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In  the usual statement of the transportation problem [1], one has N items to 
send from shipping points A1, . . .  , Ap to receiving points B 1  , " ' "  , B q  . The 
amounts available for shipment from A1, • • • , Ap are a~, • • • , ap, respectively, 
and the amounts needed at B~, • • • , Bq are bl, • • • , bq, respectively, where 

p q 

~ a ,  = ~ b ~  = N. 
i=l 5 = i  

Given the cost c~i of shipping one item from A~ to B i ,  the problem is to allocate 
the shipments so as to minimize the total cost. 
find a set of integers x~j such that  

(1) x~j >- O, 
q 

(2) ~ x,i = as, 

P 

(3) ~ x,, -- b~, 
i = 1  

p q 

(4) T = ~ ~ c,~ x,j is minimized. 
i = 1  j ~ l  

Formally, the problem is to 

(Here x~ is the number of items to be shipped from A~ to B j ,  and T is the total 
cost.) 

I t  could happen, however, that  the shipments from A~ to Bj would have to 
pass through intermediate assembly points Dh. In  this case a shipment from A~ 
to Bi would involve the cost c~jh of shipping the item via assembly point Dh, 
and one would also have the capacities dl,  ' . -  , d, of Di ,  - . .  , Dr to consider. 
Now the statement of the problem becomes: 

Find a set of integers x~jh such that 

(5) x:jh => 0, 

j f f i l  ~ 1  
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(7) ± hi, 

i~1 /--I h,~l 

(Here x;ih is the number of items to be shipped from At to Bj  via Dh, and T is 
again the total cost.) In this way, one is led to consider a three-dimensional trans- 
portation problem and, more generally, if there are k - 2 intermediate sets of 
points, one is led to a k-dimensional problem. The problem as outlined here is 
only one of many applications of a more general linear programming problem. 
Another example is the group assembly problem [3], which requires the maximi- 
zation of T. 

The method most commonly used for the two-dimensional problem (i.e., as 
originally stated above) is the "simplex method"  [2]. In this method one first 
finds a "feasible solution," i.e., a set of integers satisfying (1)-(3) above, and 
then successively improves the solution until (4) is satisfied as well. Two major 
difficulties with this method arise when one passes to the k-dimensional problem. 
The initial stage of finding a feasible solution becomes much more complicated 
than in the two-dimensional case, and the number of constraint equations grows 
so rapidly that  the problem becomes unwieldy. 

The purpose of this paper is to describe methods which avoid the first of these 
difficulties and lessen the second. A good feasible solution will be shown to be 
available in any number of dimensions, and the method of reduced matrices can 
be used to replace the simplex method and thereby even avoid the need for a 
preliminary feasible solution. 

The method of reduced matrices is used to obtain the exact solution to the 
problem as stated above. I t  has been programmed to handle small problems with 
k ~ 7 on the IBM 650, somewhat larger problems with k = 2 on the ~DAC at 
the University of Michigan, and very large problems with k ~ 20 on the IBM 704 
at  the General Motors Technical Center in Detroit,  Michigan. 

In the description of the method below, the notation is tha t  of the case k = 3, 
but  in every ease the statement for a general k is an immediate generalization of 
the s ta tement  which appears here. 

The method of reduced matrices is based on the fact tha t  a constant may be 
subtracted from each element of any row (column, etc.) of the cost matrix without 
changing the positions in the matrix where the final allocations should be made. 
Now a necessary condition for the existence of a solution to the problem is the 
existence of constants u~, v/ ,  wh such that  

(10) c~h -- u~ -- v / - -  wh -- 0 whenever x~s~ ~ 0, 

and 

(11) c~ih - -  u ~  - -  v~  - -  w h  => 0 in any case. 
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If one subtracts the minimal element of each row (column, etc.) from each ele- 
ment of that row (column, etc.), (11) is preserved and one obtains a "reduced 
matrix" in which each row (column, etc.) contains at least one zero element, and 
(10) is satisfied at these matrix locations. (In the maximization problem, one 
changes the sign of all the C~ih before starting the reduction. Then (11) is pre- 
served after the first step, and the remainder of the reduction is the same as in 
the present case.) The zero elements thus obtained furnish a set of matrix 
positions for a possible allocation of items. Moreover, each subtraction increases 
the value of S, where 

: + + ± 
i--1 j--1 h-.l 

It is clear from (6)-(8) and (11) that 

i - -1 j - -1 h-.1 j - - I  ~ 1  h.~l h..=l , i~ l  j - -1  
(13) 

i ~1  j - -1 h,-,1 i--1 j - -1 1~.1 

and the inequality becomes an equality when values of u s ,  v i ,  and w  ̂are deter- 
mined so that (6), (7), (8), (10) and (11) are true. Then we have 

(14) S = T. 

We may hence consider the problem as the dual one of the maximization of S, 
rather than the minimization of T, in (13). 

One may attempt to find the solution by putting X~jh = 0 whenever C~ih > O, 
SO as to maximize S, but this commonly leads to a set of equations (6)-(8) in 
x~ih ~ 0 which are inconsistent, i.e., there is no solution at all. I t  is possible then 
to use the information gained in the solution process to determine another trans- 
formation on the matrix which produces another zero in the resulting reduced 
cost matrix without losing any already at hand. This transformation leads to an 
increase in S, and after a finite number of such steps (usually quite small), one 
has S = T. At this point one has a solution to (6)-(8) that also satisfies (10) and 
(11) but not necessarily (5), as one or more values of x~jh may be negative. Though 
negative solutions do not always appear, they do frequently result from this 
type of algebraic solution. They must be removed in order to arrive at an accept- 
able (positive) solution. This is accomplished by successive applications of 
additional transformations which eliminate these negative elements from the 
solution and are accompanied by an increase in S, although the zero term asso- 
ciated with the negative x ~  becomes non-zero in the next reduced matrix. In 
this way all negative solutions are eliminated so that the conditions (5), (10), 
(11), and (14) are all satisfied. 

At this stage we can guarantee that all X~jh are non-negative, but we cannot 
guarantee that they are integral and hence they may not provide acceptable 
answers to the problem. We do know that they are rational, i.e., they are frac- 
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tions or integers, since they are the solutions of simultaneous linear equations 
with integral coefficients. 

We next note an important fact which is significant not only for this method 
of reduced matrices but also for any other method such as the simplex method 
which explicitly or implicitly uses (5), (10), (11), (13), (14), and rational x. This 
is that  the basic relation 

(15) max S = min T 

is attained with positive rational x,sh • In this case there is no way by which the 
cost matrix may be reduced further, so as to provide an increment to S, without 
violating (10) or (11). In terms of the concepts of the method of reduced matrices, 
this means that  no further reduction in a cost matrix is possible if the x~jh => 0 
terms associated with the zero elements of the transformed matrix satisfy (6), 
(7) and (8), even though the values of the terms x~-jh > 0 are not integral. 

We define a reduced matrix with integral xljh > 0 associated with its zero terms 
satisfying (6), (7) and (8) to be completely reduced since (15) is satisfied by 
positive integral values of x~jh and no increment to S is possible by further reduc- 
tion. A similar reduced matrix with associated xiih > 0 fractional is said to be 
finally reduced even though the integral solution with minimal sum is not identi- 
fiable from its zero terms. The important point is that  every finally reduced 
matrix is a completely reduced matrix for a related problem with the same 
cost matrix but  with frequencies 

(16) ai '  = L a i ,  b /  = L b i ,  d~' = L d h .  

Here L is the least, common multiple of all the denominators of the x~jh so that  
the solution of the related problem is integral. Thus every finally reduced matrix, 
being also a completely reduced matrix of a related problem, cannot be further 
reduced. So the maximization of S may lead to an integral solution or to a 
fractional solution. In the latter case no further reduction of the cost matrix is 
possible. 

The determination of an integral solution from a fractional solution is thus, 
in a very  real sense, a new combinatorial problem. An additional element or ele- 
ments must be selected to supplement those used in obtaining the fractional 
solution. The finally reduced matrix is much more satisfactory than the original 
cost matrix for this purpose. If a pure combinatorial approach is to be used, it is 
effective to take xiih = 1 corresponding to the smallest non-zero value of the 
finally reduced matrix and to adjust the x,jh values of the fractional solution so 
as to satisfy (6)-(8). If this does not produce an integral solution, the next largest 
element of the finally reduced matrix is used. Commonly, in practical problems 
with unique solutions and appreciable differences in the c~jh terms, an integral 
solution results very soon. 

Though useful for handling many practical problems, this pure combinatorial 
method is not theoretically satisfactory. To provide a more satisfactory theoreti- 
cal solution, a method has been derived which utilizes the fractional solution and 
the relations of the reduction process in determining the optimal integral solu- 
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tion. In a sense the fractional solution serves as a particular solution and the 
additional element plays the role of a parameter. The equations resulting from 
the previous reduction process provide necessary conditions for the integral 
solution which enable one to eliminate from consideration all but a sul~set of the 
elements of the finally reduced matrix. Under certain conditions this subset is 
relatively very small [5]. 

The integral solution then results from the addition to the fractional solution 
of the part contributed by the parameter. In this sense, the solution of this 
second combinatorial problem is integrated with the maximization of S, even 
though it is not possible to make further formal reduction of the cost matrix 
once a rational solution has been identified. 

The determination of the best integral solution using one additional element 
has been programmed for the IBM 704. 

A detailed presentation of the method of reduced matrices as adapted to 
machine computation is given in another paper [6]. 

A feasible, or approximate, solution considered here is based on the calculation 
of the weighted deviates of the cost matrix (c~jh). If we write 

(17) ci.h = ~ b ic i jh ,  c. .h = a i b i c ~ h ,  

and so forth, so that the asterisk represents weighted summation over the sub- 
script whose position it is in, the formula for the two-dimensional weighted 
deviates is 

r C~, C,j C** 
(18) c~j = c~j N N + ~ - '  

while the three-dimensional formula for the weighted deviates is 

t Ci. ,  C.i. C,,h 2C,.. 
(19) ci~h = Cijh .V 2 N2 N2 @ iV 3 • 

Similar formulas are available for the k-dimensional problem. 
If one uses the matrix of deviates instead of the original cost matrix, one can 

obtain a good approximate solution to the original problem. More exactly, one 
obtains a set of integers x~h satisfying (5)-(8) and which are close to satisfying 
(9). The method consists of choosing the minimal weighted deviate (i.e., alge- 
braically minimal) and allocating as many items as possible to its position in the 
matrix, then finding the minimal weighted deviate among the remaining ones 
and allocating as many of the remaining items to its position as possible, etc. As 
indicated below, this method furnishes an efficient approximate solution in an 
extremely short time. Especially in problems in which the original data are 
subject to error, this approximate solution may sometimes be used instead of the 
true minimal solution. Moreover, if such an approximate solution were used as 
a first feasible solution in the simplex method, it should reduce considerably the 
number of iterations necessary to reach the optimum cost. 

Programs for the calculation of the weighted deviates and the approximate 
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solution have been written for the IBM 650 (k =< 7) and the IBM 704 (k =< 20). 
Typical of the time required for an approximate solution is two minutes, thirty- 
five seconds for a problem with k = 4, N = 137, Pl = P2 = P~ = p4 = 3 on 
the 650, while the same problem took only twelve seconds on the 704. (We now 
write p~, p2, • • • , pk instead of p, q, r, • . . .)  A large problem (k = 2, N = 3077, 
Pl = 186, p~ = 15) ran 19.5 minutes on the 704, producing a solution which is 
98 percent efficient. Efficiency is defined by the formula: 

(20) E = 7T _ T 

where T: is the cost resulting from the approximate solution, T is the true mini- 
mal cost, and T = c , / N :  is the mean cost, which is the cost one would obtain 
if every cost element were replaced by the weighted mean of all cost elements. 
I t  should also be mentioned that the same weighted deviates are used for the 
maximization form of the problem (such as in the group assembly problem) as 
well as in the minimization form which occurs in the transportation problem. 
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