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MANAGEMENT SCIENCE 
Vol. 13, No. 1, September, 1966 

Printed in U.S.A. 

THE DIRECT SOLUTION OF THE TRANSPORTATION 
PROBLEM WITH REDUCED MATRICES* 

PAUL S. DWYERI 

The University of Michigan 

A discussion of the importance of a direct method in obtaining all the solu- 
tions of a transportation problem, and in obtaining solutions of more general 
problems, is followed by a discussion of methods of reduced matrices in which 
the transportation matrix is reduced, by a series of subtractions from rows and 
columns, to a transformed matrix to which the orthogonality condition is 
applicable. The direct method proceeds in a series of simple steps to 
the determination of zero terms having associated Xij values which eventually 
satisfy the row and column equations. Formal and informal versions are 
presented and a,pplication is made to several general problems. 

Introduction 

We seek methods which produce all the solutions of a transportation problem 
and which are applicable to more complex transportation problems. It is argued 
that direct methods should be considered. While the purest direct method is not 
practical, a modification substitutes some simple techniques for the minimization 
condition. With the methods of reduced matrices, we make subtractions from the 
rows and columns of the transportation matrix to produce a transformed matrix 
with all elements non-negative such that the non-negative integral Xij can be 
assigned toX the zero terms so as to satisfy the specifications for origins, i, and 
destinations, j. 

This work is a revised and extended version of an unpublished paper of 1955 
[61. It is related to published work on (and machines programs for) more general 
problems published in 1956 [7] and 1957 [9] and [171. 

The Problem 

The transportation matrix, C = 11 cij 11, is an mnxn matrix with associated 
integral xj ? 0 to be determined according to the specifications 

(1) M=1 xij = bj; Z=1 Xij = a; at = Z=, bj - N 

such that 

(2) T = i xijci; is as small as possible. 

General Solutions and Solutions of More General Problems 

For most purposes it would seem that an important property of a proposed 
method for solving a problem is that it produces all the solutions, and not just 
one of them. For some purposes it may even be desirable that the solution may 

* Received August 1965 and revised April 1966. 
Research supported in part by National Science Foundation Grant GP-4308. 
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78 PAUL S. DWYER 

include solution sets which are excluded from the usual statement of the prob- 
lem. Thus the solution of the transportation problem and particularly the solu- 
tion of the solid or k-dimensional problem [9], might well be given in terms of the 
more general solutions resulting from the use of fractional as well as integral 
assignments. It is also very desirable that a method be applicable, with no more 
than slight modification, to various generalizations of the problem. Thus it is 
desirable that a method for solving the transportation problem be also essen- 
tially applicable to the k-dimensional transportation problem [9], to transporta- 
tion problems with upper bounds [5, 368], to transportation problems with 
bounded partial sums of variables [15], to fixed charge transportation problems 
with constant fixed charges [22] and to problems having the same ci1 but with 
different values of ai and bj [3]. 

The attempt here is to provide a general method which gives general solutions 
to the general problems mentioned above which is operationally practical and 
generally more efficient than rival methods. 

Direct Methods 

Frequently a direct method of solving a problem can be extended to direct 
generalizations of the problem. By a direct method we mean one in which the 
basic specifications of the problem are used directly in solving the problem with- 
out replacing them, in whole or in part, with auxiliary theorems or criteria and 
without using the circuitous approach of transforming an initial feasible solution 
to an optimal one. In minimization (maximization) combinatorial problems such 
as the transportation problem, the purest direct method consists in writing out 
all possible feasible solutions which satisfy (1) and selecting those which satisfy 
(2). This method gives a general answer to the problem, in a sense that a cir- 
cuitous method does not, and since it is direct it is applicable to many direct 
generalizations of the problem which may result from additional specifications 
which are similar in form to those of (1). Generally the more direct methods are 
subject to more immediate direct generalization since direct methods do not 
depend on theorems or criteria which, while they are the complete equivalent of 
the conditions of the original problem, are commonly inapplicable to the more 
complex ones. Other things being equal, we seek methods which are direct if they 
are to be applicable to direct generalizations of the original problem. 

But other things are not always equal! The pure direct method of writing out 
all possible feasible solutions-those which satisfy (1)-is simply not practical in 
most problems. In practice we must resort to methods which are, in part at least, 
indirect. The important point is that, if we wish to have methods which are 
applicable to direct generalizations of the problem, we should attempt to use a 
minimum of equivalence theorems and adixiliary criteria as substitutes for the 
stated conditions of the problem. 

In considering the nature of many desirable generalizations of the problem, 
the minimization condition (2) is usually not fundamentally changed but the 
specification conditions (1) are generalized and/or expanded. It appears then 
that a proper first step in the order of indirection is in providing an alternative to 
the use of (2) while leaving the specifications (1) intact. 
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Lemmas for Reduced Matrix Methods 

There is an alternative to the use of (2). It is related to an orthogonality con- 
dition that, if ui and vj are constants subtracted from row i and column j respec- 
tively so that ci- -vu = c(J) > 0 for all i, j then the condition is 

(3) Xijc = 0 i = 1I m; j = 1, =0, n. 

This means that xij # 0 only when c) = 0. Now since every feasible primal 
solution which satisfies (3) has the smallest possible transformed sum, 

i,j xijc'= 0, we have 
Lemma 1: Any feasible solution for the primal problem (1) which satisfies 

(3) is an optimal solution for the primal problem (1) (2). 
Any method which constructs the optimal primal solution with the use of the 

zero terms of the matrix C) of (3), rather than with the use of (2), may be 
called a reduced matrix method. If it also uses (1) without alternative condi- 
tions or theorems, the method may be said to be direct. There are reduced 
matrix methods which are indirect. See for example [5, 410] [8] [14] [10] which 
use such alternative results as Hall's condition [19], K6nig-Egervary Theorem 
[20], or Brogden's generalized condition [2] [8, 44]. 

More formally, since the smallest element of a set S - k, with k constant 
correspoynds to the smallest element of S, we have 

Lemma 2: If ui is subtracted from row i and vj from column j for i = 1, * ,m; 
j1 n, then cij-ui-vj = ci ) results with 

x(t) -xij, T(t) = Zi,axijcij = T- Eiaui - Ejbjvj so 

T = T?t) + EZaiui + EZbjvj. 

Furthermore if ui and vj are chosen so that c(j > 0 and if xij is taken H0 only 
when c(1) = 0, (3) is satisfied, lemma 1 applies and T(t) = 0, with 

(4) T = Zja,,,ui + Zjbjvj. 

Here ui and vj constitute a feasible solution for the dual; thus the direct method 
developed here is a dual algorithm. 

The Steps of the Reduction Process 

The direct method proceeds by a series of subtractions from rows and columns 
to produce a matrix 0(t) with enough zero terms so that (3) and (1) are satisfied. 
These subtractions are of three different types and are presented in the three 
steps below. 

Step 1. It is necessary that there be at least one zero term in each row and 
one in each column. The first step accomplishes this. 
Determine 

v(0) = mini cii for j = 1, * , n 

and write 



80 PAUL S. DWYER 

Then determine 

u() = inj c() for i = 1, , m 

and write 

(5) c(1) = c(0) (?0) = c (j-v- 0U(?) for all i,j 

TABLE 1 
Balinski-Gomory Illustration [1] 

2 2 3 4 4 ju(O) 

4 3 5 3 1 1 
5 2 3 3 2 7 1 
6 1 1 2 1 2 

s(?) 1 1 2 1 1 23 

c(l) 

2 2 3 4 4 

4 2 4 1 0 04 
5 ()y+z-2 1 03-z 04-v 5 
6 04--04z 02 OZ 01 1 

23 

Row-Column Analysis 

X14 X15 X21 X23 X24 Xai X82 X83 Xu 

Ri 1* 1 4 
R2 1* 1 1 5 
R3 1* 1 1 1 6 

Cl 1 1 2 
C2 1* 2 
C3 1* 1 3 
C4 1 1 1 4 
C5 1* 4 

Rl -C4 1 -1 -1 0 
-C5 -1* -1 -4 

R2 -Cl 1 1 -1 3 
- C3 1 -1 -1 0 

+R1* -1 -1 -1 -4 
+R3 12 

-C2 0 

z;i; 0 4 y+z-2 3-z 4-y 4-y-z 2 z y 

O < y < 4,0 <z <3, 2 < y + z ? 4 
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Then we have 

(6) c(1) > O for all i, j and c() = 0 

for at least one element in each row and for one element in each column. This 
step is illustrated in Tables 1, 2, 3, and 6 where application is made to illustrative 
problems of earlier authors. The roles of column and row may be interchanged, 
if desired, with subtraction first from the row, as in Table 5. It should be noted 
that this first transformation is the equivalent of the first transformation [5, 405] 
of the Dantzig version of the Ford-Fulkerson primal-dual method [16, 95-111]. 

As the contribution to the bounding set sum, compute S?) = Es ajuO0' + 
Ej bjWv) and record it in the lower right box of the augmented matrix C. See 
Tables 1, 2, 3, 5, 6. 

In case there is a feasible solution to (1) which satisfies (3), the solution is 
complete and the matrix is said to be completely reduced. Thus C(') is completely 
reduced in Table 1, but not in Tables 2, 3, 4, 5, 6. The determination of such a 
feasible solution is discussed in the section following. In Table 1, the value of 
T = S') is placed in the lower right box of the matrix C'1). 

For the existence of a feasible solution to (1) and (3) it is necessary that there 
be as many zero terms in each column (row), when weighted by the ai(bj), as 
needed to meet the specification for that column (row). We then have Step 2. Let 

f i when c() = 

\Ootherwise 

Then with 
gj= Z,=, ai3ij 

it is necessary that 

(7) Di gjg--bj > O. 

If Di < 0 for some j - J, we speak of a deficiency in column J, i.e., a shortage 
of zero terms. To eliminate the deficiency in column J, or at least to make it 
smaller, we introduce additional zero terms. We determine, for the reduced 
matrix C() a number A defined by 

(8) A = mini{ C, > 0} > 0 

and define I to be the subset of rows for which C) = 0, with J and ! the respec- 
tive complement sets of J and I. Then we subtract A from column J and -A 

from all rows of 1, to get 

A- for all elements of IJ' 

(9 - (=0) for all elements of IJ 
9 

c) >0 for all elements of IJ 

c(7) + A for all elements of IJ 

Then 

(10) (r) > 0, g 1r+l) > g(r) and - D(r+l) < -D(r) as desired. 



TABLE 2 
Dantzig Illustration. [4] 

C 

3 3 3 2 2 (0) 

1 3 2 1 2 3 
5 5 4 3 -1 1 
7 0 2 3 4 5 

v() 0 2 1 -1 1 9 

c(l) 

3 3 3 2 2 U D1 I) 

1 3 0 0 3 2 -2 5 
5 5 2 2 0 0 -1 
7 0 0 2 5 4 -1 

V~~1) ~2 4 

DMl' 4 5 -2* 3 3 

c(2) 

3 3 3 2 2 

1 5 2 0l 5 4 
5 5 2 0l 02 02 

7 03 03 0l 5 4 

13 

Row-Column Analysis 

Xi X2S X24 X26 Xa X32 Xas 

Ri 1* 1 
R2 1* 1 1 5 
R3 1* 1 1 7 

C1 1 3 
C2 1* 3 
C3 1 1 1 3 
C4 1* 2 
C5 1* 2 

R3 -Cl 1 1 4 
- C2 1* 1 

Ri -C3 -1 -1 -2 
+R2 1 1 -1 3 

-C4 1 -1 1 
- C5 -1 -1 

+R3* 0 

xij 1 1 2 2 3 3 1 

82 



TABLE 3 
A 4 X 6 Problem, N 812 [61 

tioDi Q 0 3 ; .= ; i 0 to O~ 

l 1 1 ~~~~~~~48 1 1 32 92 SO 79 1 ($" 

Boston 82 5 9 16 2 12 32 
Cleveland 88 2 3 11 5 5 26 
Kansas City 99 10 6 8 12 3 19 
Los Angeles 43 26 21 19 29 19 4 

(0)~~~~~~~~~~~~~~~~~~~~~~~~0 

vi? 2 3 8 2 3 4 1035 

c(l) 

48 11 32 92 50 79 u MI) 

Boston 82 3 6 8 0 9 28 -3 10 
Cleveland 88 0 0 3 3 2 22 -29 
Kansas City 99 8 3 0 10 0 15 -17 
Los Angeles 43 24 18 11 27 16 0 -15 36 

2 3------ 8 2 33 15 570 

D() 40 77 67 -10** 49 -36* 

c(2) 

48 11 32 92 50 79 D(1) |D(2 

Boston 82 6 9 11 0 12 16 10 
Cleveland 88 0 0 3 0 2 7 63 
Kansas City 99 8 3 0 7 0 0 -2 62 
Los Angeles 43 39 33 26 39 31 0 -2 36 

(1) 32 2 2 38 

D1,2 40 77 67 78 49 63 

48 11 32 92 50 79 

Boston 82 6 9 9 0 10 14 
Cleveland 88 048 0ll 1 01 2 069 5 
Kansas City 99 10 5 032 9 031 036 

Los Angeles 43 41 35 26 41 31 043 

1643 

83 
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The corntribution to the bounding set sum is 

(11) ,Sj(r) - 
Ag= A(-Di) = AD'S > 0 

where D'J = Di. 
Step 2 is first illustrated by application to the matrix 0) of Table 2 where 

J = 3, g3 = I and D = - 2. Then I is row 1 and application of (9) results in 
the completely reduced matrix, C(2), since the unique solution, indicated by the 

TABLE 3a 
Row-Column Analysis for Matrix C(2), N = 312 Problem 

X14 X21 X22 X24 X33 X26 X36 X46 

RI 1* 82 
R2 1* 1 1 88 
R3 1* 1 1 99 
R4 1* 43 

C1 1 48 
C2 1* 11 
C3 1 32 
C4 1 1 92 
C5 1* 50 
C6 1* 1 79 

Rl -04 1* -10 

R2 -Cl 1 1 40 
-C2 1 29 

+R1* 19 

R3 -C3 1 1 67 
-C5 1 17 
-C6 -1 -62 

+R4 -19 

TABLE 3b 
Informal Analysis for Matrix C(2), N = 312 Problem 

C(2) 

48 11 32 92 50 79 (2) A (2) 

82 6 9 11 0082 12 16 2 '0 
88 004 0911 3 010 2 7 2 1-19 
99 8 3 0032 7 0050 036 219 

43 39 33 26 39 31 0043 20 

v(2) -2 -2 -2 38 

A(2) 10 10 20 10 20 20 0 
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right superscripts of the matrix, comes from the application of (1). Then Sl)- = 

2(3 - 1) = 4 and the value of T is S(') + S') = 9 + 4 = 13 units as may be 
verified with the use of T = Z7,3 Xijcii . 

Rows and columns may be interchanged, of course, to obtain values of Di , 

TABLE 4 

Removing the Total Deficiency, Illustration of [10] 
c(l) 

4 1 4 3 |u1) | A(1) min. 

1 001 1 5 6 0 15 
1 001 4 6 5 0 15 
1 001 8 2 1 -2 0 11* 
1 001 3 5 6 0 15 
1 6 0 5 7 0 15 
1 4 1 O ol0' -3 0 2 

1 2 3 0z 0l-z -3 0 2 

1 4 1 001 2 -3 0 2 

1 3 2 0 ol-u -3 0 2 

1 001 4 1 5 -2 0 11* 
1 9 0 3 5 0 13* 
1 0o" 0"- 7 7 0 17 

v 1) 0 0 3 3 5 

A '1+w 12-W 2y+Z+U-3 2-y-Z-U 0 

Formal analysis also shows C3 + C4 - R6 - R7 - R8 - R9 3 

c(2) 

4 1 4 3 

1 001 1 2 3 
1 001 4 3 2 
1 2 10 1 00' 
1 001 3 2 3 

1 6 0 2 4 
1 7 4 O0 ol" 
1 5 6 Oz 0i-z 
1 5 4 001 2 

1 6 5 01rz 0V+Z 
1 2 6 00' 4 
1 9 0" 01 2 
1 01 00 4 4 

106 

where 0 ? y < 1 
0 z < 1 
0 ;? y+z ? 1. 
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as illustrated in Table 2. Then the negative Di or Dj having largest absolute 
value is selected, as in Table 2. Here the transformation which eliminates the 
deficiency in column 3 also eliminates the deficiencies in row 2 and row 3. In 
general step 2 can be applied successively until all deficiencies in individual 
columns (rows) are removed. Frequently one can combine successive applica- 
tions of step 2 into a single step with possible modification of the values to be 
subtracted from the rows and columns. Thus there are basically two applica- 
tions of step 2 in going from C(1) to C(2) in Table 3. The second applies to 
column 4, indicated by a double asterisk. In determining the A for the second 
application, we must use the minimum of the non-zero elements of column 4 

TABLE 5 
Negative Solution, Kuhn Illustration [211 

a.j b~ 1 1 1 1 U?O) 

1 8 7 9 9 7 
1 5 2 7 8 2 
1 6 1 4 9 1 
1 2 3 2 6 2 

v(O) 2 14 

C(1) 
_____ _ ___ ____ _____ ____ ___ - - - Formal row-column analysis for C( 

k 1 1 1 1 u(2) e shows Cl + C3-R4 = 1 
____ _____________ -. andR1 l R2 + RP3-C2-C4 =1 

1 1 0 2 0 Row column analysis for C(2) 
1 3 0 5 4 
1 5 0 3 6 Xii X12 X14 X22 XI X41 X-4 

1 0 1 0 2 -1 

~ v(2)- 1 1 1 R1 1* I 1 1 

1 1 1 P2 3* 1 

c(2) R4 1* 1 1 

I 1 1 Cl 1 1 1 Eli~ ~ ~ ___ _ _ _ _ 21 

1 01 01 1 01 03 C* 1 
1 2 01 4 4 2 C4 1 I 
1 4 01 2 6 2 Rl -CI 1 1 -1 0 
1 0? 2 01 3 -C2 1 -1 -1 -1 -1 

-2 2 -C4 -1 -1 -1 -2 
________ __ ___________ ___________+ R 2 - 1-11 

+R3 -1 0 
C(8) +R4 1 1 

. - - - -C3 0 
1 1 1 ~~~~~~~~~~~~~ ~~~~ 

~~~~ 0 1 

1 0 2 1 01 
1 o0 01-Y 2 2 -RI +C1 -1 -1 1 0 
1 2 o0 0'-Y 4 +C4 -1 1 1 
1 01-' 4 0y 3 -R4 -1 -1 0 

_____ _______________ ~~~~ ~~+C3 -1 1 

- ______________________ _ l - - +R2 -C2 -1 -1 0 

O ;5 V :5 1 +R3 -1 1 

Use C + C3 + C4- R1- R4 or R2 J R3-C2 
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resulting from the first application. For example in Table 3, the A for J = 4, 
after application to J = 6, is min (3, 10, 42) = 3 as indicated. 

The use of step 2 is continued until a matrix is reached for which every Dj and 
Di > 0. Such a matrix is said to be reduced grouped. The C(2) matrix of Table 3 is 

TABLE 6 

Problem with Variable Specifications, Charnes-Kirby Illustration [8] 
C Remarks 

bj 'U~~~~~~~~~~~~~~~~~~~~~~0) ii-,6 7 2 9 15 uo 

14 2 6 -6 8 3 0 ;9 11 
20-,f 3 4 0 6 9 fi = 11 eliminates 
10 1 8 6 5 -2 first column. 

v (?) 1 4 -5 5 -2 44-F3 

c(l) 

11-jS 7 2 9 is M(1) ) 

14 1 1 0 3 5 1 -12* no additional 
20-p 2 0 5 1 11 f8-13 restriction on,B. 
10 0 4 11 0 0 -4 25-fl 

v(l) -1 1 4 41 

DMl) fl-1 13-fl 12 1 -5** 

c(2) 

11-; 7 2 9 (2 ! ) D 2) 

14 '0"- 00-4 '02 1 05 21-fl solution holds for 

20-fl 2 0"l- 6 009 7 2 p-4* 4 < ? ,B 11 with 
10 4 8 16 3 ?0o 5 T=85-f. 

v(2) -2 -2 8-2fl 

D '2) 3+f 27-,f 12 11-fl 9 

C(3) with 0 < , ? 4 

b 11-j 7 2 9 is 

14 07 2 002 3 0' solution holds for 
20- 04-0 07 4 009 5 0 ? f < 4 with 

10 4 10 16 5 0010 T = 93 - 3. 

93-3,8 
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reduced grouped as shown by the values of D(2) and D(2). But this matrix is not 
completely reduced since there is no feasible solution which satisfies (1) and (3). 
An attempt to provide such a solution starting with x4 = 82 results in X24 = 10, 

X21 = 48, x22 = 11 and since x21 + x22 + x24 = 69 < 88, there is a deficiency of 
19 units in rows 1 and 2. Alternately there is a deficiency in columns 3, 5, 6 which 
do not have zero terms in rows 1 or 2. We then proceed to eliminate this defi- 
ciency by Step 3. 

For the existence of a feasible solution to (1) and (3), it is necessary that 
there be as many zero terms in each subset of colunns (rows) as needed to meet 
the specifications for that subset of columns (rows). We then have Step 3. 

Let a subset of columns be indicated by J and let the subset of rows having at 
least one zero term in some column of J be indicated by IJ = I. Then with 
bi = EZjeJ bj and gi = ZieI ai, it is necessary that 

(7') Di = g - bi > O. 

If Di < 0 for some subset J, we speak of a deficiency in the columns of J, i.e., 
a shortage of zero terms with the deficiency D'J = -Di > 0. Methods for deter- 
mining such deficient subsets are discussed in the section following. In the 
Matrix (2) of Table 3, we see J = {3, 5, 6} is deficient since I = {3, 4} and 
Di = 142 - 161 = - 19. To eliminate this deficiency, or at least to make it 
Smaller, we introduce additional zero terms. We determine, for a matrix C(r) 

(8') A = minicn) {= c. 
I i , jJl > 0 

and subtract A from all columns of J, - A from all rows of I to obtain (9), which 
here holds for more general J except that c(' = 0 for IJ is modified to c(2) > 0. 
Then (10) and (11) also hold. 

Step 3 is illustrated in the matrix C(2) of Table 3 where A = = 2. The 
contribution to the bounding set sum is S(2) = 2(19) = 38 units. 

There are corresponding results when column and row are interchanged. Thus 
the subtraction of 2 units from rows 1 and 2, -2 units from columns 1, 2, 4, 
lead to the same C(3). 

Application of step 3 is continued until the matrix is completely reduced with 
no subset of columns (rows) deficient. 

The Reduction Process 

In a sense these three steps are the building blocks of the reduction process. In 
this sense the specifications (1) provide the direction for the reduction process and 
the mortar needed for a unified structure. As might be expected with a direct 
method, the essence of the process is simple. Using lemma 1, either a solution 
results immediately or, if not, a deficiency is discovered which indicates the next 
step. There is an informal version of the process for hand calculation and a 
formal version for machine calculation. 

Using the values of ai and bj shown in the matrix C(2) of Table 2, it is seen that 
the superscripts, indicating the values of xij , 0, can be assigned at once. Simi- 
larly this can be done in the matrix C'1) of Table 1, but here there are multiple 
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solutions so parameters, y and z, are used to indicate multiple choices after all 
unique assignments are first made. The result is a general (parametric) solution. 
For the usual restricted problem, the values of the parameters producing nega- 
tive and non-integral solutions must be eliminated. Thus in Table 1, admissible 
values are integral values satisfying 0 < y < 4, 0 < z < 3, subject to 2 ? y + 
z ? 4. The solutions are (y, z) = (0, 2) (0, 3) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) 
(2, 2) (3, 0) (3, 1) (4, 0). 

A more formal reduction process, suitable for machine programs, is presented 
in the row-column analysis. We write the value of xij associated with c, - 0 
terms as the headings for columns. We then write the equation coefficients for 
each row and each column. We wish to know if these equations are consistent. 
We reduce these equations essentially to triangular form by marking (with an 
asterisk) the unit coefficient at the left of each equation subject to the condition 
that no column can be marked more than once. We then take in turn each equa- 
tion which has no marked term, eliminate terms by adding to or subtractiDg from 
marked equations, until the left hand element appears in an unmarked column 
(in which case the element is marked) or until all units on the left side of the 
equation are eliminated. In case all the corresponding elements on the right are 
zero, the equations are consistent and the back solution proceeds as is shown in 
Tables 1 and 2. In the back solution a parameter value, y, z, ... , is assigned to 
each unmarked column. A general parametric solution results. 

In Table 1 and in Table 2, the formal row-column analysis leads to the solu- 
tion. The matrix is completely reduced. The value of the minimum T is the net 
sum of the S") (as recorded in the right lower box for each matrix) and can be 
verified by applying the xij values to the original cij . 

The notation in the row-column analysis needs some explanation. Formally 
the notation Ri means f=1 X=j a? for fixed i and 0] means I=i xj = 

for fixed j. But since xij = 0 when c(J 7 0, we may omit all these terms. Thus in 
Table2, R3* = R3 - 01 - C2 is (X31 + X32 + X33 - 7) - (x31 = 3) - (x32 = 3) 
and is X33 = 1 as indicated in Table 2. Furthermore the result Rl + R2 + R3* - 

C3 - C4 - C5, when the value of R3* is inserted, indicates that every xij is 
multiplied by + 1 for row i and by -1 for column j to give a net result of zero. 

The formal version is also illustrated in Table 3 and Table 3a. This problem is 
a realistic problem with the matrix C consisting of distances (in 100 miles) 
between origins and destinations. Applications of step 1 and step 2 result in the 
matrix C(2). Row-column analysis for the matrix C(2) of Table 3a shows comple- 
mentary inconsistencies so that either of the complementary forms Rl + R2 - 

C1 - C2 - C4- 19 or C3 + C5 + C6 - R3 - R4 = 19 can be used. Using 
the second we subtract A from C3, C5, and C6 and - A from R3 and R4 with a 
net subtraction of 19A. From the matrix C(2) we see that A- c(2) = 2 is the 
smallest value in IJ. The transformation with A = 2 is made and produces the 
completely reduced matrix C(2) with the values of xi,, and the value of T, as 
indicated. 

In more complex problems there may be many, say k, inconsistencies. How- 
ever there are only k - 1 independent ones since it is always true that Zi= Ri - 
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Z= C0] 0= . One plan is to select the transformation associated with the largest 
deficiency. If one wishes he may determine the value of A for each inconsistency 
and hence select the transformation which maximizes S(r) = D'A at each step. 
However the reduction process proceeds satisfactorily with the elimination of 
any deficiency. 

Though formal row-column analysis is available for machinle calculation, easy 
and informal analysis based on (1), can be used with hand calculation. The or- 
ganization of the informal version is shown in Table 3b. The tentative xij assign- 
ments are made first for all rows and columns with a single zero entry, For later 
identification these are marked with a left upper superscript 0. The assignments 
are then made by columns, in accordance with conditions (1), with parameters 
y, z, * * * used when the assignment is not unique with the values of AJ and Ai, 
the differences between the assigned and quota values, inserted in the last row 
and column. Here there is a deficiency of 19 in row 2 and a surplus of 19 in row 3. 
The rows and columns which are involved in the respective linear forms are 
indicated by the left superscripts 1 and 2 in the Aj row and Ai column. Thus the 
first linear form involves Rl, R2, Cl, C2, C4. The second linear form is here the 
complement of the first. These, of course, are the identical linear forms resulting 
from the formal row-column analysis of Table 3a. Using the rows and columns of 
the first linear form, there is a deficiency of 19 as shown in row 2. Then A 2 
and the subtractions are as indicated. The resulting matrix C) is completely re- 
duced as it has the unique solution indicated in Table 3. 

Removing the Total Deficiency 

If there is only one element of IJ equal to A and if either of the corresponding 
ai or b1 is not as large as the deficiency D', the transformation does not completely 
remove the deficiency though, of course, the whole process can be repeated. More 
compactly if the columns (rows) are deficient, these repetitive steps can be com- 
bined in a single step with the largest of the (weighted) D' row (column) minima 
used as A, followed by the appropriate negative subtractions to introduce the 
required number of zero terms in IJ. The essential requirements of a reduced 
matrix method are met though some zero terms may become positive. 

An illustration is presented in Table 4. Initial transformations result in a 
matrix C01) with a net subtraction of 101 units. Formal row-column analysis 
(not presented) shows the inconsistency C3 + C4 - R6 - R7 - R8 - R9 = 3 
while the informal version of Table 4 shows at once a deficiency of 3 in J = 
{3, 4} with I = {6, 7, 8, 9}. Since all ai = 1, subtraction of A = 1, the smallest 
non-zero element in IJ, which appears here in two different rows, results in the 
removal of but two units of the deficiency. To remove the full deficiency at one 
step, we record the minimum in J for each row of IJ as shown in the last column 
of the matrix 0(1) of Table 4. The third largest minimum, 3, is subtracted from 
J and 0 ? ei < 3 are subtracted from the appropriate rows to preserve the form 
of the reduced matrix. The resulting matrix C(2) is completely reduced having 3 
solutions indicated by (y, z) = (0, 0) (0, 1) (1, 0). 
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Negative Solution Transformations 

The formal process continues until no deficiencies remain. However since there 
is no specification, explicit or implicit, that xij > 0 or that xij is integral, the 
resulting parametric solution is a general solution with no restrictions on the xiq. 
The more restricted form of the problem, as stated above, requires a solution 
with integral xij ! 0. To obtain a solution for such a restricted problem from a 
general solution in which one or more xqi may be negative, it is appropriate to 
introduce a transformation to eliminate the negative solution. Such a trans- 
formation is called a negative solution transformation. 

Consider, for example, an example of Kuhn [21], as shown in Table 5. The 
formal row-colun-il analysis for C(2) shows no inconsistencies but the resulting 
general solution shows x12 = - 1. More generally we consider an elimination of 
the negative result xi = -B, with B > 0. Then, a linear form of the equations 
(1) results in xj = -B. To obtain the explicit value of such a form it is only 
necessary to take some equation of (1) containing the negative xij, multiply it 
by -1, and eliminate all the other xij terms to get a linear form of I and J which 
can be used as the basis of the desired transformation. If, as before, we subtract 
A from the rows (colunms) having plus signs in the form and -A from the 
columns (rows) having minus signs, the net amount of the subtraction is AB, 
the amount of the increment to the bounding set sum. At least one new zero 
term is introduced and the zero term in the i, j position is replaced by A so the 
negative solution is eliminated. Thus in the row-column analysis for the matrix 
C(2) of Table 5, once it is established that x12 = -1,)- R1 is selected and the 
other terms are eliminated. The resulting form is Cl + C3 + C4 - RI - R4 
which is -x12 = 1. Alternately the selection of -C2 leads to R2 + R3 - C2 
which is-X12 = 1. Using R2 + R3 - C2 we see that the smallest element in 
1i is c(3) 2 so A = 2 units are subtracted from rows 2 and 3 and -2 units from 
column 2 with a net subtraction of 2(2) - 2(1) = 2 units. The resultant matrix 
C4 is completely reduced and has the solutions indicated in Table 5 with integral 
y =0 ory= 1. 

The formal version of the method is useful in obtaining general answers, in- 
cluding the possibility of solution sets with negative numbers, and in obtaining 
answers to more general problems such as the k-dimensional transportation 
problem as shown below. For the more specific two-dimensional problem, con- 
ditions which implicitly require xij > 0 can be used in the less formal version to 
avoid negative xij, if a solution to the restricted problem is preferred. 

Avoidance of Negative Solutions 

In the transportation problem with ai and bj of some size and not all the same, 
the formal method results infrequently in negative solutions. Negative xij do 
occur sometimes in the solution of the assignment problem (ai = = 1) as is 
illustrated in Table 5 where it is necessary that x12 = - 1 to cancel off one of the 
surplus values in row 1 and one of those in column 2. For the transportation 
generalization of the problem of Table 5 with b3 + b2 ? a4 the negative solution 
results only when a, - b-b4 equals b2- a2 - a3 and is negative. 
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Negative solutions can be avoided with the determination and elimination of 
surplus assignments. When negative assignments are not permitted, the pre- 
liminary transformations may lead to reduced matrices with more assignments 
to some column (row) than specified by the quotas. The determination of such a 
surplus also leads to the determination of a transformation. Thus in the matrix 
C0') of Table 5 we see that the initial assignments leads to a surplus of one unit in 
column 2, and to a surplus of one unit in row 4. Considering the surplus in column 
2, there must be an additional zero term provided in row 2 or row 3. Here A = 3, 
and the subtraction of 3 units from row 2 and row 3, with the subtraction of -3 
units from column 2, leads to an increment to the bounding set sum of 3 units 
and to the completely reduced, matrix C(s). In this case the surplus in column 2, 
and the surplus in row 4, are fortunately removed at one step. The simple re- 
moval of the surplus in row 4 with A - 1 does not result in the removal of the 
surplus in column 2. An additional transformation with A = 2 is needed, as in 
the formal version shown in Table 5. 

In general let J be a column with a surplus and I the set of rows containing the 
non-negative assigned elements of J. Then we use the minimum of IJ to deter- 
mine A and subtract A from I, - A from J. 

Accomplishing somewhat the same objective as the transformation above is 
the compression subroutine of Flood [14, 261]. 

With this device for avoiding negative solutions, the techniques of the informal 
version seldom lead to a negative solution. If they should, one can always elimi- 
nate the negative solution. 

Use of Rectangular Subgraphs 

It may be helpful in understanding the formal and informal versions to use the 
concept of linear subgraph. Consider the lines connecting the zero terms in the 
rows and columns of the reduced matrices. Linear subgraphs are identified by the 
results of the row-column subset analysis. Thus the matrix C02) of Table 3 has 
one linear subgraph consisting of RI, R2, Cl, C2, C4 and a complem-entary one of 
R3, R4, C3, C5, C6. 

If D' 0 for each subgraph, then iRi = CXj for that subgraph and the sub- 
graphs are rectangular. It is only with rectangular subgraphs that a solution 
exists though sonme components of the solution may be negative. If TRi = Wj for 
all subgraphs, a general solution exists. 

Each transformation introduces at least one additional zero so that at least 
two subgraphs are joined and the number of subgraphs is reduced by at least one 
at each step. Starting with a reduced mnatrix and with n < m, it is seen at once 
that there can not be more than n linear subgraphs. With reduced grouped 
matrices, the number is usually much less than this. Then the reduction to two 
complementary subgraphs can be made in no more than n - 2 transformations, 
once the matrix is reduced. With the informal version, the number of linear sub- 
graphs once the reduced grouped matrices have been further reduced with the 
use of transformations eliminating surplus assignments, is usually very small. 
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Number of Steps 

The direct method using reduced matrices, either formal or informal, is in a 
real sense not an iterative method at all like the simplex method. Rather a solu- 
tion process is used in which the technique employed depends on the amount 
of reduction present. 

The reduced matrix can be computed in one step. The reduced grouped matrix 
can then be found in at least (m + n) steps (many of which can be integrated 
into a single step). With m > n, and eliminating the total deficiency of a linear 
form in one step, the linear forms can be integrated in at most n - 2 steps so a 
bound for the number of steps of the general solution is m + 2n - 1. No problem 
is known for which the actual number of steps is more than a small proportion of 
this. 

In the restricted problem, with integral xij > 0, additional steps remove the 
negative solutions (formal) or the surplus assignment transformations (in- 
formal). There are usually very few of these. It is difficult to put an absolute 
bound on the number of steps needed to eliminate all negative solutions since the 
elimination of one negative xij may result in the introduction of other negative 
xij but m + n seems to be a very adequate, though not absolutely guaranteed, 
bound for the number of these steps. Commonly for transportation problems 
with unequal ai and bj of some magnitude, no such transformations are needed. 

Solution of More General Problems 

The formal version of this direct method with reduced matrices is directly 
applicable to many generalizations of the transportation problem in which the 
conditions (1) are replaced by a more general set of conditions. It seems proper 
to mention some of these problems here and to give more adequate treatment in 
other papers. In all of these problems the importance of the use of completely 
reduced matrices as a substitute for (2) cannot be overemphasized. 

1. Problems with General ai and bj 

There are many different cij matrices that have the same completely reduced 
matrix and there are commonly many values of ai and bj appropriate to a given 
completely reduced matrix. Once a completely reduced matrix is available, it is a 
relatively trivial matter to write out the general solution for general ai > 0 and 
bj > 0. Thus we see at once, from the completely reduced matrix C(2) of Table 2, 
that X13 = a,, X25 = b5, X24 b4, X23 = a2 - b4 - b5, x3 bi X32 = b2 and 
X33 = a3 - b- b2 provided only that a2 > b4 + b5 and a3 ? bi + b2 . This is the 
general solution for any problem having matrix c"ij = Cij + E- + e where 
- < Ei < o, - o < Ej < oo fori 1, **. ,mandj = 1, *** ,n. 

The solution of the general problem, ai > 0, bj > 0 when the specific problem 
has a parametric solution is next illustrated. From the matrix C(') of Table 1 
we see that X34 = Y, X33 = Z, X32 = b2, X31 = a3 - b2 - y - Z, X24 = b4 + b5 - 
a1 - y, X23 = b3 - z, x21 = b1 + b2 - a3 + y + z, X15 = b5 and x14 = a1 - b5 as 
long as a1 > b3, a3 > b2, b1 + b2 ? a3 , b4 + b6 ? a, for non-negative z and y 
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which satisfy 0 ? z ? b3, 0 < y < b4+ b5 - a, and bi + b2 - a3 < y + z < 

a3 - b2. 

Some matrices which are not completely reduced may also be used to give 
solutions to more general problems with xij > 0. Thus the matrix C(1) of Table 5 
with ai > 0 and bj > 0 is a completely reduced matrix for any problem with 
b2 > a2 + a3 and a4 > b1 + b2 while the C(2) matrix is completely reduced for any 
problem with b2 _ a2 + a3 and b3 _ a4 < bi + b3 . 

It is useful to note that any negative solution of the problem with fixed specifi- 
cations corresponds to a non-negative solution of a problem with a4 and bj in- 
creased by at least the amount of the negative solution. Thus the matrix C(3) of 
Table 5 is a completely reduced matrix for all problems with specifications 
ai - 1 + /3, 1, 1, 1; bj = 1, 1 + /3, 1, 1 for all positive integral values of f and 
for all matrices which reduce to C(3). 

2. Problems with One as and One bj General 

Not quite so general but still useful is the case in which one ai becomes ai i 

and some b5 becomes bj =t 3. The method proceeds as before. It is only necessary 
to avoid deficiencies and negative values of xij. As an illustration, a problem of 
Charnes-Kirby [3] is used in which a2 = 20 is replaced by 20 - j and bi = 11 is 
replaced by 11 - f. The solution is given in Table 6 using the informal version. 
The steps are routine and remarks interpret the results. There is a deficiency in 
row 2 of the matrix C(2) when j3 < 4 but the resulting transformation yields the 
matrix C(?) which is completely reduced for 0 ? ,B < 4. The solution for integral 
non-negative 3 requires no more steps than does the solution for j3 = 0. 

As a more practical and explicit illustration consider the problem of Table 3. 
Suppose facilities at Los Angeles are increased by 20 units and deliveries at San 
Francisco are increased by the same amount. Then the solution is immediately 
obtained from the completely reduced matrix of Table 3 with x46 increased from 
43 to 63. If instead the deliveries at St. Louis are increased by 20 units, the 
matrix C(3) again provides the solution with x46 = 63, x36 = 16, x33 = 51 and the 
other xij not changed. 

3. Problems with Inadmissible Squares 

Problems with inadmissible squares are very easy to handle with the direct 
method using reduced matrices for solutions with xij _ 0. It is only necessary to 
fix xij = 0 for every inadmissible square. This can be accomplished by making 
the cij for each inadmissible square so large that the subtractions of the reduction 
process never reduce it to zero. Operationally this can be managed by placing an 
X in each inadmissible square and using an X in the next matrix when a constant 
is subtracted. Of course there may be so many inadmissible squares that no solu- 
tion is possible but this method of reduced matrices then reveals the fundamental 
inconsistency since eventually the reduction process leads to some v = X which 
can not be used in a transformation. 
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4. Bounded Variable Transportation Problems 

Completely reduced matrices are useful in solving bounded variable trans- 
portation problems since the relations involving the bounded variables are 
usually expressed as conditions additional to (1). Solutions are available for 
types of problems which the xij are bounded [5, 378] and in which partial sums 
of the xij are bounded [15]. It is planned to discuss these results in a separate 
paper. 

5. Constant Fixed Charge Transportation Problems 

The general solutions are useful in solving fixed charge transportation prob- 
lems with constant fixed charges. Once a general parametric solution is available, 
as it is with the direct method using reduced matrices, it is only necessary to 
determine the parameters so as to wipe out as many xij terms as possible. Thus 
in Table 1, the optimal constant fixed charge solution is given by z = 0, y = 4 
since X24, X31, and X34 are wiped out and no other admissible values of y and z can 
wipe out so many x's. A paper on this subject has been accepted by The Naval 
Research Logistics Quarterly for the September 1966 issue [111. 

6. The General Transportation Problem 

The k-dimensional transportation problem, with specified capacities at inter- 
mediate points, etc. can be solved with the formal version of the direct method, 
though in this case fractional solutions as well as negative solutions may be en- 
countered. Fractional solution transformations are similar to negative solution 
transformations. This problem is the mathematical equivalent of the group 
assembly problem [7]. Earlier versions of solutions are available in the literature 
and B. A. Galler has prepared a machine program for problems with as many 
dimensions as 20 [9] and [17]. The direct generality of the formal method is seen 
from the fact the program in the k dimensions is also designed for the k = 2 
dimensional problem under consideration in this paper. 

Conclusion 

The direct method using reduced matrices is applicable to many direct gen- 
eralizations of the basic problem. However an important claim for its use in the 
Hitchcock problem is its simplicity and ease and the speed, as compared with 
available alternative methods, particularly for the informal version, with which 
a general solution can be reached. 
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