
An Algorithm for the Allocation Problem
Author(s): T. E. Easterfield
Source: OR, Vol. 11, No. 3 (Sep., 1960), pp. 123-129
Published by: Operational Research Society
Stable URL: http://www.jstor.org/stable/3007053 .
Accessed: 24/10/2011 18:42

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Operational Research Society is collaborating with JSTOR to digitize, preserve and extend access to OR.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=ors
http://www.jstor.org/stable/3007053?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp

An Algorithm for the Allocation Problem*
T. E. EASTERFIELD

Industrial Operations Unit, Department of Scientific and Industrial Research

This paper* sets out a procedure for solving allocation problems, on different
lines from procedures based on linear programming.

IN "A Combinatorial Algorithm"' the author posed and solved the following
problem: let us suppose we are given a square (n x n) array of real numbers

n
{aid} (i,j = , ...,n), and let it be required to find, among all sums E air in

i=1
which ri is the ith member of a permutation of the numbers 1, ..., n, that subset
whose members have the least value. (For brevity, this subset will be called the
set of minimum sums.) It will be seen that this is, in fact, the allocation problem.
If there are n activities that must be carried out at n locations, and aij is the cost
of carrying out activity i at location j, then the set of minimum sums gives us the
set of cheapest ways of allocating the activities to the locations.

(2) Let us call the least elements in each row the row-minima. It is obvious
that if the row-minima are so disposed that we can choose one from each row,
no two being in the same column, then such a set is a minimum sum; and,
moreover, that in this case only such a set of row-minima can be a minimum
sum. Thus, for example, in the array

I 1 3

4 1 1

1 5 1

the sums (all + a22 + a33), (a12 + a23 + a3l) consist entirely of 1's. Any other sum of
elements, no two of which lie in the same row or column, will contain elements
greater than 1, but none less, and therefore will not be in our required set.

(3) In general, however, this condition will not be satisfied. It is, however,
possible to derive from our original array {aij} another, {adc}, with the properties:

(i) >air, belongs to the required set of minimum sums if and only if E'ir

belongs to the set of minimum sums of the array {d'1};

* The basis of this paper is one published by me in 1946, which gave an algorithm for
allocation problems. The circumstances of the time did not allow the results to be used
then. I am indebted to Dr. Vajda for the suggestion that the main results should be published
in a place and under a title where they are more likely to be found by readers to whom they
might be of interest. At the same time I have taken the opportunity to fill a gap and make
a minor correction to the original paper.

The algorithm does not seem to lead to less laborious computation than the better
known methods; on the other hand it seems to me closer in spirit to the essentially
combinatorial nature of the problem.-T. E. Easterfield.

123

Operational Research Quarterly Vol. 11 No. 3

(ii) it is possible to choose from among the row-minima of {dij} a set of n
no two of which lie in the same row or column;

(iii) any row-minimum of {aij} lies in at least one minimum sum.
In fact, our derived array {dil} will enable us to find all permutations ri such
that >airi is a minimum sum of the original array.

(4) {adi} is formed from {aijl by a series of steps, in each of which a constant
quantity is subtracted from every element of one or more columns. Such a
step will alter the pattern of row-minima; but since each column contributes
one term to any sum, all sums will be altered by the same amount, and the
permutations giving rise to minimum sums will be unchanged.

(5) We wish to find a pattern of row-minima such that we can choose n of
them, one lying in each row and one in each column. It is, however, easier to
work with another condition on the pattern that may be shown to be equivalent
to this. Let us define a set of r(<?n) columns as being adjusted if each subset
of s(< r) columns in it contains row-minima from at least s rows. If an adjusted
set of r columns contains row-minima from just r rows, the set will be called
exactly adjusted.

(6) The paper proves as theorem I: A necessary and sufficient condition for
it to be possible to choose one row-minimum from each column of a set of
columns in such a way that no two of these lie in the same row is that the
set be adjusted. Further, if the set contains no exactly adjusted subset, we
may include any one of its row-minima, arbitrarily chosen, in such a choice.

(7) It is then proved that the following algorithm leads to the whole array
being adjusted:

Let us represent the ith column of the array by (i), the set of the ith, jth and
kth columns by (ijk) (where i <j< k), and so on; and let us order all sets of
columns as follows: (1) (2) (12) (3) (13) (23) (4) (14) (24) (124) (34) (134) (234)
(1234).... (Formally (a1a2 ... ar) precedes (blb2 ... b) if ar < b8, or if ar = b8 and

(a, ... ar,) precedes (b1 ... b8s1). The null set is taken as preceding every other.)
We then adjust each set in order.

(8) First, if (1) contains no row-minimum, we subtract from every element
of (1) the least number that will make it contain one. Next, treat (2) likewise.
Now if (12) contains row-minima in one row only (through their both being
in the same row), subtract from every element of both columns the least
number required to introduce a row-minimum of another row into (12). Now
(12) contains row-minima in two rows, hence it is adjusted. Go on similarly,
subtracting from every element of the set reached the least number required
to adjust it. The proof in the paper shows that with the given ordering of the
sets of columns, the adjustment of any set remains unspoiled by all later steps.
Thus we come eventually to a state in which the whole array is adjusted.

(9) Finally, if any subset of columns is exactly adjusted, the subtraction of a
very small quantity from every element in the subset will remove from all
other columns row-minima in the rows in which the subset has row minima,

124

T. E. Easterfield - An Algorithm for the Allocation Problem

but no other row-minima. If this procedure is applied to every exactly adjusted
subset left in the final array, we end with a pattern of row-minima such that
every row-minimum is in an exactly adjusted set of columns that has no
exactly adjusted subset, and hence by theorem I, will appear in at least one
minimum sum.

(10) The proof that this algorithm does in fact give the desired answer
makes it clear that the ordering of all subsets of columns described in para-
graph 7 above is not the only possible one. The essential condition on the
ordering is that, if (a, ... a,) precedes (b1 ... b), the adjustment of the latter
will not spoil that of the former if we have already ensured the adjustment of
one of the sets of columns containing every column in each set bar one. (For
example, adjusting (145) will not spoil the adjustment of (123) provided that
one of (1234) (1235) (1345) and (2345) precedes (145).) Further, any set must
be preceded by all its proper subsets. (In the paper, only the latter condition
was given.)

(11) For a large array, the number of steps involved is very large. If the job
is being done by hand, however, a little practice will allow the worker to take
short cuts in choosing sets of columns which will most quickly lead to the
final stage.

(12) As an example we give the working on a 6 x 6 array:

9 22 58 11 19 27

43 78 72 50 63 48

41 28 91 37 45 33

74 42 27 49 39 32

36 11 57 22 25 18

3 56 53 31 17 28

(Note: We have underlined all row-minima in this and the successive derived
arrays.)

Here all sets of columns up to (123) are adjusted. Subtract 2 from each
element of (4) and obtain

9 22 58 9 19 27

43 78 72 48 63 48

41 28 91 35 45 33

74 42 27 47 39 32

36 11 57 20 25 18

3 56 53 29 17 28

125

Operational Research Quarterly Vol. 11 No. 3

All sets of columns up to (1234) are adjusted. Subtract 10 from each element
of (5) and obtain

9 22 58 9 9 27

43 78 72 48 53 48

41 28 91 35 35 33

74 42 27 47 29 32

36 11 57 20 15 18

3 56 53 29 7 28

(15), (25), (125), (35), (135), (235) and (1235) are adjusted; (45) is not.
Subtract 2 from each element of each of these columns and obtain

9 22 58 7 7 27

43 78 72 46 51 48

41 28 91 33 33 33

74 42 27 45 27 32

36 11 57 18 13 18

3 56 53 27 5 28

(145), (245), (1245) are adjusted; (345) is not. Subtract 2 from each element
of all three columns and obtain

9 22 56 5 5 27

43 78 70 44 49 48

41 28 89 31 31 33

74 42 25 43 25 32

36 11 55 16 11 18

3 56 51 25 3 28

Every set up to (12345) is now adjusted; (6) is not. Subtract 5 from each
element of (6) and obtain

9 22 56 5 5 22

43 78 70 44 49 43

41 28 89 31 31 28

74 42 25 43 25 27

36 11 55 16 11 13

3 56 51 25 3 23

126

T. E. Easterfield - An Algorithm for the Allocation Problem

The whole set is now adjusted. We may apply the process of paragraph 9
which we may exhibit by subtracting 1 from each element of columns 3 and 4
and obtain

9 22 55 4 5 22

43 78 69 43 49 43

41 28 88 -30 31 28

74 42 24 42 25 27

36 11 54 15 11 13

3 56 50 24 3 23

The sets of columns (3), (4) and (1256) are all exactly adjusted but contain
no exactly adjusted subset.

It will be found that there are just two minimum sums,

a2l+ a52 + a43+ a14+ a65 + a36 and a6l + a32 + a43+ a14+ a55+ a26,

which are, in the original,

43+ 11 +27+ 11 + 17+33 = 142 and 3+28+27+ 11 +25+48 = 142.

(13) It will be seen that although each row-minimum left in the final array
appears in at least one minimum sum, only a limited number of combinations
of row-minima is possible. The following process allows all possible combina-
tions to be found.

(14) We may suppose that the final array has no exactly adjusted subsets,
for if not we can treat any exactly adjusted subset independently of the rest
of the array.

(15) If we choose any particular row-minimum, we know that it will occur
in at least one minimum sum. Moreover, the minimum sums in which it occurs
are those of the array formed by suppressing the row and the column in which
it lies. This array must obviously be adjusted; but it may now contain an
exactly adjusted subset, necessitating the suppression of some row minima by
the method of paragraph 9 and the reduction of the array to a set of exactly
adjusted sets, none of which contains an exactly adjusted subset.

(16) For a small array, the identification of exactly adjusted subsets can be
done easily by inspection. If a mechanical procedure is needed, then for any
set of r columns let us define its excess as (s - r), where s is the number of
rows in which it contains row-minima. An exactly adjusted set of columns has
excess zero. Note the excess for each set of columns, at the end of the calcula-
tion of paragraphs 8 and 9. (It would probably save no time to note the excess
of each column treated during this calculation, since the excess of a set of
columns that has been adjusted may change as later sets of columns are dealt

127

Operational Research Quarterly Vol. 11 No. 3

with. We know that it cannot fall below zero; but it may rise, and later it
may also fall.)

(17) When a row and a column are removed, as in paragraph 15, any other
column will lose a row-minimum if it contained one in the suppressed row,
but not otherwise. Thus for any set of columns in the remaining array, the
excess will fall by one if any column of the set had a row-minimum in the
suppressed row, but otherwise be unchanged. It is now easy to see which sets
of columns are exactly adjusted, which row-minima must be suppressed, as in
paragraph 9, and thus where to start from for the next step.

(18) All minimum sums may therefore be found by the following process:
Break up the array found by the procedure of paragraphs 8 and 9 into

exactly adjusted sets of columns without exactly adjusted subsets. Deal with
each of these separately.

Take the first row-minimum in column 1 of the first one of these sets, delete
the row and column in which it occurs, and break up the remaining array
similarly into minimal exactly adjusted sets of columns.

Take the first row-minimum in column 1 of the first of these, and proceed
as before.

When this procedure comes to a stop, go back to the last column from which
the first row-minimum was taken, and take the next, and proceed as before.

Proceed similarly, going back to the most recent stage at which an alternative
choice was possible, until at last all possibilities have been exhausted.

(19) Thus in the example, the columns 3 and 4 are each exactly adjusted.
If we delete these and the corresponding rows, and write in only those elements
where row-minima occur in the remaining array, we get

a2l . a26

a32 * a36

* a52 a55

a6l * a65

(It will be seen that we can work here with the pattern formed by the row-
minima only; the numbers they stand for no longer affect the working.)

If we choose a2l, the first row and first column must be deleted; a36 is now
the sole row-minimum in the last column, so a32 must be suppressed; a52 is
the only remaining row-minimum in the first remaining column, so a55 must
be suppressed. Thus the only minimum sum containing a2l is

a14+a2l + a36 + a43+a52+a65.

The only point to which we can go back to make a different choice is the
beginning: instead, we can choose a6l. If we delete column 1 and row 6, the
only row-minimum in column 5 is a55; hence a52 must be suppressed, and, in

128

T. E. Easterfield - An Algorithm for the Allocation Problem

consequence, a36. Thus the only minimum sum containing a6l is

a14 + a26 + a32 + a43+a55+ a61-

Since there are no other row-minima in column 1, there are no other minimum
sums.

ACKNOWLEDGEMENT

This paper is published with the permission of the Department of Scientific and
Industrial Research. Certain passages have been taken verbatim from the original paper;
we wish to thank the London Mathematical Society for these.

REFERENCE
1 T. E. EASTERFIELD, "A Combinatorial Algorithm", J. London Math. Soc., 1946, 21, 219.

12 129

	Article Contents
	p. 123
	p. 124
	p. 125
	p. 126
	p. 127
	p. 128
	p. 129

	Issue Table of Contents
	OR, Vol. 11, No. 3 (Sep., 1960), pp. 113-183
	Front Matter
	Some Optimization Problems in Advertising Media Planning [pp. 113 - 122]
	An Algorithm for the Allocation Problem [pp. 123 - 129]
	Stock Control with Random Opportunities for Replenishment [pp. 130 - 136]
	Least-Cost Testing Sequence [pp. 137 - 138]
	The Economic Distribution of Coal Supplies in the Gas Industry: An Application of the Linear Programming Transport Problem [pp. 139 - 150]
	Psychoanalytic Contributions to an Operational Research Study of Marketing [pp. 151 - 161]
	Letters to the Editors
	Comments on Rivett's "Survey of Operational Research in British Industry" [pp. 162 - 163]
	Ballade of Irrational Limitation [pp. 163 - 164]

	Abstracts and Reviews
	Communication with the Patient [p. 165]
	Control of Stocks by Simple Rules [p. 165]
	Process Simulation -- BP's New Computer [p. 165]
	Heating and Ventilating Research Laboratory [pp. 165 - 166]
	Some Remarks on the Game "DAMA" Which can be Played on a Digital Computer [p. 166]
	Selling Safety: An Experiment on the Effect of Specially Designed Safety Posters [p. 166]
	Putting Two and Two Together [pp. 166 - 167]
	On Comparing Two Observed Frequency Counts [p. 167]
	An Application of Linear Programming to Agricultural Economics [p. 167]
	untitled [pp. 168 - 169]
	untitled [pp. 169 - 170]
	Anwendungen der Matrizenrechnung auf Wirtschaftliche und Statistiche Probleme [p. 170]
	untitled [pp. 170 - 171]
	untitled [pp. 171 - 172]
	untitled [p. 172]
	untitled [pp. 173 - 174]
	untitled [pp. 174 - 175]
	untitled [pp. 175 - 176]
	Economic Aspects of Fuel and Power in British Industry -- Papers presented by the Manchester Joint Research Council [pp. 176 - 177]

	News and Notes [pp. 178 - 179]
	Obituaries: Dr. Cecil Gordon [pp. 180 - 181]
	Obituaries: Dr. Miriam Gilbert [p. 181]
	Editorial: The Aim and Policy of the Operational Research Quarterly [pp. 182 - 183]
	Back Matter

