 4.5. For 
each node n of  B, replace Yn by Yn + A n ,  where A n = d* - dn + for n an 
outer node and A n = - d *  + d n for n an inner node (of  the planted tree 
before shrinking B). Subtract  A n from every c' e for e meeting node n. 
Scan node p (as in (A)(la))  and return to the beginning of  Step 1. 

(C) This step is reached with an inner pseudonode i for which 
d*  = Yi  + d [ .  

(1) Begin by adding Yi to every edge e meeting pseudonode i and 
changing Yi to zero. 

(2) E x p a n d  pseudonode i, that is, recover the blossom B which was 
shrunk to form pseudonode i and, also, the edges not  in B which meet 
two nodes of  B. The nodes of  B may be pseudonodes,  but  they are not 
expanded. Let G 1 be defined by G s = GLIB,  and replace G s by G 1. 
Thus, delete node i from G s and adjoin the nodes and edges in the ex- 
pansion of  i to G s. 

(3) Some matching and non-matching edges may need to be swapped 
in order to keep one matching edge incident to every pseudonode orB.  
This change is exactly as in Step 3 when pseudonodes are finally ex- 
panded. However, none of  the pseudonodes of  B are expanded here, 
only the pseudonode i is expanded to recover B. 

(4) At this point, the planted tree is grown to include as much of  B 

/1=-4  A = 4  A = - I  A= I 
d- =11 d+--ll d-:14 d*=14 

A = 5  . I - ~ ^ ^ ^ f - ~ ' l  3 I-7-I  . . . .  f ' T ]  

d-=12 d"=12 
A=-3 A=3 

F i g .  4 . 5 .  
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Fig. 4.6. 
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as possible. This part of  (C) is much like (A) and will be considered in 
detail for the three different types of blossoms. In every case, there is 
a non-matching edge down toward the root from pseudonode i and a 
matching edge up from the root meeting i. Both edges meet outer nodes. 

(a) The blossom may consist of an odd circuit as illustrated in 
Fig. 4.6. In this case, there is always an alternating path from the non- 
matching edge to the matching edge. This path becomes part of  the 
planted tree with the nodes alternately inner and outer, d~ for outer 
nodes n equal to d [ ,  and d n for inner nodes n equal d~-, as well. 
These new outer nodes should be scanned as in (A)(1 a). 

The remainder of B (the part of the circuit not  in the alternating 
path) consists of  matching edges meeting two pseudonodes. For all of  
these nodes, say node n, let 

t d n = min{d[ + Ce : e meets an outer node i and e meets n}. 

Let k n be the e giving this minimum. If there is no such e, let d n = + oo 
and k n = 0. This part of  (C) is similar to the initialization o f  d n before 
Step 1 started except that  here we use d~. + c'  e instead of  c e (these d~ = 0 

F 
and c e = c e) .  Return to the beginning of  Step 1. 

(b) The second type of  blossom B has one original node and all 
matching edges as shown in Fig. 4.7. In this case, immediately reform 
the two outer nodes and the nodes and edges of  B into a new outer 
node as in (A)(2). Here, for each of the two outer nodes n, subtract 
d*  - d n from c' e for every incident edge e and add d*  - d n to Yn" The 
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]÷ 

Fig. 4.7. 

d"=d"* 

new pseudonode p should be an outer  node with d~ = d*. Scan pseudo- 
node p and return to the beginning of  Step 1. 

(c) The third type of  blossom B has one original node and one non- 
matching edge as shown in Fig. 4.8. In this case, we form a new pseudo-. 
node of  the outer node down toward the root together with the edge to 
the original node and incident matching edges. The other node ] of  B 
becomes an inner node with di7 = d*. The remainder of this step is ex- 
actly the same as (A)(2). 

Step 2. This step is reached with d* = ½(d + + d[  ) for some outer 
pseudonode i with edge k i meeting node j in a different planted tree 
than i. 

(A) There is an augmenting path including edge k i and the planted 
forest; that is, a path with edges alternately matching and non-matching 

E1 

E 

i 

~. 4.8. 

E> 

- d ~ = d ' *  

[i~ = d* 
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such that the ends of  the path are deficient pseudonodes. The reason is 
that in a planted tree there is always an alternating path from an outer  
node to the root. Fig. 4.9 illustrates this situation. We augment by 
swapping matching and non-matching edges along the path as indicated 
in Fig. 4.9 by the line below the path. After augmenting, the deficient 
pseudonodes are no longer deficient. Remove both trees from the 
planted forest. 

(B) For every node n of  Gs,  if both d + and d n are greater than or 
equal to d*, leave Yn as it is. Otherwise, n is in a planted tree. If n is 
an outer node, then d + < d*. Replace Yn by Yn + ( d *  - d+n), and sub- 

t 
tract d* - d  + from c e for every edge e (matching or non-matching) 
which meets node n. If  n is an inner node, then d n < d*. Replace Yn 

by Yn - ( d *  - d n ) and add d* - d n to c'  e for every edge e (matching or 
non-matching) which meets node n. 

If  there are no more deficient pseudonodes, go to Step 3. Otherwise, 
for each node n let 

t d~ = min{d + +Ce: e meets an outer node i (~ n) and e meets n} 
e 

and let k n be the e giving the above minimum. If no such e exists, let 
dn = + oo and k n = 0. Return to Step 1. 

S t e p  3. We now recover an opt imum solution by specifying which X e 

should be set equal to one. For edges e in Gs,  let x e = 1 if e is a matching 
edge. The pseudonodes of  G s will next be expanded to recover the 
blossom and to determine which e of  the blossom should have x c = 1. 

Then the pseudonodes of  the blossoms will be expanded successively 
until all pseudonodes have been expanded. There are three types of  
blossoms, and we consider each type. 

(A) A blossom may consist of  an odd circuit as in Fig. 4.10. When 
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x/xl~ 

Fig. 4.10. 

formed, node 1 in Fig. 4.10 was either deficient or incident to a matching 
edge meeting only one node of  the blossom. However,  any node may 
now be incident to such an edge, but only one node will be. From any 
node, there is an alternating path, beginning with a matching edge, to 
node 1. Thus, we can change the matching edges so that every node 
meets exactly one matching edge. For  example, in Fig. 4.11, we can 
change the edges by swapping the matching and non-matching edges on 
the path 2, 4, 5, 3, 1 as illustrated in Fig. 4.11. Now let x e = 1 for the 
matching edges of  the blossom. All of  the pseudonodes of  the blossom 
can now be expanded. 

(B) The second form of  a blossom is a single original node together 
with any number of  matching edges meeting it as illustrated in Fig. 
4.12(a). When formed, the original node was either an odd node inci- 

Fig. 4.11. 

(a) 

Fig. 4.12. 

(b) 
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dent to no matching edge or was incident to a matching edge which met 
only that node of the blossom. If the matching edge meeting the pseudo- 
node should still meet the original node, then let the edges of the blos- 
som remain matching edges. However, if the incident matching edge 
meets a pseudonode as in Fig. 4.12(a), then change the edge of the 
blossom meeting that pseudonode to be non-matching as in Fig. 4.12(b). 
The pseudonodes of the blossom can now be expanded. 

(C) The third form of a blossom is shown in Fig. 4.13(a). The original 
node meets one non-matching edge of the blossom and any number of 
matching edges. The pseudonode not incident to a matching edge of the 
blossom was either deficient or incident to a matching edge meeting 
only one node of the blossom when the blossom was formed. However, 
any node may now be incident to the matching edge which meets the 
blossom. If the original node is incident to it, then change the non- 
matching edge of the blossom to be a matching edge. If another pseudo- 
node is met by it, as in Fig. 4.13(a), then swap the matching and non- 
matching edges as shown in Fig. 4.13(b). 

The description of the algorithm is now completed. 

There are several features of the algorithm which require some discus- 
sion before proving the optimality conditions (3.13) and (3.14). 

First, let us show that the solution Xe, e ~ E, does in fact satisfy (3,3), 
that is, odd nodes are met by an odd number of matching edges and 
even nodes by an even number. The augmentations in Step 2 are not 
directly concerned with original nodes of G since all of the nodes of the 
augmenting path are pseudonodes. Only when the pseudonodes formed 
by shrinking blossoms in Step l (A)( lb)  and (A)(2) are expanded do 
the original nodes come directly into view. An augmentation made in 
Step 3(B) of (C) keeps the same number (modulo 2) matching edges in- 
cident to the original node, except in case (B) when the pseudonode 
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was a deficient pseudonode. In that case, the pseudonode consists of a 
single odd node. When that pseudonode is expanded, the odd node will 
meet one matching edge. If the pseudonode is expanded in Step I(C), 
then the odd node will henceforth meet an odd number of matching 
edges. 

Clearly, the algorithm maintains the conditions that every pseudo- 
node is incident to at most one matching edge and every matching edge 
meets at least one pseudonode. At the conclusion of the algorithm, 
there will be no more deficient pseudonodes, and every pseudonode 
will be incident to exactly one matching edge. 

Next, we show that pseudonode variables Yn correspond to odd sets. 
In order to make this correspondence clear, define the c o m p l e t e  expan-  

sion ofa  pseudonode p to be the subgraph of G obtained by successively 
expanding pseudonode p and all pseudonodes in that expansion until 
only original nodes remain. The complete expansion, then, has nodes S, 
which are a subset of the original nodes of G, and all edges meeting two 
nodes of S. We wish to show that every such S will be an odd set. Recall 
that an odd set is a set of nodes of G containing any number of even 
nodes and an odd number of odd nodes. This result could be proven by 
induction at the time pseudonode p is formed. Alternatively, the proof 
which follows uses the integrality of x e and reveals again the motivation 
for the inequalities (3.5). 

We have shown that, at the conclusion of the algorithm, odd nodes 
are met by an odd number of matching edges and even nodes are met 
by:an even number of matching edges. In other words, condition (3.6) 
is satisfied: Zane x e -~ b n (mod 2). Adding for n E S gives 

{ ; ( m o d 2 )  f o r S a n o d d s e t ,  
{x e" e meets S} - (mod 2) otherwise, 

by x e being integer. In our case, the sum above is equal to one, and 
hence S must be an odd set. 

Therefore, Xe, e ~ E,  satisfy (3.1), (3.2) and (3.6) and yp do corres- 
pond to variables Ys of Section 3, where S is the node set of the com- 
plete expansion of p and is an odd set. We also know that Xe, e ~ E, 

satisfy all of (3.5) because.they satisfy (3.1), (3.2) and (3.6), and that 
(3.12) is true because every pseudonode is incident to one matching 
edge. It remains to be shown that yp a r e  non-negative, and that (3.8) 
and (3.1 1) hold. 

The only time any Yn ,is lowered is in Step I(B) or Step 2(B). In both 
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cases, n o  Yn could become negative because d* is 
Yn + d n  (see Step 1(3')). 

We now turn to the proof  of  (3.8): 

always limited by  

{Ys: S incident to e } <__ Ce, e E E.  

We use  y p  and Ys interchangeably, where S is the node set of  the com- 
plete expansion of  p. Initially, the Ys are all zero and c e >- O, so it is cer- 
tainly true then. Also, it is clear that 

p 

Ce = Ce --~-J{Ys:  S i n c i d e n t  to e}. 

Since c' e is changed by --A for all e meeting S whenever Ys is changed by  
4 .  Hence (3.8) is equivalent to c' e >- O. 

The algorithm may allow some Ce to become negative in Step 1, but  
the changes in Step 2(B) will restore non-negativity. What will be shown 
is slightly more general: at any time that Step 1 is executed,  changing 

t r _ _  

Yn and c e as in Step 2(B) would restore c e > O. 
Suppose at the beginning of  Step 1, using a previously assigned value 

of  d*, making the changes as  in Step 2(B) would keep c' e >- O. That 
t change is to decrease e e by d* - d + for outer  nodes n and e meeting n 

and increase c' e by d* - d n for inner nodes n and e meeting n. The only 
f t  e effected are in the surface graph G s. Let us define c e to be this 

changed value. If edge e of  G, meets node i and ] of  Gs, then 

t t . .~ 

de 

P 

C e + d + + d ;  - 2 d* 
l 

C e + d + - d*  
f 

Ce +d+ - d ~  , 
' d *  c e - d ?  + 
f 

C e , 

i and ] outer  nodes ,  
i outer  and ] not p lan ted ,  
i outer  and j inner ,  
i not planted and ] inner ,  
i and ] not p l an ted .  

t t  The only c e which decrease as d* increases are the first two cases: i and 
] outer,  i outer  and ] not  planted. 

If i and ] are outer  nodes, then when i becomes an outer  node, it was 
f scanned so d~ <_ d + + c e. Hence, 

? r  ~ _ _  , C e = C e  +d~. + d f  - 2 d * > d  7 + d T - 2 d *  

f f  

and c e >- 0 provided 
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a ,  <_ + d ? ) .  

Case (13) of  Step 1 assures that d* will satisfy this inequality. 
If  i is an outer node and / is not in a planted tree, then when i be- 

t came an outer  node, it was scanned, so as before d [  <_ d[. + c e.  Hence, 

t t  ¢ 

C e =C e + d  + - d * >  cl~ - d *  

and c '  e' >_ 0 provided d* <_ d [ .  The increase in d* in Step 1 is limited by  
case (a), which assured the above inequality. 

In Step 1, some Y n  are changed in (A)(2) and (B) when a blossom is 
shrunk. In addition to the above argument, we must  show that those 
changes do not make any c '  e' negative. The change in Step I(A)(2) is 
easily justified. There, Y n  is increased by d* - dn +. But that change is 

t t  H precisely the same as made in forming Ce ,  so c e does not change at all. 
t t ?  Furthermore,  edges meeting two nodes of  the blossom will have c e = c e 

after making this change. An edge e meeting only one node of  the blos- 
H som will meet the new pseudonode p and will have c e unchanged since 

dp = d* so d* - dp = 0. The pseudonode p will be scanned at this point. 
Henceforth,  d* - d p  enters into the expression for c e' for any edge e 
meeting pseudonode p. In Step I(B), the changes are again exactly the 

r ?l + changes in c e made in forming c e . The new pseudonode p has  dp = d*, 
as in Step l(A)(2),  so d* - d~ = 0. 

Condition (3,1 1) remains to be shown; that is, c '  e = 0 for any matching 
H edge. This condition will be shown by proving that c e = 0 for any edge 

I e in a planted tree, and c e = 0 for any edge e in a blossom. The only 
time an edge is made a matching edge is in an augmentation in Step 2 or 
in an expanding a pseudonode. 

In Step 1 (A)(1), when the planted forest is extended to include edge 
r t  t 

k = k i ,  c k = 0 since d + + c k = d}-, where k meets node n, an outer  node, 
because edge k i was  SO designated when d i was determined. In both  
cases, (A)( la)  and (A)( lb) ,  the matching edge adjoined to the planted 

t !  forest has c e "- 0 as well. 
The only other time the planted forest becomes larger is in Step 1 (C) 

when a pseudonode is expanded and some or all of  the blossom adjoined 
t t !  to a planted tree. The edges of  the blossom all have c e = 0, and c e = 0 

as assured by setting d + = d~ for the two incident nodes i and/ '  (see 
Figs. 4.6, 4.7 and 4.8). 

Consider now the case of  a blossom forming and being shrunk. We 
wish to show that c '  e = 0 for every edge e of  the blossom. With one ex- 
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t f r  ception, this fact follows from making the changes in Yn so that c e = c e . 

The one exception is the edge k = k i in Step I(B) because that edge is 
not in the planted forest. The value of  c~, after the changes in Y i  and y/ ,  

is 

c' k - ( d * - d  7 ) - ( d * - d  [ )  = d [  + d  +" 2d* 

because d~- = c~ + d2. But d * =  ½ ( d [  + d~.), so c i becomes zero after 
the change. 

5. Euler tours 

In Section 3, we saw that matching theory provides us with an algo- 
rithm for the minimum length way to adjoin duplicate edges of  G to 
form a graph G' having even degree. In Section 4, an algorithm to do so 
was given in detail. However,  given an even-degree graph G', we are still 
left with the  problem of  actually finding an Euler tour, which is known 
to exist in G'. This section will be concerned with graphs G in which 
there exist Euler tours and will give methods for finding such a tour. 

A tour  was defined to be an alternating sequence 

( n l  , e l  , rt2, e2 ,  n 3 ,  ..., rll, el,  lll+ 1 =/7 1) 

of nodes and edges such that edge e i meets the (distinct) ;nodes n i and 
ni+ 1 . Before discussing algorithms, two ways of  representing tours will 
be described. The two main algorithms produce these two different re- 
presentations of  an Euler tour. The edge-pairingrepresentation is similar 
to the alternating sequence definition just given. That sequence can be 
thought of  as providing the next edge ei+ 1 by which to leave node ni+ 1 

given that we reached node ni+ 1 by edge e i. That is, the edges e i and ei+ 1 

meeting node ni+ 1 are thus paired together. The first description of  a 
tour is to provide for each node a list (e 1, e2) , ..., (ei, ei+l) o f  all such 
ordered pairs of  edges meeting at that node. 

The next-node representation is to list for each node n, the nodes, in 
order, that we go to when leaving node n. Let this list.,be denoted 
Ln(1),  Ln(2) . . . .  , L n ( k ) .  The first time node n is reached, leave it by  
going to node L n ( k ) .  The second time node n is reached, leave it by 
going to node L n ( k  - 1). 

Both representations require, in addition, the starting node. The edge- 
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pairing representation must treat the first and last edges of  the Euler 
tour in a special way. Our convention will be that the starting node will 
include in its list o f  edge pairs the pairs (0, e 1 ) and (ek, ~) ,  where e 1 is 
the first edge of  the tour  and e~ is the last edge of  the tour. 

A tour  can be easily followed given either description. However, to 
convert one description to the other requires actually tracing out  the 
tour. Furthermore,  the only way to tell whether the edge-pairing repre- 
sentation actually gives a tour is to try to follow the tour specified. 
Theorem 5.1 gives a necessary and sufficient condition for the next- 
node representation to give an Euler tour. 

The first algorithm gives the end-pairing representation of  an Euler 
tour, and the second algorithm gives the next-node representation. Al- 
though the. algorithms are similar, they give different descriptions o f  
possibly different Euler tours. The first algorithm obviously gives an 
Euler tour, but  the p roof  that the second one does so is not  trivial. 

Both algorithms begin by tracing out  a simple tour which may not 
include all edges. Then, begin at any node n o of  the tour  incident to 
edges not  in the tour  and complete a second simple tour  not including 
any edge of  the first one. The two algorithms move through the graph 
in the same way but  produce different tours represented differently. 
In the first algorithm, if e 0 is the first edge leaving node n o in the 
second tour  and e L is the last edge entering node no, then for any edge 
pair (e l ,  e 2) of  the first tour  meeting node no, swap the edge-pairings 
by replacing (el ,  e2) by (el ,  e 0) and (e L , e2). This swap has the effect 
of  interjecting the second tour into the first one. The new tour  formed 
will follow the first one until edge e 1 is traversed to reach node no, 
then follow the second one until it is completed, and then follow the 
first one again. The new tour  is longer than the first one. This procedure 
can be repeated until every edge is in the tour. 

For  completeness and for comparison with the second algorithm, we 
restate this algorithm in more formal terms. 

5.1.  E n d - p a i r i n g  a l g o r i t h m  

S t e p  O. Let r be any node. Let both n o and n initially be equal t o  r. 
Let e r be any edge meeting node r, and let e 1 be equal to 0, e 2 be equal 
to ,~, and e 0 be equal to e r. All edges are unpaired. Let e be equal to e r. 

Go to Step 1. 
S t e p  1. Let n' be the node other than n incident to edge e. If  there is 

an edge e' with an end meeting n' which is not  yet paired, go to Step 2. 
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Otherwise, n' must be equal to n 0 .  In that case, form the edge pairs 
(el ,  e 0) and (e, e2) meeting node n o . Go to Step 3. 

Step  2. Pair the edges e and e' meeting n'. Change n to be n' and e to 
be e'. Go to Step 1. 

Step  3. Change n o to be any node which has at least one pair (et ,  e2) 
of  edges meeting it and at least one unpaired edge also meeting it. Let 
e 0 be an unpaired edge meeting n 0. Let n be set equal to n o and e be 
set equal to e 0, and go to Step 1. If  no such node n o exists, terminate. 

The second algorithm will produce a description of an Euler tour  by 
giving a list of  nodes Ln(1), Ln(2) . . . .  , L n ( k )  to go to when leaving node 
n. In the way it moves through the graph, it is exactly the same as the 
preceding algorithm. However, the Euler tour produced may be diffe- 
rent. For one thing, the edges will be traversed in the opposite direction 
from the way they are traversed during the algorithm. 

5.2. Nex t -node  algori thm 

S tep  O. Let r be any node. Let n o and n initially be equal to r. Let 
k i = 0 for all nodes i. Let e be any edge meeting node n. All edges are 
unused. 

Step  1. Let rn be the node other than n incident to edge e. Let k m be 
changed to kin+ 1 and for this new value of  k m let L m (k m ) = n. Edge e is 
now used. If  node rn has any incident, unused edges, go to Step 2. 
Otherwise, node rn must be equal to n 0. In that case, go to Step 3. 

Step  2. Let n be changed to rn and let e be any unused edge incident 
to rn. Go to Step 1. 

Step  3. Let n o be any node which has at least one used edge meeting 
it but with at least one unused edge meeting it, say edge e. Let n be 
changed to n o and go to Step 1. If no such node n o exists, terminate. 

To follow an Euler tour  using the next-node representation produced 
by the above algorithm, the first time node n is reached we will leave it 
by going to node L n ( k  n ) which is the last node we reached node n from 
in Step 1 of  the algorithm. The second time n is reached, we will leave 
it by the next to last node we reached i[ from in Step 1. Notice that  the 
direction specified for an edge to be traversed by the Euler tour  is from 
n to Ln( i )  and is opposite from the direction the edge was traversed 
during the algorithm. 

The proof that  this algorithm will produce a next-node representation 
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of an Euler tour will be in two parts summarized by the two theorems 
below. 

Theorem 5.1 [ 1]. Let  r be any node o f  an even, connected graph G. 
Next-node lists for  G describe an Euler tour i f  and only i f  all o f  the fol- 
lowing hold: 

(i) the list L n ( l ) ,  . . . ,  L n ( k  n ) for  every node n has length k n equal to 
one-half o f  the degree o f  n; 

(ii) the number  o f  edges meeting both nodes n and m is' equal to the 
number o f  times n = L m ( i )  plus the number  o f  times m = L n (i); 

(iii) the edges (n, L n (k n )), for  n ~ r, form an arborescence with root 
r, where the direction o f  each edge is f rom n t o  l n ( k n ) .  

An arborescence T with root r is defined to be a tree with a direction 
assigned to each edge so that  every node n except n = r has exactly one 
edge of  T directed away from n, and node r has no edges of  T directed 
away from it. 

Theorem 5.2. The next-node lists created by the next-node algorithm 
satisfy Theorem 5.1 (i), (ii) and (iii). 

Proof  o f  Theorem 5.2. Condition (i) is clear because every time we 
reach node m in the algorithm, we use two edges and add one more 
entry L m ( k  m ) to the next-node list. Condition (ii) is true because once 
an edge is used it appears in a next node list. 

Condition (iii) is easy to verify from the fact that the edge (n, L n (1)), 
n ~ r, is the edge which node n is first reached by in the algorithm. 
Whenever a new addition is made to the next-node list for node n, the 
new node becomes L n (k n), k n >_ 2. The entry L n (1) never changes. 

Thus, the edges (n, L n (I)) remain fixed, and every time a node is first 
reached during the algorithm a new edge is adjoined to the collection T 
of  (n ,Ln(1) ) .  At the time edge (n, Ln(1) )  is first adjoined to T when 
node n 4= r is first reached, it is the only edge of T meeting node n and 
becomes the unique edge of  T directed away from n. That T is spanning 
is assured by the fact that Step 3 always begins with a node n o which 
has been previously reached so that it is in the arborescence. 

Proof  o f  Theorem 5.1 (see [ 1 ] and [3, p. 169] ). First, conditions (i), 
(ii) and (iii) are true for an Euler tour. (i) and (ii) are obviously true 
since an Euler tour leaves a node once each time it enters it and uses 
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each edge once. It is also obvious that the collection T of  edges 
(n,  L n ( k  n ) )  from n to L n ( k  n )  for n ¢ r includes exactly one edge di- 
rected away from n for n ¢ r. Every set S of  nodes not containing r 
must have at least one edge of T directed from a node of  S to a node 
not in S. Otherwise, the Euler tour would eventually reach S and stay 
in S. Therefore, T must form a connected graph including every node of  
G. Since T has one fewer edge than nodes of  G and is connected, it 
must be a tree. Hence, (iii) is true. 

Consider the converse. Suppose (i), (ii) and (iii) are true. If we begin 
at node r and follow the tour specified by the next-node lists, by (i) 
and (ii) we will eventually return to r having traversed every edge 
meeting r. Suppose this tour fails to be an Euler tour because some 
edges have not been traversed. Consider the set S of nodes incident to 
edges which have not been traversed. In particular, for n ~ S the edge 
(n,  L n (1)) will not have been traversed since that is the last edge speci- 
fied by the next-node list. Also, r ~ S by the previous remarks. 

By (iii), the edges (n,  L n (1) ) ,  n = r, form an arborescence T. For any 
n ~ S there is a unique path from n to r in T. Along this path there is a 
node of S closest to r; that is, a node n ~ S such that m ~ S for m on 
the path from n to r in T. In particular, m = Ln(1)q~ S, so every edge 
meeting m has been traversed. Therefore, edge (n, Ln(1)) has been tra- 
versed. Thus, a contradiction is reached since for n ~ S,  (n ,  L n (1)) has 
not been traversed. Therefore, S must be empty and the tour  must be 
an Euler tour. 

The advantage of the next-node algorithm is that it offers opportuni- 
ties to improve the algorithm not afforded by the edge-pairing algorithm. 
In the next section, we present an improvement of  the algorithm and 
some variations of the Euler tour problem. The improvement on the 
algorithm is based on the fact that the algorithm can be terminated 
with a partial next-node representation. While considering this improve- 
ment, a more general problem will be treated. For now let us discuss 
some other algorithms for the Euler tour problem. 

A method sometimes given for finding an Euler tour is an "isthmus- 
avoiding" algorithm [3].  This algorithm is to begin at any node r and 
take any edge not yet  used as long as removing the edge from the set of  
unused edges does not disconnect the graph consisting of  the unused 
edges and incident nodes to them. That this algorithm will produce an 
Euler tour is not obvious and is an interesting theorem. Practically, 
however, the algorithm would require an excessive amount  of  work be- 



114 J. Edmonds, E.L. Johnson 

cause of  the necessity of repeatedly determining whether or not  an edge 
is an isthmus in the graph of  unused edges. 

Our first two algorithms specified an Euler tour without  actually tra- 
versing it. In order to actually traverse an Euler tour, there is an inte- 
resting variation of  the next-node algorithm which could be called a 
"maze search" Euler tour algorithm. This algorithm traverses each edge 
twice. The edges, in the order which they are traversed the second time, 
form an Euler tour. 

If the postman was told which streets are on his route without  being 
given a map, he could use this algorithm to find an Euler tour while 
walking over every street exactly twice. 

5.3. Maze-search  a lgor i t hm  

S t e p  O. Let r be any node. Let n initially be equal to r. Let k s = 0 for 
all nodes i. Let e be any edge meeting node n. Let t i = 0 for all nodes i. 

S t e p  1. Let rn be the node other than n incident to e. Let k m be 
changed to km+ 1 and let L m ( k  m ) = n for this new value o f  k m . Edge e 
is now used.  If node m has any incident, unused edges, go to Step 2. 
Otherwise, go to Step 3. 

S t e p  2. Let n be changed to be equal to m and let e be any unused 
edge meeting node m. Go to Step 1. 

S t e p  3. Let l ='L m ( k  m - t m ) and then change t m to be t i n +  I . If there 
are any unused edges meeting node l, let e be such an edge, let n be 
equal to l, and go to Step 1. Otherwise, let m be equal to L and repeat 
Step 3 rn = r and k m = t m in which case, terminate. 

The postman traverses each edge twice. The first time he does so, he 
indicates at the node reached that that edge is to be traversed the next 
time in the opposite direction and records this edge as being the last 
edge by which the node is reached. He leaves the node by any unused 
edges if there are any. Otherwise, he leaves it by the last edge with 
which he reached the node and which has not  been traversed twice. 
Every time he reaches a node, he must check for unused edges. 

This algorithm is actually a special implementation of  the next-node 
algorithm because Step 3 here is a way to carry out Step 3 of  that algo- 
rithm while simultaneously traversing the final Euler tour. This algo- 
rithm would be a way to carry out the next-node algorithm if one must 
move from node to node along an edge and cannot obtain node infor- 
mation until the node is reached. 



Matching, Euler tours and the Chinese postman 115 

6. The mixed Euler tour problem 

An edge is directed away f rom node i toward node j if it meets nodes 
i and j and must be traversed from i to j in any tour. Previously, all 
edges have been undirected: they could be traversed in either direction. 
A mixed  graph is a graph in which some edges are directed and some 
are undirected. A postman may encounter a mixed graph if he has some 
one-way streets on his route. 

In case all edges are undirected, the algorithm given in this section is 
an improvement on the next-node algorithm of Section 5. The algorithm 
here can be used for mixed graphs which are connected, even degree, 
and symmetric. 

A symmetr ic  mixed graph is a mixed graph such that  every node n 
has the same number of  edges directed away from n as directed toward 
n. Fig. 6.1 shows a symmetric graph. 

The degree of  a node of  a mixed graph is the total number of edges, 
regardless of  direction, meeting the node. An even mixed  graph is a 
mixed graph with each node having even degree. A mixed graph is con- 
nected if it is connected when the directions on the edges are ignored. 

When all of  the edges of  a connected graph are directed and the graph 
is symmetric, there is a particularly simple and attractive algorithm for 
specifying an Euler tour. The algorithm begins by finding a spanning ar- 
borescence of  G. Recall that  an arborescence with root node r is a tree 
T such that every node n of T, except n = r, has precisely one edge of  
T directed away from n. 

Finding a maximal arborescence T of  a directed graph G is easy. 
Given an arborescence T, adjoin to T any edge directed toward a node 
of T and away from a node not in T. When no such edges exist, the ar- 
borescence is maximal. Further, any maximal arborescence T will be 
spanning if G is symmetric, connected and directed. The reason is that  

Fig. 6.1. 
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every set S of  nodes will have the same number of  edges directed away 
from a node of S and toward a node not in S as edges directed toward 
a node of  S and away from a node not in S. Thus, every arborescence 
can be extended to a spanning arborescence in an easy way. 

The algorithm to find an Euler tour in a directed, symmetric, con- 
nected graph G is to first find a spanning arborescence of  G. Then, at 
any node n, except the root r of  the arborescence, specify any order for 
the edges directed away from n so long as the edge of  the arborescence 
is last in the ordering. For the root r, specify any order at all for the 
edges directed away from r. 

This algorithm was used by van Aardenne-Ehrenfest and de Bruin to 
enumerate all Euler tours in a certain directed graph [ 1 ]. Before show- 
ing that it will produce an Euler tour, we introduce a slightly more 
general case. 

The first mixed graphs which we will consider are graphs with both  
directed and undirected edges such that the directed edges form a sym- 
metric, connected spanning subgraph of  G. Every node is, then, met by 
two or more directed edges, and the directed edges form a connected 
graph. The undirected edges are required to be an even degree subgraph 
of  G but need not be connected. 

In such a graph, a maximal arborescence is still spanning. Given a 
spanning arborescence, the undirected edges meeting a given node can be 
ordered in any way and the directed edges away from a given node n 
can be ordered in any way as long as the edge of  the arborescence di- 
rected away from n is last in the ordering. 

With this ordering of  undirected and directed edges at each node n, 
an Euler tour  is found by beginning at the root r of  the arborescence 
and following the rule below. 

Rule. Whenever node n is reached, leave node n by the next unused, 
undirected edge if one is available. If  all undirected edges have been 
used, then leave node n by the next unused edge directed away from n. 

We now prove that this rule will produce an Euler tour. The Euler 
tour begins at root  r and leaves by an undirected edge if any meetr ,  The 
node reached must have an unused, undirected edge because there are 
an even number of  undirected edges meeting each node. Hence, we will 
use an undirected edge to leave that node. This process will continue, 
using only undirected edges, until node r is returned to and there are no 
remaining unused, undirected edges meeting r, At that point, we leave r 
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by using an edge directed away from r (there is at least one). The node 
n reached may have unused, undirected edges which meet it. If so, we 
will use undirected edges until eventually returning to n with no more 
unused, undirected edges meeting n. At that point, leave n using an 
edge directed away from n but not in the arborescence unless that 
edge of the arborescence is the only edge directed away from n. Each 
time a node n is first reached by an edge directed toward n, we will use 
all of  the undirected edges meeting n before continuing with a directed 
edge, directed away from n. 

To show that every edge is traversed is easy using Theorem 5.1. If we 
follow a tour specified by the rule and record the next-node description 
of  the tour, the three conditions of  the theorem are satisfied. The on- 
ly difficulty is showing condition (iii), and it is satisfied because we 
start with a spanning arborescence from the directed edges. 

Consider now a more general case. We drop the requirement that  the 
directed edges form a spanning, connected subgraph of G and only re- 
quire that G itself be connected, even, and, as before, that G be sym- 
metric. The algorithm for finding an Euler tour in G will consist of  as- 
signing directions to enough undirected edges so that the resulting mixed 
graph is still balanced and so that the directed edges are spanning and 
connected. 

To avoid confusion, an undirected edge is called assigned if we have 
specified a direction from the edge. A node will be called virgin if we 
have not yet  encountered it in the algorithm. Initially, all nodes are vir- 
gin. 

A substep of  the algorithm is to extend the arborescence using di- 
rected edges, which means to look at all edges directed toward a speci+ 
fled node n and see if the other end of  such an edge meets a node m 
which is Virgin. If  so, include edge (rn, n) in the arborescence and extend 
the arborescence from node m. Node rn then becomes a reached node 
and loses its virgin status. 

Another  sub~tep is to scan a node n, which means to look at all un- 
directed edges e meeting node n and see if the other node m incident to 
e is virgin. If  so, assign e the direction away from rn toward n, adjoin 
edge e to the arborescence, and move to node rn (let n be set equal to 
m), 

The algorithm is given below. 

Step O. Label all nodes as virgin nodes. Choose any node r, let n be 
set equal to r, and go to Step 1. 
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Step 1. If  n is virgin, relabel it as reached instead of  virgin and, 
starting at node n, extend the arborescence using directed edges. If n = r 
and the arborescence becomes spanning, terminate. Otherwise, go to 
Step 2. 

Step 2. If n is reached, scan it. If a virgin node rn is found, go to Step 
1 (with n set equal to m). Otherwise, n becomes scanned, and go to 
Step 3. 

Step 3. When n is scanned, let e be any unassigned, undirected edge 
meeting n. Let m be the other node incident to e. Assign e the direction 
away from m and toward n, let n be set equal to rn, and go to Step 2 
(m cannot be virgin if n is scanned) unless rn is equal to r and the arbo- 
rescence is spanning in which case terminate. 

Every node is either virgin, reached, or scanned. The algorithm ter- 
minates when there are no more virgin nodes and when n = r. Clearly, 
no remaining virgin nodes is equivalent to the arborescence being span- 
ning. 

At termination, every node is still symmetric, considering both di- 
rected and assigned edges, because we return to r and along the way as- 
sign an edge away from each node n and then toward n. Furthermore, 
the directed and assigned edges form a spanning subgraph of G because 
the arborescence is spanning. The undirected, unassigned edges still have 
even degree at each node because an even number of  undirected edges 
meeting a given node have been assigned a direction. Thus, the rule pre- 
viously given will now enable one to actually trace out an Euler tour. 

I f  a graph G has only undirected edges and is even degree and con- 
nected, then the algorithm just given can skip Step 1. As such it is a mo- 
dification of the algorithm given in Section 5. This algorithm allows 
earlier termination and does not actually traverse an Euler tour. It sim- 
ply assigns enough edges to make the assigned edges be spanning while 
maintaining symmetry. However, an Euler tour is not specified in the 
form of  any of  the three defined forms of  Section 5. The rule given in 
this section does not allow us to say that an Euler tour can be easily 
traversed given the output  of  this algorithm. 

A pointer can be used in Step 2 to keep track of  where we are in the 
scanning process. Say P(n) is the last undirected edge meeting node n 
which we have scanned. Initially, then, all P(n) = 0. Each time we look 
at an edge in going through the list of  undirected edges, P(n) should be 
increased by one. The same pointer can be used in extending the arbo- 
rescence in Step 1. Steps 2 and 3 can be accomplished with an amount  
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of  work growing linearly in the number of  edges which are assigned 
directions. 

A more general problem has been treated by Ford and Fulkerson 
[ 10, Section II.71. They remove the restriction of  symmetry  and show 
that an Euler tour exists if and only if there is no subset S of nodes such 
that more edges are directed away from a node in S toward a node not  
in S than there are total other edges meeting a node in S and a node in 
S. Of  course, connectedness and even degree are also required. An Euler 
tour can be found by  first assigning directions to enough edges so that 
symmetry is achieved. This problem is a ne twork  flow problem (see [ 10, 
p. 60] ) and the network flow methods either succeed or terminate with 
a set S as above. Once symmetry  is achieved, the algorithm just given 
can be used. 

7. The mixed postman problem 

A postman tour  in a mixed graph G is a tour  of  G using every edge 
at least once. Here, a tour must traverse the directed edges of  G in the 
specified direction. The mixed postman problem is to find the minimum 
length postman tour, where the length of  a tour  is, as before,  the sum of  
the lengths c e of  the edges e. As before, c e >_ 0 is assumed. 

When all edges of  G are undirected, the problem is the Chinese post- 
man problem, which we have already treated. When all edges of  G are 
directed, the problem is easier than the undirected case and can be 
solved using network flows. The problem is solved by  first symmetrizing 
every node, and then using the algorithm in Section 6 to find an Euler 
tour of  the symmetric graph and a postman tour  o f  the original graph. 
The symmetrizing problem is to duplicate edges one or more times so 
that every node becomes symmetric and minimize the sum of  the 
lengths of  the duplicated edges. Let x e be the additional duplicate 
copies of  edge e to be adjoined to the graph. The problem is to mini- 
mize z -- N c  e x e subject to x e >- 0 and integer for e e E, and 

~ ( x  e" e directed away from n} 

- ~  { x  e : e directed toward n} --- b n, n ~ N ,  

where b n is the number  of  edges toward n minus the number  of  edges 
away from n. The above is a standard min-cost flow problem. 
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By contrast with the undirected postman problem, the directed post- 
man problem may not  have a solution even when G is connected. In the 
undirected case, connectedness of  G assures that there is a path from 
any node to any other node. In the directed case, we need a directed 
path, or chain, between every pair of  nodes. Equivalently, using a net- 
work circulation theorem [11], t he  above flow problem has a solution 
if and only if there is no proper subset S of  nodes such that every edge 
meeting one node i in S and one node j not in S is directed away from i 
and toward j. Network flow algorithms can be used to solve the directed 
postman problem or discover such a set S when there is no solution. 

For the mixed postman problem, an analogous, necessary and suffi- 
cient condition for the existence of  a postman tour  can be given. There 
exists a postman tour if and only if there is no proper subset S of  nodes 
such that every edge meeting one node in S and one node not in S is 
directed away from the node in S. This condition is obviously necessary. 
To prove sufficiency, the algorithm of  Section 4 can be used to dupli- 
cate edges so as to make all degrees even. Once the degrees are even and 
this condition is satisfied, we will show next how to duplicate edges so 
as to symmetrize the graph while maintaining even degree. In fact, we 
can do this latter s~ep in an optimum way once the degrees are all even. 
However, these two steps may not produce an opt imum answer to the 
mixed postman problem because the optimum way to duplicate edges 
so as to make even degrees may not be the best way to do so if we later 
have to duplicate more edges to symmetrize the graph. 

Consider now the mixed postman problem, where every node is met 
by an even number of  edges (directed or undirected). In cities, where a 
postman may face the situation in which some edges are directed (one- 
way streets) and some are undirected, nodes are often of  degree four 
since an intersection has four streets coming into it. Thus, the even 
degree case may be interesting although it is easier to solve than the un- 
directed postman problem, where the degree of  some nodes may be odd. 

Let U denote the undirected edges and D the directed edges. For 
e ~ D ,  x e will denote the number of additional copies of  e to adjoin to 
G. Form the set U 1 of  directed edges by putting two edges in U 1 for 
each edge e ~ U: one edge e 1 directed away from i and toward j and one 
edge e 2 directed toward i and away from j, where edge e meets nodes i 
and j. Form the set U 2 in the same way. The sets U 2 and U 1 are dis- 
joint. For e e U, there are two directed copies h and k of  e in U 1 and 
two directed copies f and g in U 2. Let x h be the additional, directed 
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copies of  edge e to be adjoined to G and let x k be the additional, op- 
positely directed copies of e to be adjoined to G. For f ~ U2, x f  = 1 will 
be interpreted to mean that e (the original e, not a copy) should be di- 
rected as f is and Xg = 1 means that e should be directed as g is. Either 
x2 or Xg or both can be zero. Our purpose here is not to direct all undi- 
rected edges but only to form a symmetric graph from G by directing 
and perhaps duplicating undirected edges of  G and duplicating directed 
edges. The directed edges are considered as already present. 

Let E' = D u U 1 w U 2 . The network flow problem to be solved is to 
minimize z subject to 

z=13 CeXe+ I3 CeXe, 
e ~ D  e ~  U 1 

(7.1) 

X e a non-negative integer for e c D u U 1 , (7.2) 

X e = 0 o r  1 f o r e E  U 2 , 

{ x  e • e ~ E '  is directed away from n } 

- ~ { X e :  e ~ E '  is directed toward n}= bn ,  

(7.3) 

n ~ N ,  (7.4) 

where b n is the number of edges e in D directed toward n minus the 
number of edges e in D directed away from n. 

A solution to (7.1)-(7.4)  will produce the minimum cost symmetric 
graph G' formed by directing some undirected edges of G and perhaps 
duplicating edges. Both x h + x f  and x k + Xg will not be positive at the 
same time in an opt imum solution because if they were, we could lower 
both,  maintain (7.4) and reduce; or leave unchanged, z given by (7.1) 
because c e >_ 0. 

The even degree condition, which was assumed for G, has not been 
shown for G'. If G' is even, then we have solved the even, mixed post- 
man problem. 

Even degree in G' is equivalent to 

{ x  e : e ~ D u U 1 and e meets n} = 0 (mod 2) ,  

that  is, the sum of  duplicated edges meeting node n is even. The number 
of  original edges meeting node n is even by assumption, so even degree 
of  the duplicated edges is needed. We will show that an opt imum solu- 
tion to (7.1)-(7.4)  satisfies this additional requirement. 
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Form U 3 from U by taking one directed copy of  each e ~ U. In U 2 
there are two directed copies f and g. Let h ~ U 3 be a copy of e E U 
and directed as f i s .  Let 

x h = 1 + x f - X g .  

Since x f  and Xg do not appear in (7.1) because f and g are in U2, they 
only appear in (7.3) and (7.4), and in (7.4) they always appear as 
x f  - Xg or - ( x f  - xg) .  We can thus substitute x f  - xg = x h - 1 into 
(7.3) and (7.4) to obtain 

Xh =0 ,  1 o r2 ,  h E U  3 , 

~ { x  e : e ~ E "  is directed away from n} 

- ~  ( x  e • e ~ E "  is directed toward n) = bn, 

(7.3') 

n ¢ N ,  (7.4') 

where E"  =D u U 1 u U 3 and where b' n is the number of  edges in D u U 3 
directed toward n minus the number of  edges in D u U 3 directed away 
from n. 

The problem (7.1), (7.2), (7.3'), (7.4') is equivalent to (7.1)-(7.4).  
The important  fact about this formulation is that b n is even for all 
n ~ N. The reason is that the number of  edges in D u U 3 meeting node 
n is even and taking any sum of that number with some +1 and some - I  
coefficients will still be even. Furthermore,  the bounds on the variables 
are just x e>_O for e c D u  U 1 and 0 - < x  e < - 2  f o r e e  U 3.Therefore ,  
every Xe, e c E " ,  will be even. The reason is the same reason that integer 
capacities on edges and integer flow requirements give an integer answer. 

In the resulting graph, formed by directing some edges of  U and du- 
plicating some edges, there will be an Euler tour, and the method des- 
cribed earlier applies. The resulting graph has an even number of edges 
meeting every node and each node is symmetric. 

Several easy generalizations of  the undirected Chinese postman prob- 
lem can be mentioned. An edge e may not be required in the tour but 
may be permitted. Such an edge would not be used in determining 
which nodes are even or odd but would appear in the problem (3.6), 
(3.7), (3.8). On the other hand, an edge may be required in the tour but 
may be permitted to be traversed only once. In that case, the edge is 
used in determining even or odd nodes but does not appear in the prob- 
lem (3.6), (3.7), (3.8). In this connection, notice that the problem 
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( 3 . 1 ) - ( 3 . 4 )  can be solved regardless of  how the nodes came to be desig- 
nated as even or odd provided there are an even number of  odd nodes 
and the graph is connected (or each connected component  contains an 
even number of  odd nodes).  

An important application area which involves a generalization o f  the 
postman problem involves forming some fixed number of  tours each o f  
which must meet some requirement. That is, there is not  just one post- 
man, but instead a central post office with many postmen. The problem 
is to assign routes to the postmen using the fewest possible postmen 
with no postman having too long a tour. Similar problems include gar- 
bage collection [2] ,  street cleaning, milk delivery, school bus scheduling, 
etc. In these problems, the service required is naturally associated with 
the edges of  a graph rather than the nodes. Node-oriented problems of  
this type are traveling salesman problems or generalizations. Such prob- 
lems are very difficult, and even the problem of  finding a Hamiltonian 
tour is difficult. The corresponding edge problem is to find an Euler 
tour. Considerable work using "edge-oriented" methods has appeared 
[13, 15, 16] for multi-postman problems of  an "edge" type. 
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