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A COMBINATORIAL ALGORITHM*

THOMAS E. EASTERFIELD-J-.

1. Let us suppose that we are given a square (nXn) array of real
numbers {ai}} {i,j= 1, ..., n), and let it be required to find, among all sums

n
S o,r., in which (rlt ..., rn) is a permutation of the numbers 1, ..., n, that

t=i

subset whose members have the least value. (We shall for brevity call
this subset the set of minimum sums.)

(Note. The a's need not necessarily be all positive. It has seemed
clearer in the examples shown to make them so; and if it is desired to deal
only with positive a's in a given practical example, the algorithm set out
below may be applied to a new set derived from the old simply by addition
of a sufficiently large constant quantity to every a.)

2. It is obvious that if the pattern formed by those elements which are
the least in their respective rows is such that it is possible to choose from
among these elements (hereinafter to be called row-minima) a set con-
taining one from each column and one from each row, then, such a set
yields a minimum sum; moreover, that only sums consisting of row-
minima will belong to the set. (Thus for example in the pattern

1 1 3
4 1 1
1 5 1

the sums »n+«22+a33» ai2+a23+a3i> consist entirely of Is. Any other
sum of elements no two of which lie in the same row or column will contain
elements greater than 1 but none less, and therefore will not be in our
required set.)

* Received 21 January, 1946; read 21 February, 1946.
f In the course of a piece of organisational research into the problems of demobilisation

in the R.A.F., it seemed that it might be possible to arrange the posting of men from
disbanded units into other units in such a way that they would not need to be posted again
before they were demobilised; and that a study of the numbers of men in the various
release groups in each unit might enable this process to be carried out with a minimum
number of postings. Unfortunately the unexpected ending of the Japanese war prevonted
the implications of this approach from being worked out in time for effective use. The
algorithm of this paper arose directly in the course of the investigation.
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3. In general, however, this condition will not be satisfied. We shall
show that from our original array {ai}} we can produce another, {di}} with
the properties:

(i) 2 air. belongs to the required set of minimum sums if and only if
2 dir. belongs to the set of minimum sums of the array {dit},

(ii) it is possible to choose from among the row-minima of {d(i} a set
of n of which no two lie in the same row or column,

(iii) any row-mimimum of {d(j} lies in at least one minimum sum.

In fact, our derived array {di}) will enable us to find all permutations r,-
such that 2 air. is a minimum sum of the original array.

4. We shall proceed from the original array {ai}} to the final array
{d{j} by a series of steps, in each of which a constant quantity is subtracted
from all elements of one or more columns. This process will alter the pattern
of row-minima, but, since each column contributes just one term to any
sum 2 air., the difference between the sums for two different permutations
will remain unaltered, and in particular the set of permutations giving
rise to minimum sums will also remain unaltered.

5. We wish to be able to select a set of row-minima one from each, row
and no two in any column; but it will in fact prove easier to work in terms
of another condition on the pattern of row-minima, which we shall show to
be equivalent to the other.

Let us define a set of r (^n) columns as being adjusted if each subset
of s ( < r) columns from it contains row-minima from at least s rows.

An adjusted set of r columns will be called exactly adjusted if the whole
set contains row-minima from exactly r rows.

In fact, as we shall show below (§9), a necessary and sufficient con-
dition for it to be possible to choose one row-minimum from each of a set of
any number of columns, each from a different row, is that the set should
be adjusted. Before we prove this, however, we require the lemma of § 7.

6. Let us suppose that we have a set C of columns containing row-
minima which all lie in a set R of rows, and that, further, some or all of
the rows in R contain row-minima in columns not belonging to G. Then
if we subtract from every element of every column in C a constant quantity
x, the row-minima lying in the rows of R will now lie in columns belonging
to C only; the other row-minima, previously in the set of rows R, have
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been suppressed. Moreover, by choosing x sufficiently small we may
ensure that no new row-minima appear in the set of columns C.

7. LEMMA. If a set of r columns is adjusted, and a subset 8 of s (<r)
columns is exactly adjusted, then if we suppress those row-minima in the
remaining r—s columns which lie in the same rows as those in the subset S,
the whole set of r columns remains adjusted.

We must prove that, after the suppression of the said row-minima,
each set of t columns contains row-minima from at least t rows.

If the t columns chosen lie in the subset S, they contain row-minima from
exactly t rows by hypothesis.

If the t columns lie wholly outside the subset S, consider the subset
of s+t columns formed by adjoining to them the columns of the subset S.
Before removal of certain row-minima, these columns contained row-
minima from at least s-\-t rows of which exactly s were supplied from
the columns of the subset S. Hence at least t were supplied from the
remaining t columns. Even, therefore, if we suppress those row-minima in
the same rows as those of the subset S, the subset of t columns contains
row-minima from at least t rows.

Finally, if the t columns consist of tx from the subset S, and t2 which do
not belong to the subset S, the first contain row-minima from at least tx

rows, and the second from at least t2 rows, the two sets of rows having no
row in common; hence the set of t columns contains row-minima from at
least ^+$2 rows.

This covers all cases.

8. It will be observed that the above process can be repeated as long
as we can find fresh exactly adjusted subsets of columns. Thus any
adjusted set can eventually be converted into a number of sets that are
each exactly adjusted but contain no exactly adjusted proper subset,
with possibly one set left over that is adjusted but not exactly adjusted,
and with no exactly adjusted subset. The latter possibility cannot arise
for the whole array, in which the number of rows is equal to the number of
columns. It will be shown below that such an ultimate decomposition
is unique (§13).

9. We shall now prove

THEOREM 1. (A) A necessary and sufficient condition for it to be possible
to choose one row-minimum from each column of a set S in such a way that



222 T. E. EASTERFIELD

no two of these minima lie in the same row is that the set be adjusted. (B) Fur-
ther, if the set contain no exactly adjusted subset, we may include any one of its
row-minima, arbitrarily chosen, in such a choice.

The necessity of the condition of the first part is obvious. Further, the
sufficiency is obvious for a single column. Let us assume as an inductive
hypothesis that we have proved the first part for all numbers of columns
up to r.

Then if we have an adjusted set of r + 1 columns, there are two possi-
bilities : that the set contains an exactly adjusted proper subset, or that
it does not.

In the first case, by the method of § 6 above we can break it down into
two mutually exclusive exactly adjusted subsets, each of r columns or less,
and with the row-minima of one lying in wholly different rows from those
of the other. Application of the inductive hypothesis to the two parts at
once proves the desired result.

In the second case, in which there is no exactly adjusted proper subset
of columns, let us consider any row-minimum arbitrarily chosen. Let us
consider the r columns in which it does not lie, and in which we shall agree
to ignore any row-minima in the same row as that in which it lies. Then,
as every subset of s of these columns contains originally row-minima in at
least s + 1 rows, and as we have decided to ignore row-minima in one row
only, any subset still contains non-ignored row-minima in at least s rows.
Hence, by the inductive hypothesis, we can choose from each of the r
columns a row-minimum of a different row, and none of these lies in the same
row as that first chosen arbitrarily.

This completes the proof of (A); and (B) has been proved incidentally.

10. It remains now to prove

THEOREM 2. Any array can be reduced to one which is adjusted.

We shall show that we can arrange all sets of columns in an order which
allows us to adjust each in turn without spoiling the adjustment of those
that have been adjusted already. If we represent the i-th column by (i)
and the set of columns (i), (j)., (k), by {ijk) (where i <j < k), a suitable
order is (1), (2), (12), (3), (13), (23), (123), (4), (14), (24), (124), (34), (134),
(234), (1234); or, formally, (a1a2...ar) precedes (&!&2•••&«) if « r<^«
or if ar = b8, and {a1...ar_1) precedes (&i...&g_i). (The null set is taken
as preceding every other). This is not the only suitable order; it will be
clear from the proof that any order will do in which a set is preceded by
all its proper subsets.
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11. We proceed as follows:

If column (1) contains no row-minimum, subtract from each of its
elements the same quantity, the least required to introduce one.

Treat column (2) in the same way.
If columns (12) contain row-minima in one row only, reduce all elements

of both by the same quantity, the least required to introduce another
row-minimum into at least one column. This process cannot remove the
row-minima already obtained in columns (1) or (2).

We go on thus : Let us suppose that we have adjusted all sets of
columns up to that immediately preceding (a1a2...ar_1ar). If the set
(axa2... ar_xar) is not adjusted, we subtract from all its elements the same
quantity, the least required to introduce a row-minimum from one more
row. This procedure cannot spoil the adjustment of any set of columns
already adjusted, whether this contains ar or not. For if ar = s-\-1, then
the complete set of columns (1 ... s) is adjusted before reduction of the
elements of the set (a1a2... ar_xs-{-1); but if the latter set is not adjusted,
{a^a^...«,._!) is exactly adjusted, and hence, by § 7, the adjustment of
(1 ... s) (which includes that of all its proper subsets) is not spoilt. Thus
the adjustment of any set preceding (a1a2...ar_1s-\-l) and not containing
(s+1), is not spoilt.

Moreover, the set of m columns* (aiai...b1...bls-\-l), where (b1...bt)
has no column in common with (ax.,. ar_i), may be looked on as compounded
of (&!•..&,) and (ai...ai8-\-l). The first of these contains row-minima
from t rows at least, none of which contains row-minima lying in the
columns (a1...ar_i), (since this is an exactly adjusted set). When we
reduce the elements of (ax... ar_x s-f 1) by a constant quantity, therefore,
we do not suppress any row-minima in these t rows; for the quantity is
just sufficient to introduce one fresh row-miniinum into (%...«,._! s+1),
and thus can suppress row-minima only in rows which contain row-
minima of (ax...ar_1 s+1) before reduction. The set (a1...ar_xs+1)
contains row-minima from m—t rows, all containing row-minima lying
in the columns (&i...ar_i) (for if (s+1) contained a row-minimum
from another row, no subtraction would be necessary). After the
reduction none of these latter row-minima will have been removed.
Since the t rows corresponding to the set (61...6<) and the m—t rows

* For the purpose of this paragraph only, the designation (a, a,... &x... &f s-f-1) is
intended to cover every set that precedes (c^.-.a,.), including those in which the 6's
appear mixed up with the a's. The 6's have been displaced from their correct order for
ease of exposition. It will be observed that this does not affect the proofs.
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corresponding to (a1. . .ar_1s+l) have no elements in common, the whole
set contains row-minima from m rows. It follows that

remains adjusted.
This completes the proof that the adjustment of all preceding columns

remains unspoilt.

12. Since at no stage do we spoil the adjustment of a set of columns
already examined, we shall reach after a finite number of steps the set
(1 ...n), which will therefore be adjusted.

13. We may now reduce the whole array to one in which the columns
fall into sets each of which is exactly adjusted but contains no, exactly
adjusted subset, as described in §§ 7 and 8.

Then, by §§ 2 and 9 (A), any set of elements of the final array which
yields a nuninmm sum consists entirely of row-minima, and by § 9 (B)
any row-minimum of the final array occurs in at least one minimum sum.
Since the set of all elements occurring in at least one minimum sum is
unique, the pattern that the row-minima form relative to the whole array
is also unique.

This completes the proof of the statements of § 3.

14. For a large array the number of steps described above is very large;
but in fact a little practice will enable the worker to take short cuts in the
way of reducing the particular columns or sets of columns most likely to
reach the final stage.

15. As an example we give the working on a 6 X 6 array:

9 22 58 11 19 27
43 78 72 50 63 48
41 28 91 37 45 33
74 42 27 49 39 32
36 U 57 22 25 18
3 56 53 31 17 28

(Note. We have underlined all row-minima in this and the successive
derived arrays.)

Here all sets of columns up to (123) are adjusted. Subtract 2 from
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each element of (4) and obtain

9 22 58 9 19 27
43 78 72 48 63 48
41 28 91 35 45 33
74 42 27 47 39 32
36 11 57 20 25 18
3 56 53 29 17 28.

All sets of columns up to (1234) are adjusted. Subtract 10 from each
element of (5) and obtain

9 22 58 9 9 27
43 78 72 48 53 48
41 28 91 35 35 33
74 42 27 47 29 32
36 11 57 20 15 18
3 56 53 29 7 28

(15), (25), (125), (35), (135), (235), and (1235) are adjusted. (45) is not.
Subtract 2 from each element of each of these columns and obtain

9
43
41
74
36
3

22
78
28
42
11
56

58
72
91
27
57
53

7
46
33
45
18
27

7
51
33
27
13
5

27
48
33
32
18
28.

(145), (245), (1245) are adjusted. (345) is not. Subtract 2 from each
element of all three columns and obtain

9 22 56 5 5 27
43 78 70 44 49 48
41 28 89 31 31 33
74 42 25 43 25 32
36 11 55 16 11 18
3 56 51 25 3 28.

Every set up to (12345) is now adjusted. (6) is not. Subtract 5
from each element of (6) and obtain

9 22 56 5 5 22
43 78 70 44 49 43
.41 28 89 31 31 28
74 42 25 43 25 27
36 11 55 16 11 13

3 56 51 25 3 23.

JOUR. 83. Q
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The whole set is now adjusted. We may apply the process of §§ 6 and
7, which we may exhibit by subtracting 1 from each element of columns
3 and 4, and obtain

9
43
41
74
36
3

22
78
28
42
11
56

55
69
88
24
54
50

4
43
30
42
15
24

5
49
31
25

n
3

22
43
28
27
13
23.

The sets of columns (3), (4), and (1256) are all exactly adjusted but
contain no exactly adjusted subset.

It will be found that there are just two minimum sums,

which are, in the original,

43+11+27+11 + 17+33=142 and 3+28+27+11+25+48=142.

27 Middleton Road,
London, N.W.ll.

IRREDUCIBLE MATRIX REPRESENTATIONS OF CERTAIN
FINITE GROUPS

H. 0. FOULKES*.

1. Introduction. Matrix representations of abstract finite groups can
be set up in various wuys. Burnside f and others have given methods
whereby the actual matrices can be constructed when the group characters
are known, and a method involving Young tableaux has been given J for
the symmetric group. Some groups, however, have representations which
can be expressed in monomial form§, and it is with certain groups of this
kind that this note is concerned.

It is known|| that groups of orders pq, pqr, and p9, where p, q, r are primes,
have all their irreducible representations transformable to monomial form.

* Received 17 September, 1945; read 15 November, 1945.
f W. Burnside, Theory of groups of finite order, 2nd edition (Cambridge, 1911), Chap. 15.
J D. E. Littlewood, Group characters and matrix representations of groups (Oxford,

1940), Chap. 5.
§ Burnside, op. cit., § 242; A. Speiser, Die Theorie der Qruppen von endlicher Ordnung,

1st edition (Berlin, 1923), § 37.
|| Speiser, op. cit., § 51; Burnside, op. cit., § 258.


