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An Algorithm for the Allocation Problem* 
T. E. EASTERFIELD 

Industrial Operations Unit, Department of Scientific and Industrial Research 

This paper* sets out a procedure for solving allocation problems, on different 
lines from procedures based on linear programming. 

IN "A Combinatorial Algorithm"' the author posed and solved the following 
problem: let us suppose we are given a square (n x n) array of real numbers 

n 
{aid} (i,j = , ...,n), and let it be required to find, among all sums E air in 

i=1 
which ri is the ith member of a permutation of the numbers 1, ..., n, that subset 
whose members have the least value. (For brevity, this subset will be called the 
set of minimum sums.) It will be seen that this is, in fact, the allocation problem. 
If there are n activities that must be carried out at n locations, and aij is the cost 
of carrying out activity i at location j, then the set of minimum sums gives us the 
set of cheapest ways of allocating the activities to the locations. 

(2) Let us call the least elements in each row the row-minima. It is obvious 
that if the row-minima are so disposed that we can choose one from each row, 
no two being in the same column, then such a set is a minimum sum; and, 
moreover, that in this case only such a set of row-minima can be a minimum 
sum. Thus, for example, in the array 

I 1 3 

4 1 1 

1 5 1 

the sums (all + a22 + a33), (a12 + a23 + a3l) consist entirely of 1's. Any other sum of 
elements, no two of which lie in the same row or column, will contain elements 
greater than 1, but none less, and therefore will not be in our required set. 

(3) In general, however, this condition will not be satisfied. It is, however, 
possible to derive from our original array {aij} another, {adc}, with the properties: 

(i) >air, belongs to the required set of minimum sums if and only if E'ir 

belongs to the set of minimum sums of the array {d'1}; 

* The basis of this paper is one published by me in 1946, which gave an algorithm for 
allocation problems. The circumstances of the time did not allow the results to be used 
then. I am indebted to Dr. Vajda for the suggestion that the main results should be published 
in a place and under a title where they are more likely to be found by readers to whom they 
might be of interest. At the same time I have taken the opportunity to fill a gap and make 
a minor correction to the original paper. 

The algorithm does not seem to lead to less laborious computation than the better 
known methods; on the other hand it seems to me closer in spirit to the essentially 
combinatorial nature of the problem.-T. E. Easterfield. 
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(ii) it is possible to choose from among the row-minima of {dij} a set of n 
no two of which lie in the same row or column; 

(iii) any row-minimum of {aij} lies in at least one minimum sum. 
In fact, our derived array {dil} will enable us to find all permutations ri such 
that >airi is a minimum sum of the original array. 

(4) {adi} is formed from {aijl by a series of steps, in each of which a constant 
quantity is subtracted from every element of one or more columns. Such a 
step will alter the pattern of row-minima; but since each column contributes 
one term to any sum, all sums will be altered by the same amount, and the 
permutations giving rise to minimum sums will be unchanged. 

(5) We wish to find a pattern of row-minima such that we can choose n of 
them, one lying in each row and one in each column. It is, however, easier to 
work with another condition on the pattern that may be shown to be equivalent 
to this. Let us define a set of r(<?n) columns as being adjusted if each subset 
of s( < r) columns in it contains row-minima from at least s rows. If an adjusted 
set of r columns contains row-minima from just r rows, the set will be called 
exactly adjusted. 

(6) The paper proves as theorem I: A necessary and sufficient condition for 
it to be possible to choose one row-minimum from each column of a set of 
columns in such a way that no two of these lie in the same row is that the 
set be adjusted. Further, if the set contains no exactly adjusted subset, we 
may include any one of its row-minima, arbitrarily chosen, in such a choice. 

(7) It is then proved that the following algorithm leads to the whole array 
being adjusted: 

Let us represent the ith column of the array by (i), the set of the ith, jth and 
kth columns by (ijk) (where i <j< k), and so on; and let us order all sets of 
columns as follows: (1) (2) (12) (3) (13) (23) (4) (14) (24) (124) (34) (134) (234) 
(1234).... (Formally (a1a2 ... ar) precedes (blb2 ... b) if ar < b8, or if ar = b8 and 

(a, ... ar,) precedes (b1 ... b8s1). The null set is taken as preceding every other.) 
We then adjust each set in order. 

(8) First, if (1) contains no row-minimum, we subtract from every element 
of (1) the least number that will make it contain one. Next, treat (2) likewise. 
Now if (12) contains row-minima in one row only (through their both being 
in the same row), subtract from every element of both columns the least 
number required to introduce a row-minimum of another row into (12). Now 
(12) contains row-minima in two rows, hence it is adjusted. Go on similarly, 
subtracting from every element of the set reached the least number required 
to adjust it. The proof in the paper shows that with the given ordering of the 
sets of columns, the adjustment of any set remains unspoiled by all later steps. 
Thus we come eventually to a state in which the whole array is adjusted. 

(9) Finally, if any subset of columns is exactly adjusted, the subtraction of a 
very small quantity from every element in the subset will remove from all 
other columns row-minima in the rows in which the subset has row minima, 
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but no other row-minima. If this procedure is applied to every exactly adjusted 
subset left in the final array, we end with a pattern of row-minima such that 
every row-minimum is in an exactly adjusted set of columns that has no 
exactly adjusted subset, and hence by theorem I, will appear in at least one 
minimum sum. 

(10) The proof that this algorithm does in fact give the desired answer 
makes it clear that the ordering of all subsets of columns described in para- 
graph 7 above is not the only possible one. The essential condition on the 
ordering is that, if (a, ... a,) precedes (b1 ... b), the adjustment of the latter 
will not spoil that of the former if we have already ensured the adjustment of 
one of the sets of columns containing every column in each set bar one. (For 
example, adjusting (145) will not spoil the adjustment of (123) provided that 
one of (1234) (1235) (1345) and (2345) precedes (145).) Further, any set must 
be preceded by all its proper subsets. (In the paper, only the latter condition 
was given.) 

(11) For a large array, the number of steps involved is very large. If the job 
is being done by hand, however, a little practice will allow the worker to take 
short cuts in choosing sets of columns which will most quickly lead to the 
final stage. 

(12) As an example we give the working on a 6 x 6 array: 

9 22 58 11 19 27 

43 78 72 50 63 48 

41 28 91 37 45 33 

74 42 27 49 39 32 

36 11 57 22 25 18 

3 56 53 31 17 28 

(Note: We have underlined all row-minima in this and the successive derived 
arrays.) 

Here all sets of columns up to (123) are adjusted. Subtract 2 from each 
element of (4) and obtain 

9 22 58 9 19 27 

43 78 72 48 63 48 

41 28 91 35 45 33 

74 42 27 47 39 32 

36 11 57 20 25 18 

3 56 53 29 17 28 
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All sets of columns up to (1234) are adjusted. Subtract 10 from each element 
of (5) and obtain 

9 22 58 9 9 27 

43 78 72 48 53 48 

41 28 91 35 35 33 

74 42 27 47 29 32 

36 11 57 20 15 18 

3 56 53 29 7 28 

(15), (25), (125), (35), (135), (235) and (1235) are adjusted; (45) is not. 
Subtract 2 from each element of each of these columns and obtain 

9 22 58 7 7 27 

43 78 72 46 51 48 

41 28 91 33 33 33 

74 42 27 45 27 32 

36 11 57 18 13 18 

3 56 53 27 5 28 

(145), (245), (1245) are adjusted; (345) is not. Subtract 2 from each element 
of all three columns and obtain 

9 22 56 5 5 27 

43 78 70 44 49 48 

41 28 89 31 31 33 

74 42 25 43 25 32 

36 11 55 16 11 18 

3 56 51 25 3 28 

Every set up to (12345) is now adjusted; (6) is not. Subtract 5 from each 
element of (6) and obtain 

9 22 56 5 5 22 

43 78 70 44 49 43 

41 28 89 31 31 28 

74 42 25 43 25 27 

36 11 55 16 11 13 

3 56 51 25 3 23 
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The whole set is now adjusted. We may apply the process of paragraph 9 
which we may exhibit by subtracting 1 from each element of columns 3 and 4 
and obtain 

9 22 55 4 5 22 

43 78 69 43 49 43 

41 28 88 -30 31 28 

74 42 24 42 25 27 

36 11 54 15 11 13 

3 56 50 24 3 23 

The sets of columns (3), (4) and (1256) are all exactly adjusted but contain 
no exactly adjusted subset. 

It will be found that there are just two minimum sums, 

a2l+ a52 + a43+ a14+ a65 + a36 and a6l + a32 + a43+ a14+ a55+ a26, 

which are, in the original, 

43+ 11 +27+ 11 + 17+33 = 142 and 3+28+27+ 11 +25+48 = 142. 

(13) It will be seen that although each row-minimum left in the final array 
appears in at least one minimum sum, only a limited number of combinations 
of row-minima is possible. The following process allows all possible combina- 
tions to be found. 

(14) We may suppose that the final array has no exactly adjusted subsets, 
for if not we can treat any exactly adjusted subset independently of the rest 
of the array. 

(15) If we choose any particular row-minimum, we know that it will occur 
in at least one minimum sum. Moreover, the minimum sums in which it occurs 
are those of the array formed by suppressing the row and the column in which 
it lies. This array must obviously be adjusted; but it may now contain an 
exactly adjusted subset, necessitating the suppression of some row minima by 
the method of paragraph 9 and the reduction of the array to a set of exactly 
adjusted sets, none of which contains an exactly adjusted subset. 

(16) For a small array, the identification of exactly adjusted subsets can be 
done easily by inspection. If a mechanical procedure is needed, then for any 
set of r columns let us define its excess as (s - r), where s is the number of 
rows in which it contains row-minima. An exactly adjusted set of columns has 
excess zero. Note the excess for each set of columns, at the end of the calcula- 
tion of paragraphs 8 and 9. (It would probably save no time to note the excess 
of each column treated during this calculation, since the excess of a set of 
columns that has been adjusted may change as later sets of columns are dealt 
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with. We know that it cannot fall below zero; but it may rise, and later it 
may also fall.) 

(17) When a row and a column are removed, as in paragraph 15, any other 
column will lose a row-minimum if it contained one in the suppressed row, 
but not otherwise. Thus for any set of columns in the remaining array, the 
excess will fall by one if any column of the set had a row-minimum in the 
suppressed row, but otherwise be unchanged. It is now easy to see which sets 
of columns are exactly adjusted, which row-minima must be suppressed, as in 
paragraph 9, and thus where to start from for the next step. 

(18) All minimum sums may therefore be found by the following process: 
Break up the array found by the procedure of paragraphs 8 and 9 into 

exactly adjusted sets of columns without exactly adjusted subsets. Deal with 
each of these separately. 

Take the first row-minimum in column 1 of the first one of these sets, delete 
the row and column in which it occurs, and break up the remaining array 
similarly into minimal exactly adjusted sets of columns. 

Take the first row-minimum in column 1 of the first of these, and proceed 
as before. 

When this procedure comes to a stop, go back to the last column from which 
the first row-minimum was taken, and take the next, and proceed as before. 

Proceed similarly, going back to the most recent stage at which an alternative 
choice was possible, until at last all possibilities have been exhausted. 

(19) Thus in the example, the columns 3 and 4 are each exactly adjusted. 
If we delete these and the corresponding rows, and write in only those elements 
where row-minima occur in the remaining array, we get 

a2l . a26 

a32 * a36 

* a52 a55 

a6l * a65 

(It will be seen that we can work here with the pattern formed by the row- 
minima only; the numbers they stand for no longer affect the working.) 

If we choose a2l, the first row and first column must be deleted; a36 is now 
the sole row-minimum in the last column, so a32 must be suppressed; a52 is 
the only remaining row-minimum in the first remaining column, so a55 must 
be suppressed. Thus the only minimum sum containing a2l is 

a14+a2l + a36 + a43+a52+a65. 

The only point to which we can go back to make a different choice is the 
beginning: instead, we can choose a6l. If we delete column 1 and row 6, the 
only row-minimum in column 5 is a55; hence a52 must be suppressed, and, in 
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consequence, a36. Thus the only minimum sum containing a6l is 

a14 + a26 + a32 + a43+a55+ a61- 

Since there are no other row-minima in column 1, there are no other minimum 
sums. 
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