
Mathematical Programming 5 (1973) 88-124. North-Holland Publishing Company

MATCHING, EULER TOURS AND THE CHINESE POSTMAN

Jack EDMONDS
University of Waterloo, Waterloo, Ontario, Canada

and

Ellis L. JOHNSON
IBM Watson Research Center, Yorktown Heights, New York, U.S.A.

Received 20 May 1972
Revised manuscript received 3 April 1973

The solution of the Chinese postman problem using matching theory is given. The convex
hull of integer solutions is described as a linear programming polyhedron. This polyhedron is
used to show that a good algorithm gives an optimum solution. The algorithm is a specializa-
tion of the more general b-matching blossom algorithm. Algorithms for finding Euler tours and
related problems are also discussed.

1. Introduction

One of the oldest problems in graph theory is that o f finding an Euler
tour in a connected graph [9]. The problem is to find a way of travers-
ing every edge exactly once in a tour of the graph. Necessary and suf-
ficient conditions for the existence of such a tour, an Euler tour, are
simple: each node must be incident to an even number of edges.

We shall give a related optimization problem, the Chinese postman
problem, and its solution using matching theory. Matching theory pro-
vides not only a good algorithm for the Chinese postman problem but
also a description of the polyhedron of solutions. In Section 4, a variant
of the matching algorithm is given for the Chinese postman problem.
This algorithm does not actually give us a postman tour but instead a
graph in which an Euler tour exists. We discuss in Section 5 the problem
of finding an Euler tour. Finally, Sections 6 and 7 discuss similar prob-
lems except that some edges are directed.

Matching, Euler tours and the Chinese postman 89

2. The Chinese postman problem

The Chinese postman problem [6, 14] is to find the shortest tour
such that each edge is traversed at least once. Thus, it is the problem
faced by a postman who must deliver mail along each edge of a graph
and return to his starting point.

To be more precise, define a g r a p h G to be a finite set N of n o d e s and
a finite set E of e d g e s such that each edge m e e t s two nodes. We allow
more than one edge to meet the same pair of nodes. A t o u r in G is a se-
quence

(n 1 ,e l , n 2 , e 2, . . . , n 1 , e l , n l+ 1 = n 1)

of nodes n i and edges e i such that e i meets the distinct nodes n i and
hi+ t . A s i m p l e t o u r of G is a circuit which contains each edge e ~ E at
most once. A p o s t m a n t o u r of G is a circuit which contains every edge e
at least once. An E u l e r t o u r of G is a tour which contains every edge ex-
actly once. A p a t h is a sequence of nodes and edges, like a circuit, ex-
cept that nt÷ 1 is not required to be equal to n 1 . An e d g e - s i m p l e p a t h is a
path which contains each edge at most once. A c o n n e c t e d graph G has a
path between every pair of nodes. The length c e of an edge e is assumed
to be a non-negative number, and the length of a tour (n l , e l , n ; , ...
..., n l, el , n 1) is N~=lCei. The Chinese postman problem is to find the
minimum length postman tour of a connected graph G.

If there is an Euler tour in the graph, then it solves the Chinese post-
man problem. Thus, whenever every node of a connected graph is inci-
dent to an even number of edges, the Chinese postman problem reduces
to simply finding an Euler tour, which is known to exist in such a graph.

On the other hand, given any postman tour of G, every edge e is in
the tour at least once, but perhaps more than once. Let 1 + x e be the
number of times edge e is in the tour. Let G' be formed from G by
putting x e additional copies of edge e in G'. That is, where G had one
copy of edge e, G' has 1 + x e copies of edge e. Then the postman tour
of G becomes an Euler tour of G'. In the graph G', every node is inci-
dent to an even number of edges.

Finding the numbers x e of an opt imum postman tour is equivalent to
the problem of finding an integer x e >_ 0 for every edge e of G such that
~CeX e is minimized subject to 1~e(1 + Xe) = 0 (mod 2), where the sum
is over the edges e meeting node i, for each node i of G. When such x e

are found, then the graph G' having 1 + x e copies of edge e has an Euler
tour which is the opt imum postman tour in the original graph G.

9 0 J . Edmonds, E.L. Johnson

The Chinese postman problem can, thus, be separated onto two parts:
finding optimum x e to the above problem, and then finding an Euler
tour, which is known to exist, in the resulting graph G'. The more diffi-
cult part, finding opt imum x e, can be solved by the matching algorithm.

3. Matching and parity constraints

In order to describe the Chinese postman problem as a matching
problem, let the n o d e - e d g e i n c i d e n c e m a t r i x (ane) , n ~ N and e ~ E, be
defined by

10 if edge e meets node n ,
ane = otherwise.

The problem just described is to find integers x e >__ O, e ~ E , such that

ane (1 "t'Xe)~ 0 (mod 2)
e ~ E

and minimizing Z c e x e. The above congruence can be written as

~_l a n e X e =- ~ ane (m o d 2) .
e ~ E eEE

The s u m)2eane is the degree of node n; that is, the number of edges
meeting node n. Let b n be zero or one given by

b n - ~ ane (r o o d 2) .
e ~ E

Thus, b n is zero when the degree of n is even and is one when the degree
of n is odd. Call node n an o d d n o d e when b n = 1 and an even n o d e

when b n = O.

The Chinese postman problem can be solved if we can find Xe, e ~ E ,

such that:

X e is integer, e ~ E; (3.1)
w n is integer, n E N; (3.1')
x e>_O, e ~ E ; (3.2)
w n > - O , n ~ N ; (3.2')

Matching, Euler tours and the Chinese postman 91

N e ~ E a n e X e -- 2 W n = b n , n E N ;

z = ~ c e x e is minimized.

(3.3)
(3.4)

The integer x e represents the number of extra times the edge e is
traversed. In terms of the postman, x e is the number of times he must
traverse an edge without delivering mail. The lengths c e are assumed to
be non-negative so that x e = 0 for all e ~ E and w n = 0 for all n ~ N is
an opt imum solution whenever all b n = 0. This observation reflects the
fact that when every node has even degree, there is an Euler tour.

The problem (3 .1) - (3 .4) is a special case of the general matching
problem [7] . Each variable w n appears in only one equation (3.3), so
the extension of the coefficient matrix to include the coefficients of w n

does have ~n l aneL<- 2 as required [7, p. 89] . The variables w n can be
thought of as adjoining loops to the graph at each node, where a l o o p

is an edge with two ends meeting the same node. The edges e ~ E are
assumed to meet two different nodes, although allowing loops in E
does not change the problem since their use would not effect the con-
gruence ~ a n e x e =- b n (mod 2). The matching polyhedron theorem and
the matching algorithm thus apply to this problem.

The matching polyhedron description says that the convex hull of in-
teger solutions X e , e ~ E , w n , n ~ N , is the same as the polyhedron of
linear restrictions (3.2), (3.2'), (3.3), and some additional inequalities,
called blossom inequalities. In order to describe the blossom inequalities
for this special case, let us say that an edge e m e e t s a set S of nodes
whenever e meets one node in S and one node not in S. Define an o d d

s e t S of nodes to be a set o f nodes containing an odd number of odd
nodes (and any number of even nodes). Then the blossom inequalities
become

{x e" e m e e t s S } > _ 1 for S an odd set . (3.5)

The Chinese postman polyhedron is the set of solutions to (3.2), (3.2'),
(3.3) and (3.5). This polyhedron is equal to the convex hull of integer
points satisfying (3.1), (3.1'), (3.2), (3.2'), (3.3).

Matching theory also provides us with a good algorithm for solving
this problem. In fact, the polyhedral description is proven by showing
that the matching algorithm will terminate at a solution to (3.1), (3.1'),
(3.2), (3.2'), (3.3) which is opt imum to the linear program of minimiz-
ing (3.4) subject to (3.2), (3.2'), (3.3), (3.5).

Another way to use matching algorithms for this parity problem is to

92 £ Edmonds, E.L. Johnson

reduce the problem to an equivalent 1-matching problem [4, 5]. Begin
by finding a shortest path between every pair of odd nodes. There are
algorithms available to find all such shortest paths and which require o f
the order of [NJ 3 operations [12], where [NI is the number o f nodes in
the graph G. Now form another graph Gp whose nodes are the odd
nodes of G and with one edge of Gp between every pair o f nodes of Gp.
Let the length of an edge in Gp be the length of the shortest path be-
tween the two odd nodes which the edge meets. Let a particular
shortest path between two odd nodes be associated with the edge in Gp.
Find an opt imum 1-matching of Gp ; that is, a set M of edges of Gp such
that every node is met by exactly one edge of M and the sum of the
lengths in M is minimum. To find the solution x e to (3.1), (3.2) and
(3.3), for every edge m of Gp in M let x e = 1 for every edge e of G in
the shortest path corresponding to that edge m of M.

To show that the above procedure does solve (3.1), (3.2) and (3.3),
we first show that no edge e of G will be in two shortest paths corres-
ponding to matching edges of Gp. Suppose the contrary: let edge e o f
G be in the shortest path from i 1 to i 2 and in the shortest path from Jl
to 12 and let both paths correspond to matching edges of Gp. Both paths
can be assumed to be edge-simple because they are shortest paths in a
graph having non-negative lengths on every edge. Removing e from both
paths leaves edges of G forming a path from i t to /1 (or /2) and a path
from i 2 to]2 (or] l)- The sum of the lengths of these two paths is less
than or equal to the sum of the lengths of the two pa ths ; f rom i 1 to i 2
and from/'1 to/ '2, corresponding to matching edges. Hence, the sum of
the lengths of edges (i 1 ,J1), (i2 ,/.2) in Gp is less than or equal to the sum
of the lengths of edges (i l , i2), (/'1,]'2)" Therefore, edges (il ,]'1), (i2 ,]'2)
can replace edges (i 1, i 2), (]1,]'2) in the matching M of Gp to give at
least as good a matching M' and such that the shortest paths in G corres-
ponding to matching edges of Gp contain edge e two fewer times than
previously while containing every other edge of G the same number of
times. In this way, we can change the matching so that no edge e of G is
in more than one shortest path corresponding to matching edges. We
can, then, assign x e = 1 to every edge e of G in a shortest path corre-
sponding to a matching edge.

The resulting Xe, e ~ E, obviously satisfies (3.1) and (3.2). The re-
maining question is whether non-negative integer w n can be found so
that (3.3) is satisfied. Such w n can be found provided the sum of the x e
over e meeting node n is even for even nodes n and odd for odd nodes n.
This sum over x e in a shortest path corresponding to any one matching

Matching, Euler tours and the Chinese postman 93

edge is even for all nodes except for the two odd nodes at the ends of
the path. Since every odd node is an end point o f exactly one shortest
path corresponding to a matching edge, the result follows.

We have shown that from an opt imum matching M in G p , a solution
x e to (3.1), (3.2) and (3.3) can be found. That solution must be shown
to be opt imum to the problem of minimizing z subject to (3.1), (3.2)
and (3.3). Consider an opt imum solution. It can be assumed to have x e

either zero or one, because otherwise x e could be reduced by two, and,
by c e >- O, the cost would decrease or remain the same. It is easy to show
that the edges for which x e = 1 can be part i t ioned into edge-simple
paths connecting pairs of odd nodes. The reason is that an odd number
of edges e having x e = 1 meet odd nodes, and an even number meet even
nodes. We can, thus, begin at any odd node and begin following edges,
arbitrarily, until another odd node is met. Removing those edges tra-
versed results in edges e with x e --- 1 for which an even number meet
even nodes and an odd number meet odd nodes except for the two just
connected by a path. Begin again at any remaining odd node and follow
a path to another odd node. Repeating eventually provides paths be-
tween pairs of odd nodes. The only remaining edges e having x e = 1,

after every odd node is connected by some path to some other odd
node, have even degree at each node so can be decomposed into tours,
if any such edges remain. These x e = 1 can all be reduced to zero with-
out violating (3.1), (3.2) and (3.3) and without increasing z by c e >_ O.

Therefore, an opt imum solution to (3.1), (3.2) and (3.3) can be repre-
sented as paths connecting pairs of odd nodes. Since our opt imum
matching provided the minimum z for such a collection o f paths, the
matching gives an opt imum solution to (3.1), (3.2) and (3.3).

Returning to the Chinese postman polyhedron (3.2), (3.2'), (3.3)
and (3.5), we will sharpen that result by giving the polyhedron in terms
of x e , e ~ E , only without the w n . Consider the set of x e , e ~ E , satis-
fying (3.1), (3.2) and

a n e x e =- b n (rood 2), n ~ N. (3 .6)
e ~ E

We wish to describe the convex hull o f (3.1), (3.2) and (3.6) as a poly-
hedron. In fact, that convex hull is equal to the polyhedron of solutions
to (3.2) and (3.5). To prove this result, notice that in (3.3) non-nega-
tivity of w n is automatically satisfied whenever all the rest o f (3.1),
(3.1'), (3.2) and (3.3) are satisfied. The reason is that

94 J. Edmonds, E.L. Johnson

2 W n = ~ ane Xe -- b n ,
e ~ E

where b n is 0 or 1, so 2 w n takes on values {0, 1, ...), or { -1 , 0, I,...).
If w n is integer, then 2w n cannot be - I , so w n must be non-negative.
Therefore, (3.1), (3.1'), (3.2) and (3.3) describe the same set of integer
points as (3.1), (3.1'), (3.2), (3.2') and (3.3). In other words, we can
drop the restrictions w n >__ O, n ~ N , in the inequalities (3.2), (3.3) and
(3.5) without changing the polyhedra.

Considering (3.3), (3.5) and x e >_ O, e ~ E , as a system of linear res-
trictions (3.3), the variables w n can be dropped to give an equivalent,
reduced system, since any x e >- 0 satisfying (3.5), (3.3) can be used to
determine Wn, and the resulting Xe, w n satisfy (3.3), (3.5), and x e >_ O.

Therefore, the convex hull of solutions to (3.1), (3.2) and (3.6) is the
polyhedron given by x e _>- O, e ~ E ,

(Xe: e meets S} _> 1, S an odd set.

The problem of minimizing z = ~ c e X e over all x e satisfying (3.1), (3.2)
and (3.6) is the same as minimizing z over the above polyhedron, that
is, (3.2) and (3.5). This latter minimization problem is a linear program
and has a linear programming d u a l p r o b l e m involving variables Ys for
each odd set S. The dual constraints are

Ys >- O, S an odd set,

{Ys" S: e meets S} <_ Ce, ~ e ~ E ,

and the objective function is to maximize

(3.7)

(3.8)

" ~ { Y s : odd s e t s S } v. (3.9)

The weak form of the linear programming duality theorem says that v
given by (3.9) is less than or equal to z = X c e x e subject to (3.2) and
(3.5). This result is easily proven by multiplying each inequality (3.5)
by Ys >- 0 and subtracting from z = Y_,c e x e to give

(Ce - ~ (Ys" S : e meet sS}] X e ~ 2 - - ~ Ys" (3 . 1 0)
e ~ E \ I S

By (3.8), each coefficient o f x e in (3.10) is non-negative, so z >_ Z s y s = v

by x e >- O.

Matching, Euler tours and the Chinese postman 95

In addition to showing z >_ v, the above argument can be used to de-
rive sufficient conditions for z = v. Any pair (x e, e ~ E) , (Ys, odd sets S)
for which z = u will be opt imum to their respective linear programs. In
order for z = v, from (3.10) it is clear that

x e > 0 implies ~ {Ys" S: e meets S} = c e (3.11)

is needed. However, z = v still may not hold if the inequality in (3.10) is
not equality. That inequality came from multiplying (3 . 5) b y Ys and
Subtracting from "Zc e x e = z. The inequality will hold with equality pro-
vided

Ys > 0 implies ~ { x e "e meets S}= 1. (3.12)

If both (3.11) and (3.12) hold, then (Xc, e ~ E) is an opt imum solution
to the linear program having constraints (3.2) and (3.5), and (Ys, odd
sets S) is an opt imum solution to the dual problem (3.7), (3.8), (3.9).

The algorithm in Section 4, which is a variant of Edmonds ' blossom
algorithm for the matching problem, produces such a pair (Xe, e ~ E)

and (Ys, odd sets S) for which x e is integer-valued and satisfies the parity
constraint (3.6). In the same way, the blossom algorithm finds a
matching for the general matching problem and a dual solution which
are opt imum pairs to the linear program over the matching polyhedron
and its dual linear program. Thus, the algorithm proves the polyhedron
result, which in turn proves optimality of the solution generated by the
algorithm. For this special case, we will recreate that argument.

Solutions (x e, e ~ E) to (3.1), (3.2) and (3.6) can be shown to satisfy
(3.5), for a given odd set S, by adding (mod 2) the congruences (3.6)
over n ~ S to give

{ x c" e meets S} - 1 (mod 2). (3.13)

The right-hand side above is 1 because S is an odd set. We use the fact
(3.1) that x e is an integer in adding these congruences. By (3.2), non-
negativity of Xe, the sum of x e over e meeting S must be 1, 3, 5 , and
hence (3.5) follows.

Therefore, the convex polyhedron of solutions to (3.2) and (3.5)
contains all of the (Xe, e e E) satisfying (3.1), (3.2) and (3.6). Hence, it
contains the convex hull of the (Xe, e ~ E) satisfying (3.1), (3.2) and
(3.6). We show that these two closed, convex sets are equal by showing

96 Z Edmonds, E.L. Johnson

that the minimum of any linear objective function z = ~'Ce Xe over the
polyhedron (3.2) and (3.5) is achieved by a point (x e , e ~ E) which also
satisfies (3.1) and (3.6). Since our two convex sets are unbounded, we
must also consider objective functions which can be made arbitrarily
small. We must show that any linear objective function which can be
made arbitrarily small using points (Xe, e ~ E) in (3.2) and (3.5) can also
be made arbitrarily small using points (X e , e ~ E) in the convex hull of
(3.1), (3.2) and (3.6).

The algorithm will produce an optimum (X e , e ~ E) over (3.2) and
(3.5) for any objective function z = Z c e x e for which c e >_ 0 . If any
c e < 0, then z can be made arbitrarily small by increasing that x e , be-
ginning from any point in (3.2) and (3.5). For any point satisfying (3.2)
and (3.5), increasing any component x e will not cause (3.2) or (3.5) to
be violated. However, this objective function can also be made arbitra-
rily small using solutions to (3.1), (3.2) and (3.6). For any solution to
(3.1), (3.2) and (3.6), any component x e can be increased by a positive
even integer without violating (3.1), (3.2) or (3.6). So if any c e < 0 ,

then that x e can be made arbitrarily large by even integer increases in
x e . Thereby, z can be made arbitrarily small.

The optimum (X e , e ~ E) to the linear program of minimizing z =
Z c e x e over (3.2) and (3.5), where c e >_ 0 , will satisfy (3.1) and (3.6)
as well. The polyhedron of solutions to (3.2) and (3.5) is therefore
equal to the convex hull of solutions to (3.1), (3.2) and (3.6) becuase
they have the same set of supporting hyperplanes

~" C e X e ~ Z * , C e ~ O , (3.19)

where z* is the common minimum value o f z = ~,c e X e subject to (3.2)
and (3.5) or (3.1), (3.2) and (3.6).

4. The blossom algorithm

The algorithm for solving the parity constraint part of the Chinese
postman problem described in Section 3 is first stated. Then we show
that the steps can be executed, and the resulting solutions x e and Y s sa-
tisfy (3.11) and (3.12). The algorithm given here is a variant of the
matching algorithm [4, 8] applied directly to the graph G without in-
troducing loops corresponding to W n .

The values for x e will be zero or one. If x e = 1, the edge e will be re-

Matching, Euler tours and the Chinese postman 97

ferred to as a matching edge. An edge e which is not a matching edge,
that is x e = 0, is called a non-match ing edge. We will have nodes which
are either pseudonodes or original nodes. A pseudonode p corresponds
to an odd set S and will have a dual variable yp (or Ys) associated with
it. The edges meeting p are the same as the edges meeting S. A single
odd node of G can be made into a pseudonode. The original nodes are
nodes of G.

At any given iteration of the algorithm, we will have a surface graph

G s made up of original nodes and pseudonodes such that the odd sets
corresponding to pseudonodes of G s are pair-wise disjoint and do not
include any of the original nodes of G s. Every original node of G will
either be in G s or will be in exactly one odd set corresponding to a
pseudonode of G s. The edges of G s are the edges of G which do not
meet two nodes in the same odd set corresponding to some pseudonode
of G s. In Gs, every matching edge will meet at least one pseudonode,
and every pseudonode will be incident to at most one matching edge.
Any pseudonode incident to no matching edge is called a def ic ient
pseudonode .

In Gs, a p lan ted fores t F will be grown. Initially, G s = G except that
odd nodes should be changed to deficient pseudonodes with the same
incident edges. That is, odd (original) nodes are not in Gs, but for each
one put a deficient pseudonode, with the same incident edges, in G s.
The initial planted forest will be those pseudonodes. In general, F
(which need not be spanning) will consist of disjoint trees each contain-
ing one deficient pseudonode. The other nodes of F will be pseudo-
nodes, and they will be alternately outer and inner nodes of F. The de-
ficient pseudonodes will be outer nodes, and the other pseudonodes
will be alternately outer and inner as illustrated in Fig. 4.1. Pseudonodes
will be drawn as squares, and matching edges are indicated as wiggly
lines. Outer nodes are indicated by a + and inner nodes by a - . Each

- +

4- - 4-

- 4 - - 4 -

F i g . 4 . 1 .

98 J. Edmonds, E.L. Johnson

inner node is incident to exactly two edges, one of which is a matching
edge. The outer nodes are incident to any number of non-matching
edges and to one matching edge, except for the deficient pseudonode,
which meets no matching edge. The deficient node is called the r o o t of
the planted tree.

Having designated odd nodes as deficient pseudonodes, the algorithm
will now be stated. Each edge has associated with it a cost c e. Let the
r ev i s ed c o s t c' e initially be equal to c e. Each node n of G s will have three
associated numbers: d +, d n , Yn" Initially, let d~ = + oo and Yn = 0 except
that dn + = 0 if n is a deficient pseudonode. Begin with a planted forest
consisting of the isolated deficient pseudonodes which are outer nodes
of the planted forest. For every n in Gs, let

d n = min{c' e" e meets an outer node (=~ n) and e meets n}.

Let k n be e giving the minimum above. If there is no such e, then
dn = + oo and k n = O.

S t e p 1. Find the minimum over all n e G s of:
(a) d n for n not in any planted tree;

(/3) 1 + ~ (d n + d n) for n an outer node of a planted tree;
(3') Yn + d n for n an inner node of a planted tree.

Let d* represent the minimum value given by node i of G s. Go to (A),
(B) or (C) depending on whether i giving the minimum was case (a), (/3)
or (3'), respectively.

(A)(1) I f i is a pseudonode, then it becomes an inner pseudonode and
is adjoined to a planted tree along with the edge k i . The matching edge
m meeting i is also adjoined to the planted tree. Le t] be the other node
incident to edge m.

(la) If / is a pseudonode, then let] be an outer node, set d ; to d*,
scan node /, and return to the beginning of Step 1. To scan node /
means to look at every non-matching edge e of G s and compare d n to
d 7 + c' e, where n is the other node of G s incident to edge e. If d 7 + c' e <

dn , then let k n = e and d n = d] + c' e .

(lb) If j is an original node, then form a b l o s s o m B of node j and all
matching edges, together with incident nodes, meeting node/ . We s h r i n k

P the blossom to form a new pseudonode p, and replace G s by G s, where
the edges of G' s are the edges of G s which do not meet two nodes of B
and the nodes of G' s are p and the nodes of G s except for nodes orB.
Edges of G s which meet exactly one node of B meet p in G' s.

Matching, Euler tours and the Chinese postman 99

+

Fig. 4.2.

Pseudonode p becomes an outer node, dp is set equal to d*, dp is set
to + ~o, and yp = 0. Now scan (as in (la)) the pseudonode p. Return to
the beginning of Step 1.

(2) If i is an original node, let k = ki, and let node n be the other node
incident to k. Form a blossom B of node n, edge k, node i, and all
matching edges meeting node i, together with incident nodes to such
matching edges. As in (lb) replace G s by Gs/B by shrinking B to form a
new pseudonode p.

+
Pseudonode p is an outer node, dp is d*, and yp = 0. If pseudonode n

was deficient, then so is pseudonode p. For each edge e of G (whether
in G s or not) meeting node n, subtract d* - d~ from the reduced cost

t
C e. Change Yn to Yn + d* - d ~ . The number d* - d n + is equal to c k,
where k = k i. Now scan the pseudonode p and return to the beginning
of Step 1.

(B) Let] be the other node incident to edge k i. If i and] are in dif-
ferent planted trees, go to Step 2. Otherwise, i and] are in the same
planted tree, and edge k i forms a circuit in that planted tree.

Nodes i and] are both outer nodes, so they both have alternating

Fig. 4.3.

: ig. 4.4,

1 0 0 3". Edmonds, E.L. Johnson

paths to the root of the planted trees. These paths meet at some outer
node m as illustrated in Fig. 4.4. The circuit formed must have an odd
number of edges.

Form a blossom B of the nodes and edges in the odd circuit and
shrink the blossom to form a new pseudonode p. As in (A)(lb) , replace

G s by Gs/B.
Pseudonode p is an outer node, dp is d*, and yp = 0. If pseudonode

m is a deficient pseudonode, then so is pseudonode p. For each node n
o f B, that is, of the odd circuit, y n will be changed and all incident edges
e will have c' e changed. A numerical example is given in Fig. 4.5. For
each node n of B, replace Yn by Yn + A n , where A n = d* - dn + for n an
outer node and A n = - d * + d n for n an inner node (of the planted tree
before shrinking B). Subtract A n from every c' e for e meeting node n.
Scan node p (as in (A)(la)) and return to the beginning of Step 1.

(C) This step is reached with an inner pseudonode i for which
d* = Yi + d [.

(1) Begin by adding Yi to every edge e meeting pseudonode i and
changing Yi to zero.

(2) E x p a n d pseudonode i, that is, recover the blossom B which was
shrunk to form pseudonode i and, also, the edges not in B which meet
two nodes of B. The nodes of B may be pseudonodes, but they are not
expanded. Let G 1 be defined by G s = GLIB, and replace G s by G 1.
Thus, delete node i from G s and adjoin the nodes and edges in the ex-
pansion of i to G s.

(3) Some matching and non-matching edges may need to be swapped
in order to keep one matching edge incident to every pseudonode orB.
This change is exactly as in Step 3 when pseudonodes are finally ex-
panded. However, none of the pseudonodes of B are expanded here,
only the pseudonode i is expanded to recover B.

(4) At this point, the planted tree is grown to include as much of B

/1=-4 A = 4 A = - I A= I
d- =11 d+--ll d-:14 d*=14

A = 5 . I - ~ ^ ^ ^ f - ~ ' l 3 I-7-I f ' T]

d-=12 d"=12
A=-3 A=3

F i g . 4 . 5 .

Matching, Euler tours and the Chinese postman 101

~ ÷

Fig. 4.6.

_ _- d i -

E~ +E "]d*"d["
0 -E]d-:.r

E:I+

as possible. This part of (C) is much like (A) and will be considered in
detail for the three different types of blossoms. In every case, there is
a non-matching edge down toward the root from pseudonode i and a
matching edge up from the root meeting i. Both edges meet outer nodes.

(a) The blossom may consist of an odd circuit as illustrated in
Fig. 4.6. In this case, there is always an alternating path from the non-
matching edge to the matching edge. This path becomes part of the
planted tree with the nodes alternately inner and outer, d~ for outer
nodes n equal to d [, and d n for inner nodes n equal d~-, as well.
These new outer nodes should be scanned as in (A)(1 a).

The remainder of B (the part of the circuit not in the alternating
path) consists of matching edges meeting two pseudonodes. For all of
these nodes, say node n, let

t d n = min{d[+ Ce : e meets an outer node i and e meets n}.

Let k n be the e giving this minimum. If there is no such e, let d n = + oo
and k n = 0. This part of (C) is similar to the initialization o f d n before
Step 1 started except that here we use d~. + c' e instead of c e (these d~ = 0

F
and c e = c e) . Return to the beginning of Step 1.

(b) The second type of blossom B has one original node and all
matching edges as shown in Fig. 4.7. In this case, immediately reform
the two outer nodes and the nodes and edges of B into a new outer
node as in (A)(2). Here, for each of the two outer nodes n, subtract
d* - d n from c' e for every incident edge e and add d* - d n to Yn" The

102 J. Edmonds, E.L. Johnson

]÷

Fig. 4.7.

d"=d"*

new pseudonode p should be an outer node with d~ = d*. Scan pseudo-
node p and return to the beginning of Step 1.

(c) The third type of blossom B has one original node and one non-
matching edge as shown in Fig. 4.8. In this case, we form a new pseudo-.
node of the outer node down toward the root together with the edge to
the original node and incident matching edges. The other node] of B
becomes an inner node with di7 = d*. The remainder of this step is ex-
actly the same as (A)(2).

Step 2. This step is reached with d* = ½(d + + d[) for some outer
pseudonode i with edge k i meeting node j in a different planted tree
than i.

(A) There is an augmenting path including edge k i and the planted
forest; that is, a path with edges alternately matching and non-matching

E1

E

i

~. 4.8.

E>

- d ~ = d ' *

[i~ = d*

Matching, Euler tours and the Chinese postman

Fig. 4.9.

103

such that the ends of the path are deficient pseudonodes. The reason is
that in a planted tree there is always an alternating path from an outer
node to the root. Fig. 4.9 illustrates this situation. We augment by
swapping matching and non-matching edges along the path as indicated
in Fig. 4.9 by the line below the path. After augmenting, the deficient
pseudonodes are no longer deficient. Remove both trees from the
planted forest.

(B) For every node n of Gs, if both d + and d n are greater than or
equal to d*, leave Yn as it is. Otherwise, n is in a planted tree. If n is
an outer node, then d + < d*. Replace Yn by Yn + (d * - d+n), and sub-

t
tract d* - d + from c e for every edge e (matching or non-matching)
which meets node n. If n is an inner node, then d n < d*. Replace Yn

by Yn - (d * - d n) and add d* - d n to c' e for every edge e (matching or
non-matching) which meets node n.

If there are no more deficient pseudonodes, go to Step 3. Otherwise,
for each node n let

t d~ = min{d + +Ce: e meets an outer node i (~ n) and e meets n}
e

and let k n be the e giving the above minimum. If no such e exists, let
dn = + oo and k n = 0. Return to Step 1.

S t e p 3. We now recover an opt imum solution by specifying which X e

should be set equal to one. For edges e in Gs, let x e = 1 if e is a matching
edge. The pseudonodes of G s will next be expanded to recover the
blossom and to determine which e of the blossom should have x c = 1.

Then the pseudonodes of the blossoms will be expanded successively
until all pseudonodes have been expanded. There are three types of
blossoms, and we consider each type.

(A) A blossom may consist of an odd circuit as in Fig. 4.10. When

104 J. Edmonds, E.L. Johnson

x/xl~

Fig. 4.10.

formed, node 1 in Fig. 4.10 was either deficient or incident to a matching
edge meeting only one node of the blossom. However, any node may
now be incident to such an edge, but only one node will be. From any
node, there is an alternating path, beginning with a matching edge, to
node 1. Thus, we can change the matching edges so that every node
meets exactly one matching edge. For example, in Fig. 4.11, we can
change the edges by swapping the matching and non-matching edges on
the path 2, 4, 5, 3, 1 as illustrated in Fig. 4.11. Now let x e = 1 for the
matching edges of the blossom. All of the pseudonodes of the blossom
can now be expanded.

(B) The second form of a blossom is a single original node together
with any number of matching edges meeting it as illustrated in Fig.
4.12(a). When formed, the original node was either an odd node inci-

Fig. 4.11.

(a)

Fig. 4.12.

(b)

Matching, Euler tours and the Chinese postman

(o) (b)

Fig. 4.13.

105

dent to no matching edge or was incident to a matching edge which met
only that node of the blossom. If the matching edge meeting the pseudo-
node should still meet the original node, then let the edges of the blos-
som remain matching edges. However, if the incident matching edge
meets a pseudonode as in Fig. 4.12(a), then change the edge of the
blossom meeting that pseudonode to be non-matching as in Fig. 4.12(b).
The pseudonodes of the blossom can now be expanded.

(C) The third form of a blossom is shown in Fig. 4.13(a). The original
node meets one non-matching edge of the blossom and any number of
matching edges. The pseudonode not incident to a matching edge of the
blossom was either deficient or incident to a matching edge meeting
only one node of the blossom when the blossom was formed. However,
any node may now be incident to the matching edge which meets the
blossom. If the original node is incident to it, then change the non-
matching edge of the blossom to be a matching edge. If another pseudo-
node is met by it, as in Fig. 4.13(a), then swap the matching and non-
matching edges as shown in Fig. 4.13(b).

The description of the algorithm is now completed.

There are several features of the algorithm which require some discus-
sion before proving the optimality conditions (3.13) and (3.14).

First, let us show that the solution Xe, e ~ E, does in fact satisfy (3,3),
that is, odd nodes are met by an odd number of matching edges and
even nodes by an even number. The augmentations in Step 2 are not
directly concerned with original nodes of G since all of the nodes of the
augmenting path are pseudonodes. Only when the pseudonodes formed
by shrinking blossoms in Step l (A)(lb) and (A)(2) are expanded do
the original nodes come directly into view. An augmentation made in
Step 3(B) of (C) keeps the same number (modulo 2) matching edges in-
cident to the original node, except in case (B) when the pseudonode

106 J. Edmonds, E.L. Johnson

was a deficient pseudonode. In that case, the pseudonode consists of a
single odd node. When that pseudonode is expanded, the odd node will
meet one matching edge. If the pseudonode is expanded in Step I(C),
then the odd node will henceforth meet an odd number of matching
edges.

Clearly, the algorithm maintains the conditions that every pseudo-
node is incident to at most one matching edge and every matching edge
meets at least one pseudonode. At the conclusion of the algorithm,
there will be no more deficient pseudonodes, and every pseudonode
will be incident to exactly one matching edge.

Next, we show that pseudonode variables Yn correspond to odd sets.
In order to make this correspondence clear, define the c o m p l e t e expan-

sion ofa pseudonode p to be the subgraph of G obtained by successively
expanding pseudonode p and all pseudonodes in that expansion until
only original nodes remain. The complete expansion, then, has nodes S,
which are a subset of the original nodes of G, and all edges meeting two
nodes of S. We wish to show that every such S will be an odd set. Recall
that an odd set is a set of nodes of G containing any number of even
nodes and an odd number of odd nodes. This result could be proven by
induction at the time pseudonode p is formed. Alternatively, the proof
which follows uses the integrality of x e and reveals again the motivation
for the inequalities (3.5).

We have shown that, at the conclusion of the algorithm, odd nodes
are met by an odd number of matching edges and even nodes are met
by:an even number of matching edges. In other words, condition (3.6)
is satisfied: Zane x e -~ b n (mod 2). Adding for n E S gives

{ ; (m o d 2) f o r S a n o d d s e t ,
{x e" e meets S} - (mod 2) otherwise,

by x e being integer. In our case, the sum above is equal to one, and
hence S must be an odd set.

Therefore, Xe, e ~ E, satisfy (3.1), (3.2) and (3.6) and yp do corres-
pond to variables Ys of Section 3, where S is the node set of the com-
plete expansion of p and is an odd set. We also know that Xe, e ~ E,

satisfy all of (3.5) because.they satisfy (3.1), (3.2) and (3.6), and that
(3.12) is true because every pseudonode is incident to one matching
edge. It remains to be shown that yp a r e non-negative, and that (3.8)
and (3.1 1) hold.

The only time any Yn ,is lowered is in Step I(B) or Step 2(B). In both

Matching, Euler tours and the Chinese postman 107

cases, n o Yn could become negative because d* is
Yn + d n (see Step 1(3')).

We now turn to the proof of (3.8):

always limited by

{Ys: S incident to e } <__ Ce, e E E.

We use y p and Ys interchangeably, where S is the node set of the com-
plete expansion of p. Initially, the Ys are all zero and c e >- O, so it is cer-
tainly true then. Also, it is clear that

p

Ce = Ce --~-J{Ys: S i n c i d e n t to e}.

Since c' e is changed by --A for all e meeting S whenever Ys is changed by
4 . Hence (3.8) is equivalent to c' e >- O.

The algorithm may allow some Ce to become negative in Step 1, but
the changes in Step 2(B) will restore non-negativity. What will be shown
is slightly more general: at any time that Step 1 is executed, changing

t r _ _

Yn and c e as in Step 2(B) would restore c e > O.
Suppose at the beginning of Step 1, using a previously assigned value

of d*, making the changes as in Step 2(B) would keep c' e >- O. That
t change is to decrease e e by d* - d + for outer nodes n and e meeting n

and increase c' e by d* - d n for inner nodes n and e meeting n. The only
f t e effected are in the surface graph G s. Let us define c e to be this

changed value. If edge e of G, meets node i and] of Gs, then

t t . .~

de

P

C e + d + + d ; - 2 d*
l

C e + d + - d*
f

Ce +d+ - d ~ ,
' d * c e - d ? +
f

C e ,

i and] outer nodes ,
i outer and] not p lan ted ,
i outer and j inner ,
i not planted and] inner ,
i and] not p l an ted .

t t The only c e which decrease as d* increases are the first two cases: i and
] outer, i outer and] not planted.

If i and] are outer nodes, then when i becomes an outer node, it was
f scanned so d~ <_ d + + c e. Hence,

? r ~ _ _ , C e = C e +d~. + d f - 2 d * > d 7 + d T - 2 d *

f f

and c e >- 0 provided

108 J. Edmonds, E,L. Johnson

a , <_ + d ?) .

Case (13) of Step 1 assures that d* will satisfy this inequality.
If i is an outer node and / is not in a planted tree, then when i be-

t came an outer node, it was scanned, so as before d [<_ d[. + c e. Hence,

t t ¢

C e =C e + d + - d * > cl~ - d *

and c ' e' >_ 0 provided d* <_ d [. The increase in d* in Step 1 is limited by
case (a), which assured the above inequality.

In Step 1, some Y n are changed in (A)(2) and (B) when a blossom is
shrunk. In addition to the above argument, we must show that those
changes do not make any c ' e' negative. The change in Step I(A)(2) is
easily justified. There, Y n is increased by d* - dn +. But that change is

t t H precisely the same as made in forming Ce , so c e does not change at all.
t t ? Furthermore, edges meeting two nodes of the blossom will have c e = c e

after making this change. An edge e meeting only one node of the blos-
H som will meet the new pseudonode p and will have c e unchanged since

dp = d* so d* - dp = 0. The pseudonode p will be scanned at this point.
Henceforth, d* - d p enters into the expression for c e' for any edge e
meeting pseudonode p. In Step I(B), the changes are again exactly the

r ?l + changes in c e made in forming c e . The new pseudonode p has dp = d*,
as in Step l(A)(2), so d* - d~ = 0.

Condition (3,1 1) remains to be shown; that is, c ' e = 0 for any matching
H edge. This condition will be shown by proving that c e = 0 for any edge

I e in a planted tree, and c e = 0 for any edge e in a blossom. The only
time an edge is made a matching edge is in an augmentation in Step 2 or
in an expanding a pseudonode.

In Step 1 (A)(1), when the planted forest is extended to include edge
r t t

k = k i , c k = 0 since d + + c k = d}-, where k meets node n, an outer node,
because edge k i was SO designated when d i was determined. In both
cases, (A)(la) and (A)(lb) , the matching edge adjoined to the planted

t ! forest has c e "- 0 as well.
The only other time the planted forest becomes larger is in Step 1 (C)

when a pseudonode is expanded and some or all of the blossom adjoined
t t ! to a planted tree. The edges of the blossom all have c e = 0, and c e = 0

as assured by setting d + = d~ for the two incident nodes i and/ ' (see
Figs. 4.6, 4.7 and 4.8).

Consider now the case of a blossom forming and being shrunk. We
wish to show that c ' e = 0 for every edge e of the blossom. With one ex-

Matching, Euler tours and the Chinese postman 109

t f r ception, this fact follows from making the changes in Yn so that c e = c e .

The one exception is the edge k = k i in Step I(B) because that edge is
not in the planted forest. The value of c~, after the changes in Y i and y/ ,

is

c' k - (d * - d 7) - (d * - d [) = d [+ d +" 2d*

because d~- = c~ + d2. But d * = ½ (d [+ d~.), so c i becomes zero after
the change.

5. Euler tours

In Section 3, we saw that matching theory provides us with an algo-
rithm for the minimum length way to adjoin duplicate edges of G to
form a graph G' having even degree. In Section 4, an algorithm to do so
was given in detail. However, given an even-degree graph G', we are still
left with the problem of actually finding an Euler tour, which is known
to exist in G'. This section will be concerned with graphs G in which
there exist Euler tours and will give methods for finding such a tour.

A tour was defined to be an alternating sequence

(n l , e l , rt2, e2 , n 3 , ..., rll, el, lll+ 1 =/7 1)

of nodes and edges such that edge e i meets the (distinct) ;nodes n i and
ni+ 1 . Before discussing algorithms, two ways of representing tours will
be described. The two main algorithms produce these two different re-
presentations of an Euler tour. The edge-pairingrepresentation is similar
to the alternating sequence definition just given. That sequence can be
thought of as providing the next edge ei+ 1 by which to leave node ni+ 1

given that we reached node ni+ 1 by edge e i. That is, the edges e i and ei+ 1

meeting node ni+ 1 are thus paired together. The first description of a
tour is to provide for each node a list (e 1, e2) , ..., (ei, ei+l) o f all such
ordered pairs of edges meeting at that node.

The next-node representation is to list for each node n, the nodes, in
order, that we go to when leaving node n. Let this list.,be denoted
Ln(1), Ln(2) , L n (k) . The first time node n is reached, leave it by
going to node L n (k) . The second time node n is reached, leave it by
going to node L n (k - 1).

Both representations require, in addition, the starting node. The edge-

110 J. Edmonds, ILL. Johnson

pairing representation must treat the first and last edges of the Euler
tour in a special way. Our convention will be that the starting node will
include in its list o f edge pairs the pairs (0, e 1) and (ek, ~) , where e 1 is
the first edge of the tour and e~ is the last edge of the tour.

A tour can be easily followed given either description. However, to
convert one description to the other requires actually tracing out the
tour. Furthermore, the only way to tell whether the edge-pairing repre-
sentation actually gives a tour is to try to follow the tour specified.
Theorem 5.1 gives a necessary and sufficient condition for the next-
node representation to give an Euler tour.

The first algorithm gives the end-pairing representation of an Euler
tour, and the second algorithm gives the next-node representation. Al-
though the. algorithms are similar, they give different descriptions o f
possibly different Euler tours. The first algorithm obviously gives an
Euler tour, but the p roof that the second one does so is not trivial.

Both algorithms begin by tracing out a simple tour which may not
include all edges. Then, begin at any node n o of the tour incident to
edges not in the tour and complete a second simple tour not including
any edge of the first one. The two algorithms move through the graph
in the same way but produce different tours represented differently.
In the first algorithm, if e 0 is the first edge leaving node n o in the
second tour and e L is the last edge entering node no, then for any edge
pair (e l , e 2) of the first tour meeting node no, swap the edge-pairings
by replacing (el , e2) by (el , e 0) and (e L , e2). This swap has the effect
of interjecting the second tour into the first one. The new tour formed
will follow the first one until edge e 1 is traversed to reach node no,
then follow the second one until it is completed, and then follow the
first one again. The new tour is longer than the first one. This procedure
can be repeated until every edge is in the tour.

For completeness and for comparison with the second algorithm, we
restate this algorithm in more formal terms.

5.1. E n d - p a i r i n g a l g o r i t h m

S t e p O. Let r be any node. Let both n o and n initially be equal t o r.
Let e r be any edge meeting node r, and let e 1 be equal to 0, e 2 be equal
to ,~, and e 0 be equal to e r. All edges are unpaired. Let e be equal to e r.

Go to Step 1.
S t e p 1. Let n' be the node other than n incident to edge e. If there is

an edge e' with an end meeting n' which is not yet paired, go to Step 2.

Matching, Euler tours and the Chinese postman 111

Otherwise, n' must be equal to n 0 . In that case, form the edge pairs
(el , e 0) and (e, e2) meeting node n o . Go to Step 3.

Step 2. Pair the edges e and e' meeting n'. Change n to be n' and e to
be e'. Go to Step 1.

Step 3. Change n o to be any node which has at least one pair (et , e2)
of edges meeting it and at least one unpaired edge also meeting it. Let
e 0 be an unpaired edge meeting n 0. Let n be set equal to n o and e be
set equal to e 0, and go to Step 1. If no such node n o exists, terminate.

The second algorithm will produce a description of an Euler tour by
giving a list of nodes Ln(1), Ln(2) , L n (k) to go to when leaving node
n. In the way it moves through the graph, it is exactly the same as the
preceding algorithm. However, the Euler tour produced may be diffe-
rent. For one thing, the edges will be traversed in the opposite direction
from the way they are traversed during the algorithm.

5.2. Nex t -node algori thm

S tep O. Let r be any node. Let n o and n initially be equal to r. Let
k i = 0 for all nodes i. Let e be any edge meeting node n. All edges are
unused.

Step 1. Let rn be the node other than n incident to edge e. Let k m be
changed to kin+ 1 and for this new value of k m let L m (k m) = n. Edge e is
now used. If node rn has any incident, unused edges, go to Step 2.
Otherwise, node rn must be equal to n 0. In that case, go to Step 3.

Step 2. Let n be changed to rn and let e be any unused edge incident
to rn. Go to Step 1.

Step 3. Let n o be any node which has at least one used edge meeting
it but with at least one unused edge meeting it, say edge e. Let n be
changed to n o and go to Step 1. If no such node n o exists, terminate.

To follow an Euler tour using the next-node representation produced
by the above algorithm, the first time node n is reached we will leave it
by going to node L n (k n) which is the last node we reached node n from
in Step 1 of the algorithm. The second time n is reached, we will leave
it by the next to last node we reached i[from in Step 1. Notice that the
direction specified for an edge to be traversed by the Euler tour is from
n to Ln(i) and is opposite from the direction the edge was traversed
during the algorithm.

The proof that this algorithm will produce a next-node representation

112 J. Edmonds, E.L. Johnson

of an Euler tour will be in two parts summarized by the two theorems
below.

Theorem 5.1 [1]. Let r be any node o f an even, connected graph G.
Next-node lists for G describe an Euler tour i f and only i f all o f the fol-
lowing hold:

(i) the list L n (l) , . . . , L n (k n) for every node n has length k n equal to
one-half o f the degree o f n;

(ii) the number o f edges meeting both nodes n and m is' equal to the
number o f times n = L m (i) plus the number o f times m = L n (i);

(iii) the edges (n, L n (k n)), for n ~ r, form an arborescence with root
r, where the direction o f each edge is f rom n t o l n (k n) .

An arborescence T with root r is defined to be a tree with a direction
assigned to each edge so that every node n except n = r has exactly one
edge of T directed away from n, and node r has no edges of T directed
away from it.

Theorem 5.2. The next-node lists created by the next-node algorithm
satisfy Theorem 5.1 (i), (ii) and (iii).

Proof o f Theorem 5.2. Condition (i) is clear because every time we
reach node m in the algorithm, we use two edges and add one more
entry L m (k m) to the next-node list. Condition (ii) is true because once
an edge is used it appears in a next node list.

Condition (iii) is easy to verify from the fact that the edge (n, L n (1)),
n ~ r, is the edge which node n is first reached by in the algorithm.
Whenever a new addition is made to the next-node list for node n, the
new node becomes L n (k n), k n >_ 2. The entry L n (1) never changes.

Thus, the edges (n, L n (I)) remain fixed, and every time a node is first
reached during the algorithm a new edge is adjoined to the collection T
of (n ,Ln(1)) . At the time edge (n, Ln(1)) is first adjoined to T when
node n 4= r is first reached, it is the only edge of T meeting node n and
becomes the unique edge of T directed away from n. That T is spanning
is assured by the fact that Step 3 always begins with a node n o which
has been previously reached so that it is in the arborescence.

Proof o f Theorem 5.1 (see [1] and [3, p. 169]). First, conditions (i),
(ii) and (iii) are true for an Euler tour. (i) and (ii) are obviously true
since an Euler tour leaves a node once each time it enters it and uses

Matching, Euler tours and the Chinese postman 113

each edge once. It is also obvious that the collection T of edges
(n, L n (k n)) from n to L n (k n) for n ¢ r includes exactly one edge di-
rected away from n for n ¢ r. Every set S of nodes not containing r
must have at least one edge of T directed from a node of S to a node
not in S. Otherwise, the Euler tour would eventually reach S and stay
in S. Therefore, T must form a connected graph including every node of
G. Since T has one fewer edge than nodes of G and is connected, it
must be a tree. Hence, (iii) is true.

Consider the converse. Suppose (i), (ii) and (iii) are true. If we begin
at node r and follow the tour specified by the next-node lists, by (i)
and (ii) we will eventually return to r having traversed every edge
meeting r. Suppose this tour fails to be an Euler tour because some
edges have not been traversed. Consider the set S of nodes incident to
edges which have not been traversed. In particular, for n ~ S the edge
(n, L n (1)) will not have been traversed since that is the last edge speci-
fied by the next-node list. Also, r ~ S by the previous remarks.

By (iii), the edges (n, L n (1)) , n = r, form an arborescence T. For any
n ~ S there is a unique path from n to r in T. Along this path there is a
node of S closest to r; that is, a node n ~ S such that m ~ S for m on
the path from n to r in T. In particular, m = Ln(1)q~ S, so every edge
meeting m has been traversed. Therefore, edge (n, Ln(1)) has been tra-
versed. Thus, a contradiction is reached since for n ~ S, (n , L n (1)) has
not been traversed. Therefore, S must be empty and the tour must be
an Euler tour.

The advantage of the next-node algorithm is that it offers opportuni-
ties to improve the algorithm not afforded by the edge-pairing algorithm.
In the next section, we present an improvement of the algorithm and
some variations of the Euler tour problem. The improvement on the
algorithm is based on the fact that the algorithm can be terminated
with a partial next-node representation. While considering this improve-
ment, a more general problem will be treated. For now let us discuss
some other algorithms for the Euler tour problem.

A method sometimes given for finding an Euler tour is an "isthmus-
avoiding" algorithm [3]. This algorithm is to begin at any node r and
take any edge not yet used as long as removing the edge from the set of
unused edges does not disconnect the graph consisting of the unused
edges and incident nodes to them. That this algorithm will produce an
Euler tour is not obvious and is an interesting theorem. Practically,
however, the algorithm would require an excessive amount of work be-

114 J. Edmonds, E.L. Johnson

cause of the necessity of repeatedly determining whether or not an edge
is an isthmus in the graph of unused edges.

Our first two algorithms specified an Euler tour without actually tra-
versing it. In order to actually traverse an Euler tour, there is an inte-
resting variation of the next-node algorithm which could be called a
"maze search" Euler tour algorithm. This algorithm traverses each edge
twice. The edges, in the order which they are traversed the second time,
form an Euler tour.

If the postman was told which streets are on his route without being
given a map, he could use this algorithm to find an Euler tour while
walking over every street exactly twice.

5.3. Maze-search a lgor i t hm

S t e p O. Let r be any node. Let n initially be equal to r. Let k s = 0 for
all nodes i. Let e be any edge meeting node n. Let t i = 0 for all nodes i.

S t e p 1. Let rn be the node other than n incident to e. Let k m be
changed to km+ 1 and let L m (k m) = n for this new value o f k m . Edge e
is now used. If node m has any incident, unused edges, go to Step 2.
Otherwise, go to Step 3.

S t e p 2. Let n be changed to be equal to m and let e be any unused
edge meeting node m. Go to Step 1.

S t e p 3. Let l ='L m (k m - t m) and then change t m to be t i n + I . If there
are any unused edges meeting node l, let e be such an edge, let n be
equal to l, and go to Step 1. Otherwise, let m be equal to L and repeat
Step 3 rn = r and k m = t m in which case, terminate.

The postman traverses each edge twice. The first time he does so, he
indicates at the node reached that that edge is to be traversed the next
time in the opposite direction and records this edge as being the last
edge by which the node is reached. He leaves the node by any unused
edges if there are any. Otherwise, he leaves it by the last edge with
which he reached the node and which has not been traversed twice.
Every time he reaches a node, he must check for unused edges.

This algorithm is actually a special implementation of the next-node
algorithm because Step 3 here is a way to carry out Step 3 of that algo-
rithm while simultaneously traversing the final Euler tour. This algo-
rithm would be a way to carry out the next-node algorithm if one must
move from node to node along an edge and cannot obtain node infor-
mation until the node is reached.

Matching, Euler tours and the Chinese postman 115

6. The mixed Euler tour problem

An edge is directed away f rom node i toward node j if it meets nodes
i and j and must be traversed from i to j in any tour. Previously, all
edges have been undirected: they could be traversed in either direction.
A mixed graph is a graph in which some edges are directed and some
are undirected. A postman may encounter a mixed graph if he has some
one-way streets on his route.

In case all edges are undirected, the algorithm given in this section is
an improvement on the next-node algorithm of Section 5. The algorithm
here can be used for mixed graphs which are connected, even degree,
and symmetric.

A symmetr ic mixed graph is a mixed graph such that every node n
has the same number of edges directed away from n as directed toward
n. Fig. 6.1 shows a symmetric graph.

The degree of a node of a mixed graph is the total number of edges,
regardless of direction, meeting the node. An even mixed graph is a
mixed graph with each node having even degree. A mixed graph is con-
nected if it is connected when the directions on the edges are ignored.

When all of the edges of a connected graph are directed and the graph
is symmetric, there is a particularly simple and attractive algorithm for
specifying an Euler tour. The algorithm begins by finding a spanning ar-
borescence of G. Recall that an arborescence with root node r is a tree
T such that every node n of T, except n = r, has precisely one edge of
T directed away from n.

Finding a maximal arborescence T of a directed graph G is easy.
Given an arborescence T, adjoin to T any edge directed toward a node
of T and away from a node not in T. When no such edges exist, the ar-
borescence is maximal. Further, any maximal arborescence T will be
spanning if G is symmetric, connected and directed. The reason is that

Fig. 6.1.

116 J. Edmonds, E.L. Johnson

every set S of nodes will have the same number of edges directed away
from a node of S and toward a node not in S as edges directed toward
a node of S and away from a node not in S. Thus, every arborescence
can be extended to a spanning arborescence in an easy way.

The algorithm to find an Euler tour in a directed, symmetric, con-
nected graph G is to first find a spanning arborescence of G. Then, at
any node n, except the root r of the arborescence, specify any order for
the edges directed away from n so long as the edge of the arborescence
is last in the ordering. For the root r, specify any order at all for the
edges directed away from r.

This algorithm was used by van Aardenne-Ehrenfest and de Bruin to
enumerate all Euler tours in a certain directed graph [1]. Before show-
ing that it will produce an Euler tour, we introduce a slightly more
general case.

The first mixed graphs which we will consider are graphs with both
directed and undirected edges such that the directed edges form a sym-
metric, connected spanning subgraph of G. Every node is, then, met by
two or more directed edges, and the directed edges form a connected
graph. The undirected edges are required to be an even degree subgraph
of G but need not be connected.

In such a graph, a maximal arborescence is still spanning. Given a
spanning arborescence, the undirected edges meeting a given node can be
ordered in any way and the directed edges away from a given node n
can be ordered in any way as long as the edge of the arborescence di-
rected away from n is last in the ordering.

With this ordering of undirected and directed edges at each node n,
an Euler tour is found by beginning at the root r of the arborescence
and following the rule below.

Rule. Whenever node n is reached, leave node n by the next unused,
undirected edge if one is available. If all undirected edges have been
used, then leave node n by the next unused edge directed away from n.

We now prove that this rule will produce an Euler tour. The Euler
tour begins at root r and leaves by an undirected edge if any meetr , The
node reached must have an unused, undirected edge because there are
an even number of undirected edges meeting each node. Hence, we will
use an undirected edge to leave that node. This process will continue,
using only undirected edges, until node r is returned to and there are no
remaining unused, undirected edges meeting r, At that point, we leave r

Matching, Euler tours and the Chinese postman 117

by using an edge directed away from r (there is at least one). The node
n reached may have unused, undirected edges which meet it. If so, we
will use undirected edges until eventually returning to n with no more
unused, undirected edges meeting n. At that point, leave n using an
edge directed away from n but not in the arborescence unless that
edge of the arborescence is the only edge directed away from n. Each
time a node n is first reached by an edge directed toward n, we will use
all of the undirected edges meeting n before continuing with a directed
edge, directed away from n.

To show that every edge is traversed is easy using Theorem 5.1. If we
follow a tour specified by the rule and record the next-node description
of the tour, the three conditions of the theorem are satisfied. The on-
ly difficulty is showing condition (iii), and it is satisfied because we
start with a spanning arborescence from the directed edges.

Consider now a more general case. We drop the requirement that the
directed edges form a spanning, connected subgraph of G and only re-
quire that G itself be connected, even, and, as before, that G be sym-
metric. The algorithm for finding an Euler tour in G will consist of as-
signing directions to enough undirected edges so that the resulting mixed
graph is still balanced and so that the directed edges are spanning and
connected.

To avoid confusion, an undirected edge is called assigned if we have
specified a direction from the edge. A node will be called virgin if we
have not yet encountered it in the algorithm. Initially, all nodes are vir-
gin.

A substep of the algorithm is to extend the arborescence using di-
rected edges, which means to look at all edges directed toward a speci+
fled node n and see if the other end of such an edge meets a node m
which is Virgin. If so, include edge (rn, n) in the arborescence and extend
the arborescence from node m. Node rn then becomes a reached node
and loses its virgin status.

Another sub~tep is to scan a node n, which means to look at all un-
directed edges e meeting node n and see if the other node m incident to
e is virgin. If so, assign e the direction away from rn toward n, adjoin
edge e to the arborescence, and move to node rn (let n be set equal to
m),

The algorithm is given below.

Step O. Label all nodes as virgin nodes. Choose any node r, let n be
set equal to r, and go to Step 1.

118 J. Edmonds, E.L. Johnson

Step 1. If n is virgin, relabel it as reached instead of virgin and,
starting at node n, extend the arborescence using directed edges. If n = r
and the arborescence becomes spanning, terminate. Otherwise, go to
Step 2.

Step 2. If n is reached, scan it. If a virgin node rn is found, go to Step
1 (with n set equal to m). Otherwise, n becomes scanned, and go to
Step 3.

Step 3. When n is scanned, let e be any unassigned, undirected edge
meeting n. Let m be the other node incident to e. Assign e the direction
away from m and toward n, let n be set equal to rn, and go to Step 2
(m cannot be virgin if n is scanned) unless rn is equal to r and the arbo-
rescence is spanning in which case terminate.

Every node is either virgin, reached, or scanned. The algorithm ter-
minates when there are no more virgin nodes and when n = r. Clearly,
no remaining virgin nodes is equivalent to the arborescence being span-
ning.

At termination, every node is still symmetric, considering both di-
rected and assigned edges, because we return to r and along the way as-
sign an edge away from each node n and then toward n. Furthermore,
the directed and assigned edges form a spanning subgraph of G because
the arborescence is spanning. The undirected, unassigned edges still have
even degree at each node because an even number of undirected edges
meeting a given node have been assigned a direction. Thus, the rule pre-
viously given will now enable one to actually trace out an Euler tour.

I f a graph G has only undirected edges and is even degree and con-
nected, then the algorithm just given can skip Step 1. As such it is a mo-
dification of the algorithm given in Section 5. This algorithm allows
earlier termination and does not actually traverse an Euler tour. It sim-
ply assigns enough edges to make the assigned edges be spanning while
maintaining symmetry. However, an Euler tour is not specified in the
form of any of the three defined forms of Section 5. The rule given in
this section does not allow us to say that an Euler tour can be easily
traversed given the output of this algorithm.

A pointer can be used in Step 2 to keep track of where we are in the
scanning process. Say P(n) is the last undirected edge meeting node n
which we have scanned. Initially, then, all P(n) = 0. Each time we look
at an edge in going through the list of undirected edges, P(n) should be
increased by one. The same pointer can be used in extending the arbo-
rescence in Step 1. Steps 2 and 3 can be accomplished with an amount

Matching, Euler tours and the Chinese postman 119

of work growing linearly in the number of edges which are assigned
directions.

A more general problem has been treated by Ford and Fulkerson
[10, Section II.71. They remove the restriction of symmetry and show
that an Euler tour exists if and only if there is no subset S of nodes such
that more edges are directed away from a node in S toward a node not
in S than there are total other edges meeting a node in S and a node in
S. Of course, connectedness and even degree are also required. An Euler
tour can be found by first assigning directions to enough edges so that
symmetry is achieved. This problem is a ne twork flow problem (see [10,
p. 60]) and the network flow methods either succeed or terminate with
a set S as above. Once symmetry is achieved, the algorithm just given
can be used.

7. The mixed postman problem

A postman tour in a mixed graph G is a tour of G using every edge
at least once. Here, a tour must traverse the directed edges of G in the
specified direction. The mixed postman problem is to find the minimum
length postman tour, where the length of a tour is, as before, the sum of
the lengths c e of the edges e. As before, c e >_ 0 is assumed.

When all edges of G are undirected, the problem is the Chinese post-
man problem, which we have already treated. When all edges of G are
directed, the problem is easier than the undirected case and can be
solved using network flows. The problem is solved by first symmetrizing
every node, and then using the algorithm in Section 6 to find an Euler
tour of the symmetric graph and a postman tour o f the original graph.
The symmetrizing problem is to duplicate edges one or more times so
that every node becomes symmetric and minimize the sum of the
lengths of the duplicated edges. Let x e be the additional duplicate
copies of edge e to be adjoined to the graph. The problem is to mini-
mize z -- N c e x e subject to x e >- 0 and integer for e e E, and

~ (x e" e directed away from n}

- ~ { x e : e directed toward n} --- b n, n ~ N ,

where b n is the number of edges toward n minus the number of edges
away from n. The above is a standard min-cost flow problem.

120 J. Edmonds, E.L. Johnson

By contrast with the undirected postman problem, the directed post-
man problem may not have a solution even when G is connected. In the
undirected case, connectedness of G assures that there is a path from
any node to any other node. In the directed case, we need a directed
path, or chain, between every pair of nodes. Equivalently, using a net-
work circulation theorem [11], t he above flow problem has a solution
if and only if there is no proper subset S of nodes such that every edge
meeting one node i in S and one node j not in S is directed away from i
and toward j. Network flow algorithms can be used to solve the directed
postman problem or discover such a set S when there is no solution.

For the mixed postman problem, an analogous, necessary and suffi-
cient condition for the existence of a postman tour can be given. There
exists a postman tour if and only if there is no proper subset S of nodes
such that every edge meeting one node in S and one node not in S is
directed away from the node in S. This condition is obviously necessary.
To prove sufficiency, the algorithm of Section 4 can be used to dupli-
cate edges so as to make all degrees even. Once the degrees are even and
this condition is satisfied, we will show next how to duplicate edges so
as to symmetrize the graph while maintaining even degree. In fact, we
can do this latter s~ep in an optimum way once the degrees are all even.
However, these two steps may not produce an opt imum answer to the
mixed postman problem because the optimum way to duplicate edges
so as to make even degrees may not be the best way to do so if we later
have to duplicate more edges to symmetrize the graph.

Consider now the mixed postman problem, where every node is met
by an even number of edges (directed or undirected). In cities, where a
postman may face the situation in which some edges are directed (one-
way streets) and some are undirected, nodes are often of degree four
since an intersection has four streets coming into it. Thus, the even
degree case may be interesting although it is easier to solve than the un-
directed postman problem, where the degree of some nodes may be odd.

Let U denote the undirected edges and D the directed edges. For
e ~ D , x e will denote the number of additional copies of e to adjoin to
G. Form the set U 1 of directed edges by putting two edges in U 1 for
each edge e ~ U: one edge e 1 directed away from i and toward j and one
edge e 2 directed toward i and away from j, where edge e meets nodes i
and j. Form the set U 2 in the same way. The sets U 2 and U 1 are dis-
joint. For e e U, there are two directed copies h and k of e in U 1 and
two directed copies f and g in U 2. Let x h be the additional, directed

Matching, Euler tours and the Chinese postman 121

copies of edge e to be adjoined to G and let x k be the additional, op-
positely directed copies of e to be adjoined to G. For f ~ U2, x f = 1 will
be interpreted to mean that e (the original e, not a copy) should be di-
rected as f is and Xg = 1 means that e should be directed as g is. Either
x2 or Xg or both can be zero. Our purpose here is not to direct all undi-
rected edges but only to form a symmetric graph from G by directing
and perhaps duplicating undirected edges of G and duplicating directed
edges. The directed edges are considered as already present.

Let E' = D u U 1 w U 2 . The network flow problem to be solved is to
minimize z subject to

z=13 CeXe+ I3 CeXe,
e ~ D e ~ U 1

(7.1)

X e a non-negative integer for e c D u U 1 , (7.2)

X e = 0 o r 1 f o r e E U 2 ,

{ x e • e ~ E ' is directed away from n }

- ~ { X e : e ~ E ' is directed toward n}= bn ,

(7.3)

n ~ N , (7.4)

where b n is the number of edges e in D directed toward n minus the
number of edges e in D directed away from n.

A solution to (7.1)-(7.4) will produce the minimum cost symmetric
graph G' formed by directing some undirected edges of G and perhaps
duplicating edges. Both x h + x f and x k + Xg will not be positive at the
same time in an opt imum solution because if they were, we could lower
both, maintain (7.4) and reduce; or leave unchanged, z given by (7.1)
because c e >_ 0.

The even degree condition, which was assumed for G, has not been
shown for G'. If G' is even, then we have solved the even, mixed post-
man problem.

Even degree in G' is equivalent to

{ x e : e ~ D u U 1 and e meets n} = 0 (mod 2) ,

that is, the sum of duplicated edges meeting node n is even. The number
of original edges meeting node n is even by assumption, so even degree
of the duplicated edges is needed. We will show that an opt imum solu-
tion to (7.1)-(7.4) satisfies this additional requirement.

122 3". Edmonds, E,L. Johnson

Form U 3 from U by taking one directed copy of each e ~ U. In U 2
there are two directed copies f and g. Let h ~ U 3 be a copy of e E U
and directed as f i s . Let

x h = 1 + x f - X g .

Since x f and Xg do not appear in (7.1) because f and g are in U2, they
only appear in (7.3) and (7.4), and in (7.4) they always appear as
x f - Xg or - (x f - xg) . We can thus substitute x f - xg = x h - 1 into
(7.3) and (7.4) to obtain

Xh =0 , 1 o r2 , h E U 3 ,

~ { x e : e ~ E " is directed away from n}

- ~ (x e • e ~ E " is directed toward n) = bn,

(7.3')

n ¢ N , (7.4')

where E" =D u U 1 u U 3 and where b' n is the number of edges in D u U 3
directed toward n minus the number of edges in D u U 3 directed away
from n.

The problem (7.1), (7.2), (7.3'), (7.4') is equivalent to (7.1)-(7.4).
The important fact about this formulation is that b n is even for all
n ~ N. The reason is that the number of edges in D u U 3 meeting node
n is even and taking any sum of that number with some +1 and some - I
coefficients will still be even. Furthermore, the bounds on the variables
are just x e>_O for e c D u U 1 and 0 - < x e < - 2 f o r e e U 3.Therefore ,
every Xe, e c E " , will be even. The reason is the same reason that integer
capacities on edges and integer flow requirements give an integer answer.

In the resulting graph, formed by directing some edges of U and du-
plicating some edges, there will be an Euler tour, and the method des-
cribed earlier applies. The resulting graph has an even number of edges
meeting every node and each node is symmetric.

Several easy generalizations of the undirected Chinese postman prob-
lem can be mentioned. An edge e may not be required in the tour but
may be permitted. Such an edge would not be used in determining
which nodes are even or odd but would appear in the problem (3.6),
(3.7), (3.8). On the other hand, an edge may be required in the tour but
may be permitted to be traversed only once. In that case, the edge is
used in determining even or odd nodes but does not appear in the prob-
lem (3.6), (3.7), (3.8). In this connection, notice that the problem

Matching, Euler tours and the Chinese postman 123

(3 . 1) - (3 . 4) can be solved regardless of how the nodes came to be desig-
nated as even or odd provided there are an even number of odd nodes
and the graph is connected (or each connected component contains an
even number of odd nodes).

An important application area which involves a generalization o f the
postman problem involves forming some fixed number of tours each o f
which must meet some requirement. That is, there is not just one post-
man, but instead a central post office with many postmen. The problem
is to assign routes to the postmen using the fewest possible postmen
with no postman having too long a tour. Similar problems include gar-
bage collection [2] , street cleaning, milk delivery, school bus scheduling,
etc. In these problems, the service required is naturally associated with
the edges of a graph rather than the nodes. Node-oriented problems of
this type are traveling salesman problems or generalizations. Such prob-
lems are very difficult, and even the problem of finding a Hamiltonian
tour is difficult. The corresponding edge problem is to find an Euler
tour. Considerable work using "edge-oriented" methods has appeared
[13, 15, 16] for multi-postman problems of an "edge" type.

References

[1] van Aardenne-Ehrenfest and N.G. de Bruijn, "Circuits and trees in oriented graphs",
Simon Stevin 28 (1951) 203-217.

[2] E.J. Beltrami and L.D. Bodin, "Networks and vehicle routing for municipal waste collec-
tion", Report No. UPS 72-18, State University of New York, Stony Brook, N.Y. (1972).

[3] C. Berge, The theory o f graphs and its applications (Wiley, New York, 1962).
[4] J. Edmonds, "Paths, trees and flowers", Canadian Journal o f Mathematics 17 (1965) 449-

467.
[5] J. Edmonds, "Maximum matching and a polyhedron with 0, 1-vertices", Journal Of Re-

search o f the National Bureau o f Standards Section B, 1, 2 (1965) 125-130.
[6] J. Edmonds, "The Chinese postman problem", Operations Research 13 Suppl. 1 (1965)

373.
[7] J. Edmonds and E.L. Johnson, "Matching: a well-solved class of integer linear programs",

in: Combinatorial structures and their applications (Gordon and Breach, New York, 1970)
89-92.

[8] J. Edmonds, E.L. Johnson and S. Lockhart, "Blossom I: a computer code for the matching
problem", to appear.

[9] L. Euler, "Solutio problematis ad geometriam situs pertinentis", CommentariiAcademiae
Petropolitanae 8 (1736) 128-140.

[10] L.R. Ford Jr. and D.R. Fulkerson, Flows in networks (Princeton Univ. Press, Princeton,
N.J., 1962).

[11] A.J. Hoffman, "Some recent applications of the theory of linear inequalities to extremal
combinatorial analysis", in: Proceedings o f Symposia on Applied Mathematics Vol. 10
(American Mathematical Society, Providence, R.I., 1960).

124 J. Edmonds, E.L. Johnson

[12] T.C. Hu, "Revised matrix algorithms for shortest paths in a network", SIAM Journal 15
(1967) 207-218.

[13] T.M. Liebling, Graphentheorie in Planungs- und Tourenproblemen, Lecture Notes in Ope-
rations Research and Mathematical Systems 21 (Springer, Berlin, 1970).

[14] K. Mei-Ko, "Graphic programming using odd or even points", Chinese Mathematics 1
(1962) 273-277.

[15] C.S. Orloff, "Routing and scheduling a fleet of vehicles to/from central facilities - the
school bus problem", Ph.D. Thesis, Cornell University, Ithaca, N.Y. (1972).

[16] R. Stricker, "Public sector vehicle routing: the Chinese postman problem", Master Thesis,
Massachusetts Institute of Technology, Cambridge, Mass. (August 1970).

